[go: up one dir, main page]

WO2017078237A1 - Procédé pour transmettre et retransmettre une rétroaction de sps dans un système de communication sans fil et dispositif associé - Google Patents

Procédé pour transmettre et retransmettre une rétroaction de sps dans un système de communication sans fil et dispositif associé Download PDF

Info

Publication number
WO2017078237A1
WO2017078237A1 PCT/KR2016/006560 KR2016006560W WO2017078237A1 WO 2017078237 A1 WO2017078237 A1 WO 2017078237A1 KR 2016006560 W KR2016006560 W KR 2016006560W WO 2017078237 A1 WO2017078237 A1 WO 2017078237A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
retransmission
transmission
activation
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2016/006560
Other languages
English (en)
Inventor
Sunyoung Lee
Seungjune Yi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of WO2017078237A1 publication Critical patent/WO2017078237A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is leader and terminal is follower
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is leader and terminal is follower using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system and, more particularly, to a method for transmitting and retransmitting a SPS feedback in a wireless communication system and a device therefor.
  • LTE 3rd Generation Partnership Project Long Term Evolution
  • FIG. 1 is a view schematically illustrating a network structure of an E-UMTS as an exemplary radio communication system.
  • An Evolved Universal Mobile Telecommunications System (E-UMTS) is an advanced version of a conventional Universal Mobile Telecommunications System (UMTS) and basic standardization thereof is currently underway in the 3GPP.
  • E-UMTS may be generally referred to as a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the E-UMTS includes a User Equipment (UE), eNode Bs (eNBs), and an Access Gateway (AG) which is located at an end of the network (E-UTRAN) and connected to an external network.
  • the eNBs may simultaneously transmit multiple data streams for a broadcast service, a multicast service, and/or a unicast service.
  • One or more cells may exist per eNB.
  • the cell is set to operate in one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz and provides a downlink (DL) or uplink (UL) transmission service to a plurality of UEs in the bandwidth. Different cells may be set to provide different bandwidths.
  • the eNB controls data transmission or reception to and from a plurality of UEs.
  • the eNB transmits DL scheduling information of DL data to a corresponding UE so as to inform the UE of a time/frequency domain in which the DL data is supposed to be transmitted, coding, a data size, and hybrid automatic repeat and request (HARQ)-related information.
  • HARQ hybrid automatic repeat and request
  • the eNB transmits UL scheduling information of UL data to a corresponding UE so as to inform the UE of a time/frequency domain which may be used by the UE, coding, a data size, and HARQ-related information.
  • An interface for transmitting user traffic or control traffic may be used between eNBs.
  • a core network (CN) may include the AG and a network node or the like for user registration of UEs.
  • the AG manages the mobility of a UE on a tracking area (TA) basis.
  • One TA includes a plurality of cells.
  • WCDMA wideband code division multiple access
  • An object of the present invention devised to solve the problem lies in a method and device for transmitting and retransmitting a SPS feedback in a wireless communication system.
  • the technical problems solved by the present invention are not limited to the above technical problems and those skilled in the art may understand other technical problems from the following description.
  • the object of the present invention can be achieved by providing a method for User Equipment (UE) operating in a wireless communication system as set forth in the appended claims.
  • UE User Equipment
  • the UE stops retransmission of an SPS command feedback when new data becomes available for transmission in RLC or PDCP entities, even if an ACK indication for the SPS-FB is not received.
  • FIG. 1 is a diagram showing a network structure of an Evolved Universal Mobile Telecommunications System (E-UMTS) as an example of a wireless communication system;
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • FIG. 2A is a block diagram illustrating network structure of an evolved universal mobile telecommunication system (E-UMTS), and FIG. 2B is a block diagram depicting architecture of a typical E-UTRAN and a typical EPC;
  • E-UMTS evolved universal mobile telecommunication system
  • FIG. 3 is a diagram showing a control plane and a user plane of a radio interface protocol between a UE and an E-UTRAN based on a 3rd generation partnership project (3GPP) radio access network standard;
  • 3GPP 3rd generation partnership project
  • FIG. 4 is a view showing an example of a physical channel structure used in an E-UMTS system
  • FIG. 5 is a block diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 6 is a diagram for MAC structure overview in a UE side
  • FIG. 7 is a conceptual diagram for uplink grant reception
  • FIG. 8A and 8B are diagrams for performing a SPS transmission and SPS-feedback transmission.
  • FIG. 9 is a conceptual diagram for transmitting and retransmitting a SPS-FB in response to the PDCCH indicating SPS activation or SPS release in a wireless communication system according to embodiments of the present invention.
  • Universal mobile telecommunications system is a 3rd Generation (3G) asynchronous mobile communication system operating in wideband code division multiple access (WCDMA) based on European systems, global system for mobile communications (GSM) and general packet radio services (GPRS).
  • 3G 3rd Generation
  • WCDMA wideband code division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio services
  • LTE long-term evolution
  • 3GPP 3rd generation partnership project
  • the 3GPP LTE is a technology for enabling high-speed packet communications. Many schemes have been proposed for the LTE objective including those that aim to reduce user and provider costs, improve service quality, and expand and improve coverage and system capacity.
  • the 3G LTE requires reduced cost per bit, increased service availability, flexible use of a frequency band, a simple structure, an open interface, and adequate power consumption of a terminal as an upper-level requirement.
  • LTE long term evolution
  • LTE-A LTE-advanced
  • the embodiments of the present invention are applicable to any other communication system corresponding to the above definition.
  • the embodiments of the present invention are described based on a frequency division duplex (FDD) scheme in the present specification, the embodiments of the present invention may be easily modified and applied to a half-duplex FDD (H-FDD) scheme or a time division duplex (TDD) scheme.
  • FDD frequency division duplex
  • H-FDD half-duplex FDD
  • TDD time division duplex
  • FIG. 2A is a block diagram illustrating network structure of an evolved universal mobile telecommunication system (E-UMTS).
  • E-UMTS may be also referred to as an LTE system.
  • the communication network is widely deployed to provide a variety of communication services such as voice (VoIP) through IMS and packet data.
  • VoIP voice
  • IMS packet data
  • the E-UMTS network includes an evolved UMTS terrestrial radio access network (E-UTRAN), an Evolved Packet Core (EPC) and one or more user equipment.
  • the E-UTRAN may include one or more evolved NodeB (eNodeB) 20, and a plurality of user equipment (UE) 10 may be located in one cell.
  • eNodeB evolved NodeB
  • UE user equipment
  • MME mobility management entity
  • downlink refers to communication from eNodeB 20 to UE 10
  • uplink refers to communication from the UE to an eNodeB.
  • UE 10 refers to communication equipment carried by a user and may be also referred to as a mobile station (MS), a user terminal (UT), a subscriber station (SS) or a wireless device.
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • FIG. 2B is a block diagram depicting architecture of a typical E-UTRAN and a typical EPC.
  • an eNodeB 20 provides end points of a user plane and a control plane to the UE 10.
  • MME/SAE gateway 30 provides an end point of a session and mobility management function for UE 10.
  • the eNodeB and MME/SAE gateway may be connected via an S1 interface.
  • the eNodeB 20 is generally a fixed station that communicates with a UE 10, and may also be referred to as a base station (BS) or an access point.
  • BS base station
  • One eNodeB 20 may be deployed per cell.
  • An interface for transmitting user traffic or control traffic may be used between eNodeBs 20.
  • the MME provides various functions including NAS signaling to eNodeBs 20, NAS signaling security, AS Security control, Inter CN node signaling for mobility between 3GPP access networks, Idle mode UE Reachability (including control and execution of paging retransmission), Tracking Area list management (for UE in idle and active mode), PDN GW and Serving GW selection, MME selection for handovers with MME change, SGSN selection for handovers to 2G or 3G 3GPP access networks, Roaming, Authentication, Bearer management functions including dedicated bearer establishment, Support for PWS (which includes ETWS and CMAS) message transmission.
  • the SAE gateway host provides assorted functions including Per-user based packet filtering (by e.g.
  • MME/SAE gateway 30 will be referred to herein simply as a "gateway,” but it is understood that this entity includes both an MME and an SAE gateway.
  • a plurality of nodes may be connected between eNodeB 20 and gateway 30 via the S1 interface.
  • the eNodeBs 20 may be connected to each other via an X2 interface and neighboring eNodeBs may have a meshed network structure that has the X2 interface.
  • eNodeB 20 may perform functions of selection for gateway 30, routing toward the gateway during a Radio Resource Control (RRC) activation, scheduling and transmitting of paging messages, scheduling and transmitting of Broadcast Channel (BCCH) information, dynamic allocation of resources to UEs 10 in both uplink and downlink, configuration and provisioning of eNodeB measurements, radio bearer control, radio admission control (RAC), and connection mobility control in LTE_ACTIVE state.
  • gateway 30 may perform functions of paging origination, LTE-IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and ciphering and integrity protection of Non-Access Stratum (NAS) signaling.
  • SAE System Architecture Evolution
  • NAS Non-Access Stratum
  • the EPC includes a mobility management entity (MME), a serving-gateway (S-GW), and a packet data network-gateway (PDN-GW).
  • MME mobility management entity
  • S-GW serving-gateway
  • PDN-GW packet data network-gateway
  • FIG. 3 is a diagram showing a control plane and a user plane of a radio interface protocol between a UE and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path used for transmitting control messages used for managing a call between the UE and the E-UTRAN.
  • the user plane refers to a path used for transmitting data generated in an application layer, e.g., voice data or Internet packet data.
  • a physical (PHY) layer of a first layer provides an information transfer service to a higher layer using a physical channel.
  • the PHY layer is connected to a medium access control (MAC) layer located on the higher layer via a transport channel.
  • Data is transported between the MAC layer and the PHY layer via the transport channel.
  • Data is transported between a physical layer of a transmitting side and a physical layer of a receiving side via physical channels.
  • the physical channels use time and frequency as radio resources.
  • the physical channel is modulated using an orthogonal frequency division multiple access (OFDMA) scheme in downlink and is modulated using a single carrier frequency division multiple access (SC-FDMA) scheme in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the MAC layer of a second layer provides a service to a radio link control (RLC) layer of a higher layer via a logical channel.
  • the RLC layer of the second layer supports reliable data transmission.
  • a function of the RLC layer may be implemented by a functional block of the MAC layer.
  • a packet data convergence protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information for efficient transmission of an Internet protocol (IP) packet such as an IP version 4 (IPv4) packet or an IP version 6 (IPv6) packet in a radio interface having a relatively small bandwidth.
  • IP Internet protocol
  • IPv4 IP version 4
  • IPv6 IP version 6
  • a radio resource control (RRC) layer located at the bottom of a third layer is defined only in the control plane.
  • the RRC layer controls logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers (RBs).
  • An RB refers to a service that the second layer provides for data transmission between the UE and the E-UTRAN.
  • the RRC layer of the UE and the RRC layer of the E-UTRAN exchange RRC messages with each other.
  • One cell of the eNB is set to operate in one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz and provides a downlink or uplink transmission service to a plurality of UEs in the bandwidth. Different cells may be set to provide different bandwidths.
  • Downlink transport channels for transmission of data from the E-UTRAN to the UE include a broadcast channel (BCH) for transmission of system information, a paging channel (PCH) for transmission of paging messages, and a downlink shared channel (SCH) for transmission of user traffic or control messages.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through the downlink SCH and may also be transmitted through a separate downlink multicast channel (MCH).
  • MCH downlink multicast channel
  • Uplink transport channels for transmission of data from the UE to the E-UTRAN include a random access channel (RACH) for transmission of initial control messages and an uplink SCH for transmission of user traffic or control messages.
  • Logical channels that are defined above the transport channels and mapped to the transport channels include a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast traffic channel (MTCH).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic channel
  • FIG. 4 is a view showing an example of a physical channel structure used in an E-UMTS system.
  • a physical channel includes several subframes on a time axis and several subcarriers on a frequency axis.
  • one subframe includes a plurality of symbols on the time axis.
  • One subframe includes a plurality of resource blocks and one resource block includes a plurality of symbols and a plurality of subcarriers.
  • each subframe may use certain subcarriers of certain symbols (e.g., a first symbol) of a subframe for a physical downlink control channel (PDCCH), that is, an L1/L2 control channel.
  • PDCCH physical downlink control channel
  • FIG. 4 an L1/L2 control information transmission area (PDCCH) and a data area (PDSCH) are shown.
  • a radio frame of 10 ms is used and one radio frame includes 10 subframes.
  • one subframe includes two consecutive slots. The length of one slot may be 0.5 ms.
  • one subframe includes a plurality of OFDM symbols and a portion (e.g., a first symbol) of the plurality of OFDM symbols may be used for transmitting the L1/L2 control information.
  • a transmission time interval (TTI) which is a unit time for transmitting data is 1ms.
  • a base station and a UE mostly transmit/receive data via a PDSCH, which is a physical channel, using a DL-SCH which is a transmission channel, except a certain control signal or certain service data.
  • a certain PDCCH is CRC-masked with a radio network temporary identity (RNTI) "A" and information about data is transmitted using a radio resource "B" (e.g., a frequency location) and transmission format information "C" (e.g., a transmission block size, modulation, coding information or the like) via a certain subframe.
  • RNTI radio network temporary identity
  • C transmission format information
  • one or more UEs located in a cell monitor the PDCCH using its RNTI information.
  • a specific UE with RNTI "A” reads the PDCCH and then receive the PDSCH indicated by B and C in the PDCCH information.
  • FIG. 5 is a block diagram of a communication apparatus according to an embodiment of the present invention.
  • the apparatus shown in FIG. 5 can be a user equipment (UE) and/or eNB adapted to perform the above mechanism, but it can be any apparatus for performing the same operation.
  • UE user equipment
  • eNB evolved node B
  • the apparatus may comprises a DSP/microprocessor (110) and RF module (transmiceiver; 135).
  • the DSP/microprocessor (110) is electrically connected with the transciver (135) and controls it.
  • the apparatus may further include power management module (105), battery (155), display (115), keypad (120), SIM card (125), memory device (130), speaker (145) and input device (150), based on its implementation and designer’s choice.
  • FIG. 5 may represent a UE comprising a receiver (135) configured to receive a request message from a network, and a transmitter (135) configured to transmit the transmission or reception timing information to the network. These receiver and the transmitter can constitute the transceiver (135).
  • the UE further comprises a processor (110) connected to the transceiver (135: receiver and transmitter).
  • FIG. 5 may represent a network apparatus comprising a transmitter (135) configured to transmit a request message to a UE and a receiver (135) configured to receive the transmission or reception timing information from the UE. These transmitter and receiver may constitute the transceiver (135).
  • the network further comprises a processor (110) connected to the transmitter and the receiver. This processor (110) may be configured to calculate latency based on the transmission or reception timing information.
  • FIG. 6 is a diagram for MAC structure overview in a UE side.
  • the MAC layer handles logical-channel multiplexing, hybrid-ARQ retransmissions, and uplink and downlink scheduling. It is also responsible for multiplexing/demultiplexing data across multiple component carriers when carrier aggregation is used.
  • the MAC provides services to the RLC in the form of logical channels.
  • a logical channel is defined by the type of information it carries and is generally classified as a control channel, used for transmission of control and configuration information necessary for operating an LTE system, or as a traffic channel, used for the user data.
  • the set of logical channel types specified for LTE includes Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Dedicated Control Channel (DCCH), Multicast Control Channel (MCCH), Dedicated Traffic Channel (DTCH), Multicast Traffic Channel (MTCH).
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • DCCH Dedicated Control Channel
  • MCCH Multicast Control Channel
  • DTCH Dedicated Traffic Channel
  • MTCH Multicast Traffic Channel
  • the MAC layer uses services in the form of transport channels.
  • a transport channel is defined by how and with what characteristics the information is transmitted over the radio interface. Data on a transport channel is organized into transport blocks.
  • TTI Transmission Time Interval
  • MIMO spatial multiplexing
  • Transport Format Associated with each transport block is a Transport Format (TF), specifying how the transport block is to be transmitted over the radio interface.
  • the transport format includes information about the transport-block size, the modulation-and-coding scheme, and the antenna mapping. By varying the transport format, the MAC layer can thus realize different data rates. Rate control is therefore also known as transport-format selection.
  • each logical channel has its own RLC entity
  • the MAC layer handles the corresponding demultiplexing and forwards the RLC PDUs to their respective RLC entity for in-sequence delivery and the other functions handled by the RLC.
  • a MAC is used.
  • To each RLC PDU there is an associated sub-header in the MAC header.
  • the sub-header contains the identity of the logical channel (LCID) from which the RLC PDU originated and the length of the PDU in bytes. There is also a flag indicating whether this is the last sub-header or not.
  • the MAC layer can also insert the so-called MAC control elements into the transport blocks to be transmitted over the transport channels.
  • a MAC control element is used for inband control signaling-for example, timing-advance commands and random-access response. Control elements are identified with reserved values in the LCID field, where the LCID value indicates the type of control information.
  • the length field in the sub-header is removed for control elements with a fixed length.
  • the MAC multiplexing functionality is also responsible for handling of multiple component carriers in the case of carrier aggregation.
  • the basic principle for carrier aggregation is independent processing of the component carriers in the physical layer, including control signaling, scheduling and hybrid-ARQ retransmissions, while carrier aggregation is invisible to RLC and PDCP.
  • Carrier aggregation is therefore mainly seen in the MAC layer, where logical channels, including any MAC control elements, are multiplexed to form one (two in the case of spatial multiplexing) transport block(s) per component carrier with each component carrier having its own hybrid-ARQ entity.
  • FIG. 7 is a conceptual diagram for uplink grant reception.
  • the MAC entity In order to transmit on the UL-SCH the MAC entity must have a valid uplink grant (except for non-adaptive HARQ retransmissions) which it may receive dynamically on the PDCCH or in a Random Access Response or which may be configured semi-persistently.
  • the MAC layer receives HARQ information from lower layers.
  • the MAC layer can receive up to two grants (one per HARQ process) for the same TTI from lower layers.
  • the UE When the UE receives a valid uplink grant for transmitting uplink data and for a subframe N+K on a subframe N, the UE transmits the uplink data on a subframe N+K using the uplink grant. And then, the UE receives ACK/NACK feedback for transmission of the uplink data on a subframe N+K+I, and if the UE receives NACK indication, the UE should retransmits the UL data on a subframe N+K+I+J.
  • the MAC entity shall for each TTI and for each Serving Cell belonging to a TAG that has a running timeAlignmentTimer and for each grant received for this TTI: if an uplink grant for this TTI and this Serving Cell has been received on the PDCCH for the MAC entity’s C-RNTI or Temporary C-RNTI; or if an uplink grant for this TTI has been received in a Random Access Response, consider the NDI to have been toggled for the corresponding HARQ process regardless of the value of the NDI if the uplink grant is for MAC entity’s C-RNTI and if the previous uplink grant delivered to the HARQ entity for the same HARQ process was either an uplink grant received for the MAC entity’s Semi-Persistent Scheduling C-RNTI or a configured uplink grant, and deliver the uplink
  • this Serving Cell is the SpCell and if an uplink grant for this TTI has been received for the SpCell on the PDCCH of the SpCell for the MAC entity’s Semi-Persistent Scheduling C-RNTI, the MAC entity considers the NDI for the corresponding HARQ process not to have been toggled, and delivers the uplink grant and the associated HARQ information to the HARQ entity for this TTI, if the NDI in the received HARQ information is 1.
  • the MAC entity stores the uplink grant and the associated HARQ information as configured uplink grant, initialises (if not active) or re-initialise (if already active) the configured uplink grant to start in this TTI and to recur, considers the NDI bit for the corresponding HARQ process to have been toggled, and delivers the configured uplink grant and the associated HARQ information to the HARQ entity for this TTI.
  • the HARQ entity identifies the HARQ processes for which a transmission should take place. It also routes the received HARQ feedback (ACK/NACK information), MCS and resource, relayed by the physical layer, to the appropriate HARQ processes.
  • the HARQ entity For each TTI, the HARQ entity shall identify the HARQ process(es) associated with this TTI, and for each identified HARQ process: if an uplink grant has been indicated for this process and this TTI, if the received grant was not addressed to a Temporary C-RNTI on PDCCH and if the NDI provided in the associated HARQ information has been toggled compared to the value in the previous transmission of this HARQ process, the HARQ entity shall obtain the MAC PDU to transmit from the "Multiplexing and assembly" entity, deliver the MAC PDU and the uplink grant and the HARQ information to the identified HARQ process, and instruct the identified HARQ process to trigger a new transmission.
  • the HARQ entity instructs the identified HARQ process to generate a non-adaptive retransmission.
  • Each HARQ process is associated with a HARQ buffer.
  • Each HARQ process shall maintain a state variable CURRENT_TX_NB, which indicates the number of transmissions that have taken place for the MAC PDU currently in the buffer, and a state variable HARQ_FEEDBACK, which indicates the HARQ feedback for the MAC PDU currently in the buffer.
  • CURRENT_TX_NB shall be initialized to 0.
  • the sequence of redundancy versions is 0, 2, 3, 1.
  • the variable CURRENT_IRV is an index into the sequence of redundancy versions. This variable is up-dated modulo 4.
  • New transmissions are performed on the resource and with the MCS indicated on PDCCH or Random Access Response.
  • Adaptive retransmissions are performed on the resource and, if provided, with the MCS indicated on PDCCH.
  • Non-adaptive retransmission is performed on the same resource and with the same MCS as was used for the last made transmission attempt.
  • the MAC entity is configured with a Maximum number of HARQ transmissions and a Maximum number of Msg3 HARQ transmissions by RRC: maxHARQ-Tx and maxHARQ-Msg3Tx respectively.
  • maxHARQ-Tx For transmissions on all HARQ processes and all logical channels except for transmission of a MAC PDU stored in the Msg3 buffer, the maximum number of transmissions shall be set to maxHARQ-Tx.
  • the maximum number of transmissions shall be set to maxHARQ-Msg3Tx.
  • the HARQ process shall set HARQ_FEEDBACK to the received value.
  • the HARQ process shall set CURRENT_TX_NB to 0, set CURRENT_IRV to 0, store the MAC PDU in the associated HARQ buffer, store the uplink grant received from the HARQ entity, set HARQ_FEEDBACK to NACK, and generate a transmission as described below.
  • the HARQ process shall instruct the physical layer to generate a transmission according to the stored uplink grant with the redundancy version corresponding to the CURRENT_IRV value, and increment CURRENT_IRV by 1 if the MAC PDU was obtained from the Msg3 buffer; or if there is no measurement gap at the time of the transmission and, in case of retransmission, the retransmission does not collide with a transmission for a MAC PDU obtained from the Msg3 buffer in this TTI.
  • the HARQ process shall set HARQ_FEEDBACK to ACK at the time of the HARQ feedback reception for this transmission.
  • FIG. 8A and 8B are diagrams for performing a SPS transmission and SPS-feedback transmission.
  • the eNodeB may configure SPS periodicity via dedicated RRC signalling.
  • Current minimum SPS periodicity is 10ms. Supporting a SPS periodicity of 1 TTI is beneficial as this may reduce the latency of initial UL transmissions. This would allow UL transmission in consecutive subframes.
  • the UE sends a MAC PDU containing a MAC CE for padding BSR and optionally padding bits in response to an allocated UL dynamic or configured grant even if no data is available for transmission in the UE buffer and no other regular MAC CE is needed to be sent. It is beneficial to allow UEs to skip (most) dynamic and configured uplink grants if no data is available for transmission. With frequent UL grants, allowing skipping UL grants may decrease UL interference and improve UE battery efficiency. The UE will continue to send one or more regular MAC CE(s), if any.
  • the eNB may enable skipping UL grants by RRC dedicated signaling.
  • the UE receives PDCCH command addressed by SPS C-RNTI with NDI value set to 1.
  • the PDCCH contents can indicate whether SPS release or activation.
  • the UE receives the PDCCH for SPS activation/release, the UE activates/releases the SPS resources.
  • the UE sends no feedback (FIG. 8A).
  • the eNB can implicitly know whether the UE successfully receives the PDCCH for SPS activation/release by monitoring whether the UE transmits a MAC PDU on the allocated resources or not.
  • SPS release due to implicit SPS release, resource waste due to PDCCH loss could be resolved.
  • the UE keeps performing non-adaptive retransmission of the MAC PDU until when the UE receives ACK HARQ feedback for this PDU. This implies that if data becomes available for transmission while the UE is performing retransmission of ACK MAC PDU, the UE will unnecessarily keep retransmitting of the ACK MAC PDU even though the eNB can know whether the UE successfully receives the SPS activation/release by receiving other data MAC PDU from the UE.
  • FIG. 9 is a conceptual diagram for transmitting and retransmitting a SPS-FB in response to the PDCCH indicating SPS activation or SPS release in a wireless communication system according to embodiments of the present invention.
  • a UE is configured by an eNB that the UE skips UL transmission if there is no data available for transmission in RLC or PDCP entities via RRC signaling (S901).
  • the eNB transmits a PDCCH indicating SPS activation or release addressed by SPS C-RNTI to the UE (S903).
  • the UE When the UE successfully receives the PDCCH indicating SPS activation or release, the UE generates a SPS-FB in the following cases: i) no data is available for transmission in PDCP/RLC entities, or ii) no MAC PDU is available in the Multiplexing and Assembly entity, or iii) no MAC PDU is available in the HARQ buffers of the UE (S905).
  • the SPS-FB is a MAC PDU including no MAC SDU, which indicates that the UE successfully receives the PDCCH for SPS activation or release.
  • the UE delivers the generated SPS-FB to a HARQ process associated with the UL resource to transmit the SPS-FB, and instructs that HARQ process to perform a new transmission of the SPS-FB.
  • the UE transmits and re-transmits a SPS-FB in response to the PDCCH indicating SPS activation or SPS release (S907).
  • the UE After the UE performs the new transmission of the SPS-FB, the UE stops retransmission of SPS-FB when new data becomes available for transmission even if an ACK indication for the SPS-FB is not received (S909).
  • the new data becomes available for transmission includes: i) data becomes available for transmission in PDCP/RLC entities, or ii) a MAC PDU is available in the Multiplexing and Assembly entity, or iii) a MAC PDU is available in any HARQ buffer of the UE.
  • the UE transmits the new data after the stopping the retransmission of SPS-FB (S911).
  • the UE stops retransmission of SPS-FB when ACK for SPS-FB is received by the UE via PHICH, or after performing retransmission of SPS-FB for a configured number of times even if an ACK indication for the SPS-FB is not received.
  • the certain number is ‘0’ or a positive integer.
  • the UE doesn’t perform retransmission of the SPS-FB. That is, the UE stops retransmission of SPS-FB when immediately after the UE performs the new transmission of the SPS-FB.
  • the UE does not perform any retransmission of the SPS-FB regardless of whether the UE receives ACK/NACK for SPS-FB. The UE considers that new transmission of the SPS-FB is successful even without receiving ACK for SPS-FB.
  • the UE stops retransmission of SPS-FB when the ACK indication for the SPS-FB is received.
  • the step of S909 includes as following: i) the UE flushes the HARQ buffer where the SPS-FB is stored, or ii) the UE sets a value of HARQ_FEEDBACK for SPS-FB to ACK.
  • a specific operation described as performed by the BS may be performed by an upper node of the BS. Namely, it is apparent that, in a network comprised of a plurality of network nodes including a BS, various operations performed for communication with an MS may be performed by the BS, or network nodes other than the BS.
  • the term 'eNB' may be replaced with the term 'fixed station', 'Node B', 'Base Station (BS)', 'access point', etc.
  • the method according to the embodiments of the present invention may be implemented by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), processors, controllers, microcontrollers, or microprocessors.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers, microcontrollers, or microprocessors.
  • the method according to the embodiments of the present invention may be implemented in the form of modules, procedures, functions, etc. performing the above-described functions or operations.
  • Software code may be stored in a memory unit and executed by a processor.
  • the memory unit may be located at the interior or exterior of the processor and may transmit and receive data to and from the processor via various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente invention concerne un système de communication sans fil. Plus spécifiquement, la présente invention concerne un procédé et un dispositif pour transmettre et retransmettre une rétroaction de SPS dans un système de communication sans fil, le procédé comprenant : la réception d'un PDCCH qui indique une activation de SPS ou une libération de SPS adressée par un C-RNTI de SPS d'un eNB; la transmission et la retransmission d'un SPS-FB en réponse au PDCCH qui indique l'activation de SPS ou la libération de SPS; et l'arrêt de la retransmission de SPS-FB lorsque de nouvelles données sont disponibles pour une transmission dans des entités de RLC ou de PDCP, même si une indication ACK pour le SPS-FB n'est pas reçue.
PCT/KR2016/006560 2015-11-02 2016-06-21 Procédé pour transmettre et retransmettre une rétroaction de sps dans un système de communication sans fil et dispositif associé Ceased WO2017078237A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562249368P 2015-11-02 2015-11-02
US62/249,368 2015-11-02

Publications (1)

Publication Number Publication Date
WO2017078237A1 true WO2017078237A1 (fr) 2017-05-11

Family

ID=58662233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006560 Ceased WO2017078237A1 (fr) 2015-11-02 2016-06-21 Procédé pour transmettre et retransmettre une rétroaction de sps dans un système de communication sans fil et dispositif associé

Country Status (1)

Country Link
WO (1) WO2017078237A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029961A1 (fr) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Technique d'ordonnancement pour une communication de données
CN109525377A (zh) * 2017-09-18 2019-03-26 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
CN109644090A (zh) * 2017-12-28 2019-04-16 Oppo广东移动通信有限公司 重传数据的方法、终端设备和网络设备
CN110073698A (zh) * 2017-09-29 2019-07-30 联发科技股份有限公司 无线通信中的m2m半持续性调度
US11212774B2 (en) 2017-08-10 2021-12-28 Samsung Electronics Co., Ltd. V2X communication method and terminal
WO2022082534A1 (fr) * 2020-10-21 2022-04-28 华为技术有限公司 Procédé et appareil de communication
CN116018859A (zh) * 2020-08-31 2023-04-25 高通股份有限公司 用于无反馈信息的无速率码传输的指示方案
US11647483B2 (en) 2018-03-16 2023-05-09 Huawei Technologies Co., Ltd. Devices and methods for device to device (D2D) communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310833A1 (en) * 2010-06-21 2011-12-22 Samsung Electronics Co., Ltd. Blind scheduling apparatus and method in a mobile communication system
US20150049678A1 (en) * 2013-08-15 2015-02-19 General Dynamics Broadband, Inc. Apparatus and Methods for Semi-Persistent Scheduling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310833A1 (en) * 2010-06-21 2011-12-22 Samsung Electronics Co., Ltd. Blind scheduling apparatus and method in a mobile communication system
US20150049678A1 (en) * 2013-08-15 2015-02-19 General Dynamics Broadband, Inc. Apparatus and Methods for Semi-Persistent Scheduling

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "The Impact of Latency Reduction on UL SPS", R2-154534, 3GPP TSG-RAN WG2 MEETING #91BIS, 25 September 2015 (2015-09-25), Malmo, Sweden, XP051023638 *
CATT: "PDCCH missing issue in skipping UL transmission", R2-154121, 3GPP TSG-RAN WG2 MEETING #91BIS, 26 September 2015 (2015-09-26), Malmo, Sweden, XP051023792 *
ERICSSON: "Skipping padding in SPS- and dynamic grants", R2-154742, 3GPP TSG-RAN WG2 MEETING #91BIS, 26 September 2015 (2015-09-26), Malmo, Sweden, XP051023967 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11212774B2 (en) 2017-08-10 2021-12-28 Samsung Electronics Co., Ltd. V2X communication method and terminal
WO2019029961A1 (fr) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Technique d'ordonnancement pour une communication de données
CN109525377A (zh) * 2017-09-18 2019-03-26 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
CN109525377B (zh) * 2017-09-18 2021-04-27 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
CN110073698A (zh) * 2017-09-29 2019-07-30 联发科技股份有限公司 无线通信中的m2m半持续性调度
TWI688299B (zh) * 2017-09-29 2020-03-11 聯發科技股份有限公司 無線通訊之機器對機器半持續性排程方法及其裝置
US10602445B2 (en) 2017-09-29 2020-03-24 Mediatek Inc. M2M semi-persistent scheduling in wireless communications
CN109644090A (zh) * 2017-12-28 2019-04-16 Oppo广东移动通信有限公司 重传数据的方法、终端设备和网络设备
US11647483B2 (en) 2018-03-16 2023-05-09 Huawei Technologies Co., Ltd. Devices and methods for device to device (D2D) communication
US12207237B2 (en) 2018-03-16 2025-01-21 Huawei Technologies Co., Ltd Devices and methods for device to device (D2D) communication
CN116018859A (zh) * 2020-08-31 2023-04-25 高通股份有限公司 用于无反馈信息的无速率码传输的指示方案
WO2022082534A1 (fr) * 2020-10-21 2022-04-28 华为技术有限公司 Procédé et appareil de communication

Similar Documents

Publication Publication Date Title
WO2017052182A1 (fr) Procédé permettant d'omettre une transmission ul dans un système de communication sans fil et dispositif afférent
WO2017052170A1 (fr) Procédé de gestion d'une retransmission adaptative dans un système de communication sans fil et dispositif afférent
WO2018084608A2 (fr) Procédé de détermination de nombres de retransmissions de données de liaison latérale dans un système de communication sans fil, et dispositif correspondant
US20200106705A1 (en) Method for transmitting or receiving a mac pdu in a wireless communication system and a device therefor
WO2017078319A1 (fr) Procédé de transmission d'une transmission harq dans un système de communication sans fil et dispositif associé
US10342035B2 (en) Method for reporting a buffer status and device therefor
WO2017078237A1 (fr) Procédé pour transmettre et retransmettre une rétroaction de sps dans un système de communication sans fil et dispositif associé
WO2016159528A1 (fr) Procédé permettant de réaliser un rapport de statut de mémoire tampon dans un système de communication sans fil, et dispositif associé
WO2016182221A1 (fr) Procédé de détermination du résultat d'une transmission pour un pusch se basant sur un conflit dans un système de communication sans fil, et dispositif associé
WO2017104981A1 (fr) Procédé pour réaliser une retransmission de rlc sur la base d'une autorisation d'ul dans un système de communication sans fil et dispositif associé
WO2018203697A1 (fr) Procédé et dispositif de transmission d'unité de données
WO2016182342A1 (fr) Procédé destiné à la transmission de pusch à base de contention dans un système de communication sans fil et dispositif s'y rapportant
WO2017179814A1 (fr) Procédé permettant de réaliser une transmission d'un faisceau de sr dans un système de communication sans fil, et dispositif associé
WO2017014515A1 (fr) Procédé de configuration de ressources sps dans un système de communication sans fil et dispositif pour cela
WO2019139361A1 (fr) Procédé et appareil pour une transmission de signaux basée sur une autorisation configurée dans un système de communications sans fil
WO2016175497A1 (fr) Procédé pour réaliser une réémission rlc autonome dans un système de communication sans fil et dispositif correspondant
WO2017111316A1 (fr) Procédé pour attribuer des priorités à un groupe de canaux logiques implicitement dans un système de communication de dispositif à dispositif (d2d) et dispositif associé
WO2016163655A1 (fr) Procédé de traitement de valeurs lcid inconnues dans un canal de multidiffusion dans un système de communication sans fil, et dispositif correspondant
EP3666020A1 (fr) Procédé permettant de réaliser une procédure d'accès aléatoire dans un système de communication sans fil et dispositif s'y rapportant
WO2016182220A1 (fr) Procédé d'exécution de retransmission de rlc sur la base d'un pousser basé sur un conflit dans un système de communication sans fil et dispositif associé
WO2017069445A1 (fr) Procédé de transmission d'un rapport de liste de priorité dans un système de communication d2d et dispositif associé
WO2016182343A1 (fr) Procédé de transmission d'un pusch avec contention dans un système de communication sans fil, et dispositif associé
US9929833B2 (en) Method for transmitting a HARQ feedback and device therefor
WO2017164658A2 (fr) Procédé de transmission de données de liaison montante dans un système de communication sans fil, et dispositif correspondant
WO2016163685A1 (fr) Procédé pour réaliser une opération de demande de répétition automatique hybride dans une agrégation de porteuses avec au moins une cellule secondaire fonctionnant dans un spectre non autorisé et dispositif associé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862256

Country of ref document: EP

Kind code of ref document: A1