WO2016129091A1 - Object detection system and object detection method - Google Patents
Object detection system and object detection method Download PDFInfo
- Publication number
- WO2016129091A1 WO2016129091A1 PCT/JP2015/053888 JP2015053888W WO2016129091A1 WO 2016129091 A1 WO2016129091 A1 WO 2016129091A1 JP 2015053888 W JP2015053888 W JP 2015053888W WO 2016129091 A1 WO2016129091 A1 WO 2016129091A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- unit
- detection
- information
- camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L25/00—Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
- B61L25/06—Indicating or recording the setting of track apparatus, e.g. of points, of signals
Definitions
- the present invention relates to an object detection apparatus and an object detection method for detecting an object from an image.
- Patent Document 1 a video image taken by the video camera 1 while the vehicle is running is recorded on the video tape 2 and reproduced on the video deck 4 to be automatically recognized by the road sign recognition device 10 ( It is disclosed that a road sign is detected in real time by a personal computer).
- Patent Document 1 assumes that only a sign having a fixed shape is detected and updated. For this reason, a process of estimating an approximate shape from the existence probability of the contour line and recognizing it as a sign is performed. However, assets such as signs actually installed outdoors are often discolored or deformed due to various conditions such as the weather, and there is a problem that detection accuracy is lowered.
- an object detection system is an image that is information about a camera provided on a moving body and a position where the camera has captured an image.
- the target image feature quantity, which is the image feature quantity of the target object, and the installation position information are stored as information about the target object to be detected.
- a second storage unit that performs selection, an image selection unit that selects an image as a selection image based on the image position information and the installation position information, and determines a specified region in the selection image as a detection region;
- a detection unit that performs object detection by determining whether or not an object exists using the similarity between the image feature amount extracted from the detection region and the target image feature amount, and it is determined that the object does not exist If And having and an output unit for performing notification to THE.
- the fourth step of performing object detection by making a determination using the similarity with the target image feature amount extracted from the detection area, and notification to the user when it is determined that the target does not exist I do And having a step, the.
- FIG. 1 is a diagram showing the configuration of the present invention.
- the camera 100 is installed on a moving body and acquires images before and after the moving direction of the moving track (or road).
- the GPS receiver 120 is a receiver that acquires GPS information, and can thereby acquire position information of a moving moving body.
- the video storage unit (first storage unit) is connected to the camera 100 and the GPS receiver 120, acquires video from the camera, GPS information from the GPS receiver 120, and records this. At this time, the camera 110 and the GPS receiver 120 transmit time stamps to the acquired video and GPS information, respectively, and then transmit them to the video storage unit 130. In the video storage unit, the position information is added and recorded for each frame image constituting the video by synchronizing with both time stamps.
- the asset information DB 144 stores asset images and installed location information.
- the asset feature DB 145 stores search image feature amounts extracted from asset images. In the present specification, these may be collectively referred to as a second storage unit.
- the video confirmation unit 140 detects an asset in the video stored in the video storage unit 130, confirms the status of the asset, and notifies the asset. Below, each part which comprises the image
- the process selection unit 141 the asset information DB 141 is collated based on the position information of the video stored in the video storage unit 130, and the frame image to be detected is selected, and the content of the process to be performed in the detection unit 142 is selected. To do.
- the detection unit 142 performs image recognition processing for detecting assets from the video stored in the video storage unit according to the selection made by the processing selection unit 141.
- the position estimation unit 143 estimates how far the detected asset is from the camera. By adding the estimated relative position information of the asset and the GPS information, the actual position where the detected asset is installed is estimated.
- the detection result is output to the determination unit 147 and stored in the detection result DB 146. In the detection result DB 146, information on the detected asset is recorded.
- the determination unit 147 compares the asset position obtained by the detection unit 142 and the position estimation unit 143 with the asset information DB 144 to determine whether the detected asset is installed at the correct position. If an abnormality such as no asset is determined, the result is output to the notification unit 148.
- the notification unit 148 notifies the user by using voice, video, or the like when the determination unit 147 finds an abnormality.
- the video is acquired from the video storage unit 130 or the detection result DB (third storage unit) 146 and displayed.
- FIG. 2 is an outline of a moving body 200 in which the object detection device of the present invention is installed.
- the moving body is described as an example of a train, but it goes without saying that the present invention can also be applied to a vehicle running on a road.
- FIG. 2A shows an example in which all components are installed in a moving body.
- the image confirmation unit confirms the status of the asset, and notifies the person boarding the moving body of the result.
- only the abnormal state and the video at that time are notified to the management center through a network such as the Internet communication network. In this case, since only the video when the abnormality occurs and the determination result need to be sent to the management center, the data transmission capacity in real time can be suppressed.
- FIG. 2B shows an example in which the video confirmation unit is installed on a server in the management center.
- the moving body has only a camera, a GPS, and a video storage unit, and transmits video to the video confirmation unit in the management center using real-time communication via the Internet or data transfer means such as a USB cable.
- asset management is performed by the video confirmation unit in the management center in real time or offline.
- FIG. 3 is a diagram showing a physical device configuration of the video confirmation unit.
- the video confirmation is realized as software that operates on one or a plurality of PCs or servers.
- I / F such as keyboard and mouse
- network I / F that performs image acquisition and result notification through the network
- CPU that performs detection processing and position estimation processing
- storage unit that stores data such as asset information DB and asset feature DB
- video A memory that holds a program for each process constituting the confirmation unit and manages temporary data is connected via a bus.
- FIG. 4 is a flowchart showing the processing flow of the entire video confirmation unit.
- a certain sequence of videos is acquired from the video storage unit.
- the asset information DB is inquired whether there is an asset to be detected in the section of the actual position where the sequence is captured.
- the process is not performed, and the process returns to S401 to acquire the next video sequence. If it is an area where assets exist in the video sequence, the process proceeds to the next step.
- S404-407 detection processing is performed for all assets that should exist in the video.
- the processing of asset n is selected. If the detection target is a sign, an area on the right side of the screen is set as a detection area such as an area on the right side of the screen and an area around the line if the line is branched, and an area in the frame image to be detected is determined.
- detection processing suitable for the selected asset n is performed.
- the process returns to S404 to perform the same process for the next asset.
- S408 it is determined whether or not the asset to be detected is detected as a result of the processing in S403-07, and if it is detected, the position of the asset is estimated in S409. If there is no asset, the process proceeds to S410.
- the installation position in the world coordinate system can be calculated by estimating the installation position of the asset from the image and the speed information of the moving body, and combining the GPS information and the information on the moving direction of the moving body.
- the position of the asset registered in the asset information DB or whether there is an asset in a specific area around it is determined.
- the specific section here can be determined by multiplying the error value of GPS or camera time measurement by the current moving speed.
- the detection processing time can be shortened by setting the interval as short as possible, it is necessary to set the detection processing not to be performed due to these errors.
- the length of the specific section may be determined from an error in the installation position that may occur during installation. This is a value set based on the experience of maintenance so far, so that even if there is a slight error in the installation position of the asset, it can be detected.
- the process returns to S401.
- the process proceeds to S411 to notify the user that there is no asset.
- the object detection method described in the present embodiment performs first accumulation of an image captured by the camera 110 provided in the moving body 200 and image position information that is information on a position where the camera captured the image.
- a second step of storing, a third step of selecting an image as a selected image based on the image position information and the installation position information, and determining a designated area in the selected image as a detection area S403-407)
- the fourth step of performing object detection by determining whether or not an object exists in the detection area by using the similarity with the target image feature quantity extracted from the detection area (S408).
- the object is determined not to exist, and having a step (S410-411) for performing notification to a user, the.
- the detection accuracy can be improved by using the position information to identify and detect assets in the section, instead of using all assets in the asset information DB. . Furthermore, since the frame image for performing asset detection and the detection area in the frame image can be limited, the processing time can be reduced. By preparing the image feature amount extracted from various variations of each asset in the asset feature DB 145, even if the same sign A has a change such as a tilt due to the installation problem or a difference in the description contents Can be detected robustly.
- FIG. 5 is an example of a table 500 held by the asset information DB. Information about what is installed as assets and where is stored. Also, the date on which the installation was confirmed by the worker and the worker was confirmed is stored.
- FIG. 6 is an example of a frame image indicating the processing region and the detection target determined by the processing selection unit (image selection unit) 141.
- the video frame for performing the asset detection process is limited to only those acquired at the peripheral position where the asset to be detected is located. Further, the detection target area is limited such that the area at the right end of the track is a sign and the area on the road is a branch.
- FIG. 7 is a diagram showing details of processing of the detection unit.
- FIG. 7A shows a search window in the detection process, and the search window 709 is moved by the sliding window method to the detection area 708 designated by the process selection unit. The size and aspect ratio of this search window are also determined by the process selection unit according to the asset.
- the search window extraction unit 701 cuts out partial images using each search window 709.
- the feature amount extraction unit 702 extracts image feature amounts from the extracted partial images.
- an image feature amount extraction process corresponding to the asset to be detected designated by the process selection unit 141 is performed.
- the image feature amount an intensity distribution in the luminance gradient direction, a histogram in RGB or CIELab color system, and the like are extracted.
- the same feature quantity extraction method is used for assets whose detection target areas are close in the image, such as the same feature quantity F1 for the signs A and B, and the same feature quantity F2 for the branches and sleepers on the track.
- the signs A and B are installed side by side, it is not necessary to extract different image feature amounts from the same region a plurality of times, and the detection process can be made efficient.
- the image search unit 703 determines the presence / absence of an asset by comparing this with the feature amount of the specific asset in the asset feature DB 145.
- image feature amounts extracted from images of a plurality of signs A are recorded, and an image search process is performed on this, and a distance value with the most similar image is similar to the sign A. Get as a degree. The smaller the distance value is, the higher the similarity is, that is, it is similar.
- the search result integration unit 704 integrates the results of the similarity between all the areas obtained in the plurality of search windows 709 and the marker Ano0 image feature amount, and if there is a search window in which the similarity is a certain threshold value or less. , It is determined that there is a sign A in the search window. On the other hand, if there is no image similar to the asset image feature DB 145 of the sign A, it is determined that there is no sign A, and the fact is notified to the user via the notification unit 148.
- the object detection system described in the present embodiment includes a camera 110 provided in the moving body 200, a GPS 120 that acquires image position information that is information on a position where the camera 110 has captured an image, A first accumulator 130 that accumulates image position information, and a second accumulator (144, 155) that accumulates an object image feature quantity that is an image feature quantity of the object and installation position information as information about the object to be detected.
- Image position information and installation position information an image is selected as a selected image, an image selection unit 141 that determines a specified area in the selected image as a detection area, and an object exists for the detection area
- a detection unit that performs object detection by using the similarity between the image feature amount extracted from the detection region and the target image feature amount, and determines that the target does not exist. If, and it is having and an output unit for performing a notification to the user.
- the detection accuracy can be improved by using the position information to identify and detect the assets in the section instead of using all the assets in the asset information DB. Furthermore, since the frame image for performing asset detection and the detection area in the frame image can be limited, the processing time can be reduced. In addition, by preparing image feature quantities extracted from various variations of each asset in the asset feature DB 145, there are changes such as inclinations due to installation problems and differences in description contents even with the same sign A. Even in this case, detection can be performed robustly.
- FIG. 8 is an image diagram showing an example of position estimation processing in the position estimation unit.
- FIG. 8A shows an example of the result of asset detection by the detection unit. Signs and track branches are detected. Now, since the position of the moving body (the position of the camera that captured the image) is known from the GPS information, in order to know the position of this asset, the relative distance of the asset to the camera may be estimated.
- FIG. 8B is a diagram showing an image when the installation position of the asset detected by the image processing is estimated.
- the distance Z from the camera to the asset in the world coordinate system from the vertical position y on the image coordinate system is obtained. It can be calculated.
- FIG. 8C is an example in which a broken line is drawn on the image for each distance Z having a constant interval. Accordingly, the distance from the camera can be estimated by detecting the lower end position of the detected sign. Furthermore, by performing position estimation using a laser range sensor, a stereo camera, or the like, errors can be reduced more than distance estimation from an image.
- FIG. 8D is an example illustrating a sensor signal that can be acquired from a range sensor when a laser range sensor is used as a position estimation device separately from the camera.
- a laser range sensor a laser is blown toward the front and side of a moving body, and the distance is estimated by reflection thereof. For this reason, a sensor signal can be collected as a distance value with respect to the ⁇ direction from the moving body as shown in FIG. From the result of FIG. 8A, it can be seen that the detected sign is in the ⁇ direction with respect to the moving body, and by obtaining the distance value in that direction, the relative distance value from the camera to the sign can be acquired.
- FIG. 8E shows an example of a distance image obtained from a stereo camera when a stereo camera is used as the camera.
- a stereo camera two cameras are installed side by side, and the distance value to each pixel in the image can be estimated by obtaining the shift of the image obtained from each camera.
- the distance is indicated by a gray value, and the distance value can be acquired for each pixel. For this reason, distance can be estimated by acquiring the pixel value in the area of the detected sign.
- the relative position of the asset with respect to the moving object (camera) can be estimated by the above method.
- the absolute position of the asset in the world coordinate system can be estimated from the relative distance thus obtained and the information on the position of the moving body and the direction of the moving body based on the GPS information.
- FIG. 9 is a flowchart showing the determination process in the determination unit.
- step S901 the assets detected from the detection unit and the position estimation unit and their installation positions are input.
- step S902 the asset information DB is collated. If the asset specified in the asset information DB is not detected, the process goes to S903, and the determination result of “no asset” is output. If there is an asset, the process proceeds to S904.
- the position of the detected asset is collated with the asset information DB.
- the distance value is calculated by comparing the detected asset with the past detection result image stored in the detection result DB.
- FIG. 10 is a diagram showing an example in which the notification unit notifies the user not only by voice but also by screen display.
- marker A as an asset of a detection target is shown.
- the determination result notification unit 1001 displays the determination result of the determination unit.
- the current video display unit 1002 acquires and displays a video of a peripheral area where the asset A is not detected from the video storage unit.
- the playback control unit 1002 controls playback and stop of the video at this time. Thereby, when an abnormality has occurred in the asset to be detected, it can be confirmed on the video whether the notification result is really correct. In addition, when an abnormality actually occurs, the user can check the status of the asset without going to the shooting site.
- the map information display unit 1005 displays the current playback position on the map based on the GPS information of the captured video. As a result, the user can easily grasp at which position the abnormality has occurred in the asset.
- FIG. 11 shows an example in which two cameras are used for asset management. Since other configurations are the same as those of the first embodiment, the description thereof will be omitted as appropriate.
- one camera is installed as the peripheral camera 111 so that the periphery of the front or rear of the railway can be widely viewed.
- the other camera is installed as a road surface camera 112 facing downward from the camera 111 so that only the road surface portion is photographed.
- FIG. 11B shows an image taken by the peripheral camera 111. By shooting so that all the signs, tracks, tunnels, etc. next to the track are within the angle of view, the angle of view is adjusted so that all assets such as signs, tunnels, tracks, etc. fit within the screen.
- FIG. 11C is an example of an image photographed by the road surface camera 112.
- FIG. 11C shows an example in which the camera 112 is rotated 90 degrees from an angle of 111 to capture a vertically long image. You can take a picture of the sleepers on the track separated by shooting downward.
- road markings such as speed restrictions and stop lines can be photographed for easy image recognition. As described above, since only the road surface portion is photographed with high resolution, the asset position can be estimated with higher accuracy.
- the process selection unit 141 determines which video of the two cameras is used based on the GPS information. In a place where there is an asset on the road surface such as a branch of a track, an image captured by the road surface camera 112 is selected as an image used for detection.
- the line branching portion detection process is performed on the video from the peripheral camera 111.
- parameters such as the frame rate of the road surface camera 112 are controlled. Specifically, how many meters an image is taken is set as a parameter, and the frame rate is controlled in accordance with the current speed of the moving body, which is a fluctuation value. For example, in the case of a camera capable of shooting a range of 5 m, it is assumed that an image is to be acquired every 2 m while looking at the margin.
- the camera is stored at 0.5 second intervals (2 fps), and when the moving speed is 20 m / s, the camera is stored at 0.1 second intervals (10 fps). Control the frame rate. Also, the faster the moving speed, the more blurred the image becomes and the more difficult it is to detect. Therefore, if the preset 2 m acquisition interval is narrowed according to the speed, asset detection accuracy can be further improved.
- the road surface image is taken only in a narrow section, when the moving speed of the moving body is high, there is a possibility that the image may be blurred or the property may not be taken. Therefore, it is possible to control the camera parameters in accordance with the situation by grasping the target in advance from the road camera image or estimating the current traveling speed. Also, it is possible to prevent omissions by increasing the frame rate only when assets on the road surface come into the road camera.
- FIG. 13 is an example of a processing flow of the asset management apparatus that performs redetermination processing according to the third embodiment of the present invention.
- the main processing flow is the same as that in FIG. 4 of the first embodiment, and thus the description thereof is omitted. However, since S420 to S422 are newly provided, this will be described here.
- Specified specific section and surrounding section here will be described in detail.
- the specific section a measurement error of about 1-5 m caused by GPS or camera time information is set.
- an error of about 10 m that occurs when assets are installed is set.
- the value in the specific section is a value for correctly detecting in anticipation of the error range of the present apparatus when the asset information DB is correct.
- the value of the peripheral section is a value for finding an error in this apparatus when there is an error in the asset information DB.
- the specific section is about 1-5 m centering on the position registered in the asset information DB as the installation position.
- a section excluding a specific section among sections of about 10 m centering on the installation position is a peripheral section.
- the detection process is also performed for the peripheral position.
- the asset information DB is installed in a location away from the DB due to an error in creating the asset information DB. It is possible to detect existing assets in the second determination process.
- FIG. 14 is a diagram showing a configuration of a detection unit that automatically switches DBs and detects assets according to the fourth embodiment of the present invention.
- a feature is that a search DB selection unit 706 is newly provided.
- the search DB selection unit 706 selects an asset image to be compared with the image selected for detection from either the asset feature DB 145 or the detection result DB 146 (or both).
- the search DB selection unit when the sign A photographed at the exact same place is not accumulated in the detection result DB, the search DB selection unit collates with the data of the sign A in the asset image feature DB. On the other hand, if the same point has been audited many times in the past, as a result, if there are multiple images of the sign at the same location, the image of the sign A taken on another day at the same point An image in the search result DB is selected for collation.
- FIG. 15 shows an example of fluctuations that can occur in the same type of label.
- the characters in the plate differ depending on the location, and the size of the plate may change accordingly.
- the shape of the pole to which the plate is fixed may change, or the pole may be tilted depending on the condition of the ground contact surface as shown in FIG.
- the search DB selection unit selects the DB to be collated. In other words, the detection rate can be improved at locations where the vehicle has traveled in the past because it is the same as the same sign.
- the detection result is stored in the detection result DB, the shooting date and time, weather conditions, and the like are stored together. At the time of detection, it is possible to detect with high accuracy even in a place where auditing has not been performed in the past by targeting only images of signs of the same type that were taken in different places but under similar conditions. .
- the weather condition is acquired by acquiring the weather information of the shooting location from the GPS information if the video storage unit 130 is connected to the network 210 via the Internet or the like. Accumulate in the accumulator. For example, when the weather information of an image captured at a certain time is “sunny”, by performing detection processing using only images with a “sunny” tag among images stored in the detection result DB, The accuracy of detection processing can be improved.
- the gain value used at the time of control can be used as a kind of weather condition information.
- the same effect can be obtained by using only an image in which the difference between the gain value of the photographed image and the gain value of the image accumulated in the detection result DB is equal to or less than the threshold value.
- Image search unit 704 ... Search result integration unit 705 ... Search result output unit 706 ... Search DB selection unit 1001 ... Determination result notification unit 1002 ... Current video display unit 1003 . Playback control unit 1004 ... Past video display unit 1005 ... Map display unit
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Image Analysis (AREA)
Abstract
Description
本発明は、画像から物体を検出する物体検出装置および物体検出方法に関する。 The present invention relates to an object detection apparatus and an object detection method for detecting an object from an image.
道路や鉄道線路網の拡張とその老朽化に伴って、より広いエリアを定期的に保守作業しなければならなくなっており、必要なコストが増大している。鉄道の場合には、線路や枕木の保守はもちろんのこと、安全な運行管理のためには、標識や踏切、信号機などの保守も必要である。標識は、台風などの災害や経年変化によって壊れることや視認困難な形になってしまうということがある。 With the expansion and aging of roads and railroad track networks, a larger area has to be regularly maintained, and the necessary cost is increasing. In the case of railways, not only maintenance of tracks and sleepers, but also maintenance of signs, railroad crossings, traffic lights, etc. is necessary for safe operation management. Signs can break or become difficult to see due to disasters such as typhoons or changes over time.
これは、車両が走る道路でも同様で、例えば路面表示は年月を経るにつれて消えていってしまうという問題がある。このため、定期的な監査によって問題が無いかを確認して、何らかの問題が見つかった場合には再設置するなどの保守作業が必要である。しかしながら、定期的に保守作業員が確認を行うだけでもコストがかかる。設置時に作成した管理台帳を基に、実際に走行しながら目視で設置の正しさを確認するのは非常に時間を要する作業である。 This is the same on the road where the vehicle runs. For example, there is a problem that the road surface display disappears as time passes. For this reason, it is necessary to perform maintenance work such as confirming that there is no problem through regular audits, and re-installing if any problem is found. However, it is expensive even if the maintenance worker periodically confirms. Based on the management ledger created at the time of installation, it is very time consuming to check the correctness of the installation visually while traveling.
これに対し特許文献1では、「車両を走行させながらビデオカメラ1で撮影したビデオ画像をビデオテープ2に記録し、これをビデオデッキ4で再生して事務所にある道路標識自動認識装置10(パーソナルコンピュータ)でリアルタイムに道路標識を検出」することが開示されている。
On the other hand, in
しかしながら、特許文献1は、形状が定まっている標識のみを検出・更新することを想定したものである。そのため、輪郭線の存在確率から、およその形状を推定し、標識だと認識する処理を行っている。しかし、実際に屋外に設置された標識等の資産は、天候等の様々な状況によって、変色・変形している場合が多く検出精度が低下するという問題がある。
However,
上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、物体検出システムであって、移動体に設けられたカメラと、カメラが画像を撮像した位置の情報である画像位置情報を取得するGPSと、画像と画像位置情報とを蓄積する第1蓄積部と、検出する対象物に関する情報として、対象物の画像特徴量である対象画像特徴量と設置位置情報とを蓄積する第2蓄積部と、画像位置情報と設置位置情報とに基づき画像を選択画像として選択し、選択画像内の指定された領域を検出領域として決定する画像選択部と、検出領域に対して対象物が存在するか否かを、検出領域から抽出した画像特徴量と対象画像特徴量との類似度を用いて判定することにより物体検出を行う検出部と、対象物が存在しないと判定された場合、ユーザに対して通知を行う出力部と、を有することを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problem. To give an example, an object detection system is an image that is information about a camera provided on a moving body and a position where the camera has captured an image. The target image feature quantity, which is the image feature quantity of the target object, and the installation position information are stored as information about the target object to be detected. A second storage unit that performs selection, an image selection unit that selects an image as a selection image based on the image position information and the installation position information, and determines a specified region in the selection image as a detection region; A detection unit that performs object detection by determining whether or not an object exists using the similarity between the image feature amount extracted from the detection region and the target image feature amount, and it is determined that the object does not exist If And having and an output unit for performing notification to THE.
または、物体検出方法であって、移動体に設けられたカメラが撮像した画像と、カメラが画像を撮像した位置の情報である画像位置情報とを第1蓄積部に蓄積する第1ステップと、検出する対象物に関する情報として、対象物の画像特徴量である対象画像特徴量と、対象物が設置された位置を示す設置位置情報とを第2蓄積部に蓄積する第2ステップと、画像位置情報と設置位置情報とに基づき、画像を選択画像として選択し、選択画像内の指定された領域を検出領域として決定する第3ステップと、検出領域に対して対象物が存在するか否かを、検出領域から抽出した画像特徴量記対象画像特徴量との類似度を用いて判定することにより物体検出を行う第4ステップと、対象物が存在しないと判定された場合、ユーザに対して通知を行うステップと、を有することを特徴とする。 Alternatively, in the object detection method, a first step of storing, in the first storage unit, an image captured by a camera provided on a moving body and image position information that is information on a position where the camera has captured the image; A second step of storing, in the second storage unit, target image feature quantities, which are image feature quantities of the target objects, and installation position information indicating positions where the target objects are installed, as information relating to the target object to be detected; Based on the information and the installation position information, a third step of selecting an image as a selection image and determining a designated area in the selection image as a detection area, and whether or not an object exists for the detection area The fourth step of performing object detection by making a determination using the similarity with the target image feature amount extracted from the detection area, and notification to the user when it is determined that the target does not exist I do And having a step, the.
本発明によれば、資産(対象物)の有無を検出する精度を向上することができる。 According to the present invention, it is possible to improve the accuracy of detecting the presence or absence of assets (objects).
図1は本発明の構成を示した図である。カメラ100は、移動体に設置され、移動中の線路(あるいは道路)の進行方向前後の映像を取得する。GPS受信機120は、GPS情報を取得する受信機であり、これにより走行中の移動体の位置情報を取得できる。
FIG. 1 is a diagram showing the configuration of the present invention. The camera 100 is installed on a moving body and acquires images before and after the moving direction of the moving track (or road). The
映像蓄積部(第1蓄積部)は、カメラ100とGPS受信機120に接続され、カメラから映像をGPS受信機120からGPS情報を取得して、これを記録する。この際、カメラ110とGPS受信機120は、それぞれ取得した映像とGPS情報にタイムスタンプを付与した上で映像蓄積部130に送信する。映像蓄積部では、両者のタイムスタンプによって同期をとることで、映像を構成するフレーム画像毎に位置情報を付加して記録しておく。
The video storage unit (first storage unit) is connected to the camera 100 and the
資産情報DB144には、資産の画像および設置された位置の情報が格納されている。また資産特徴DB145には、資産の画像から抽出した検索用の画像特徴量が格納されている。本明細書ではこれらをまとめて第2蓄積部と呼ぶ場合がある。 The asset information DB 144 stores asset images and installed location information. The asset feature DB 145 stores search image feature amounts extracted from asset images. In the present specification, these may be collectively referred to as a second storage unit.
映像確認部140は、映像蓄積部130の映像に対して資産を検出して、資産の状態を確認して通知する。以下では、映像確認部140を構成する各部の説明を行う。処理選択部141では、映像蓄積部130に蓄積された映像の位置情報を基に資産情報DB141と照合して、検出処理を行うフレーム画像を選択するとともに、検出部142で行う処理の内容を選択する。検出部142では処理選択部141での選択に従って、映像蓄積部の映像中から資産を検出する画像認識処理を行う。
The
位置推定部143では、検出部においてある資産を検出した場合、検出した資産がカメラに対してどの程度離れた距離にあるかを推定する。推定した資産の相対位置情報とGPS情報とを足し合わせることで、検出した資産が設置されている実位置を推定する。その検出結果は、判定部147に出力されるほか、検出結果DB146に保存される。検出結果DB146では、検出した資産に関する情報を記録する。
When the
判定部147では、検出部142と位置推定部143で得られた資産の位置と資産情報DB144を照合して、検出した資産が正しい位置に設置されているかを判定して、あるはずの位置に資産が無いなどの異常を判定した場合、その結果を通知部148に出力する。
The
通知部148では、判定部147で異常を発見した場合に音声や映像などを用いてユーザに通知する。映像を表示する場合は、映像蓄積部130や検出結果DB(第3蓄積部)146から映像を獲得して表示する。
The
図2は、本発明の物体検出装置を設置した移動体200の概要である。本実施例では移動体を電車の例で記載しているが、道路上を走る車両にも適用可能であることは言うまでもない。図2(a)は、全ての構成部を移動体の中に設置した例である。映像確認部で資産の状況を確認して、その結果を移動体内に搭乗する人物に通知する。または、異常状態とその際の映像だけをインターネット通信網などのネットワークを通じて管理センタに通知する。この場合、異常が生じた際の映像と判定結果のみを管理センタに送ればよいため、リアルタイムでのデータ伝送容量を抑えることができる。
FIG. 2 is an outline of a moving
図2(b)は、映像確認部を管理センタ内のサーバ上に設置した例である。この場合、移動体内にはカメラとGPS、映像蓄積部だけを有して、インターネットによるリアルタイム通信や、USBケーブルなどによるデータ転送手段を用いて、管理センタ内の映像確認部に映像を伝送する。これにより、リアルタイムまたはオフラインに管理センタ内の映像確認部で資産管理を実施する。 FIG. 2B shows an example in which the video confirmation unit is installed on a server in the management center. In this case, the moving body has only a camera, a GPS, and a video storage unit, and transmits video to the video confirmation unit in the management center using real-time communication via the Internet or data transfer means such as a USB cable. As a result, asset management is performed by the video confirmation unit in the management center in real time or offline.
図3は、映像確認部の物理的な装置構成を示す図である。映像確認は、一つまたは複数のPCやサーバ上で動作するソフトウェアとして実現される。キーボードやマウスなどのI/F、ネットワークを通じて画像取得や結果通知を行うネットワークI/F、検出処理や位置推定処理を行うCPU、資産情報DBや資産特徴DB等のデータを格納する蓄積部、映像確認部を構成する各処理のプログラムを保持して、一時的なデータを管理するメモリがバスを介して接続される。図2(a)のように路上資産管理装置が、全て移動体内に実装される場合は、蓄積部内に映像蓄積装置を設けて一つのPC上に実現することも可能である。 FIG. 3 is a diagram showing a physical device configuration of the video confirmation unit. The video confirmation is realized as software that operates on one or a plurality of PCs or servers. I / F such as keyboard and mouse, network I / F that performs image acquisition and result notification through the network, CPU that performs detection processing and position estimation processing, storage unit that stores data such as asset information DB and asset feature DB, video A memory that holds a program for each process constituting the confirmation unit and manages temporary data is connected via a bus. When all the on-road asset management devices are mounted in the mobile body as shown in FIG. 2A, it is possible to provide a video storage device in the storage unit and realize it on one PC.
図4は、映像確認部全体の処理の流れを示すフロー図である。まずS401で映像蓄積部から一定シーケンス分の映像を取得する。S402では、取得した映像シーケンス中の位置情報をキーとして、そのシーケンスが撮影された実位置の区間内に検出対象となる資産があるかどうかを資産情報DBに対して問い合わせる。S403では、問合わせの結果、映像シーケンス中に検出対象がない場合は処理を行わず、S401に戻り次の映像シーケンスを取得する。映像シーケンス中に資産が存在するエリアであれば、次のステップに進む。 FIG. 4 is a flowchart showing the processing flow of the entire video confirmation unit. First, in S401, a certain sequence of videos is acquired from the video storage unit. In S402, using the position information in the acquired video sequence as a key, the asset information DB is inquired whether there is an asset to be detected in the section of the actual position where the sequence is captured. In S403, if there is no detection target in the video sequence as a result of the inquiry, the process is not performed, and the process returns to S401 to acquire the next video sequence. If it is an area where assets exist in the video sequence, the process proceeds to the next step.
S404-407では、その映像内に存在するはずの全ての資産に対して検出処理を行う。まずS404では、資産nの処理を選択する。検出対象が標識であれば、画面右側の領域、線路分岐であれば線路周辺の領域などあらかじめ指定された領域を検出領域として設定し、検出処理を行うフレーム画像内のエリアを決定する。S405では、選択された資産nに適した検出処理を行う。S407では、次の資産について同様の処理を行うべく、S404に戻る。 In S404-407, detection processing is performed for all assets that should exist in the video. First, in S404, the processing of asset n is selected. If the detection target is a sign, an area on the right side of the screen is set as a detection area such as an area on the right side of the screen and an area around the line if the line is branched, and an area in the frame image to be detected is determined. In S405, detection processing suitable for the selected asset n is performed. In S407, the process returns to S404 to perform the same process for the next asset.
S408では、S403-07での処理の結果、検出対象の資産を検出したかどうかの判定を行い、検出した場合はS409で資産の位置推定を行う。資産が無い場合はS410に進む。 In S408, it is determined whether or not the asset to be detected is detected as a result of the processing in S403-07, and if it is detected, the position of the asset is estimated in S409. If there is no asset, the process proceeds to S410.
S409で資産の位置推定を行う。画像や移動体の速度情報から資産の設置位置を推定して、GPS情報と移動体の進行方向の情報と合わせることで世界座標系での設置位置を算出できる。 In S409, the asset position is estimated. The installation position in the world coordinate system can be calculated by estimating the installation position of the asset from the image and the speed information of the moving body, and combining the GPS information and the information on the moving direction of the moving body.
S410では資産情報DBに登録されている資産の位置、あるいは周辺の特定区間内に資産があったかどうかを判定する。ここでいう特定区間は、GPSやカメラの時間計測の誤差値に現在の移動速度を掛けることで決定することができる。なるべく短い区間にすることで検出処理の時間を短くできるが、これらの誤差によって検出処理が行われないということが無いように設定される必要がある。また、別の方法としては、特定区間の長さは、設置時に生じうる設置位置の誤差から決定しても良い。これは、これまでの保守の経験によって設定する値であり、これによって資産の設置位置に多少の誤りがあっても、検出することができる。この結果、資産があれば問題ないと判定しS401に戻る。しかし、資産が無い場合には、何らかの異常が発生している可能性が高いため、S411に進みユーザに対して資産無し通知を行う。 In S410, the position of the asset registered in the asset information DB or whether there is an asset in a specific area around it is determined. The specific section here can be determined by multiplying the error value of GPS or camera time measurement by the current moving speed. Although the detection processing time can be shortened by setting the interval as short as possible, it is necessary to set the detection processing not to be performed due to these errors. As another method, the length of the specific section may be determined from an error in the installation position that may occur during installation. This is a value set based on the experience of maintenance so far, so that even if there is a slight error in the installation position of the asset, it can be detected. As a result, if there is an asset, it is determined that there is no problem, and the process returns to S401. However, if there is no asset, there is a high possibility that some kind of abnormality has occurred, and therefore the process proceeds to S411 to notify the user that there is no asset.
以上を踏まえると、本実施例に記載の物体検出方法は、移動体200に設けられたカメラ110が撮像した画像と、カメラが画像を撮像した位置の情報である画像位置情報とを第1蓄積部に蓄積する第1ステップと、検出する対象物に関する情報として、対象物の画像特徴量である対象画像特徴量と、対象物が設置された位置を示す設置位置情報とを第2蓄積部に蓄積する第2ステップと、画像位置情報と設置位置情報とに基づき、画像を選択画像として選択し、選択画像内の指定された領域を検出領域として決定する第3ステップ(S403-407)と、検出領域に対して対象物が存在するか否かを、検出領域から抽出した画像特徴量記対象画像特徴量との類似度を用いて判定することにより物体検出を行う第4ステップ(S408)と、対象物が存在しないと判定された場合、ユーザに対して通知を行うステップ(S410-411)と、を有することを特徴とする。
Based on the above, the object detection method described in the present embodiment performs first accumulation of an image captured by the
上記のフローをとることで、資産情報DB内のすべての資産を用いて検出するのではなく、位置情報を用いてその区間内にある資産に特定して検出することで、検出精度を向上できる。さらに、資産検出を行うフレーム画像、およびフレーム画像内の検出領域を限定できるため処理時間を削減できる。資産特徴DB145に各資産の様々なバリエーションから抽出した画像特徴量を準備しておくことで、同じ標識Aでも設置の問題で傾きがある、記載内容に違いがあるなどの変化があった場合にもロバストに検出が可能となる。
By taking the above flow, the detection accuracy can be improved by using the position information to identify and detect assets in the section, instead of using all assets in the asset information DB. . Furthermore, since the frame image for performing asset detection and the detection area in the frame image can be limited, the processing time can be reduced. By preparing the image feature amount extracted from various variations of each asset in the
以下では、各部の詳細を説明する。
図5は、資産情報DBが保有するテーブル500の例である。資産として何がどこに設置されているかの情報が保存されている。また、監査が行われ、作業員によって設置が確認された日付なども保存しておく。
Below, the detail of each part is demonstrated.
FIG. 5 is an example of a table 500 held by the asset information DB. Information about what is installed as assets and where is stored. Also, the date on which the installation was confirmed by the worker and the worker was confirmed is stored.
図6は、処理選択部(画像選択部)141で決定した処理領域と検出対象を示すフレーム画像の一例である。処理選択部では、資産情報DB内に蓄積された資産名とその位置情報を基に、資産検出処理を行う映像フレームを検出対象の資産がある周辺位置で取得されたものだけに限定する。更には、標識なら線路の右端のエリア、分岐なら路面上のエリアというように検出対象領域を限定する。 FIG. 6 is an example of a frame image indicating the processing region and the detection target determined by the processing selection unit (image selection unit) 141. In the process selection unit, based on the asset name and the position information accumulated in the asset information DB, the video frame for performing the asset detection process is limited to only those acquired at the peripheral position where the asset to be detected is located. Further, the detection target area is limited such that the area at the right end of the track is a sign and the area on the road is a branch.
図7は、検出部の処理の詳細を示す図である。図7(a)は、検出処理における探索窓を示しており、処理選択部で指定された検出領域708に対して、Sliding Window方式で探索窓709を移動させる。この探索窓のサイズやアスペクト比も、処理選択部で資産に応じて決定する。
FIG. 7 is a diagram showing details of processing of the detection unit. FIG. 7A shows a search window in the detection process, and the
検出処理の流れを、図7(b)に示す。まず、探索窓抽出部701で、各探索窓709を用いて部分画像を切り出す。次に、特徴量抽出部702で、抽出した部分画像から画像特徴量を抽出する。ここでは、処理選択部141で指定された検出対象の資産に応じた画像特徴量抽出処理を行う。この画像特徴量として輝度勾配方向の強度分布や、RGBやCIELab表色系でのヒストグラムなどを抽出する。この際、標識Aと標識Bは同じ特徴量F1、線路上の分岐や枕木は同じ特徴量F2というように、画像内で検出対象領域の位置が近い資産については同じ特徴量抽出方法を用いることで、標識AとBが近い位置に並んで設置されているような場合に、同じ領域から異なる画像特徴量抽出を複数回行う必要がなくなり、検出処理を効率化できる。
The flow of the detection process is shown in FIG. First, the search
画像検索部703では、これを資産特徴DB145内の特定資産の特徴量と照合することで資産の有無を判定する。資産特徴DB内には、複数の標識Aの画像から抽出された画像特徴量が記録されており、これに対して画像検索処理を行って最も類似する画像との距離値を標識Aとの類似度として得る。距離値が小さいほど類似度は高い、すなわち似ていることを意味する。
The
検索結果統合部704では、複数の探索窓709で得られた全ての領域と、標識Ano0画像特徴量との類似度の結果を統合して、類似度が一定閾値以下となる探索窓があれば、その探索窓に標識Aがあると判定する。一方、標識Aの資産画像特徴DB145に類似する画像が存在しなければ、標識Aは無いと判定し、通知部148を介してユーザへその旨を通知する。
The search
以上を踏まえると、本実施例に記載の物体検出システムは、移動体200に設けられたカメラ110と、カメラ110が画像を撮像した位置の情報である画像位置情報を取得するGPS120と、画像と画像位置情報とを蓄積する第1蓄積部130と、検出する対象物に関する情報として、対象物の画像特徴量である対象画像特徴量と設置位置情報とを蓄積する第2蓄積部(144,155)と、画像位置情報と設置位置情報とに基づき画像を選択画像として選択し、選択画像内の指定された領域を検出領域として決定する画像選択部141と、検出領域に対して対象物が存在するか否かを、検出領域から抽出した画像特徴量と対象画像特徴量との類似度を用いて判定することにより物体検出を行う検出部と、対象物が存在しないと判定された場合、ユーザに対して通知を行う出力部と、を有することを特徴とする。
Based on the above, the object detection system described in the present embodiment includes a
以上の処理によって、資産情報DB内のすべての資産を用いて検出するのではなく、位置情報を用いてその区間内にある資産に特定して検出することで、検出精度を向上できる。さらに、資産検出を行うフレーム画像、およびフレーム画像内の検出領域を限定できるため処理時間を削減できる。また、資産特徴DB145に各資産の様々なバリエーションから抽出した画像特徴量を準備しておくことで、同じ標識Aでも設置の問題で傾きがある、記載内容に違いがあるなどの変化があった場合にもロバストに検出が可能となる。
Through the above processing, the detection accuracy can be improved by using the position information to identify and detect the assets in the section instead of using all the assets in the asset information DB. Furthermore, since the frame image for performing asset detection and the detection area in the frame image can be limited, the processing time can be reduced. In addition, by preparing image feature quantities extracted from various variations of each asset in the
図8は、位置推定部における位置推定の処理の例を示すイメージ図である。図8(a)は、検出部で資産検出した結果の例である。標識や線路の分岐が検出されている。今、移動体の位置(画像を撮影したカメラの位置)はGPS情報から分かっているので、この資産の位置を知るためには、カメラに対する資産の相対距離を推定すればよい。 FIG. 8 is an image diagram showing an example of position estimation processing in the position estimation unit. FIG. 8A shows an example of the result of asset detection by the detection unit. Signs and track branches are detected. Now, since the position of the moving body (the position of the camera that captured the image) is known from the GPS information, in order to know the position of this asset, the relative distance of the asset to the camera may be estimated.
図8(b)は、画像処理によって検出した資産の設置位置を推定する際のイメージを示した図である。カメラの焦点距離(f)と俯角のカメラパラメータと、画像内から検出した消失点の位置を用いることで、画像座標系上の垂直方向位置yから世界座標系におけるカメラから資産までの距離Zを算出できる。図8(c)が、一定間隔の距離Z毎に画像上に破線を引いた例である。これにより、検出した標識の下端位置を検出することで、カメラからの距離を推定できる。さらに、レーザ式測域センサやステレオカメラなどを用いて位置推定を行うことで、画像からの距離推定よりも誤差を低減することができる。 FIG. 8B is a diagram showing an image when the installation position of the asset detected by the image processing is estimated. By using the camera focal length (f) and the camera parameter of the depression angle and the position of the vanishing point detected from within the image, the distance Z from the camera to the asset in the world coordinate system from the vertical position y on the image coordinate system is obtained. It can be calculated. FIG. 8C is an example in which a broken line is drawn on the image for each distance Z having a constant interval. Accordingly, the distance from the camera can be estimated by detecting the lower end position of the detected sign. Furthermore, by performing position estimation using a laser range sensor, a stereo camera, or the like, errors can be reduced more than distance estimation from an image.
図8(d)は、カメラとは別に位置推定装置としてレーザ式測域センサを用いた場合に、測域センサから取得できるセンサ信号を図示した例である。レーザ式測域センサでは、移動体の前方および側方に対してレーザを飛ばし、その反射によって距離を推定する。このため、図6(c)のように移動体からθ方向に対する距離値としてセンサ信号を収集できる。図8(a)の結果から、検出した標識が移動体に対してθ方向にあることがわかるので、その方向の距離値を求めることで、カメラから標識までの相対距離値を取得できる。 FIG. 8D is an example illustrating a sensor signal that can be acquired from a range sensor when a laser range sensor is used as a position estimation device separately from the camera. In a laser range sensor, a laser is blown toward the front and side of a moving body, and the distance is estimated by reflection thereof. For this reason, a sensor signal can be collected as a distance value with respect to the θ direction from the moving body as shown in FIG. From the result of FIG. 8A, it can be seen that the detected sign is in the θ direction with respect to the moving body, and by obtaining the distance value in that direction, the relative distance value from the camera to the sign can be acquired.
図8(e)は、カメラとしてステレオカメラを用いた場合に、ステレオカメラから得られる距離画像の例である。ステレオカメラでは、2台のカメラを並べて設置して、それぞれから得られた画像のズレを求めることで、画像中の各ピクセルまでの距離値を推定できる。図8(e)では、濃淡値で距離を示しており、ピクセル毎に距離値を取得できる。このため、検出した標識のエリア内のピクセル値を取得することで距離が推定できる。 FIG. 8E shows an example of a distance image obtained from a stereo camera when a stereo camera is used as the camera. In a stereo camera, two cameras are installed side by side, and the distance value to each pixel in the image can be estimated by obtaining the shift of the image obtained from each camera. In FIG. 8E, the distance is indicated by a gray value, and the distance value can be acquired for each pixel. For this reason, distance can be estimated by acquiring the pixel value in the area of the detected sign.
以上のような方法によって、移動体(カメラ)に対する資産の相対位置を推定できる。このようにして求めた相対距離と、GPS情報による移動体の位置と移動体の向きの情報から、世界座標系における資産の絶対位置を推定することが可能となる。 The relative position of the asset with respect to the moving object (camera) can be estimated by the above method. The absolute position of the asset in the world coordinate system can be estimated from the relative distance thus obtained and the information on the position of the moving body and the direction of the moving body based on the GPS information.
図9は、判定部における判定処理を示すフローチャートである。ステップS901で検出部および位置推定部から検出した資産とその設置位置が入力される。次に、ステップS902で資産情報DBと照合を行って、資産情報DBで指定されている資産が検出されなかった場合は、S903に行き、「資産無し」の判定結果を出力する。資産があった場合には、S904に進む。 FIG. 9 is a flowchart showing the determination process in the determination unit. In step S901, the assets detected from the detection unit and the position estimation unit and their installation positions are input. Next, in step S902, the asset information DB is collated. If the asset specified in the asset information DB is not detected, the process goes to S903, and the determination result of “no asset” is output. If there is an asset, the process proceeds to S904.
S904では検出した資産の位置を資産情報DBと照合する。S905では、S904での照合の結果、検出資産の位置ズレが一定閾値以上であるかどうかを判定して、閾値以上の誤差の場合は、「誤差あり」と判定してS906へ、誤差が閾値以下だった場合は、S907へと進む。 In S904, the position of the detected asset is collated with the asset information DB. In S905, as a result of the collation in S904, it is determined whether or not the positional deviation of the detected asset is equal to or greater than a certain threshold value. If it is below, the process proceeds to S907.
S907では、検出した資産を検出結果DB内に蓄積された過去の検出結果画像と比較して距離値を算出する。S908では、得られた距離値が一定閾値以上かどうかを判定して、閾値以上であれば破損や経年劣化などによる変化が考えられるため、S909 にて「変化あり」の結果を出力する。一方で、距離値が閾値以下であれば問題ないと考え、S910にて「通知なし」とする。 In S907, the distance value is calculated by comparing the detected asset with the past detection result image stored in the detection result DB. In S908, it is determined whether or not the obtained distance value is equal to or greater than a certain threshold value. If the distance value is equal to or greater than the threshold value, a change due to breakage or aging is conceivable. On the other hand, if the distance value is equal to or smaller than the threshold value, it is considered that there is no problem, and “no notification” is set in S910.
以上の流れによって、資産の状況を細かく分類することが可能となる。資産の有無だけでなく、資産情報DBに蓄積されている情報と実際の位置とのずれも判定することで、資産情報DBの方に誤りがある可能性をユーザに通知することができる。 According to the above flow, it becomes possible to classify the status of assets in detail. By determining not only the presence / absence of the asset but also the deviation between the information stored in the asset information DB and the actual position, it is possible to notify the user of the possibility that the asset information DB has an error.
図10は、通知部において音声だけではなく画面表示によって通知する例を示した図である。検出対象の資産として標識Aを処理した際の画面の例を示している。判定結果通知部1001には判定部での判定結果が表示される。現映像表示部1002では、資産Aが検出されなかった周辺領域の映像を映像蓄積部から獲得して表示する。この際の映像の再生や停止の制御は再生制御部1002で行う。これにより、検出対象だった資産に異常が発生していた際に、通知結果が本当に正しいかどうかを映像で確認できる。また、実際に異常が発生した際には、資産がどのような状況にあるのかを撮影現場に行くことなくユーザが確認できる。
FIG. 10 is a diagram showing an example in which the notification unit notifies the user not only by voice but also by screen display. The example of the screen at the time of processing the label | marker A as an asset of a detection target is shown. The determination
過去映像表示部1004では、検出結果DB146内に以前に資産検出した結果があれば、その際の画像を表示する。これにより、過去の監査の際にも間違っていたのかどうか、過去の時点に比べてどのような変化が生じたのかをユーザは容易に比較することが可能となる。
In the past
地図情報表示部1005では、撮影した映像のGPS情報を基に現在の再生位置を地図上に表示しておく。これによって、どの位置で資産に異常が発生したかをユーザは容易に把握することが可能となる。
The map
図11は、資産管理のためにカメラを2台利用する場合の例である。その他の構成については実施例1と同様であるため、適宜説明を省略する。本実施例の場合、一つのカメラは、周辺用カメラ111として、鉄道の前方または後方の周囲が広く見渡せるように設置する。もう一つのカメラは、路面用カメラ112として、カメラ111より下向きに設置して、路面部分のみを撮影するようにする。
FIG. 11 shows an example in which two cameras are used for asset management. Since other configurations are the same as those of the first embodiment, the description thereof will be omitted as appropriate. In the case of the present embodiment, one camera is installed as the
図11(b)は、周辺用カメラ111で撮影された画像のイメージである。線路横の標識や線路、トンネルなどが全て画角内に収まるように撮影することで、標識やトンネル、線路など全ての資産が画面内に収まるような画角に調整する。
FIG. 11B shows an image taken by the
図11(c)は、路面用カメラ112で撮影された画像の一例である。図11(c)では、カメラ112を111の角度から90度回転させて縦長の画像を撮影した例を示している。下向きに撮影することで線路上の枕木を分離した映像を撮影できる。また、道路においては、速度規制や停止線などの道路標示を画像認識しやすく撮影できる。このように路面部分だけを高解像度に撮影しているため、資産位置をより高い精度で推定することが可能となる。
FIG. 11C is an example of an image photographed by the
以下では、カメラを2台設置した場合の処理選択部141の処理のうち、実施例1と異なる部分について説明する。処理選択部141では、GPS情報に基づいて、2つのカメラのどちらの映像を用いるかの判定を行う。線路の分岐などの路面上の資産がある場所では、路面用カメラ112が撮像した映像を検出に用いる画像として選択する。
Hereinafter, portions of the processing of the
また、周辺カメラ111の方が遠方まで撮影できることを利用してフレームレートの切り替えを行う処理も可能である。まずは周辺カメラ111の映像に対して線路分岐部の検出処理を行う。線路分岐部を検出したら、路面カメラ112のフレームレートなどのパラメータを制御する。具体的には、何mごとに画像を撮影するかをパラメータとして設定しておき、フレームレートを変動値である移動体の現在の速度に合わせて制御する。例えば、5mの範囲を撮影可能なカメラの場合、マージンを見て2mごとに画像を取得したいとする。このとき、移動速度が4m/sの場合は、0.5秒間隔(2fps)で保存して、移動速度が20m/sの場合は、0.1秒間隔(10fps)で保存するようにカメラのフレームレートを制御する。また、移動速度が速いほど画像にブレが生じて検出が困難になるため、あらかじめ設定した2mの取得間隔を速度に応じて狭めると資産検出の精度をより向上させることができる。
Also, it is possible to perform processing for switching the frame rate by using the fact that the
路面画像は狭い区間しか撮影しないため、移動体の走行速度が速い場合には、映像にぶれが生じたり、資産の撮影漏れが生じる恐れがある。このため、路面カメラの映像から対象を事前に把握したり、現在の走行速度を推定することによって状況に合わせたカメラパラメータ制御が可能となる。また、路面上の資産が路面カメラ内に来るときだけフレームレートを上げることで撮影漏れを防ぐことが可能となる。 Since the road surface image is taken only in a narrow section, when the moving speed of the moving body is high, there is a possibility that the image may be blurred or the property may not be taken. Therefore, it is possible to control the camera parameters in accordance with the situation by grasping the target in advance from the road camera image or estimating the current traveling speed. Also, it is possible to prevent omissions by increasing the frame rate only when assets on the road surface come into the road camera.
図13は、本発明の第3の実施例である再判定処理を行う資産管理装置の処理フローの例である。主な処理フローは、実施例1の図4と同じであるため説明を省略するが、新たにS420~422を設けたため、ここについて説明する。 FIG. 13 is an example of a processing flow of the asset management apparatus that performs redetermination processing according to the third embodiment of the present invention. The main processing flow is the same as that in FIG. 4 of the first embodiment, and thus the description thereof is omitted. However, since S420 to S422 are newly provided, this will be described here.
S420では、S410において検出対象の資産があるはずの特定区間に資産が見つからなかった場合に、これが第一の判定処理であるかどうかを判定する。そして、第一の判定処理であれば、特定区間の周辺(周辺区間と呼ぶ)内の映像に対して再度判定処理を行うべくS421に、再度の判定を終えていればS422に進む。 In S420, if an asset is not found in a specific section where there should be an asset to be detected in S410, it is determined whether this is the first determination process. If it is the first determination process, the process proceeds to S421 to perform the determination process again on the video in the vicinity of the specific section (referred to as the peripheral section), and if the determination is completed again, the process proceeds to S422.
ここでいう特定区間と周辺区間の定義について具体的に述べる。例えば、特定区間としては、GPSやカメラの時刻情報によって生じる計測誤差1-5m程度を設定する。これに対して、特定区間の周辺では、資産の設置時に生じる誤差10m程度を設定する。つまり、特定区間の値は資産情報DBが正しい際に、本装置が有する誤差の範囲を見越して正しく検出するための値である。一方で周辺区間の値は、資産情報DBに誤りがあった際にその誤りを本装置で見つけるための値である。上記の場合、設置位置として資産情報DBに登録されている位置を中心に1-5m程度が特定区間となる。設置位置を中心に10m程度の区間のうち特定区間を除いた区間が周辺区間となる。 Specified specific section and surrounding section here will be described in detail. For example, as the specific section, a measurement error of about 1-5 m caused by GPS or camera time information is set. On the other hand, around the specific section, an error of about 10 m that occurs when assets are installed is set. In other words, the value in the specific section is a value for correctly detecting in anticipation of the error range of the present apparatus when the asset information DB is correct. On the other hand, the value of the peripheral section is a value for finding an error in this apparatus when there is an error in the asset information DB. In the above case, the specific section is about 1-5 m centering on the position registered in the asset information DB as the installation position. A section excluding a specific section among sections of about 10 m centering on the installation position is a peripheral section.
S421では、最初に判定した資産あり区間の前後の区間で撮影された映像を取得して再度、資産検出の処理を行う。 In S421, an image shot in the section before and after the section with assets determined first is acquired, and the asset detection process is performed again.
以上のように、特定位置内に対する検出処理の後、さらにその周辺位置についても検出処理を行うという2段階構成とする。これにより、資産情報DBに正しく位置情報が記録されているほとんどの資産に対しては短い処理時間で検出をおこなうことができる一方、資産情報DBの作成ミスなどでDBとはずれた場所に設置されている資産についても2回目の判定処理で検出することが可能となる。 As described above, after the detection process for the specific position, the detection process is also performed for the peripheral position. As a result, most assets whose position information is correctly recorded in the asset information DB can be detected in a short processing time. On the other hand, the asset information DB is installed in a location away from the DB due to an error in creating the asset information DB. It is possible to detect existing assets in the second determination process.
図14は、本発明の第4の実施例であるDBを自動的に切換えて資産検出する検出部の構成を示す図である。新たに検索DB選択部706を有することが特徴である。検索DB選択部706では、検出用に選択された画像と比較する資産の画像を、資産特徴DB145か検出結果DB146のいずれかから(あるいは両方から)選択する。
FIG. 14 is a diagram showing a configuration of a detection unit that automatically switches DBs and detects assets according to the fourth embodiment of the present invention. A feature is that a search
検索DB選択部では、検出結果DBに全く同じ場所で撮影された標識Aが蓄積されていない場合には、資産画像特徴DBの標識Aのデータと照合する。一方で、過去に何度も同地点の監査を行っており、その結果、同じ場所にある標識の画像が複数枚存在する場合は、同じ地点で別の日に撮影された標識Aの画像と照合するため検索結果DB内の画像を選択する。 In the search DB selection unit, when the sign A photographed at the exact same place is not accumulated in the detection result DB, the search DB selection unit collates with the data of the sign A in the asset image feature DB. On the other hand, if the same point has been audited many times in the past, as a result, if there are multiple images of the sign at the same location, the image of the sign A taken on another day at the same point An image in the search result DB is selected for collation.
図15は、同種類の標識に起こりうる変動の例を示すものである。例えば、駅名を伝える標識の場合、各場所によってプレート内の文字は異なり、これによってプレートのサイズも変化することがある。また、プレートが固定されたポールの形状が変わったり、図15(c)のように、接地面の状況によってはポールが傾くこともある。
これら同種標識内の変動に対しても高精度に検出するために、検索DB選択部において照合するDBを選択するようにする。つまりは、過去に走行している場所においては、全く同じ標識との照合となるので検出率を向上できる。
FIG. 15 shows an example of fluctuations that can occur in the same type of label. For example, in the case of a sign indicating a station name, the characters in the plate differ depending on the location, and the size of the plate may change accordingly. Further, the shape of the pole to which the plate is fixed may change, or the pole may be tilted depending on the condition of the ground contact surface as shown in FIG.
In order to detect the fluctuation in the same kind of label with high accuracy, the search DB selection unit selects the DB to be collated. In other words, the detection rate can be improved at locations where the vehicle has traveled in the past because it is the same as the same sign.
また、検出結果DBに検出結果を保存しておく際に、撮影した日時や天候条件などを一緒に保存しておく。検出時には、違う場所で撮影されたが近い条件の同種別の標識の画像だけを照合する対象とすることで、過去に監査を行っていない場所においても、高精度に検出することが可能となる。 Also, when the detection result is stored in the detection result DB, the shooting date and time, weather conditions, and the like are stored together. At the time of detection, it is possible to detect with high accuracy even in a place where auditing has not been performed in the past by targeting only images of signs of the same type that were taken in different places but under similar conditions. .
天候条件は、映像蓄積部130がネットワーク210につながっていればGPSの情報から、撮影地点の天候情報を、インターネットなどを介して取得することで取得し、画像データ、画像の位置情報とともに、映像蓄積部に蓄積する。例えば、ある時撮像した画像の天候情報が「晴れ」であった場合、検出結果DBに蓄積された画像のうち「晴れ」のタグが付いている画像のみを用いて検出処理を行うことで、検出処理の精度を向上させることができる。
The weather condition is acquired by acquiring the weather information of the shooting location from the GPS information if the
また、カメラ110が、オートゲインコントロールなどの機能を有する場合には、その制御時に用いられたゲインの値を一種の天候条件の情報として使うこともできる。これについても、撮影された画像のゲイン値と、検出結果DBに蓄積された画像のゲイン値の差分がしきい値以下の画像のみを用いることで、同様の効果を得ることができる。
Also, when the
110…カメラ
111…周辺用カメラ
112…路面用カメラ
120…GPS受信機、
130…映像蓄積部、
140…映像確認部、
141…処理選択部
142…検出部
143…位置推定部、
144…資産情報DB
145…資産特徴DB、
146…検出結果DB、
147…判定部
148…通知部
200…移動体
210…ネットワーク
220…管理センタ
300…映像確認装置
310…I/F
320…CPU
330…蓄積部
340…ネットワークI/F
350…メモリ
500…資産情報テーブル
701…探索窓抽出部
702…特徴量抽出部
703…画像検索部
704…検索結果統合部
705…検索結果出力部
706…検索DB選択部
1001…判定結果通知部
1002…現在映像表示部
1003…再生制御部
1004…過去映像表示部
1005…地図表示部
110 ...
130: Video storage unit,
140 ... Video confirmation part,
141 ...
144 ... Asset information DB
145 ... Asset feature DB,
146 ... Detection result DB,
147:
320 ... CPU
330 ...
350 ...
1002 ... Current
Claims (10)
前記カメラが画像を撮像した位置の情報である画像位置情報を取得するGPSと、
前記画像と前記画像位置情報とを蓄積する第1蓄積部と、
検出する対象物に関する情報として、対象物の画像特徴量である対象画像特徴量と設置位置情報とを蓄積する第2蓄積部と、
前記画像位置情報と前記設置位置情報とに基づき前記画像を選択画像として選択し、前記選択画像内の指定された領域を検出領域として決定する画像選択部と、
前記検出領域に対して前記対象物が存在するか否かを、前記検出領域から抽出した画像特徴量と前記対象画像特徴量との類似度を用いて判定することにより物体検出を行う検出部と、
前記対象物が存在しないと判定された場合、ユーザに対して通知を行う出力部と、を有することを特徴とする物体検出システム。 A camera provided on the moving body;
GPS that acquires image position information that is information of a position where the camera has captured an image;
A first storage unit for storing the image and the image position information;
A second accumulating unit for accumulating a target image feature quantity that is an image feature quantity of the target object and installation position information as information on the target object to be detected;
An image selection unit that selects the image as a selection image based on the image position information and the installation position information, and determines a designated region in the selection image as a detection region;
A detection unit that detects an object by determining whether or not the object exists with respect to the detection region using a similarity between the image feature amount extracted from the detection region and the target image feature amount; ,
And an output unit configured to notify a user when it is determined that the object does not exist.
前記検出部において前記対象物が存在しないと判定された場合、
前記画像選択部は、前記第1蓄積部から前記選択画像の前後に位置する画像を補助選択画像として選択し、
前記検出部は、前記補助選択画像内の指定された領域に対して、物体検出を行うことを特徴とする物体検出システム。 The object detection system according to claim 1,
When the detection unit determines that the object does not exist,
The image selection unit selects, as an auxiliary selection image, images positioned before and after the selection image from the first storage unit,
The said detection part performs an object detection with respect to the designated area | region in the said auxiliary | assistant selection image, The object detection system characterized by the above-mentioned.
前記検出部において前記対象物が存在すると判定された場合に、前記選択画像の位置情報を前記対象物の検出位置として推定する位置推定部と、
前記検出位置と前記設置位置情報との距離の差分を算出し、前記差分が閾値より大きいか小さいかを判定する判定部と、をさらに有し、
前記判定部において前記差分が閾値より大きいと判定された場合に、前記出力部はユーザに対して通知を行うことを特徴とする物体検出システム。 The object detection system according to claim 1,
A position estimation unit that estimates position information of the selected image as a detection position of the object when the detection unit determines that the object exists;
A determination unit that calculates a difference in distance between the detection position and the installation position information, and determines whether the difference is larger or smaller than a threshold; and
The object detection system according to claim 1, wherein when the determination unit determines that the difference is greater than a threshold value, the output unit notifies the user.
測定範囲内に位置する障害物までの距離計測を行うセンサ部を、さらに有し、
前記位置推定部は、前記センサ部が計測した距離を用いて、前記検出位置を推定することを徳用とする物体検出システム。 The object detection system according to claim 3,
It further has a sensor unit that measures the distance to an obstacle located within the measurement range,
The position estimation unit is an object detection system that uses the distance measured by the sensor unit to estimate the detection position.
前記カメラとして、前記移動体の進行方向を撮像する第1カメラと、前記移動体が移動する地面を撮像する第2カメラを有し、
前記第2蓄積部には、さらに前記対象物の種別が蓄積され、
前記画像選択部は、前記設置位置情報と前記種別と前記画像位置情報とをもとに、前記第1カメラが撮像した第1画像または前記第2カメラが撮像した第2画像のいずれか一方の画像から前記選択画像を選択することを特徴とする物体検出システム。 The object detection system according to claim 1,
The camera has a first camera that images the traveling direction of the moving body, and a second camera that images the ground on which the moving body moves,
The second storage unit further stores the type of the object,
The image selection unit may be one of a first image captured by the first camera and a second image captured by the second camera based on the installation position information, the type, and the image position information. An object detection system, wherein the selected image is selected from an image.
前記第1画像から前記対象物が検出された場合に、前記第2カメラのフレームレートを切り替えることを特徴とする物体検出システム。 The object detection system according to claim 5,
An object detection system that switches a frame rate of the second camera when the object is detected from the first image.
前記検出部において前記対象物が存在すると判定された場合に、前記対象物の画像である検出済画像と、前記検出済画像から抽出した画像特徴量と、前記検出済画像を撮像した時刻および天候の情報である状況情報とを蓄積する第3蓄積部と、をさらに有し、
前記検出部は、前記対象画像特徴量に代えて前記第3蓄積部に蓄積される画像特徴量を用いて物体検出を行うことを特徴とする物体検出システム。 The object detection system according to claim 1,
When the detection unit determines that the object is present, a detected image that is an image of the object, an image feature amount extracted from the detected image, a time when the detected image is captured, and weather A third storage unit that stores status information that is information of
The detection unit performs object detection using an image feature amount stored in the third storage unit instead of the target image feature amount.
前記判定部では、前記検出済画像と、過去に前記第3蓄積部に蓄積された検出済画像とを比較して変化量を算出し、
前記変化量が閾値よりも高い場合には、前記出力部はユーザに対して通知を行うことを特徴とする物体検出システム。 The object detection system according to claim 7,
The determination unit calculates the amount of change by comparing the detected image with the detected image stored in the third storage unit in the past,
When the change amount is higher than a threshold value, the output unit notifies the user of the object detection system.
さらに、前記選択画像の状況情報と同じ状況情報を有する前記検出済画像を選択するDB選択部を有することを特徴とする物体検出システム。 The object detection system according to claim 7,
The object detection system further includes a DB selection unit that selects the detected image having the same situation information as the situation information of the selected image.
検出する対象物に関する情報として、前記対象物の画像特徴量である対象画像特徴量と、前記対象物が設置された位置を示す設置位置情報とを第2蓄積部に蓄積する第2ステップと、
前記画像位置情報と前記設置位置情報とに基づき、前記画像を選択画像として選択し、前記選択画像内の指定された領域を検出領域として決定する第3ステップと、
前記検出領域に対して前記対象物が存在するか否かを、前記検出領域から抽出した画像特徴量と前記対象画像特徴量との類似度を用いて判定することにより物体検出を行う第4ステップと、
前記対象物が存在しないと判定された場合、ユーザに対して通知を行うステップと、を有することを特徴とする物体検出方法。 A first step of storing, in a first storage unit, an image captured by a camera provided on a moving body and image position information that is information on a position where the camera has captured an image;
A second step of storing, in the second storage unit, target image feature quantities that are image feature quantities of the target objects and installation position information indicating positions where the target objects are installed as information on the target objects to be detected;
A third step of selecting the image as a selected image based on the image position information and the installation position information, and determining a designated area in the selected image as a detection area;
Fourth step of performing object detection by determining whether or not the object exists with respect to the detection region by using a similarity between the image feature amount extracted from the detection region and the target image feature amount. When,
And a step of notifying a user when it is determined that the object does not exist.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2015/053888 WO2016129091A1 (en) | 2015-02-13 | 2015-02-13 | Object detection system and object detection method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2015/053888 WO2016129091A1 (en) | 2015-02-13 | 2015-02-13 | Object detection system and object detection method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016129091A1 true WO2016129091A1 (en) | 2016-08-18 |
Family
ID=56615522
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2015/053888 Ceased WO2016129091A1 (en) | 2015-02-13 | 2015-02-13 | Object detection system and object detection method |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2016129091A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008502538A (en) * | 2004-06-11 | 2008-01-31 | ストラテック システムズ リミテッド | Railway track scanning system and method |
| JP2008250687A (en) * | 2007-03-30 | 2008-10-16 | Aisin Aw Co Ltd | Feature information collection device and feature information collection method |
| JP2014092875A (en) * | 2012-11-01 | 2014-05-19 | Toshiba Corp | Image synchronization device and system |
-
2015
- 2015-02-13 WO PCT/JP2015/053888 patent/WO2016129091A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008502538A (en) * | 2004-06-11 | 2008-01-31 | ストラテック システムズ リミテッド | Railway track scanning system and method |
| JP2008250687A (en) * | 2007-03-30 | 2008-10-16 | Aisin Aw Co Ltd | Feature information collection device and feature information collection method |
| JP2014092875A (en) * | 2012-11-01 | 2014-05-19 | Toshiba Corp | Image synchronization device and system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10607090B2 (en) | Train security system | |
| CN107563419B (en) | Train positioning method combining image matching and two-dimensional code | |
| CA2560800C (en) | Automated asset detection, location measurement and recognition | |
| KR101339354B1 (en) | System for detecting position of the railway vehicle using images and the method of the same | |
| Ai et al. | Critical assessment of an enhanced traffic sign detection method using mobile LiDAR and INS technologies | |
| JP2019084881A (en) | Obstacle detection device | |
| US20200034637A1 (en) | Real-Time Track Asset Recognition and Position Determination | |
| WO2016132587A1 (en) | Information processing device, road structure management system, and road structure management method | |
| EP3415400A1 (en) | System and method for determining the position of a guided vehicle | |
| JP2018018461A (en) | Information processing apparatus, display apparatus, information processing method, and program | |
| Wohlfeil | Vision based rail track and switch recognition for self-localization of trains in a rail network | |
| KR102163208B1 (en) | Hybrid unmanned traffic surveillance system, and method thereof | |
| WO2020210960A1 (en) | Method and system for reconstructing digital panorama of traffic route | |
| KR102257078B1 (en) | Fog detection device using coordinate system and method thereof | |
| Dai et al. | A vision-based method for on-road truck height measurement in proactive prevention of collision with overpasses and tunnels | |
| WO2019138716A1 (en) | Image compositing system and image compositing method | |
| CN111696365A (en) | Vehicle tracking system | |
| KR102200204B1 (en) | 3-D Image Analyzing System Using CCTV Image | |
| JP2018017101A (en) | Information processing apparatus, information processing method, and program | |
| CN109826668B (en) | Underground multi-source accurate personnel positioning system and method | |
| CN116242316B (en) | Method and device for detecting positioning points of rigid contact net in real time | |
| JP2002008019A (en) | Track recognition device and railway vehicle using the track recognition device | |
| CN116245933A (en) | A camera offset detection method, system and storage medium | |
| WO2016129091A1 (en) | Object detection system and object detection method | |
| JP2002002485A (en) | Track recognition device and railway vehicle using the track recognition device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15881966 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 15881966 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |