[go: up one dir, main page]

WO2017029276A1 - Procédés de fabrication additive à l'aide d'une élimination chimique de la structure support - Google Patents

Procédés de fabrication additive à l'aide d'une élimination chimique de la structure support Download PDF

Info

Publication number
WO2017029276A1
WO2017029276A1 PCT/EP2016/069398 EP2016069398W WO2017029276A1 WO 2017029276 A1 WO2017029276 A1 WO 2017029276A1 EP 2016069398 W EP2016069398 W EP 2016069398W WO 2017029276 A1 WO2017029276 A1 WO 2017029276A1
Authority
WO
WIPO (PCT)
Prior art keywords
support structures
metal
metal support
electro
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2016/069398
Other languages
English (en)
Inventor
Scott LATHROPE
Matthew SCOVELL
David SKOLNIK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meggitt Aerospace Ltd
Original Assignee
Meggitt Aerospace Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meggitt Aerospace Ltd filed Critical Meggitt Aerospace Ltd
Publication of WO2017029276A1 publication Critical patent/WO2017029276A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/08Etching of refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/43Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/47Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/06Etching of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present patent document relates to methods for additive manufacturing. More particularly, the present patent document relates to methods of additive manufacturing using chemical removal of support structure.
  • One object of the embodiments described herein is to alleviate or mitigate the difficulties in removing support structures in additive manufacturing of metal parts.
  • the processes described herein accomplish this through the use of chemical and electrochemical processes. Accordingly, processes of creating a metal part using additive manufacture are provided.
  • the process includes: using additive manufacture to manufacture a metal part with a first element and a second element; using additive manufacture to manufacture one or more metal support structures that couple the first element to the second element; and using a chemical process to remove the one or more metal support structures.
  • the chemical process is an electro-chemical process such as electro-polishing. If an electro-chemical process is used, nitric acid may be preferably used. If nitric acid is used and the support structures are around 0.025 inches, the part may be electro-chemically polished for around 75 minutes.
  • the part and support structure are both made from a material that may be electro-polished.
  • stainless steel is used.
  • the stainless steel may be selected from the group consisting of 15-5 stainless steel and 17-4 stainless steel.
  • the part and support structure may be made from Inconel.
  • the Inconel is Inconel 718 or Inconel 625.
  • the purpose of the support structure is to support the second element 12.
  • the support structure rigidly attaches the first element to the second element.
  • any number of support structures may be used throughout the part and any number of support structures may be used for a single element of a part. In most embodiments, a plurality of support structures are used for supporting one element and a plurality of support structures are used throughout the part. In some embodiments, 10 or more support structures may be used to support a single element of a part.
  • the support structures may be any shape. Ideally, the shape of the support structures may be selected to maximize the effect of the chemical process on the support structures. In some embodiments, the support structures are a cylinder with a diameter of approximately 0.025 inches.
  • the support structure has a hollow volume at each base.
  • a chemical process that attacks all the surfaces of a part uniformly may be used.
  • hydrochloric acid may be used to remove the support structures.
  • the dimensions of the part are increased to form a tolerance adjustment layer.
  • the tolerance adjustment layer is removed by the chemical process. This is preferably used when the chemical process uses hydrochloric acid or other chemicals that attack all portions of the part evenly but is not limited to any particular chemical or process.
  • a tolerance adjustment layer may be useful in holding a tighter tolerance on certain elements of the part or the entire part.
  • the first element and the second element of the part are made of a first metal
  • the one or more metal support structures are made from a second metal, which is different from the first metal.
  • the second metal is designed to be more easily removed by the chemical or electro-chemical process and particularly, electro- polishing.
  • the support structures may be made from a non- metal, such as plastic for example, while the part is made from metal.
  • Figure 1 illustrates an embodiment of a part made of a first element and a second element wherein the second element is supported by at least one support structure.
  • Figure 2 illustrates the part of Fig. 1 with a tolerance adjustment layer surrounding the first and second elements.
  • Figures 3A-3C illustrates time lapse images showing a plurality of support structures being removed from a part.
  • Figure 4A illustrates a cross-section of one embodiment of a support structure with hollow cylindrical volume at its base.
  • Figure 4B illustrates a cross-section of another embodiment of a support structure with hollow cylindrical volume at its base.
  • Additive manufacturing also known as three-dimensional printing, can make extremely complex parts.
  • support structures may be required.
  • the embodiments described herein use chemical and electro-chemical processes to dissolve and remove those support structures. Chemical and electro-chemical process have the ability to dissolve and remove small structures on immersed parts when the chemistry is aligned to the part material.
  • the embodiments described herein alleviate or mitigate the difficulties in removing the support structures in additive manufacturing parts through the use of chemical and electro-chemical processes. Consequently, the embodiments described herein open up the design process to many more possibilities.
  • the processes may be used with parts that have support structures in complex and inaccessible structures within an additive structure.
  • the use of chemical and electrochemical processes to remove support structures in parts made using the additive manufacturing process opens up the possibility of building more complicated parts. As examples, both internal structures which are otherwise not possible as well as relative motion structures may be created.
  • Figure 1 illustrates an embodiment of a part 5 made of a first element 10 and a second element 12 wherein the second element 12 is supported by at least one support structure 14.
  • the part may be any part a client is desirous of manufacturing.
  • the part 5 may be made of many different materials including, metals, plastics and resins, to name a few.
  • the part 5 may be comprised of a number of elements 10 and 12. Although only two elements are shown in the part of Fig. 1 , any number of elements may be present.
  • An "element" of the part 5 is any portion of the part 5 that is intended to be a permanent portion of the part.
  • a first element 12 may be supported by at least one support structure 14 to a second element 10. In the embodiment shown in Fig. 1 , two support structures 14 are used but in other embodiments any number of support structures may be used. In most embodiments, a plurality of support structures 14 will be used to support a single element. However, any number of support structures 14 may be used to support a single element including only one support structure 14. In some embodiments, a minimum of 10 support structures may be used to support a single element. In other embodiments, 20, 30 or even more support structures may be used.
  • a support structure 14 is any portion of the part that is not intended to be permanent and attaches a first element 12 of the part 5 to a second element 10 of the part 5.
  • the purpose of the support structure 14 is as the name implies, to support a first element 12 during the additive manufacturing process.
  • These support structures 14 are often small but may be any size.
  • the support structure 14 is formed like a truss between the first element 12 and the second element 10.
  • the support structures 14 have a circular cross-section.
  • the circular cross-section allows the support structure 14 to be more easily and uniformly dissolved during the latter part of the process, as explained below.
  • the support structures 14 may have other shapes for their cross-section including, oval, square, rectangle, hexagon octagon, triangle and others.
  • the cross-section may vary along the length of the support structure 14.
  • the support structure 14 may be thinner at each end and thicker in the middle.
  • the support structure 14 may be thicker at the ends and thinner in the middle.
  • the supports have a cross-section that is approximately 0.025 inches across.
  • the support structures have a thickness of approximately 0.025 inches.
  • the support structures may be thinner or thicker and may range from approximately 0.01 inches to 0.1 inches.
  • the thicknesses listed above are equal to the diameter of the support structure 14.
  • the support structures 14 are significantly smaller than the elements 10 and 12 of the part. In particular, the support structures 14 are significantly thinner than other elements of the part. This allows the dissolving process to work more effectively on the support structure while not ruining the part.
  • the thickness of the thinnest portion of the part 5 is five times the thickness of the support structure 14. In other embodiments, the thinnest portion of the part 5 is ten times, twenty times, or even thirty times the thickness of the support structure 14.
  • additive manufacturing includes all types of manufacturing where parts are grown or printed including selective laser sintering (SLS), direct metal laser sintering (DMLS), Electron Beam Melting (EBM), and selective laser melting (SLM), to name a few.
  • SLS selective laser sintering
  • DMLS direct metal laser sintering
  • EBM Electron Beam Melting
  • SLM selective laser melting
  • a model of a part 5 is designed for additive manufacturing.
  • the part 5 has a first element 12 and second element 10 that are connected by at least one support structure 14.
  • the part 5 is manufactured using an additive manufacturing process.
  • the part 5 is put through a chemical or electrochemical processes to remove the support structures 14.
  • the support structure 14 rigidly attaches the first element 12 to the second element 10. In such embodiments, the support structure physically attaches directly to the first element 12 and the second element 10. This allows the support structure 14 to mechanically support the first element 12 during the manufacturing phase of the process. However, in some embodiments, the support structure 14 may more loosely couple the first element 12 to the second element 10 as long as mechanical support is provided.
  • this application is not limited to any particular metal, chemical or combination thereof, the following may be used by way of example. For metals like 15-5 stainless steel, standard electro-polishing using nitric acid works well. A similar process may be used on 17-4 stainless steel as the non-chrome and nickel elements are identical.
  • Inconel 718 may also be used, however, Inconel 718 may not work in the standard nitric acid electro-polishing bath. Inconel 718 can be electro-polished, but the process is different from that for stainless steels. Accordingly, it is important to align the chemistry to the material.
  • Electro-polish will tend to attack the supports more than the surrounding material because the process erodes material particularly where charge accumulates. As the supports are small and pointed, charge will accumulate. When the support initially severs from erosion, the two points attract even more charge, and the remaining support is rapidly removed. Although the main structure may lose some material, as compared to the support structures 14, the loss is minimal. In embodiments where the support structures 14 are approximately 0.025", the process may require approximately 75 minutes of electro- polishing time to remove. If the support structures 14 are thicker than 0.025 inches, a longer electro-chemical process may be used. Similarly, if the support structures 14 are thinner than 0.025 inches, a shorter electro-chemical process may be used. The correlation between the chemical process time and the thickness is not necessarily linear such that if the support structures thickness is doubled, the processing time more than doubles.
  • a highly concentrated hydrochloric acid may be used. Hydrochloric acid attacks all surfaces evenly and relatively aggressively as compared to electro-polishing. For embodiments using a hydrochloric acid, the processing time may be reduced, but the part would have to be oversized to allow degradation of the part as well. For embodiments using hydrochloric acid, the processing times are more critical and a post-process neutralization is required. One benefit of hydrochloric acid is that it attacks many materials and may therefore be used with just about any part material.
  • hydrochloric acid may be pumped through internal channels to remove material. To this end, the part may have specific structures such as channels designed to facilitate the application of the chemicals to specific support structure within the part.
  • Fig. 2 illustrates the part of Fig. 1 with a tolerance adjustment layer 13 surrounding the first and second elements 10 and 12.
  • the tolerance adjustment layer 13 increases the thickness of the parts such that when the chemical or electro-chemical process is performed, the dimensions of the parts finish within their desired dimensions and tolerances.
  • the tolerance adjustment layer 13 is not a separate layer but rather an increase in the dimensions of the part. The increase in dimensions creates the extra material that will then be removed by the chemical or electro-chemical process used to remove the support structure 14.
  • the tolerance adjustment layer 13 may be added to all dimensions of the part or only to certain dimensions. As explained above, the tolerance adjustment layer may be especially beneficial when the chemical or electro-chemical process attacks all surfaces uniformly, like with hydrochloric acid. However, where very tight tolerances are needed, the tolerance adjustment layer 13 may be used with any process and on any portion of the part.
  • the chemicals used are aligned to the part material. As explained above, this means that the chemicals and chemical processes are chosen based on the material that needs to be removed. Stainless steel may use a different process from Inconel and other materials may use yet other chemicals and chemical processes. Although by no means exhaustive, Table 1 below illustrates some materials and chemical combinations that may be used together in an electro-polishing process. These are just possible choices and others may be possible including combinations of the chemicals listed in Table 1 or solutions using the chemicals listed as ingredients.
  • the 2013/2014 Universal Metal Finishing Guidebook which is hereby incorporated by reference in its entirety, lists a number of metals and chemicals for electro-polishing those metals. A digital copy of the 2013/2014 Universal Metal Finishing Guidebook, may be found at: http://metalfinishing.epubxp.eom/t/12238-metal- finishing-guide-book
  • the support structures 14 may be made from a different material than the material used for the actual part 5.
  • the material for the support structure 14 may be designed to be more susceptible to removal by the chemical process than the material used to make the part. Accordingly, the support structures 14 can be more easily removed by the chemical or electro-chemical process.
  • the part 5 may be made from Inconel 718 while the support structures 14 are made from a metal much more easily removed by a chemical bath or electro-polishing such as Stainless Steel 17-4.
  • the materials chose for the part 5 and the support structures 14 are specific to the chemicals chosen for removal of the support structures.
  • the system may use two different hoppers, wire extruders, or laser blown powder heads to select material from. This allows the additive process to use one material for the part 5 and a second material for the support structure 14.
  • dual hopper systems the system lays down different powder materials from each hopper based on the build location.
  • two multi-axis extruders melt two different material wires and deposit the liquid to solidify in discrete locations.
  • dual laser-blown powder heads two multi-axis lasers are used and a different powdered material may be blown through each one. One laser head would create the part structure and the other laser head would be used to create the support structures.
  • the material used for the support structures 14 may include the same material as the part 5, the properties of the material used for the support structure 14 may be altered in order to make it more easily removed using a chemical or electro-chemical process.
  • a filler may be mixed with the material used for the support structures 14.
  • the filler that is mixed with the material used for the support structures 14 is designed to make the support structures 14 more susceptible to removal during the chemical or electro-chemical process.
  • small plastic particles or other small impurities may be mixed into the metal. These small impurities create imperfections in the support structures 14. Not only are the imperfections very quickly removed using the chemical process but once removed, the voids created by the removal of the impurities leave imperfections.
  • the support structures 14 may be made from a non-metal while the rest of the part 5 is made from metal. This allows the support structures 14 to be removed by choosing a chemical that attacks the non-metal support structures 14 while leaving the metal part 5 unharmed.
  • the integrity of the support structures 14 is purposely affected during the additive manufacturing process.
  • the support structures 14 may not receive the same level of laser hardening such that their final state is different from the portions that comprise the part 5.
  • sintering is used as an example here, the same process may be used for any type of additive manufacturing of metal. The key is that during the additive manufacturing process, the portions of material that will end up comprising support structures 14 are not hardened/cured to the same extent as the portions that will comprise the part 5. To this end, the support structures 14 are weaker and more easily removed by a chemical or electro-chemical process.
  • the melt pool is controlled such that the support structure material is more easily removed via the chemical process than the material used for the structure of the part. To this end, the part material is melted while the material for the support structure is not. When building the actual portions of the part, the temperature is increased to melt the higher melting point material or to create an allow between two different materials. This technique also allows the manufacture of alloyed metal additive layered manufactured parts.
  • Figures 3A-3C illustrate time lapse images showing a plurality of support structures being removed from a part 5.
  • the part 5 consists of a spiraling outer portion and each rung of the spiral is supported by a plurality of support structures 14.
  • the first image on the left, Fig. 3A shows the part 5 directly from the additive manufacturing process.
  • the part 5 has many support structures 14.
  • the middle image, Fig. 3B shows the part after chemical/electro- chemical processing for 45 minutes. As may be seen, much of the support structures 14 are completely removed but very thin remnants remain. Only small nubs may remain where the support structures used to connect to the parts elements.
  • the far right image, Fig. 3C shows the same part 5 once the chemical/electro-chemical processing has completed and a satisfactory amount of the support structures 14 have been removed. In the final image of the embodiment shown in Fig. 3C, the part was processed for 75 minutes.
  • the entire support structure is gone once the process is complete. However, in some embodiments, small remnants may remain.
  • the support structure may be specially designed.
  • hollow volumes may be left in the material at the base of each pin.
  • Fig. 4A and 4B illustrate a cross-section of the interface between the base of a support structure 14 and an element of a part 10 or 12.
  • hollow volumes 15 may be formed in the base of the support structure 14 to ensure the support structures may be completely removed and "nubs" are not left behind.
  • the hollow volumes 15 are preferably shaped like a cylinder or a cone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

L'invention concerne un procédé de création d'une pièce métallique à l'aide d'une fabrication additive. Dans un mode de réalisation préféré, le procédé consiste à : utiliser la fabrication additive pour fabriquer une pièce métallique présentant un premier élément et un deuxième élément ; utiliser la fabrication additive pour fabriquer une ou plusieurs structures support métalliques qui accouplent le premier élément au deuxième élément ; et utiliser un procédé chimique pour éliminer ladite une ou lesdites plusieurs structures support métalliques.
PCT/EP2016/069398 2015-08-14 2016-08-16 Procédés de fabrication additive à l'aide d'une élimination chimique de la structure support Ceased WO2017029276A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562205520P 2015-08-14 2015-08-14
US62/205,520 2015-08-14

Publications (1)

Publication Number Publication Date
WO2017029276A1 true WO2017029276A1 (fr) 2017-02-23

Family

ID=56686823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/069398 Ceased WO2017029276A1 (fr) 2015-08-14 2016-08-16 Procédés de fabrication additive à l'aide d'une élimination chimique de la structure support

Country Status (1)

Country Link
WO (1) WO2017029276A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073259A1 (fr) * 2016-10-20 2018-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Procédé d'enlèvement sans outil de structures de support lors de la fabrication générative de composants
GB2562467A (en) * 2017-05-08 2018-11-21 Gkn Aerospace Services Ltd Chemical milling
US20190091804A1 (en) * 2017-09-25 2019-03-28 Hamilton Sundstrand Corporation Additive manufacturing method
WO2019166166A1 (fr) * 2018-02-28 2019-09-06 Audi Ag Retrait des structures de support de composants fabriqués par impression 3d
WO2019185647A1 (fr) 2018-03-27 2019-10-03 Freemelt Ab Nettoyage électrochimique d'une pièce fabriquée de façon additive
DE102018127311A1 (de) 2018-10-31 2020-04-30 Eos Gmbh Electro Optical Systems Thermoelektrische Entfernung von Stützstrukturen
DE102019210499A1 (de) * 2019-07-16 2021-01-21 MTU Aero Engines AG Verfahren zum generativen aufbauen und separieren eines bauteils
CN113825579A (zh) * 2019-05-05 2021-12-21 L·兹罗多夫斯基 三维物体的增材制造方法
US20210395915A1 (en) * 2018-10-18 2021-12-23 RENA Technologies Austria GmbH Method for removing metal supporting structures on an additively manufactured metal component
CN115716135A (zh) * 2022-11-29 2023-02-28 中国科学院力学研究所 一种基于金属激光选区熔化技术的圆柱弹簧设计成形方法
CN116586636A (zh) * 2023-05-18 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 去除选区激光熔化制备钛及钛合金产品支撑结构的方法
EP4403676A1 (fr) * 2023-01-19 2024-07-24 Semsysco GmbH Procédé d'électro-gravure pour un traitement sélectif de surface d'un substrat
WO2025189131A3 (fr) * 2024-03-08 2025-10-30 Trio Labs, Inc. Objets, procédé et appareil de fabrication et d'utilisation de ceux-ci

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070358A1 (en) * 2009-09-20 2011-03-24 Medtronic Vascular, Inc. Method of forming hollow tubular drug eluting medical devices
DE102012000466B3 (de) * 2012-01-13 2013-04-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Bauteilen mit filigranen Strukturen und dessen Verwendung
US20150144496A1 (en) * 2013-11-26 2015-05-28 Honeywell International Inc. Methods and systems for manufacturing components from articles formed by additive-manufacturing processes
US20150197862A1 (en) * 2014-01-13 2015-07-16 Incodema3D, LLC Additive metal deposition process
US9114032B1 (en) * 2014-05-21 2015-08-25 Medtronic Vascular, Inc. Method of making a stent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070358A1 (en) * 2009-09-20 2011-03-24 Medtronic Vascular, Inc. Method of forming hollow tubular drug eluting medical devices
DE102012000466B3 (de) * 2012-01-13 2013-04-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Bauteilen mit filigranen Strukturen und dessen Verwendung
US20150144496A1 (en) * 2013-11-26 2015-05-28 Honeywell International Inc. Methods and systems for manufacturing components from articles formed by additive-manufacturing processes
US20150197862A1 (en) * 2014-01-13 2015-07-16 Incodema3D, LLC Additive metal deposition process
US9114032B1 (en) * 2014-05-21 2015-08-25 Medtronic Vascular, Inc. Method of making a stent

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073259A1 (fr) * 2016-10-20 2018-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Procédé d'enlèvement sans outil de structures de support lors de la fabrication générative de composants
GB2562467B (en) * 2017-05-08 2020-03-25 Gkn Aerospace Services Ltd Chemical Milling
GB2562467A (en) * 2017-05-08 2018-11-21 Gkn Aerospace Services Ltd Chemical milling
US20190091804A1 (en) * 2017-09-25 2019-03-28 Hamilton Sundstrand Corporation Additive manufacturing method
US11123819B2 (en) 2017-09-25 2021-09-21 Hamilton Sundstrand Corporation Additive manufacturing method
WO2019166166A1 (fr) * 2018-02-28 2019-09-06 Audi Ag Retrait des structures de support de composants fabriqués par impression 3d
WO2019185647A1 (fr) 2018-03-27 2019-10-03 Freemelt Ab Nettoyage électrochimique d'une pièce fabriquée de façon additive
US11649556B2 (en) 2018-03-27 2023-05-16 Freemelt Ab Electrochemical cleaning of an additively manufactured part
US20210395915A1 (en) * 2018-10-18 2021-12-23 RENA Technologies Austria GmbH Method for removing metal supporting structures on an additively manufactured metal component
DE102018127311A1 (de) 2018-10-31 2020-04-30 Eos Gmbh Electro Optical Systems Thermoelektrische Entfernung von Stützstrukturen
WO2020088967A1 (fr) 2018-10-31 2020-05-07 Eos Gmbh Electro Optical Systems Enlèvement thermoélectrique de structures de support
CN113825579A (zh) * 2019-05-05 2021-12-21 L·兹罗多夫斯基 三维物体的增材制造方法
CN113825579B (zh) * 2019-05-05 2023-12-12 L·兹罗多夫斯基 三维物体的增材制造方法
DE102019210499A1 (de) * 2019-07-16 2021-01-21 MTU Aero Engines AG Verfahren zum generativen aufbauen und separieren eines bauteils
CN115716135A (zh) * 2022-11-29 2023-02-28 中国科学院力学研究所 一种基于金属激光选区熔化技术的圆柱弹簧设计成形方法
EP4403676A1 (fr) * 2023-01-19 2024-07-24 Semsysco GmbH Procédé d'électro-gravure pour un traitement sélectif de surface d'un substrat
WO2024153798A1 (fr) * 2023-01-19 2024-07-25 Semsysco Gmbh Procédé d'électro-gravure pour un traitement sélectif en surface d'un substrat
CN116586636A (zh) * 2023-05-18 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 去除选区激光熔化制备钛及钛合金产品支撑结构的方法
WO2025189131A3 (fr) * 2024-03-08 2025-10-30 Trio Labs, Inc. Objets, procédé et appareil de fabrication et d'utilisation de ceux-ci

Similar Documents

Publication Publication Date Title
WO2017029276A1 (fr) Procédés de fabrication additive à l'aide d'une élimination chimique de la structure support
JP6420855B2 (ja) 積層造形法のための方法
TWI692382B (zh) 高熵合金絲及多主元合金絲,及其預形成物、製造方法和應用
JP6500047B2 (ja) 積層造形法のための方法及び接続支持体
US10612112B2 (en) Noble metal material for 3-dimensional printing, method for manufacturing the same, and method for 3-dimensional printing using the same
JP6548462B2 (ja) 付加製造方法
CN105829741B (zh) 轴承圈、内圈、外圈以及轴承
US20190283136A1 (en) Method Of Producing A Component With Additive Manufacturing
WO2017143013A1 (fr) Supports solubles à procédé régulé lors de l'impression 3d de composants en métal ou en céramique
JP2017196889A (ja) 積層造形法のための方法及びキー溝支持体
EP1888215B1 (fr) Procédé de fabrication d'un mélangeur statique
DE102009043928A1 (de) Zylinderbuchse, Zylinderblock und Verfahren zur Herstellung einer Zylinderbuchse
WO2015144401A1 (fr) Procédé de fabrication additive et appareil pour régler la taille des grains d'un composant
WO2013160198A1 (fr) Procédé de fabrication d'un composant présentant un porte-à-faux par une construction couche par couche
DE10209347B4 (de) Herstellungsverfahren für einen Turbinenradläufer
DE102017200152A1 (de) Additives Fertigungsverfahren
Arregui et al. Study of the geometrical limitations associated to the metallic part manufacturing by the LMD process
US20200360996A1 (en) Method for metal injection molding
WO2020091858A1 (fr) Articles fabriqués de manière additive avec des supports en treillis et procédés et systèmes de production de ceux-ci
GB2563333A (en) Manufacture of metal articles
DE102008013285A1 (de) Bauelement einer Wälzlagerung
WO2020096662A1 (fr) Systèmes et procédés de finition de pièces obtenues par fabrication additive
EP3459657A1 (fr) Fabrication additive limitée
EP3776608B1 (fr) Procédé de fabrication d'un corps électroconducteur spiralé
EP1759655B1 (fr) Outil de rectification dentaire et sa méthode de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16751598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16751598

Country of ref document: EP

Kind code of ref document: A1