WO2017184002A1 - Plateforme de travail pour imprimante 3d et imprimante 3d contenant une telle plateforme de travail - Google Patents
Plateforme de travail pour imprimante 3d et imprimante 3d contenant une telle plateforme de travail Download PDFInfo
- Publication number
- WO2017184002A1 WO2017184002A1 PCT/PL2017/050021 PL2017050021W WO2017184002A1 WO 2017184002 A1 WO2017184002 A1 WO 2017184002A1 PL 2017050021 W PL2017050021 W PL 2017050021W WO 2017184002 A1 WO2017184002 A1 WO 2017184002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- print bed
- printer
- plate
- bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/25—Housings, e.g. machine housings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/295—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Definitions
- the object of the invention is a 3D printer print bed and a 3D printer comprising the same, used for three-dimensional printing in the Fused Filament Fabrication technology, applied in Rapid Prototyping applications and custom production, finding application particularly in manufacturing industry, in medicine and prosthetics, education, garment design, in automotive industry, or in a broad range of consumer products and electronics.
- 3D printing is a process of fabrication of digitally designed three-dimensional objects.
- Printing in the Fused Filament Fabrication technology is effected by means of depositing consecutive layers into a predetermined shape.
- the technology consists in delivering a synthetic thermoplastic materia! strand heated to a semi-liquid state to the print head for three-dimensional printing, moving spatially in three dimensions.
- the thermoplastic materials (half-products in 3D printing) used for printing in this technology can be any kind of thermoplastic synthetic material in the form of a strand wound upon a spool, hereinafter referred to as the filament.
- Filament is applied either in layers or as points, and the deposition process is usually implemented in a chamber providing a temperature enabling thermal forming of the thermoplastic material.
- the local material temperature immediately upon leaving the nozzle is close to its melting temperature, or sometimes exceeds it.
- a critical issue is to keep the appropriate conditions inside the build chamber, including the appropriate temperature in the build chamber and the temperature of the print bed. 3D printing can be used in various industries, e.g. architecture, fashion, medicine, electronics.
- a three-dimensional modelling apparatus that enables fabrication of three-dimensional objects in a heated build chamber by dispensing modelling material from the dispensing head onto the base, in a pattern determined by control signals from a controller.
- the motion control components of the apparatus head are external to and thermally isolated from the build chamber by means of deform.abie thermal insulators forming the build chamber.
- Motion controls provide the movement of the head in the x-y plane.
- deformable thermal insulators allowed the build chamber to be maintained at a relatively high temperature.
- the build chamber is surrounded by a heating duct that is formed of sheet metal and opens to the build chamber.
- the heating duct on one side of the chamber, there is a number of fin-strip heaters that provide heating the air in the heating duct, and the blower situated below provides the transport of the heated air into the build chamber.
- Such solution ensures maintaining the preset temperature inside the working chamber, but due to the application of hot air inlets into the build chamber, it does not ensure uniform distribution of temperature inside the chamber, and the air transported in the heating duct can cool down, whereby keeping the preset parameters becomes difficult.
- the presented apparatus for three-dimensional modelling does not provide heated print bed, which significantly affects the deterioration in the quality of the fabricated 3D objects.
- the system referred to comprises a chamber having chamber walls, wherein at least one of the chamber wails has a port extending therethrough and a heating mechanism configured to heat the chamber to one or more temperatures.
- the system also includes a print foundation and a print head for 3D printing on the print foundation in a layer-by-layer manner along a printing axis.
- the system also comprises a drive mechanism configured to index the print foundation along the printing axis such that while the print head prints the 3D object, the print foundation and at least a portion of the 3D object pass through the port and out of the heated chamber.
- the heating mechanism comprises heaters and air circulators to blow the heated air throughout the chamber in order to maintain the chamber, and in particular the area in the vicinity of the print head at appropriate printing conditions, i.e. increased ambient temperature, which is aimed at the reduction of distortions and curling of the printed material.
- appropriate printing conditions i.e. increased ambient temperature
- the interior of the chamber has adjustable temperature that is additionally provided by the heater and the blower disposed either in the chamber wall, or in its upper internal surface, which does not ensure maintaining a uniform temperature throughout the volume of the chamber.
- heating of the print foundation itself is not provided for.
- the 3D printer referred to above consists of a heated build chamber having a print bed inside, upon which consecutive layers of filament are deposited, being extruded from the print head.
- Vertical movement is provided through a movable print bed mounted on a spindle drive.
- Horizontal movement is provided by a gantry with belt drives upon which the print head is suspended.
- Heating of the build chamber is provided by the application of integrated resistance heating elements with fans providing air circulation inside the chamber.
- the print bed also has heating elements in the form of wired silicon heating pad. Two fans providing air circulation are disposed on a single plane at one of the chamber walls which does not provide appropriate circulation and uniform temperature distribution throughout the volume of the chamber.
- using separate heating elements for the print bed and the build chamber results in their multiplication which complicates the design of a 3D printer and increases its cost.
- the technical problem faced by this invention is to propose such a 3D printer print bed that will provide heating the 3D printer print bed upper surface to the preset temperature, increasing the adhesion of the deposited layers to the surface of the print bed, will enable accelerated cooling of the print bed on demand, and will provided additional heating throughout the 3D printer build chamber, while keeping uniform temperature distribution throughout the volume of the build chamber, being at the same time a simple and single-module structure and shall allow to reduce the thickness of the whole print bed.
- it is desired to provide a 3D printer comprising such print bed which will allow fabrication of three-dimensional objects, increasing their accuracy and quality, eliminating, at the same time, the internal stress in the printed object, the solution being simpler in design, limiting the number of components used, and being more reliable.
- the first object of the invention is a 3D printer print bed having a support structure, comprising a support plate, side walls and a support unit, with at least three print bed fittings extending laterally from the support plate, at least one heating plate being mounted in the support structure, having a heat transfer piate, at least one print bed temperature sensor, with the build plate of the print bed being mounted on at least a part of the heating plate, characterized in that there is at least one fan in the support unit, and there is at least one through port in the support plate, corresponding to the position of the fan, and the lateral waifs have a number of circulation holes.
- the support unit has at least one through port, corresponding to the position of the fan.
- the print bed is made of glass, stone or ceramics.
- the support unit has a substantially triangular shape in a parallel plane view, in another preferred embodiment of the invention, the circulation ports are dislocated in two opposite lateral walls.
- the heating plate is powered with directional current voltage of about 380 V or alternating current voltage of about 230V.
- the second object of the invention is a 3D printer for three-dimensional printing in fused filament fabrication technology, comprising a heated build chamber wherein a vertically movable print bed is situated on at least one linear drive, and a horizontally movable print head mounted on at least one linear drive (13), (14) in each of the two horizontal directions, characterized in that the print bed constitutes a print bed as defined in the first object of the invention.
- the print bed is seated on three linear drives in the form of spindle drives.
- the print head is mounted on two linear drives in the form of spindle drives providing movement in one of the horizontal plane directions, an on one linear drive in the form of a spindle drive providing movement in the second of the horizontal plane directions.
- there is a temperature sensor installed inside the build chamber !n another preferred embodiment of the invention, there is a mixing fan installed inside the build chamber.
- the heated print bed of a 3D printer provides optimum adhesion of the printed object to the substrate due to heating the upper plate of the print bed.
- the heated buifd chamber with the printout cooling process control minimizes and stabilizes the internal tension inside the printed object.
- the design of the print bed allows using the heat from the heating plate to raise and stabilize the temperature of the print bed and the build chamber of the 3D printer.
- the presented design ensures exact distribution of heat energy between the print bed and the build chamber.
- the application of temperature sensors integrated within the build chamber and in the print bed, and connected via the control system allows for exact supervision and control both of the heating and the cooling process.
- a mixing fan mounted in the build chamber additionally increases the uniformity of temperature distribution throughout the volume of the build chamber, which significantly affects the print quality.
- Utilization of the heating plate powered with high DC voltage in the print bed allowed to reduce the thickness of this element, thus the print bed itself, favorably influencing the compactness of the whole 3D printer.
- utilization of fans situated in the lower portion of the print bed provided dual use of the print bed itself, reducing the number of 3D printer components used, favorably influencing the cost effectiveness of the solution and its reliability.
- Exemplary embodiments of the invention have been presented in the drawings, wherein fig. 1 represents a 3D printer according to the first embodiment of the present invention in front view, fig. 2 represents the 3D printer of fig.
- fig. 3 illustrates the print bed of the 3D printer according to the first embodiment of the present invention in axonometric projection
- fig. 4 illustrates partial cross-section of the print bed of fig. 3
- fig. 5 represents an axonometric projection of the first embodiment of the print bed mounted in the 3D printer chamber
- fig. 6 represents a 3D printer according to the second embodiment of the present invention in front view
- fig. 7 represents the 3D printer of fig. 6 in axonometric projection
- fig. 8 illustrates the print bed of the 3D printer according to the second embodiment of the present invention in axonometric projection
- fig. 9 illustrates partial cross-section of the print bed of fig. 8
- fig. 10 represents an axonometric projection of the second embodiment of the print bed mounted in the 3D printer chamber.
- Example 1 Figs. 1 and 2 illustrate an embodiment of a 3D printer for three-dimensional printing in the fused filament fabrication technology, according to the first embodiment of the present invention, in front and axonometric view, respectively.
- the 3D printer has a heated build chamber 9 where the process of deposition of the fused thermoplastic material takes place.
- the build chamber 9 has side walls and an upper and a lower plates, all being made of a thermal insulation material which guarantees the thermal containment of the 3D printer build area and maintaining a stable printing environment with a preset temperature.
- the insulation consists of a thermal insulator about 10 mm thick attached to a sheet metal.
- a 3D printer according to the present invention is a bridge structure, i.e. print head 12 is mounted on a frame structure providing movement of print head 12 in the horizontal plane of the 3D printer, whereas movement in the third direction, i.e. vertical, is implemented by vertically movable print bed 10.
- the printer head 12 is mounted on a linear spindle drive 14 ensuring the movement along one of the horizontal plane directions, and two linear spindle drives 13 providing movement in the second horizontal plane direction. Furthermore, the motors of linear spindle drives 13 are covered by the drive housing 17 in order to protect them against high temperatures. Motors 18 of these linear drives 13 are arranged outside the build chamber 9 in order to reduce the impact of high temperatures upon these components, thus increasing the reliability and durability of the entire system.
- a print bed 10 Inside the build chamber 9 of the 3D printer, there is a print bed 10, the first embodiment of which has been illustrated in detail in fig. 3 and fig. 4.
- the print bed 10 is mounted inside the printer build chamber 9 in such a way as to enable its precise movement up and down.
- the print bed 10 or the 3D printer has a support structure 5 comprising a support plate 5a, side walls 5b and the support unit 5c.
- the support structure 5 contains the heating plate 2 with a heat transfer plate 3 mounted upon it, and a print bed temperature sensor 21.
- the print plate 1 of the print bed 10, upon which the material from the print head 12 is deposited, is mounted on the print plate temperature sensor 21 and on the heat transfer plate 3.
- the print plate 1 is most preferably made of glass and forms the basis for creation of three-dimensional models.
- the print piate 1 can be made of other materials suitable for that purpose, like stone or ceramics.
- the lowest layer of the printed model must be glued to the print plate 1.
- the application of increased temperature for the print bed 10, actually for the print plate 1 favors increased adhesion phenomena between glass and the deposited material.
- a heating plate 2 was implemented, powered with DC voltage of about 380 V or AC voltage of about 230V.
- a chamber temperature sensor 15 mounted on one of the walls, whose function is to read the temperature inside the build chamber 9, in particular over the surface of the print bed 10.
- a mixing fan 16 that provides uniform distribution of the heated air throughout the building space, that is throughout the whole volume of the build chamber 9.
- Figs. 6 and 7 present the second embodiment of a 3D printer for three- dimensional printing in the fused filament fabrication technology seen, respectively, from the front and in the axonometric projection.
- the 3D printer according to the second embodiment is structurally similar to the 3D printer according to the first embodiment, and therefore the same numerical symbols are used to reference to the same or similar components of the 3D printer.
- One of the more significant differences between the presented embodiments of 3D printers is the design of the print bed 10 implemented inside, as illustrated in figs. 8-10.
- the print bed 10 is mounted inside the printer build chamber 9 in such a way as to enable its precise movement up and down.
- the print bed 10 or the 3D printer has a support structure 5 comprising a support plate 5a, side walls 5b and the support unit 5c.
- the support structure 5 contains the heating plate 2 with a heat transfer plate 3 mounted upon it, and a platform temperature sensor 21.
- the print plate 1 of the print bed 10, upon which the material from the print head 12 is deposited, is mounted on the print plate temperature sensor 21 and on the heat transfer plate 3.
- the print plate 1 is most preferably made of glass and forms the basis for creation of three-dimensional models.
- the print plate 1 can be made of other materials suitable for that purpose, like stone or ceramics.
- the lowest layer of the printed model must be glued to the print plate 1.
- the application of increased temperature for the print bed 10, actually for the print plate 1 favors increased adhesion phenomena between glass and the deposited material.
- a heating plate 2 has been applied in the print bed, powered with AC voltage of about 230 V or DC voltage of about 380 V, thus reaching both relatively high power of about 1800 W, and reducing the height of the whole print bed 10 structure.
- the support structure 5 has the support unit 5c attached, which in turn has a deflector plate 22 attached, whose function is to separate and guide the streams of air taken out from and returned back to the build chamber.
- the deflector plate 22 is attached to the support plate 5a by means of a support unit 5c.
- the support unit 5c has a series of circulation openings 8, while the deflector plate 22 houses a fan 4 corresponding to the location of heater 23 that carries out the heating of the air inside the chamber. This provides taking the air from above the print bed 10, heating the same and transferring it back to the build chamber 9.
- the openings in the support unit 5c are situated on each side of the print bed 10, so the air is passed, heated under the print bed 10, and then, by means of the fan 4, blown into the build chamber 9.
- the mixing fan 16 located inside of the build chamber 9 was removed, and the air circulation is provided by the fan 4 situated under the print bed 10, and whose construction elements are covered by the fan cover 25.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
L'invention concerne un lit d'impression d'imprimante 3D (10) présentant une structure de support (5), comprenant une plaque de support (5a), des parois latérales (5b) et une unité de support (5c), au moins trois raccords (7) de lit d'impression (10) s'étendant latéralement depuis la plaque de support (5a), au moins une plaque chauffante (2) étant montée dans la structure de support (5), une plaque de transfert de chaleur (3) étant montée sur cette dernière, au moins un capteur de température de lit d'impression (21), et la plaque d'impression (1) du lit d'impression (10) est montée sur au moins une partie de la plaque chauffante (2), au moins un ventilateur (4) étant présent dans l'unité de support (5c), et au moins une ouverture traversante étant également présente dans la plaque de support (5a), correspondant à la position du ventilateur (4), tandis que les parois latérales (5b) comportent un certain nombre d'ouvertures de circulation (8). L'invention concerne également une imprimante 3D comprenant un tel lit d'impression (10).
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PLP.416846 | 2016-04-18 | ||
| PL416846A PL228959B1 (pl) | 2016-04-18 | 2016-04-18 | Platforma robocza drukarki 3D oraz drukarka 3D zawierająca taką platformę roboczą |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017184002A1 true WO2017184002A1 (fr) | 2017-10-26 |
Family
ID=60083596
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/PL2017/050021 Ceased WO2017184002A1 (fr) | 2016-04-18 | 2017-04-03 | Plateforme de travail pour imprimante 3d et imprimante 3d contenant une telle plateforme de travail |
Country Status (2)
| Country | Link |
|---|---|
| PL (1) | PL228959B1 (fr) |
| WO (1) | WO2017184002A1 (fr) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108582782A (zh) * | 2018-07-27 | 2018-09-28 | 中科院广州电子技术有限公司 | 一种双循环加热恒温成型空间的3d打印机 |
| CN108656548A (zh) * | 2018-07-04 | 2018-10-16 | 芜湖启迪打印机科技有限公司 | 一种便于取件的3d打印机工作台 |
| WO2020068075A1 (fr) * | 2018-09-26 | 2020-04-02 | Hewlett-Packard Development Company, L.P. | Réglage de débits d'air pour l'impression 3d |
| DE102018128106A1 (de) | 2018-11-09 | 2020-05-14 | GEWO Feinmechanik GmbH | 3D-Drucker mit einem verstellbaren Druckbett und Verfahren zum Ausrichten eines Druckbetts eines 3D-Druckers |
| CN112138287A (zh) * | 2020-07-24 | 2020-12-29 | 西安交通大学 | 一种用于伽马刀手术的定位头模及三维成像与成型系统 |
| CN112223741A (zh) * | 2020-08-28 | 2021-01-15 | 中科院广州电子技术有限公司 | 一种空间恒温的大尺寸打印平台3d打印装置 |
| CN112475324A (zh) * | 2020-10-28 | 2021-03-12 | 浙江万丰科技开发股份有限公司 | 一种3d打印机用模块式加热器 |
| CN113302038A (zh) * | 2018-12-20 | 2021-08-24 | 捷普有限公司 | 用于3d打印构建板热膨胀的校平器 |
| CN113631352A (zh) * | 2019-03-29 | 2021-11-09 | 3M创新有限公司 | 在增材制造装置中使用的构建平台 |
| CN114030177A (zh) * | 2021-10-11 | 2022-02-11 | 程永阔 | 一种数码3d平板打印机 |
| CN116669931A (zh) * | 2020-11-23 | 2023-08-29 | 罗伯特·博世有限公司 | 用于增材制造三维工件的装置及方法 |
| WO2024013144A1 (fr) | 2022-07-13 | 2024-01-18 | Compagnie Generale Des Etablissements Michelin | Module amovible permettant de réduire la consommation énergétique d'une machine d'impression 3d |
| US12373618B2 (en) | 2019-07-19 | 2025-07-29 | Peridot Print Llc | Adaptive simulation in additive manufacturing |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112810138A (zh) * | 2020-12-04 | 2021-05-18 | 浙江大学滨海产业技术研究院 | 一种带温控功能的3d打印装置及其使用方法 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030075836A1 (en) * | 2001-10-24 | 2003-04-24 | Fong Jon Jody | Cooling techniques in solid freeform fabrication |
| CN203792720U (zh) * | 2013-10-17 | 2014-08-27 | 广东拓斯达科技股份有限公司 | 排气扇抽气式3d打印防变形工作平台 |
| CN204263548U (zh) * | 2014-11-21 | 2015-04-15 | 潘祥生 | 并联式3d打印机 |
| US20150102531A1 (en) * | 2013-10-11 | 2015-04-16 | Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. | Apparatus and method for forming three-dimensional objects using a curved build platform |
| US20150190968A1 (en) * | 2014-01-05 | 2015-07-09 | Makerbot Industries, Llc | Controlling build chamber temperature |
-
2016
- 2016-04-18 PL PL416846A patent/PL228959B1/pl unknown
-
2017
- 2017-04-03 WO PCT/PL2017/050021 patent/WO2017184002A1/fr not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030075836A1 (en) * | 2001-10-24 | 2003-04-24 | Fong Jon Jody | Cooling techniques in solid freeform fabrication |
| US20150102531A1 (en) * | 2013-10-11 | 2015-04-16 | Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. | Apparatus and method for forming three-dimensional objects using a curved build platform |
| CN203792720U (zh) * | 2013-10-17 | 2014-08-27 | 广东拓斯达科技股份有限公司 | 排气扇抽气式3d打印防变形工作平台 |
| US20150190968A1 (en) * | 2014-01-05 | 2015-07-09 | Makerbot Industries, Llc | Controlling build chamber temperature |
| CN204263548U (zh) * | 2014-11-21 | 2015-04-15 | 潘祥生 | 并联式3d打印机 |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108656548A (zh) * | 2018-07-04 | 2018-10-16 | 芜湖启迪打印机科技有限公司 | 一种便于取件的3d打印机工作台 |
| CN108582782A (zh) * | 2018-07-27 | 2018-09-28 | 中科院广州电子技术有限公司 | 一种双循环加热恒温成型空间的3d打印机 |
| WO2020068075A1 (fr) * | 2018-09-26 | 2020-04-02 | Hewlett-Packard Development Company, L.P. | Réglage de débits d'air pour l'impression 3d |
| DE102018128106A1 (de) | 2018-11-09 | 2020-05-14 | GEWO Feinmechanik GmbH | 3D-Drucker mit einem verstellbaren Druckbett und Verfahren zum Ausrichten eines Druckbetts eines 3D-Druckers |
| CN113302038A (zh) * | 2018-12-20 | 2021-08-24 | 捷普有限公司 | 用于3d打印构建板热膨胀的校平器 |
| US12168321B2 (en) | 2018-12-20 | 2024-12-17 | Jabil Inc. | Leveler for 3D printing build plate thermal expansion |
| CN113302038B (zh) * | 2018-12-20 | 2023-08-25 | 捷普有限公司 | 用于3d打印构建板热膨胀的校平器 |
| CN113631352B (zh) * | 2019-03-29 | 2023-11-17 | 3M创新有限公司 | 在增材制造装置中使用的构建平台 |
| CN113631352A (zh) * | 2019-03-29 | 2021-11-09 | 3M创新有限公司 | 在增材制造装置中使用的构建平台 |
| US12373618B2 (en) | 2019-07-19 | 2025-07-29 | Peridot Print Llc | Adaptive simulation in additive manufacturing |
| CN112138287A (zh) * | 2020-07-24 | 2020-12-29 | 西安交通大学 | 一种用于伽马刀手术的定位头模及三维成像与成型系统 |
| CN112223741A (zh) * | 2020-08-28 | 2021-01-15 | 中科院广州电子技术有限公司 | 一种空间恒温的大尺寸打印平台3d打印装置 |
| CN112475324A (zh) * | 2020-10-28 | 2021-03-12 | 浙江万丰科技开发股份有限公司 | 一种3d打印机用模块式加热器 |
| CN116669931A (zh) * | 2020-11-23 | 2023-08-29 | 罗伯特·博世有限公司 | 用于增材制造三维工件的装置及方法 |
| CN114030177A (zh) * | 2021-10-11 | 2022-02-11 | 程永阔 | 一种数码3d平板打印机 |
| WO2024013144A1 (fr) | 2022-07-13 | 2024-01-18 | Compagnie Generale Des Etablissements Michelin | Module amovible permettant de réduire la consommation énergétique d'une machine d'impression 3d |
| FR3137864A1 (fr) | 2022-07-13 | 2024-01-19 | Compagnie Generale Des Etablissements Michelin | Module amovible permettant de réduire la consommation énergétique d’une machine d’impression 3D |
Also Published As
| Publication number | Publication date |
|---|---|
| PL228959B1 (pl) | 2018-05-30 |
| PL416846A1 (pl) | 2017-10-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2017184002A1 (fr) | Plateforme de travail pour imprimante 3d et imprimante 3d contenant une telle plateforme de travail | |
| KR102424584B1 (ko) | 3-d 프린팅 장치 | |
| JP3995933B2 (ja) | 高温模型製作装置 | |
| US10300651B2 (en) | Portable 3D printer | |
| US20160096327A1 (en) | Apparatus and method for producing objects utilizing three-dimensional printing | |
| US11312070B2 (en) | Print head for three-dimensional printing and the print head assembly | |
| US7628600B2 (en) | Device for a layerwise manufacturing of a three-dimensional object | |
| JP4865866B2 (ja) | 三次元物体の層状製造装置 | |
| US20220402209A1 (en) | 3d printer with advantageous irradiation device, and method | |
| KR20160004345A (ko) | 아이소파이프에서 열 프로파일 제어를 위한 장치 및 방법 | |
| US11161336B2 (en) | Heated air system for 3D printer | |
| CN114829110B (zh) | 一种具有构建区域的有利几何形状的3d打印设备 | |
| EP0556291A4 (fr) | Appareil de frittage selectif au laser a chauffe radiante. | |
| CN104275782B (zh) | 加热装置、成型机和加热半成品的方法 | |
| JP5835081B2 (ja) | ガラス板の製造方法およびガラス板の製造装置 | |
| FI128655B (fi) | Lasilevyn karkaisu-uuni | |
| JPH037321A (ja) | 溶融押出式フイルム成形の膜厚制御装置 | |
| KR200486725Y1 (ko) | 3d 프린터용 베드 | |
| RU2770997C1 (ru) | Промышленный 3D-принтер для высокотемпературной печати | |
| US20220088949A1 (en) | Inkjet printer with temperature controlled substrate support | |
| US20230415420A1 (en) | Device and method for the additive manufacturing of a three-dimensional workpiece | |
| KR20220139840A (ko) | 하나 이상의 소재를 출력할 수 있는 3d 프린터의 필라멘트 온도 제어방법 및 제어시스템 | |
| US20240123682A1 (en) | Device for additive manufacturing | |
| CN218489103U (zh) | 3d打印系统 | |
| JP2001088211A (ja) | プレヒート装置およびプレヒート方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17786227 Country of ref document: EP Kind code of ref document: A1 |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17786227 Country of ref document: EP Kind code of ref document: A1 |