WO2016119579A1 - Method for continuously producing metal semi-solid slurry - Google Patents
Method for continuously producing metal semi-solid slurry Download PDFInfo
- Publication number
- WO2016119579A1 WO2016119579A1 PCT/CN2016/070184 CN2016070184W WO2016119579A1 WO 2016119579 A1 WO2016119579 A1 WO 2016119579A1 CN 2016070184 W CN2016070184 W CN 2016070184W WO 2016119579 A1 WO2016119579 A1 WO 2016119579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semi
- solid
- slurry
- solid metal
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D1/00—Treatment of fused masses in the ladle or the supply runners before casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D35/00—Equipment for conveying molten metal into beds or moulds
- B22D35/06—Heating or cooling equipment
Definitions
- the invention belongs to the technical field of semi-solid molding of metals, and in particular relates to a method for continuously producing a semi-solid metal slurry.
- the method overcomes the defects of the complicated process flow and high production cost in the existing semi-solid metal slurry manufacturing method, is easy to operate, has low production cost, and is easy to realize large-scale industrial application.
- the present invention adopts the following technical solutions:
- a method for continuously producing a metal semi-solid slurry comprising the following steps:
- the semi-solid metal slurry (4) in the step (c) is completely solidified into a solid after being cooled.
- the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 1% by weight.
- the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 10wt%.
- the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 20% by weight.
- the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of not more than 40% by weight.
- the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of not more than 50% by weight.
- the solid content of the newly formed semi-solid metal slurry (1) in the step (e) is not more than 60% by weight after cooling.
- the above process can be continually repeated to meet the needs of continuous production; that is, a part of the newly formed semi-solid metal slurry (1) will be taken away for semi-solid processing, and the remaining half
- the solid metal slurry is in turn added with a quantity of molten metal (5) to form more semi-solid metal paste (1).
- the remaining semi-solid metal slurry (4) in the vessel (2) has completely solidified into a solid.
- the time for cooling the remaining semi-solid metal slurry (4) in the vessel (2) may be zero; in the case of the above, generally the remaining semi-solid metal slurry
- the solids content of body (4) is already relatively high, so no further cooling is required to increase its solids ratio.
- the time for cooling the newly formed semi-solid metal slurry (1) may be zero; in the case of the newly formed semi-solid metal slurry (1)
- the solids content has reached the requirements for semi-solid processing, so no further cooling is required to increase its solids ratio.
- the length of the cooling time in actual production is selected according to the level of solid content in the semi-solid metal slurry and the actual needs.
- the solid content in the semi-solid metal slurry is high, and the cooling time is correspondingly shorter.
- the low solids content in the semi-solid metal paste results in a correspondingly longer cooling time.
- the newly formed semi-solid metal paste (1) has a solids content after cooling of at least 1% by weight, preferably at least 10% by weight, more preferably at least 20% by weight; the key is that a new formation
- the solid content of the semi-solid metal paste (1) should be selected to ensure that it inhibits the formation of metal dendritic structures and networks during further cooling and solidification.
- the newly formed semi-solid metal slurry (1) has a solid content after cooling of not more than 60% by weight, preferably not more than 50% by weight, more preferably not more than 40% by weight; a higher solid content may be The slurry is not easily subjected to further semi-solid processing.
- the solid content of the newly formed semi-solid metal slurry (1) is less than 10% by weight, the viscosity thereof is relatively low; an additional stirring process (such as mechanical stirring, electromagnetic stirring, etc.) may be omitted to achieve the slurry.
- an additional stirring process such as mechanical stirring, electromagnetic stirring, etc.
- the purpose of body homogenization when the solid content of the formed semi-solid metal slurry (1) is more than 20% by weight, the viscosity thereof is relatively high, and an additional stirring process (such as mechanical stirring, electromagnetic stirring, etc.) is generally required to achieve uniform slurry. Purpose.
- the present invention is easy to implement large-scale industrial applications.
- Figure 1 is a schematic view of the process of the present invention
- Figure 2 is a photomicrograph of a metal composition of one example of the invention comprising a spherical primary solid phase and a secondary solid phase formed during the cold quenching process.
- Figure 1 shows four separate steps in a preferred embodiment of the invention.
- Step 1 shows a container (2) containing a certain weight of semi-solid metal slurry (1).
- Step 2 shows the container (2) in step 1, the semi-solid metal slurry (1) in the container (2) has been taken out and placed in another container (6); half in the container (6)
- the solid metal paste (3) will be used for further processing, such as for semi-solid die casting, with some semi-solid metal slurry (4) remaining in the vessel (2).
- Step 3 shows the semi-solid metal slurry (4) remaining in step 2, and after a certain period of cooling, the solid ratio of the remaining semi-solid metal slurry (4) has increased; in some cases, half The solid metal slurry (4) can be cooled for a sufficient period of time to completely solidify into a solid.
- Step 4 shows a further container (7) in which the molten metal (5) is contained; a certain amount of molten metal (5) has been added to the container (2) and half of the step 3 Solid metal paste (4) mixed together to form a new half Solid metal paste (1). If necessary, the newly formed semi-solid metal slurry (1) can be further cooled to increase its solid ratio (not shown).
- the solid ratio of the semi-solid metal paste (1) can be the weight of the molten metal (5) added, the weight of the remaining semi-solid metal paste (4), and the remaining semi-solid metal paste.
- the cooling time of the body (4) and the parameters such as the cooling time of the newly formed semi-solid metal slurry (1) are adjusted to control. In many cases, it is desirable to control the solid ratio of the semi-solid metal slurry (1) to be between 10 and 30%; since the semi-solid metal slurry (1) has sufficient solid content in this ratio range To prevent the generation of dendrites, while the semi-solid metal slurry (1) still has sufficient fluidity to be poured out of the container (2) (not shown).
- the above process can be continually repeated to meet the needs of continuous production; that is, a portion of the newly formed semi-solid metal slurry (1) will be removed for semi-solid processing, while the remaining The semi-solid metal slurry is in turn added with a quantity of molten metal (5) to form more semi-solid metal paste (1).
- a "clay-graphite" crucible having an inner diameter of about 130 mm, a wall thickness of about 16 mm, and a height of about 180 mm is heated to about 620 ° C; then about 5,000 g of molten Al - 7 wt % Si is poured into the crucible.
- the aluminum alloy in the crucible has become a semi-solid slurry; then about 3000 g is poured out from the crucible.
- the semi-solid slurry is ready for other use.
- about 2000 grams of semi-solid slurry remains in the crucible; then the remaining semi-solid slurry in the crucible is naturally cooled for 45 seconds, at which time the semi-solid in the crucible
- the temperature of the slurry is lowered to about 600 ° C; then about 3000 grams of a molten Al - 7 wt % Si aluminum alloy of about 630 ° C is added to the crucible, at which time the temperature of the aluminum alloy in the crucible is about 612 ° C, which is a new 5000 grams of semi-solid slurry has been formed; then the newly formed semi-solid slurry in the crucible
- a temperature of about 5000 grams of semi-solid slurry in the crucible falls below about
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Continuous Casting (AREA)
Abstract
Description
本发明属于金属的半固态成型技术领域,具体涉及一种可连续生产半固态金属浆体的方法。The invention belongs to the technical field of semi-solid molding of metals, and in particular relates to a method for continuously producing a semi-solid metal slurry.
众所周知,使用金属半固态浆体成型的零件相对于普通液态成型的对应零件有许多的优点,如较少的缺陷、更佳的机械性能等;因此,半固态金属成形技术以其诸多的优越性而被视为划时代的金属加工新工艺。近年来,半固态金属成形技术的工业应用已取得很大进展;目前,制备具有球状晶结构的半固态金属浆体的方法主要有:机械搅拌法、电磁搅拌法、超声波搅拌法等。这些方法的工艺流程相对复杂、导致生产成本相对较高,以至于到目前为止,金属的半固态成型技术还没有在很大的范围得到工业化应用。It is well known that parts formed using metal semi-solid slurries have many advantages over conventional liquid-formed counterparts, such as fewer defects, better mechanical properties, etc.; therefore, semi-solid metal forming techniques have many advantages. It is regarded as an epoch-making new metal processing technology. In recent years, industrial applications of semi-solid metal forming technology have made great progress; at present, methods for preparing semi-solid metal pastes having a spherical crystal structure include mechanical stirring method, electromagnetic stirring method, ultrasonic stirring method, and the like. The process flow of these methods is relatively complicated, resulting in relatively high production costs, so that the semi-solid forming technology of metals has not been industrialized in a large scale so far.
发明内容Summary of the invention
本发明的目的在于针对现有技术的不足,提供一种可连续生产半固态金属浆体的方法。该方法克服了现有的半固态金属浆体制作方法中存在的工艺流程较复杂、生产成本较高的缺点,易于操作,生产成本极低,易于实现大规模的产业化应用。It is an object of the present invention to provide a method for continuously producing a semi-solid metal slurry in view of the deficiencies of the prior art. The method overcomes the defects of the complicated process flow and high production cost in the existing semi-solid metal slurry manufacturing method, is easy to operate, has low production cost, and is easy to realize large-scale industrial application.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种可连续生产金属半固态浆体的方法,包括以下步骤:A method for continuously producing a metal semi-solid slurry comprising the following steps:
(a)提供半固态金属浆体(1)于一容器(2)中;(a) providing a semi-solid metal slurry (1) in a container (2);
(b)从容器(2)中取走部分的半固态金属浆体(3)用于半固态加工(如半固态压铸、半固态锻造和半固态挤压等);(b) removing part of the semi-solid metal slurry (3) from the vessel (2) for semi-solid processing (such as semi-solid die casting, semi-solid forging and semi-solid extrusion, etc.);
(c)将容器(2)中剩余的半固态金属浆体(4)冷却以增加其固体比率;(c) cooling the semi-solid metal slurry (4) remaining in the vessel (2) to increase its solids ratio;
(d)往容器(2)中加入熔融金属(5)以形成新的半固态金属浆体(1);(d) adding molten metal (5) to the vessel (2) to form a new semi-solid metal slurry (1);
(e)冷却新形成的半固态金属浆体(1)以增加其固体比率。(e) Cooling the newly formed semi-solid metal slurry (1) to increase its solid ratio.
所述的步骤(c)中半固态金属浆体(4)经冷却后已完全凝固成固体。The semi-solid metal slurry (4) in the step (c) is completely solidified into a solid after being cooled.
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为1wt%。The newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 1% by weight.
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为 10wt%。The newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 10wt%.
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为20wt%。The newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 20% by weight.
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过40wt%。The newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of not more than 40% by weight.
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过50wt%。The newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of not more than 50% by weight.
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过60wt%。The solid content of the newly formed semi-solid metal slurry (1) in the step (e) is not more than 60% by weight after cooling.
在实际生产中,以上的工艺流程可以不断地被重复,以满足连续生产的需要;即一部分新形成的半固态金属浆体(1)又会被取走用于半固态加工,而剩余的半固态金属浆体又会被加入一定量的熔融金属(5)以便形成更多的半固态金属浆体(1)。In actual production, the above process can be continually repeated to meet the needs of continuous production; that is, a part of the newly formed semi-solid metal slurry (1) will be taken away for semi-solid processing, and the remaining half The solid metal slurry is in turn added with a quantity of molten metal (5) to form more semi-solid metal paste (1).
根据本发明的一个实施例,经过一定长时间的冷却后,容器(2)中剩余的半固态金属浆体(4)已完全凝固成固体。According to one embodiment of the invention, after a certain period of cooling, the remaining semi-solid metal slurry (4) in the vessel (2) has completely solidified into a solid.
根据本发明的另一个实施例,对容器(2)中剩余的半固态金属浆体(4)进行冷却的时间可以为零;在种情况下,一般来说所述的剩余的半固态金属浆体(4)的固体含量已经比较高,所以不需要进一步的冷却以增加其固体比率。According to another embodiment of the invention, the time for cooling the remaining semi-solid metal slurry (4) in the vessel (2) may be zero; in the case of the above, generally the remaining semi-solid metal slurry The solids content of body (4) is already relatively high, so no further cooling is required to increase its solids ratio.
根据本发明的另一个实施例,对所述的新形成的半固态金属浆体(1)进行冷却的时间可以为零;在种情况下,所述的新形成的半固态金属浆体(1)的固体含量已经达到半固态加工的要求,所以不需要进一步的冷却以增加其固体比率。According to another embodiment of the present invention, the time for cooling the newly formed semi-solid metal slurry (1) may be zero; in the case of the newly formed semi-solid metal slurry (1) The solids content has reached the requirements for semi-solid processing, so no further cooling is required to increase its solids ratio.
总之,实际生产时冷却时间的长短是根据半固态金属浆体中的固体含量的高低和实际的需要而进行选择的,半固态金属浆体中的固体含量高,则相应地冷却时间较短,半固态金属浆体中的固体含量低,则相应地冷却时间较长。In short, the length of the cooling time in actual production is selected according to the level of solid content in the semi-solid metal slurry and the actual needs. The solid content in the semi-solid metal slurry is high, and the cooling time is correspondingly shorter. The low solids content in the semi-solid metal paste results in a correspondingly longer cooling time.
根据本发明的一个优选实施例,新形成的半固态金属浆体(1)经冷却后的固体含量至少为1wt%,优选至少为10wt%,更优选至少为20wt%;其关键在于,新形成的半固态金属浆体(1)的固体含量的选择,应确保其在进一步的冷却和凝固时抑制金属枝状晶结构和网络的产生。 According to a preferred embodiment of the invention, the newly formed semi-solid metal paste (1) has a solids content after cooling of at least 1% by weight, preferably at least 10% by weight, more preferably at least 20% by weight; the key is that a new formation The solid content of the semi-solid metal paste (1) should be selected to ensure that it inhibits the formation of metal dendritic structures and networks during further cooling and solidification.
根据本发明的另一个优选实施例,新形成的半固态金属浆体(1)经冷却后固体含量不超过60wt%,优选不超过50wt%,更优选不超过40wt%;更高的固体含量可能使浆体不易于进行进一步的半固态加工。According to another preferred embodiment of the present invention, the newly formed semi-solid metal slurry (1) has a solid content after cooling of not more than 60% by weight, preferably not more than 50% by weight, more preferably not more than 40% by weight; a higher solid content may be The slurry is not easily subjected to further semi-solid processing.
需要指出的是,当新形成的半固态金属浆体(1)的固体含量少于10wt%,其粘度相对较低;可以不需要附加的搅拌工序(如机械搅拌、电磁搅拌等)以达到浆体均匀化的目的。然而,当所述的所形成的半固态金属浆体(1)的固体含量大于20wt%,其粘度相对较高,一般需要附加的搅拌工序(如机械搅拌、电磁搅拌等)以达到浆体均匀化的目的。It should be noted that when the solid content of the newly formed semi-solid metal slurry (1) is less than 10% by weight, the viscosity thereof is relatively low; an additional stirring process (such as mechanical stirring, electromagnetic stirring, etc.) may be omitted to achieve the slurry. The purpose of body homogenization. However, when the solid content of the formed semi-solid metal slurry (1) is more than 20% by weight, the viscosity thereof is relatively high, and an additional stirring process (such as mechanical stirring, electromagnetic stirring, etc.) is generally required to achieve uniform slurry. Purpose.
本发明的有益效果在于:The beneficial effects of the invention are:
1)本发明的工艺流程非常简单,且易于控制;1) The process of the invention is very simple and easy to control;
2)应用本发明揭露的制浆方法,浆体的生产成本极低;2) Applying the pulping method disclosed by the invention, the production cost of the slurry is extremely low;
3)本发明易于实现大规模的产业化应用。3) The present invention is easy to implement large-scale industrial applications.
图1为本发明的工艺示意图;Figure 1 is a schematic view of the process of the present invention;
图2为本发明的一个实例的金属组合物的显微照片,包括球状的初生固体相和冷淬过程中形成的二次固体相。Figure 2 is a photomicrograph of a metal composition of one example of the invention comprising a spherical primary solid phase and a secondary solid phase formed during the cold quenching process.
本发明用下列实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。The invention is further illustrated by the following examples, but the scope of the invention is not limited to the following examples.
图1示出了本发明的一个优选实施例中的四个独立步骤。步骤1示出了一个容器(2),容器(2)中装有一定重量的半固态金属浆体(1)。步骤2示出了步骤1中的容器(2),容器(2)中的半固态金属浆体(1)已被取出一部分并放入另一个容器(6)中;容器(6)中的半固态金属浆体(3)将被用于进一步的加工使用,如用于半固态压铸,容器(2)中还剩余一些半固态金属浆体(4)。步骤3示出了步骤2中所剩余的半固态金属浆体(4),经过一定长时间的冷却,所剩余的半固态金属浆体(4)的固体比率已经增加;在一些情况下,半固态金属浆体(4)可以被冷却足够长的时间以至于完全凝固成固体。步骤4示出再一个容器(7),容器(7)中装有熔融的金属(5);一定量的熔融金属(5)已被加入到容器(2)中,并和步骤3中的半固态金属浆体(4)混合在一起形成了新的半
固态金属浆体(1)。必要时,可以对新形成的半固态金属浆体(1)进行进一步的冷却以增加其固体比率(非示出)。Figure 1 shows four separate steps in a preferred embodiment of the invention.
半固态金属浆体(1)的固体比率可通过对所加入的熔融金属(5)的重量和温度,对所剩余的半固态金属浆体(4)的重量,对所剩余的半固态金属浆体(4)的冷却时间,以及对新形成的半固态金属浆体(1)的冷却时间等参数进行调节来控制。在许多情况下,理想的是,将半固态金属浆体(1)的固体比率控制在10-30%之间;因为在该比率范围,半固态金属浆体(1)已具有足够的固体含量以防止枝状晶的产生,同时半固态金属浆体(1)仍然具有足够的流动性从容器(2)中倒出(非示出)。The solid ratio of the semi-solid metal paste (1) can be the weight of the molten metal (5) added, the weight of the remaining semi-solid metal paste (4), and the remaining semi-solid metal paste. The cooling time of the body (4) and the parameters such as the cooling time of the newly formed semi-solid metal slurry (1) are adjusted to control. In many cases, it is desirable to control the solid ratio of the semi-solid metal slurry (1) to be between 10 and 30%; since the semi-solid metal slurry (1) has sufficient solid content in this ratio range To prevent the generation of dendrites, while the semi-solid metal slurry (1) still has sufficient fluidity to be poured out of the container (2) (not shown).
在实际生产应用中,以上的工艺流程可以不断地被重复,以满足连续生产的需要;即一部分新形成的半固态金属浆体(1)又会被取走用于半固态加工,而剩余的半固态金属浆体又会被加入一定量的熔融金属(5)以便形成更多的半固态金属浆体(1)。In practical production applications, the above process can be continually repeated to meet the needs of continuous production; that is, a portion of the newly formed semi-solid metal slurry (1) will be removed for semi-solid processing, while the remaining The semi-solid metal slurry is in turn added with a quantity of molten metal (5) to form more semi-solid metal paste (1).
实施例1Example 1
以下对Al-7wt%Si铝合金半固态浆体的生产方法及装置加以举例说明。The production method and apparatus for the Al-7wt% Si aluminum alloy semi-solid slurry are exemplified below.
首先把一个内径为约130毫米、壁厚为约16毫米、高度为约180毫米的“粘土-石墨”坩埚加热至约620℃;然后往该坩埚倒入约5000克的熔融Al-7wt%Si铝合金,这时坩埚中的铝合金的温度为625℃(该Al-7wt%Si铝合金的液相线温度为约616℃,固相线温度为约572℃);然后让坩埚中的铝合金自然冷却,同时对该铝合金进行机械搅拌,当该合金的温度降到610℃时停止搅拌,这时坩埚中的铝合金已变成半固态浆体;然后从坩埚中倒出约3000克的半固态浆体以备他用,这时坩埚中还剩下约2000克的半固态浆体;然后让坩埚中所剩下的半固态浆体自然冷却45秒,这时坩埚中的半固态浆体的温度降到约600℃;然后往坩埚中加入约3000克的约630℃的熔融Al-7wt%Si铝合金,这时坩埚中的铝合金的温度为约612℃,即新的约5000克的半固态浆体已经形成;然后让坩埚中的新形成的半固态浆体自然冷却并同时进行机械搅拌约10秒,这时坩埚中的约5000克半固态浆体的温度降到约610℃。少量的半固态浆体被从坩埚中取出并在冷水中淬火;所得到的显微结构如图2所示;从图2可以看出,使用本发明所揭露的方法生产的半固态浆体,其初生固体相为球状晶结构。在实际生产中,以上 的本发明所揭露的方法可以不断地重复使用,以达到连续生产的目的。First, a "clay-graphite" crucible having an inner diameter of about 130 mm, a wall thickness of about 16 mm, and a height of about 180 mm is heated to about 620 ° C; then about 5,000 g of molten Al - 7 wt % Si is poured into the crucible. Aluminum alloy, at which time the temperature of the aluminum alloy in the crucible is 625 ° C (the liquidus temperature of the Al-7 wt% Si aluminum alloy is about 616 ° C, the solidus temperature is about 572 ° C); then the aluminum in the crucible The alloy is naturally cooled, and the aluminum alloy is mechanically stirred. When the temperature of the alloy drops to 610 ° C, the stirring is stopped. At this time, the aluminum alloy in the crucible has become a semi-solid slurry; then about 3000 g is poured out from the crucible. The semi-solid slurry is ready for other use. At this time, about 2000 grams of semi-solid slurry remains in the crucible; then the remaining semi-solid slurry in the crucible is naturally cooled for 45 seconds, at which time the semi-solid in the crucible The temperature of the slurry is lowered to about 600 ° C; then about 3000 grams of a molten Al - 7 wt % Si aluminum alloy of about 630 ° C is added to the crucible, at which time the temperature of the aluminum alloy in the crucible is about 612 ° C, which is a new 5000 grams of semi-solid slurry has been formed; then the newly formed semi-solid slurry in the crucible However, while cooling with mechanical stirring for about 10 seconds, then a temperature of about 5000 grams of semi-solid slurry in the crucible falls below about 610 ℃. A small amount of the semi-solid slurry is taken out of the crucible and quenched in cold water; the resulting microstructure is shown in Figure 2; as can be seen from Figure 2, the semi-solid slurry produced using the method disclosed herein, Its primary solid phase is a spherical crystal structure. In actual production, the above The method disclosed by the present invention can be continuously reused for the purpose of continuous production.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention.
Claims (8)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510046803.5 | 2015-01-30 | ||
| CN201510046803.5A CN104550888B (en) | 2015-01-30 | 2015-01-30 | A kind of method that can produce semi-solid metal slurrg continuously |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016119579A1 true WO2016119579A1 (en) | 2016-08-04 |
Family
ID=53068547
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2016/070184 Ceased WO2016119579A1 (en) | 2015-01-30 | 2016-01-05 | Method for continuously producing metal semi-solid slurry |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN104550888B (en) |
| WO (1) | WO2016119579A1 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104550888B (en) * | 2015-01-30 | 2016-08-31 | 林荣英 | A kind of method that can produce semi-solid metal slurrg continuously |
| CN104841896A (en) * | 2015-05-28 | 2015-08-19 | 林荣英 | Method for producing metal semisolid slurry |
| CN105537552A (en) * | 2016-02-02 | 2016-05-04 | 曹海平 | Method and device for producing semi-solid slurry |
| CN112846127B (en) * | 2020-12-30 | 2022-07-12 | 福建省金瑞高科有限公司 | Die casting method of 5G base station radiating shell and semi-solid die casting method applied by die casting method |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04124232A (en) * | 1990-09-12 | 1992-04-24 | Leotec:Kk | Method for starting continuous type half solidified metal producing apparatus |
| EP0745694A1 (en) * | 1995-05-29 | 1996-12-04 | Ube Industries, Ltd. | Method and apparatus for shaping semisolid metals |
| CN101098974A (en) * | 2004-12-10 | 2008-01-02 | M·韦森 | Method and apparatus for producing liquid-solid metal composition |
| CN102266914A (en) * | 2011-08-08 | 2011-12-07 | 昆明理工大学 | Method for preparing semisolid alloy slurry |
| CN104084545A (en) * | 2014-07-25 | 2014-10-08 | 无锡职业技术学院 | Metamorphic method for casting mixed liquid of Mg-Al alloy liquid melt and semi-solid melt |
| CN104550888A (en) * | 2015-01-30 | 2015-04-29 | 林荣英 | Method capable of continuously producing semisolid metal slurry |
-
2015
- 2015-01-30 CN CN201510046803.5A patent/CN104550888B/en active Active
-
2016
- 2016-01-05 WO PCT/CN2016/070184 patent/WO2016119579A1/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04124232A (en) * | 1990-09-12 | 1992-04-24 | Leotec:Kk | Method for starting continuous type half solidified metal producing apparatus |
| EP0745694A1 (en) * | 1995-05-29 | 1996-12-04 | Ube Industries, Ltd. | Method and apparatus for shaping semisolid metals |
| CN101098974A (en) * | 2004-12-10 | 2008-01-02 | M·韦森 | Method and apparatus for producing liquid-solid metal composition |
| CN102266914A (en) * | 2011-08-08 | 2011-12-07 | 昆明理工大学 | Method for preparing semisolid alloy slurry |
| CN104084545A (en) * | 2014-07-25 | 2014-10-08 | 无锡职业技术学院 | Metamorphic method for casting mixed liquid of Mg-Al alloy liquid melt and semi-solid melt |
| CN104550888A (en) * | 2015-01-30 | 2015-04-29 | 林荣英 | Method capable of continuously producing semisolid metal slurry |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104550888A (en) | 2015-04-29 |
| CN104550888B (en) | 2016-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105525158B (en) | A kind of semisolid pressure casting aluminum alloy materials and the method using the material die cast | |
| JP6621547B2 (en) | Method and apparatus for producing semi-solid slurry | |
| CN105755299B (en) | A kind of preparation facilities and method of low cost particle enhanced aluminum-based composite material | |
| CN102699081B (en) | A Semi-solid Thixotropic Extrusion Forming Method for Al-Si-Fe Alloy Engine Cylinder Liner | |
| WO2016119579A1 (en) | Method for continuously producing metal semi-solid slurry | |
| CN101537480A (en) | Semi-solid forming die-casting process for aluminum-magnesium alloy pot | |
| CN104525829A (en) | Radial forging strain-induced semi-solid state process for manufacturing aluminum alloy crankshaft of air condition compressor | |
| CN108300917A (en) | A kind of special pack alloy of large complicated automobile structure and preparation method thereof | |
| CN103725909A (en) | Method for manufacturing aluminum alloy through powder liquid phase die forging | |
| CN102294442B (en) | Method for preparing fine crystalline grain wrought aluminum alloy semisolid slurry | |
| WO2016188125A1 (en) | Method of producing semi-solid metal slurry | |
| CN103978191B (en) | A kind of thin grained magnesium alloy preparation method of doped nanoparticle | |
| CN103290244B (en) | A kind of simple and easy method preparing the spherical crystalline substance of wrought aluminium alloy | |
| CN102319890B (en) | Method for preparing wrought aluminum alloy semi-solid slurry | |
| CN102719687A (en) | Preparation method of rare earth aluminum alloy semi-solid slurry | |
| CN102418009B (en) | Aluminum alloy capable of digesting high-hardness compounds and smelting method of aluminum alloy | |
| US20170080484A1 (en) | Process for preparing molten metals for casting at a low to zero superheat temperature | |
| CN104561489B (en) | The technique that a kind of radial forging strain-induced method prepares iron and steel semi-solid blank | |
| CN104624917A (en) | Fabrication process of semi-solid copper alloy multi-channel valve body by radial forging strain induction method | |
| CN106890962A (en) | A kind of compound method and device for preparing semi solid slurry | |
| CN103170606B (en) | Dual pressure homogenising is prepared the device of metal paste and shapes method | |
| CN102873291B (en) | Device and method for semi-solid semi-continuous casting of electromagnetic current vibration magnesium alloy | |
| CN104789810A (en) | A preparation method of in-situ Al3Ti particle reinforced Al-Si-Cu composite material semi-solid slurry | |
| CN103966611B (en) | A kind of magnesium alloy anode bar processing method | |
| Bo et al. | Commercial AM60 alloy for semisolid processing: Effects of continuous rheoconversion process on microstructure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16742641 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16742641 Country of ref document: EP Kind code of ref document: A1 |