[go: up one dir, main page]

WO2017036519A1 - Dispositif, système et procédé d'enseignement d'une position avec un dispositif d'enseignement de position portatif - Google Patents

Dispositif, système et procédé d'enseignement d'une position avec un dispositif d'enseignement de position portatif Download PDF

Info

Publication number
WO2017036519A1
WO2017036519A1 PCT/EP2015/069983 EP2015069983W WO2017036519A1 WO 2017036519 A1 WO2017036519 A1 WO 2017036519A1 EP 2015069983 W EP2015069983 W EP 2015069983W WO 2017036519 A1 WO2017036519 A1 WO 2017036519A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
robot
held
force
teaching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2015/069983
Other languages
English (en)
Inventor
Fan Dai
Arne WAHRBURG
Björn MATTHIAS
Hao Ding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Priority to PCT/EP2015/069983 priority Critical patent/WO2017036519A1/fr
Publication of WO2017036519A1 publication Critical patent/WO2017036519A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/423Teaching successive positions by walk-through, i.e. the tool head or end effector being grasped and guided directly, with or without servo-assistance, to follow a path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36451Handheld toollike probe, work instructor, lightweigted, connected to recorder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36453Handheld tool like probe

Definitions

  • the invention is related to a hand-held position teaching device for robot programming.
  • robots are widely used in industrial production, such as for handling tasks like gripping, welding or painting.
  • Dependent on their respective purposes ro- bots have typically a robot arm with a length in the range of 0,5 to 3,5m that consists of several robot members and that are connected by respective hinged joints to a kinematic chain.
  • a robot arm typically comprises five to seven joints, so that in total five to seven degrees of freedom in movement are gained.
  • a mechanical interaction tool is mounted at the tip of the robot arm to mechanically go into contact with a workpiece to be treated or gripped.
  • a mechanical interaction tool might be a tip, a gripper or a welding gun for example.
  • a robot with at least six degrees of freedom in movement has the ability to reach all coordinates within its working range in each desired orientation with the tip of its arm.
  • three degrees of freedom in movement are required to reach any x, y, z coordinate, whereas the other three degrees of freedom in movement are required to gain any orientation around the coordinate.
  • Such flexibility is required for example for complex robot tasks like gripping a workpiece or welding or the like.
  • six degrees of freedom in movement are of also advantage for tasks with no direct mechanical contact to the workpiece to be treated such as robotic paint spraying.
  • the robot joints are driven by dedicated motors that usually are controlled by a common robot controller.
  • a typical robot controller comprises a computing unit and several amplifiers for the electric supply of the motors with a respective suitable variable voltage signal.
  • the robot controller is foreseen to execute a respective robot program on its computing unit.
  • a robot program usually comprises data about the desired movement path of the tip of the robot arm respectively of a reference point in a fixed relation thereto, which is a so-called tool center point (TCP).
  • TCP tool center point
  • a coordinate might include - besides values for desired x, y, z position - a desired orientation of the tip of the robot arm respectively the TCP, so that - dependent on the coordinate system used - three values per coordinate are required to define the coordinate as such within the three dimensional x, y, z coordinate system and further three values per coordinate are required to define the orientation.
  • the robot controller interpolates the movement path in between the subsequent coordinates provided within the robot program. In order to get the coordinates within the robot program aligned with the coordinate system of the real robot, both, the coordinates in the robot program and the coordinate system of the robot itself, have to be aligned to the same reference coordinate system.
  • a robot movement program might additionally include some reference values for a force on a workpiece to be treated that has to be applied by the mechanical interac- tion tool. This might be for example a gripping force that is applied by the gripper fingers of a gripper on a gripped object in between them. But also a mechanical force that is applied by use of a tip-like mechanical interaction tool mounted on the tip of a robot arm on a workpiece in order to move it to another location might be subject to be defined in a robot program.
  • the observance of such a force during execution of the robot program might be enabled as well by use of force sensors implemented in the mechanical interaction tool as by an indirect calculation of a force by use of the electrical currents of the motors of the robot joints for example. In case that the given maximum force is reached the respective motors are controlled in that way that the prescribed maximum force is not exceeded.
  • Another but also disadvantageous possibility of teaching coordinates of a movement path consists in moving a real robot arm with its mechanical interaction tool mounted thereon manually around the workpiece to be treated and to set a respective coordinate in the robot program when a desired location has been reached.
  • Each movement of the robot arm requires the control of its motors with a teach pendant or the like.
  • this procedure is very time consuming, especially in case of a mechanical interaction of the mechanical interaction tool with the workpiece to be treated since only a very low tolerance of the TCP is admitted then, otherwise a mechanical collision would be the consequence during teaching or execution of the robot program.
  • Automated spraying application for example has a much higher tolerance since a typical spraying distance might be in between 20cm to 25cm, so that deviations of +/- 1 cm in the distance to the surface of the object to be treated will not cause a collision or even a measurably reduction of the paint result.
  • Objective of the invention is to provide a device and a method, which facilitate the teaching respectively determination of coordinates of a movement path when generating a robot program.
  • the problem is solved by a hand-held position teaching device for robot programming of the aforementioned kind. This is characterized by
  • the mechanical interaction device comprises at least one force sensor
  • a position determination device integrated in the hand-held base body that is foreseen to determine the position of the reference tool center point relatively to a reference coordinate system that is aligned to the mechanical interaction device
  • the hand-held position teaching device is foreseen to provide data to its communication interface that describe the current position of the reference tool center point relatively to the aligned reference coordinate system and a force measured by the at least one force sensor.
  • Basic idea of the invention is to use a hand-held position teaching device for manually teaching a position by holding the tool center point (TCP) of its mechanical interaction device on the desired location on the surface of a real reference workpiece of a type that is foreseen to be treated by a robot later on. This is significantly easier than moving the whole robot arm with a mechanical interaction device mounted thereon around a workpiece for position teaching.
  • the position of the TCP of the mechanical interaction device is determined with respect to an aligned reference coordinate system by the integrated position determination device.
  • the determined position is transmitted by the communication interface to, for example, an external computing device, which might be a personal computer with a simple text editor running thereon, so that the data of the position transmitted thereto can easily become implemented into a robot program.
  • an external computing device which might be a personal computer with a simple text editor running thereon
  • CAD programming is extremely facilitated by providing the respective position by the hand- held position teaching device according to the invention.
  • the computing device might also be part of a robot controller itself, which is foreseen to control a robot for executing a respective robot program using those positions.
  • a mechanical contact in between the mechanical interaction device and the workpiece to be treated is foreseen when determining the data of a position to be taught.
  • the mechanical interaction device mounted on the hand-held base body is designed in that way, that it is defining a reference tool center point.
  • This might be in the easiest case a tip whose end corresponds to the tool center point.
  • it is possible to manually press the end of the tip, which is corresponding to the tool center point, onto the surface of the workpiece to be treated.
  • Due to the mechanical contact in between the mechanical interaction device and the workpiece a deviation of the taught x, y, z coordinate to the desired x, y, z coordinate is excluded in an advantageous way.
  • the teaching of position coordinates with a hand-held device according to the invention will lead to high precision position data, which are of extreme importance for robot tasks like gripping or welding for example and which require a mechanical contact to the workpiece to be treated.
  • the mechanical interaction device of the hand-held position teaching device is foreseen to go into mechanical contact with the workpiece to be treated so that accordingly a respective contact force in between mechanical interaction device and workpiece is caused.
  • the hand-held position teaching device further comprises a user interface for manual interaction to initiate providing of data to the communication interface, in particular a button.
  • a user interface for manual interaction to initiate providing of data to the communication interface, in particular a button.
  • a touch display or the like is a suitable interface.
  • the us- er interface for manual interaction to initiate providing of data to the communication interface comprises a button, means for detecting a galvanic contact of the mechanical interaction device with a work piece or other objects, means for detecting a predetermined threshold force to be achieved by a contact with a work piece or other objects and/or other sensory means.
  • the mechanical interaction device comprises a tip defining the reference tool center point.
  • the end of the tip can easily be used as pointer to define a coordinate on the surface of a workpiece.
  • the end of the tip is covered with a soft material so that scratches or the like on the surface of the workpiece are avoided therewith.
  • the me- chanical interaction device comprises a gripper with gripper fingers defining the reference tool center point in between them.
  • Grippers might have two or more gripper fingers which can be opened and closed.
  • a gripper mounted on the arm of a robot is typically driven by a motor or another actuator.
  • the gripper comprises a manual usable spring mechanism, so that - other than a manual force - no drive, motor or actuator is required for opening and closing the gripper fingers. This enables the intuitive gripping of a workpiece in an advantageous way so that a position and a force required for gripping are teachable synchronously.
  • the hand-held position teaching device comprises a user interface for manual interaction to initiate opening and/or closing the gripper fingers.
  • a user interface for manual interaction to initiate opening and/or closing the gripper fingers.
  • This might be in the easiest case one or more buttons to initiate an opening or closing movement of the gripper fingers, which might be driven be a manipulator.
  • the hand-held position teaching device comprises a display as part of a user interface.
  • a touch display for example is an easy way for active communication in between of a user and an electric device.
  • a further computing device integrated in the hand-held position teaching device could be foreseen to perform tasks like preprocessing of measurement values and controlling the dialogue with the user.
  • the at least one force sensor is foreseen to measure a contact force applied with the reference tool center point on an external object and/or in case of a gripper an applied gripping force in between the gripper fingers.
  • a mechanical interaction device is extending along a reference axis, wherein the position- and orientation determination device is also foreseen to determine the orientation of the reference axis relatively to the aligned reference coordinate system and wherein the hand-held position teaching device is foreseen to provide data to its communication interface which describe the orientation of the reference axis relatively to the aligned reference coordinate system.
  • a position teaching system comprising a hand-held position teaching device according to the invention and further comprising a computing device, in particular a robot controller, which is connected to the communication interface of the hand-held position teaching device and that is foreseen to receive and store provided data.
  • the position teaching system further comprises a robot, which is controllable by the computing device, in particular by the robot controller, wherein the coordinate system of the robot is aligned to the same reference coordinate system than the mechanical interaction device.
  • a robot program based on coordinates determined by a hand-held position teaching device immediately after generating the robot program.
  • the same workpiece is used for teaching than for verifying.
  • the following additional steps are foreseen: • applying a force on a force sensor of the mechanical interaction device in the position to be taught, in particular applying a force with the reference tool center point on an external object and/or in case of a gripper applying a force in between the gripper fingers,
  • the robot Since the robot is aligned to the same reference coordinate system than the mechan- ical interaction device the coordinates determined with the hand-held teaching device can be imported into the robot program to be generated without any adaptations. In case of a displacement the coordinates have to be adapted accordingly.
  • Figure 1 shows an exemplary first hand-held position teaching device
  • Figure 2 shows an exemplary second hand-held position teaching device
  • Figure 3 shows an exemplary third hand-held position teaching device
  • Figure 4 shows an exemplary position teaching system
  • Figure 5 shows an exemplary first robot system
  • Figure 6 shows exemplary second robot system.
  • Figure 1 shows an exemplary first hand-held position teaching device 10.
  • a mechanical interaction device 14 - in this case an elongated part with a tip - is mounted on a hand-held base body 12 and is extending along a reference axis 1 6.
  • the end of the elongated part is defining a reference tool center point 18, which is foreseen to be manually hold in a respective desired orientation on several locations on the surface of a workpiece so that respective position vectors can be determined by use of a position- and orientation determination device 20, which is also integrated in the hand- held base body 12.
  • a position vector might be described by three data values for x-, y- and z- coordinates of the tool center point and three data values for orientation of the reference axis 1 6.
  • the position- and orientation determination device 20 might be based on a gyrostatic compass or an inertial measurement device, for example, and is aligned 24 to a reference coordinate system 22.
  • a force sensor 32 is foreseen to determine any force which is applied through the mechanical interaction device 14 on an external workpiece.
  • the respective measurement data of a respective force are provided to the communication interface 26 in the same way than the coordinate data of the tool center point respectively the orien- tation of the reference axis.
  • a computing unit 30 is foreseen for performing smaller computing tasks such as preprocessing of measurement values for example.
  • a communication interface 26 is foreseen to communicate the respective determined measurement data of position of the tool center point and the determined measure- ment data of the orientation of the reference axis 16, which in combination are defining a position vector, via a data exchange 28 to an external computing unit that is not depicted in this figure.
  • Providing of data to the communication interface 26 can be initiated by a manual action, for example by pushing a button 34.
  • a manual action for example by pushing a button 34.
  • FIG. 2 shows an exemplary second hand-held position teaching device 40.
  • a mechanical interaction device 44 - in this case gripper with gripper fingers 46, 48 - is mounted on a hand-held base body 42 and is extending along a reference axis 54.
  • a tool center point 56 is defined on the reference axis 54 in between the gripper fingers 46, 48 at the height of their axial end.
  • Each gripper finger 46, 48 is provided with a respective force sensor 50, 52, so that a clamping force in between the gripper fingers 46, 48 is determinable therewith.
  • Respective position vectors can be determined by use of a position- and orientation determination device 58, which is also integrated in the hand-held base body 42.
  • the position- and orientation determination device 58 is aligned 62 to a reference coordinate system 60.
  • a communication interface 64 is foreseen to communicate the respective determined measurement data of position of the tool center point and the determined measurement data of the orientation of the reference axis 54 via a data exchange 66 to an external computing unit that is not depicted in this figure.
  • a computing unit 68 is foreseen for performing smaller computing tasks such as preprocessing of measurement values.
  • Providing of data to the communication interface 64 can be initiated by a manual action, for example by pushing a button 70, or by detecting the contact with the work piece by galvanic contact, or by determining a predetermined threshold force to be achieved by the contact with the work piece or other objects, or by other sensory means.
  • Figure 3 shows an exemplary third hand-held position teaching device 80.
  • a mechanical interaction device 84 - in this case gripper with gripper fingers 86 - is mounted on a hand-held base body 82.
  • a user interface 90 respectively a button is foreseen to initiate providing position and orientation data determined by a not shown position- and orientation determination device integrated within the hand-held base body 82.
  • FIG. 4 shows an exemplary position teaching system 100 with a user 102.
  • a conveyor 1 12 is foreseen to provide workpieces to be gripped.
  • the user 102 held in his right hand an exemplary hand-held position teaching device 104 in a desired pose to be taught. He is manually applying a force 106 on a gripped workpiece 108, wherein the force is determined by a force sensor integrated in the hand-held position teach- ing device 104.
  • the hand-held position teaching device 104 further comprises a position- and orientation determination device that is aligned 120 to a reference coordinate system 1 18.
  • a communication interface is foreseen for data exchange 1 14 with an external com- puting device 1 1 6, so that measurement data of the tool center point, orientation and the force in between the gripper fingers can be provided to the external computing device 1 1 6.
  • Figure 5 shows an exemplary first robot system 130.
  • a conveyor 138 is providing workpieces to be gripped.
  • a robot 140 is controlled by a computing device 142 - in this case a robot controller - and has a further mechanical interaction device 132 respectively a gripper mounted on the tip of its arm.
  • the gripper applies a force 134 on a gripped workpiece 136.
  • the movements of the robot 140 and of the gripper are controlled according to a movement program running on the computing device 142.
  • the position vectors within the robot program defining the movement path of the robot arm have been taught by use of a hand-held position teaching device as depicted in figure 4.
  • FIG. 6 shows an exemplary second robot system 150.
  • a robot 152 is controlled by a computing device 154 - in this case a robot controller - and has a further mechanical interaction device 1 62 respectively a gripper mounted on the tip of its arm.
  • the robot 152 respectively the computing device 154 is aligned 1 60 to a coordinate system that is different from a coordinate system 156, which has been used for teaching the coordinate vectors of the robot program running on the computing device 154.
  • a coordinate system adjustment 158 is foreseen.
  • gripper fingers 88 user interface for manual interaction (clamp)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

L'invention concerne un dispositif d'enseignement de position portatif (12, 42, 82, 104) et un procédé permettant d'enseigner à un robot une position et une orientation avec un dispositif d'enseignement de position portatif, le dispositif d'enseignement comprenant un dispositif d'enseignement - TCP (18-56), des capteurs de force (32, 50, 52) et des capteurs inertiels (20, 58) et et son système de coordonnées est calibré sur le système de coordonnées de robots, et le dispositif d'enseignement est maintenu dans la position et l'orientation souhaitées et transmet la position et l'orientation du dispositif d'enseignement - TCP au dispositif de commande de robot (116) pour que celles-ci soient mémorisées. L'utilisateur (102) peut également appliquer une force à un outil de préhension (44, 48, 84, 88) du dispositif d'enseignement et serrer une pièce (108, 110) de manière à enseigner une fonction de préhension. Le dispositif de commande de robot peut ensuite utiliser la pluralité de positions et orientations mémorisées afin de commander et déplacer le robot. Cela est considérablement plus facile que de déplacer l'intégralité du bras de robot avec un dispositif d'enseignement monté sur celui-ci ou commandé par celui-ci. L'interface utilisateur de l'outil de préhension comprend des ressorts.
PCT/EP2015/069983 2015-09-02 2015-09-02 Dispositif, système et procédé d'enseignement d'une position avec un dispositif d'enseignement de position portatif Ceased WO2017036519A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/069983 WO2017036519A1 (fr) 2015-09-02 2015-09-02 Dispositif, système et procédé d'enseignement d'une position avec un dispositif d'enseignement de position portatif

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/069983 WO2017036519A1 (fr) 2015-09-02 2015-09-02 Dispositif, système et procédé d'enseignement d'une position avec un dispositif d'enseignement de position portatif

Publications (1)

Publication Number Publication Date
WO2017036519A1 true WO2017036519A1 (fr) 2017-03-09

Family

ID=54148472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/069983 Ceased WO2017036519A1 (fr) 2015-09-02 2015-09-02 Dispositif, système et procédé d'enseignement d'une position avec un dispositif d'enseignement de position portatif

Country Status (1)

Country Link
WO (1) WO2017036519A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812109A3 (fr) * 2018-10-17 2021-07-07 Kabushiki Kaisha Yaskawa Denki Système de robot et procédé de commande de robot
CN114868093A (zh) * 2019-12-17 2022-08-05 万德博茨有限公司 用于训练机器的至少一个移动和至少一个活动的手持设备、系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378404B1 (en) * 1998-07-01 2002-04-30 Big Ventures, L.L.C. Self-adjusting and/or self-locking pliers
WO2005060338A2 (fr) * 2003-12-12 2005-07-07 Abb Research Ltd. Methode, dispositif et systeme de programmation d'un robot
DE102008062623A1 (de) * 2008-12-17 2010-06-24 Kuka Roboter Gmbh Verfahren und Vorrichtung zur Auswahl einer gespeicherten Position eines Arbeitspunktes eines Manipulators
WO2011039542A1 (fr) * 2009-10-02 2011-04-07 The Welding Insitute Procédé et système de programmation d'un robot
EP2481529A1 (fr) * 2011-01-31 2012-08-01 ROBOJOB, besloten vennootschap Procédé de manipulation d'une série de pièces de travail identiques présentées successivement au moyen d'un robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378404B1 (en) * 1998-07-01 2002-04-30 Big Ventures, L.L.C. Self-adjusting and/or self-locking pliers
WO2005060338A2 (fr) * 2003-12-12 2005-07-07 Abb Research Ltd. Methode, dispositif et systeme de programmation d'un robot
DE102008062623A1 (de) * 2008-12-17 2010-06-24 Kuka Roboter Gmbh Verfahren und Vorrichtung zur Auswahl einer gespeicherten Position eines Arbeitspunktes eines Manipulators
WO2011039542A1 (fr) * 2009-10-02 2011-04-07 The Welding Insitute Procédé et système de programmation d'un robot
EP2481529A1 (fr) * 2011-01-31 2012-08-01 ROBOJOB, besloten vennootschap Procédé de manipulation d'une série de pièces de travail identiques présentées successivement au moyen d'un robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812109A3 (fr) * 2018-10-17 2021-07-07 Kabushiki Kaisha Yaskawa Denki Système de robot et procédé de commande de robot
US11230004B2 (en) 2018-10-17 2022-01-25 Kabushiki Kaisha Yaskawa Denki Robot system and robot control method
CN114868093A (zh) * 2019-12-17 2022-08-05 万德博茨有限公司 用于训练机器的至少一个移动和至少一个活动的手持设备、系统和方法

Similar Documents

Publication Publication Date Title
JP7719155B2 (ja) ロボットシステム、制御方法、物品の製造方法、制御プログラム、記録媒体
CN117062693B (zh) 用于基于自适应柔顺的机器人组装的系统和方法
KR101795847B1 (ko) 산업용 로봇을 프로그래밍하기 위한 방법 및 관련 산업용 로봇
KR101479233B1 (ko) 로봇 및 그 협조작업 제어방법
CN102483625B (zh) 工业机器人和调节机器人程序的方法
CN102239454B (zh) 用于在机械手的控制装置中输入指令的方法和设备
US9878446B2 (en) Determination of object-related gripping regions using a robot
US10828769B2 (en) Ascertaining an input command for a robot, said input command being entered by manually exerting a force onto the robot
US5495410A (en) Lead-through robot programming system
DK2131257T3 (en) Method and apparatus for controlling a manipulator
EP3222393B1 (fr) Système et procédé de guidage automatique pour machine à mouvement coordonné
WO2017036520A1 (fr) Système et procédé pour la génération d'un programme de robot avec un dispositif d'apprentissage tenu à la main
KR101879025B1 (ko) 위치들을 기록하기 위한 장치 및 방법
KR102553391B1 (ko) 로봇을 구비한 취급 장치, 방법 및 컴퓨터 프로그램
WO2017088888A1 (fr) Apprentissage de trajectoire ou chemin de robot par démonstration
Stolt et al. Sensorless friction-compensated passive lead-through programming for industrial robots
Mandava et al. Design of PID controllers for 4-DOF planar and spatial manipulators
Namiki et al. Vision-based predictive assist control on master-slave systems
CN113858189A (zh) 机器人的控制方法及机器人系统
WO2017036519A1 (fr) Dispositif, système et procédé d'enseignement d'une position avec un dispositif d'enseignement de position portatif
US11992956B2 (en) Coordination system, handling device, and method
WO2017036521A1 (fr) Dispositif, système et procédé d'enseignement d'une position avec un dispositif d'enseignement de position tenu en main
JP2019512785A (ja) マニピュレータを用いて対象物を空間的に動作させるシステム及び方法
CN108475051A (zh) 用于在工业机器人的编程期间对准工具的方法和系统
Yoon et al. Algorithm to Automatically Generate Non-Collision Trajectory to Perform Pick-and-Place Operation with a Mobile Manipulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15766417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15766417

Country of ref document: EP

Kind code of ref document: A1