[go: up one dir, main page]

WO2016187681A1 - Method for building an image data base, image recognition method, image recognition system and uses thereof - Google Patents

Method for building an image data base, image recognition method, image recognition system and uses thereof Download PDF

Info

Publication number
WO2016187681A1
WO2016187681A1 PCT/BR2016/000017 BR2016000017W WO2016187681A1 WO 2016187681 A1 WO2016187681 A1 WO 2016187681A1 BR 2016000017 W BR2016000017 W BR 2016000017W WO 2016187681 A1 WO2016187681 A1 WO 2016187681A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
characteristic points
images
database
pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/BR2016/000017
Other languages
French (fr)
Portuguese (pt)
Inventor
José Mario DE MARTINO
Helio PEDRINI
Renan Ricardo Soares LOBO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Squadra Tecnologia S/a
Universidade Estadual de Campinas UNICAMP
Original Assignee
Squadra Tecnologia S/a
Universidade Estadual de Campinas UNICAMP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102015012437-6A external-priority patent/BR102015012437B1/en
Application filed by Squadra Tecnologia S/a, Universidade Estadual de Campinas UNICAMP filed Critical Squadra Tecnologia S/a
Publication of WO2016187681A1 publication Critical patent/WO2016187681A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries

Definitions

  • the present invention relates to a method of constructing an image base, an image recognition method, an image recognition system and its uses.
  • tourism is a billion dollar industry and major source of resources in many countries.
  • tourist activity involves the exploration of the visited place, with emphasis on the so-called local tourist spots that, for historical, geographical or leisure reasons, characterize the visited place.
  • tourists Being out of their environment, tourists often have difficulty recognizing a certain point, and do not know detailed information about that location.
  • US document 2011/0176734 Al is aimed at recognizing specific areas of an image, especially areas containing buildings and constructions.
  • the technology in question adopts the strategy of grouping characteristic points to perform identification, which ends up being a filtering process that reduces the ability to recognize image details as well as utilizes pose estimation, which leads to uncertainties and compromise the effectiveness of recognition.
  • the scientific works of Liu (2014) and Hu (2006) also have similar application in the recognition of building facades, but restricted to this type of structure.
  • US 2009/7565139 B2 presents a proposal to provide the description of an image by combining optical character recognition, rigid objects, and face recognition. However, its application is restricted to the description of images (and their components), and is not intended to identify the photographed location.
  • Some technologies use geolocation data from the device in question to match images or photos in a collection of images, such as latitude / longitude coordinates or device orientation. This is the case with patents US 2008/0147730, US 2012/8189964 B2, US 2013/0198176 Al and US 8467810, and scientific work by Chen (2013), Zheng (2009), Abe (2010), Kim (2012) and Byungsoo (2009). [8] Alternatively, location recognition alternatives are dealt with in US patent 8483715 and in the works by Knopp (2010) and Chen (2009), who use images available on the Internet, on large bases such as Panoramio, Google Street Vie, Flickr, among others, associating with the recognition process geolocation or label information produced by the authors of these images.
  • the present invention relates to a method of constructing an image base, an image recognition method, an image recognition system and its uses.
  • the method of constructing an image base comprises the steps of:
  • the image recognition method is responsible for identifying and recognizing an input image by through efficient comparison with records in the database. Its steps are:
  • the image recognition system comprises the application of the above methods together with the image acquisition and processing equipment, namely at least one mobile device with camera and Internet connection, and a server for remote processing.
  • FIG. 3 illustrates the different recording conditions of the images under the different driving conditions, view, time, weather, and camera model.
  • FIG. 5 illustrates the criterion for excluding characteristic point pairs found as a function of their deviation from other pairs.
  • FIG. 8 illustrates the comparison of the two images from another angle with the pairs of characteristic points joined by lines, but with the presence of two lines that are highly divergent from the others.
  • FIG. 9 illustrates the situation that the tourist spot in question is photographed from the opposite angle to previous situations. ; .
  • the present invention relates to a method of constructing an image base, an image recognition method, an image recognition system and its uses.
  • the method of building an image base comprises the steps of:
  • Figure 1 illustrates the steps of the image base construction method from acquiring reference images from a place of interest (101).
  • the construction of the database and definition of the indexing and search mechanisms is performed by pre-processing these images (102), extracting their characteristic points.
  • the image acquisition step 101 follows a well-defined protocol illustrated by Figures 2 and 3.
  • Each site of interest or reference to be employed in the construction The image base should be photographed from different positions, preferably arranged in a circle around the reference, equally spaced ; and at a distance sufficient for your frame.
  • the photographs can also be taken in the opposite direction of the place of interest, associating their surroundings and giving robustness to the image base (figure 2).
  • each reference site may require a specific procedure, the image acquisition protocol being customizable.
  • the more images acquired from a place of interest the more likely it is that a photo of that place will be associated with an image from the image base.
  • Places of interest with access or restricted viewing positions at certain angles do not require a total of 8 positions to be used for image acquisition, requiring only photos from positions without access impediment.
  • Preprocessing these images (102) is to resize each image to ensure that the largest side of all images is the same size. This resizing occurs to maintain the original aspect ratio (width divided by height) of the image. In embodiments of this invention, dimensions between 300 to 1000 pixels have been used.
  • a feature detection and extraction algorithm (103) is applied, which is transformed into a data representation to be recorded in the database.
  • This representation contains all the information necessary for the recognition method to function, and it is no longer necessary to keep the original image stored.
  • the Speed-Up Robust Features (SURF) algorithm was used for the extraction of feature points from the image, and the JSON format for data representation in the database.
  • the SIFT algorithm ⁇ Scale-Invariant Feature Transform) can be used as an alternative to SURF, however, being less performance-efficient and less robust when applied to images with different transformations.
  • Another suitable data representation format may also be used without compromising the essence of the invention.
  • a data structure is created to maintain associations between the place of interest data representations of a photograph and the place of interest name associated with that photograph.
  • the recognition method works by receiving an input image to be identified (401), which must also go through a preprocessing step (402), where it resizes while maintaining the aspect ratio. and extracting its feature points (403), which can also be used SURF algorithm and the representation of JSON data in one: the implementations of this invention. [29] The method then traverses the database and compares the characteristic points of the input image with the characteristic points of the reference images that make up a ; looking for similarities (404). This step seeks to find correspondences or common characteristic points in the two images, then generating a list of the pairs of points that met the proposed similarity requirement. :
  • the threshold value influences the robustness of the solution. A small threshold value results in a less demanding recognition process and can lead to false acknowledgments. Too high a value is restrictive and may lead to non-recognition of the point of interest.
  • This threshold can range from 10 pairs for smaller images (largest side near 300 pixels) to 20 pairs for larger images (over 1000 pixels), and values ; were determined by comparing various images of different resolutions and verifying the results of the comparisons for different threshold values.
  • the 15-pair value has been shown to be empirically adequate to be used as the threshold for any pair of images without significant impairment to method processing and reliability.
  • a threshold value of 15 point pairs was used, and the positive association found was obtained with 100% credibility.
  • the algorithm becomes more restrictive. For smaller and smaller values, the algorithm becomes more relaxed. For values between 10 and 20 pairs as threshold, the best results were observed.
  • process reliability and speed can be further enhanced by using image-associated metadata such as GPS data, photo registration time, device direction, etc., which may eventually be available if used.
  • image-associated metadata such as GPS data, photo registration time, device direction, etc., which may eventually be available if used.
  • a mobile device such as a smartphone or tablet. In these cases, the device used sends to the server the image to be identified and other available metadata (photo time, latitude and longitude, device direction, etc.).
  • This metadata is then used by the server to guide the search for database images that must first be compared to the input image, allowing you to speed up the input image identification process by reducing the number of comparisons required until a match is found. satisfactory.
  • database records that correspond to metadata images that have a greater degree of similarity to the metadata associated with the input image receive higher priority when compared to the input image.
  • the image recognition system comprises the application of the methods mentioned above, was combined with the image acquisition and processing equipment, namely at least one mobile device with camera and internet connection, and also a server for remote processing.
  • the image acquisition and processing equipment namely at least one mobile device with camera and internet connection, and also a server for remote processing.
  • Its general operation is illustrated in Figure 6 and consists of a mobile photography user identifying a place of interest (1), register the location by means of a photograph (2) and send your photo to a server (3), which remotely analyzes the photo and, in the case of a positive identified association, returns with the name, other identifying information, of the location of interest identified and additional information registered in the database (4).
  • FIGs 7, 8 and 9 illustrate the application of the invention in question to the identification of the S ⁇ o Francisco de Assis da Pampulha Church in Belo Horizonte.
  • Figure 7 illustrates the comparison between the image to be identified (7b) and the image from the database (7a), with the characteristic points marked, as well as the lines joining similar pairs of characteristic points at? Two images.
  • Figure 8 whose image to be identified (8b) is taken from another angle, and compared to the database image (8a), also illustrates the pairs of characteristic points joined by lines. In this situation, two straight lines are observed with angles very different from the median of the straight angles of all pairs of characteristic points found. The Point pairs of these two lines are discarded by the straight line acceptance criterion of the algorithm.
  • Figure 9 illustrates the situation that the tourist spot in question is photographed from its other end, highlighting the importance of the capture protocol for setting up a multi-image base. angles to a particular place of interest.
  • the image being identified (9b) is not associated with the database image (9a).
  • the capture angles are similar in both the database image (9c) and the image to be identified (9b), there is a positive identification of the place of interest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

The present invention relates to a method for building an image data base, to an image recognition method, to an image recognition system and to the uses thereof. The invention belongs to the field of information technology, more specifically to the areas of computer graphics, computer vision, image processing and recognition, and can be used for automatic identification and recognition of areas of interest on the basis of their visual representation.

Description

MÉTODO DE CONSTRUÇÃO DE UMA BASE DE IMAGENS, MÉTODO DE RECONHECIMENTO DE IMAGENS, SISTEMA DE RECONHECIMENTO DE  IMAGE BASE CONSTRUCTION METHOD, IMAGE RECOGNITION METHOD, IMAGE RECOGNITION SYSTEM

IMAGENS E SEUS USOS.  IMAGES AND THEIR USES.

CAMPO DA INVENÇÃO  FIELD OF INVENTION

[1] A presente invenção se refere a um método de construção de uma base de imagens, um método de reconhecimento de imagens, um sistema de reconhecimento de imagens e seus usos.  [1] The present invention relates to a method of constructing an image base, an image recognition method, an image recognition system and its uses.

[2] Ela se insere no campo da tecnologia da informação, mais especificamente nas áreas de computação gráfica, visão computacional, processamento e reconhecimento de imagens, tendo aplicação na identificação e no reconhecimento automático de locais de interesse a partir de sua representação visual.  [2] It is inserted in the field of information technology, more specifically in the areas of computer graphics, computer vision, image processing and recognition, having application in the identification and automatic recognition of places of interest from their visual representation.

FUNDAMENTOS DA INVENÇÃO E ESTADO DA TÉCNICA  BACKGROUND OF THE INVENTION AND TECHNICAL STATE

[3] O turismo é uma indústria bilionária e fonte principal de recursos em muitos países. Em geral, a atividade do turista envolve a exploração do local visitado, com ênfase nos chamados pontos turísticos locais que, por uma questão histórica, geográfica ou de lazer, caracterizam o local visitado. Por estar fora de seu ambiente, muitas vezes o turista tem dificuldade em reconhecer determinado ponto, além de que desconhece informações detalhadas sobre aquele local .  [3] Tourism is a billion dollar industry and major source of resources in many countries. In general, tourist activity involves the exploration of the visited place, with emphasis on the so-called local tourist spots that, for historical, geographical or leisure reasons, characterize the visited place. Being out of their environment, tourists often have difficulty recognizing a certain point, and do not know detailed information about that location.

[4] Neste sentido, muitas iniciativas foram pensadas no sentido de conferir ao turista (ou em termos gerais, um usuário em vias de conhecer uma nova localidade) ferramentas que promovam essa identificação, sem necessidade de guias externos, e preferencialmente utilizando o aparato tecnológico disponível, principalmente utilizando dispositivos móveis, tais como smartphones ou tablets, com conexão à Internet. [4] In this sense, many initiatives have been devised in order to give the tourist (or in general terms, a user about to know a new locality) tools that promote this identification, without the need for external guides, and preferably using the technological apparatus. available, mainly using mobile devices, such as smartphones or tablets, with an internet connection.

[5] 0 documento US 2011/0176734 Al é voltado ao reconhecimento de áreas especificas de uma imagem, principalmente áreas que contêm prédios e construções. Contudo, a tecnologia em questão adota a estratégia de grupamento de pontos característicos para realizar a identificação, o que acaba sendo um processo de filtragem que reduz a capacidade de reconhecer detalhes da imagem, bem como utiliza estimativa de poses, o que leva a incertezas e comprometem a eficácia do reconhecimento. Os trabalhos científicos de Liu (2014) e Hu (2006) também têm aplicação similar no reconhecimento de fachadas de construções, porém restritos a este tipo de estrutura.  [5] US document 2011/0176734 Al is aimed at recognizing specific areas of an image, especially areas containing buildings and constructions. However, the technology in question adopts the strategy of grouping characteristic points to perform identification, which ends up being a filtering process that reduces the ability to recognize image details as well as utilizes pose estimation, which leads to uncertainties and compromise the effectiveness of recognition. The scientific works of Liu (2014) and Hu (2006) also have similar application in the recognition of building facades, but restricted to this type of structure.

[6] 0 documento US 2009/7565139 B2 apresenta uma proposta para fornecer a descrição de uma imagem, a partir da combinação de reconhecimento ótico de caracteres, de objetos rígidos e de faces. Contudo, sua aplicação é restrita à descrição de imagens (e seus componentes), e não se propõe a realizar a identificação do local fotografado.  [6] US 2009/7565139 B2 presents a proposal to provide the description of an image by combining optical character recognition, rigid objects, and face recognition. However, its application is restricted to the description of images (and their components), and is not intended to identify the photographed location.

[7] Algumas tecnologias, por sua vez, se valem de dados de geolocalização do dispositivo em questão para encontrar a correspondência de imagens ou fotografias em uma coleção de imagens, como coordenadas de latitude/longitude ou a orientação do dispositivo. É o caso das patentes US 2008/0147730, US 2012/8189964 B2, US 2013/0198176 Al e US 8467810, e de trabalhos científicos realizados por Chen (2013), Zheng (2009), Abe (2010), Kim (2012) e Byungsoo (2009) . [8] Ainda, alternativas para reconhecimento de locais são tratadas na patente US 8483715 e nos trabalhos por Knopp (2010), e Chen (2009), que utilizam imagens disponíveis na Internet, em grandes bases como Panoramio, Google Street Vie , Flickr, entre outras, associando ao processo de reconhecimento informações de geolocalização ou de etiquetas produzidas pelos autores destas imagens. [7] Some technologies, in turn, use geolocation data from the device in question to match images or photos in a collection of images, such as latitude / longitude coordinates or device orientation. This is the case with patents US 2008/0147730, US 2012/8189964 B2, US 2013/0198176 Al and US 8467810, and scientific work by Chen (2013), Zheng (2009), Abe (2010), Kim (2012) and Byungsoo (2009). [8] Alternatively, location recognition alternatives are dealt with in US patent 8483715 and in the works by Knopp (2010) and Chen (2009), who use images available on the Internet, on large bases such as Panoramio, Google Street Vie, Flickr, among others, associating with the recognition process geolocation or label information produced by the authors of these images.

[9] De modo geral, as tecnologias encontradas não estabelecem um protocolo bem definido para a aquisição das imagens de referência nem para a construção da base de dados, e baseíam- se principalmente em princípios como etiquetas de localização ou informações de geolocalização de dispositivos móveis ( smartphones , tablets). Estas soluções, contudo, apresentam como ponto crítico o fato de estarem apoiadas em etiquetas de informação de geolocalização que não permitem identificar para qual direção a câmera está apontando. Tal situação pode levar a identificação errónea de um local de interesse que, por exemplo, esteja atrás do usuário e não a sua frente. Adicionalmente, etiquetas de geolocalização exigem a necessidade de um dispositivo GPS tanto pára a formação da base de imagens quanto no dispositivo do usuário. Tais características tornam estas soluções menos robustas.  [9] Overall, the technologies found do not establish a well-defined protocol for reference image acquisition or database construction, and are primarily based on principles such as location tags or geolocation information from mobile devices. (smartphones, tablets). These solutions, however, have as a critical point the fact that they are supported by geolocation information labels that do not allow to identify in which direction the camera is pointing. Such a situation may lead to misidentification of a place of interest that, for example, is behind the user and not in front of him. Additionally, geolocation tags require the need for a GPS device for both the image base formation and the user's device. Such features make these solutions less robust.

[10] Não há, ainda, nenhuma tecnologia que descreva a criação estruturada de uma base de imagens, que preveja a referência de um local de interesse em diferentes condições de iluminação e pontos de vista, e que promova a eficiência do processamento e confiabilídade do sistema. Além disso, a presente invenção estabelece um método robusto para a identificação dos locais de interesse a partir de imagens, baseado na identificação de pontos característicos ; das imagens, critério para a aceitação ou não uu= ^WIÍUW característicos encontrados e critério para a identificação da imagem a partir dos pontos característicos confirmados. [10] There is still no technology that describes the structured creation of an image base, which provides for the reference of a place of interest in different lighting conditions and viewpoints, and which promotes the processing efficiency and reliability of the image. system. In addition, the present invention provides a robust method for identifying places of interest from images based on identifying feature points; of images, criterion for acceptance or rejection WI ^ uu = I U characteristic W and found criterion for image identification confirmed from the characteristic points.

[11] Conclui-se, portanto, que nenhum dos métodos descritos no estado da técnica contempla o diferencial proporcionado pela presente invenção, uma vez que não resolvem o problema da correta identificação de locais de interesse com confiabilidade, principalmente considerando diferentes condições de registro da fotografia a ser identificada^ como iluminação ou direção.  [11] It is therefore concluded that none of the methods described in the prior art contemplates the differential provided by the present invention, since they do not solve the problem of the correct identification of places of interest with reliability, especially considering different conditions of registration of the photograph to be identified ^ as lighting or direction.

BREVE DESCRIÇÃO DA INVENÇÃO BRIEF DESCRIPTION OF THE INVENTION

[12] A presente invenção se refere a um método de construção de uma base de imagens, a um método de reconhecimento de imagens, a um sistema de reconhecimento de imagens e a seus usos .  [12] The present invention relates to a method of constructing an image base, an image recognition method, an image recognition system and its uses.

[13] 0. método de construção de uma base de imagens compreende as etapas de:  [13] 0. The method of constructing an image base comprises the steps of:

(a) Aquisição das imagens de referência a partir de posições diferentes a uma distância suficiente para o seu enquadramento, preferencialmente dispostas em um círculo ao redor da referência e igualmente espaçadas, e em diferentes condições de iluminação, conforme o horário do dia e a condição atmosférica.  (a) Acquisition of reference images from different positions at a sufficient distance for framing, preferably arranged in a circle around the reference and equally spaced, and under different lighting conditions, depending on the time of day and condition atmospheric.

(b) Pré-processamento das imagens;  (b) preprocessing of the images;

(c) Extração dos pontos característicos da ímayçm, e (c) extraction of the characteristic points of the image, and

(d) Armazenamento na base de dados dos pontos característicos de cada local. (d) Storage in the database of the characteristic points of each location.

[14] 0 método de reconhecimento de imagens é responsável pela identificação e reconhecimento de uma imagem de entrada por meio da comparação eficiente com os registros na base de dados. Suas etapas são: [14] The image recognition method is responsible for identifying and recognizing an input image by through efficient comparison with records in the database. Its steps are:

(a) Recebimento de uma imagem de entrada a ser identificada;  (a) Receiving an input image to be identified;

(b) Pré-processamento da imagem;  (b) image preprocessing;

(c) Extração dos pontos característicos;  (c) extraction of characteristic points;

(d) Comparação dos pontos característicos extraídos com pontos característicos da base de dados;  (d) Comparison of feature points extracted with feature points from the database;

(e) Identificação do local fotografado.  (e) Identification of the photographed location.

[15] Ainda, o sistema de reconhecimento de imagens compreende a aplicação dos métodos citados acima, em conjunto com os equipamentos de aquisição e processamento das imagens, a saber, pelo menos um dispositivo móvel com câmera fotográfica e conexão com a Internet, e ainda um servidor para processamento remoto.  [15] Furthermore, the image recognition system comprises the application of the above methods together with the image acquisition and processing equipment, namely at least one mobile device with camera and Internet connection, and a server for remote processing.

[16] Por fim, são ainda considerados objetos da presente invenção seus diversos usos, como reconhecimento de pontos turísticos, fachadas de construções, paisagens, regiões e construções por fotografias aéreas, além do uso em ambientes de realidade aumentada. A invenção não se limita às aplicações apresentadas, podendo ser utilizada no reconhecimento de fotografias e representações visuais em geral .  Finally, its various uses are still considered objects of the present invention, such as recognition of sights, building facades, landscapes, regions and buildings by aerial photography, in addition to use in augmented reality environments. The invention is not limited to the presented applications and can be used for the recognition of photographs and general visual representations.

BREVE DESCRIÇÃO DAS FIGURAS  BRIEF DESCRIPTION OF THE FIGURES

- A figura 1 ilustra as etapas do método de construção da base de imagens.  - Figure 1 illustrates the steps of the image base construction method.

- A figura 2 ilustra a disposição espacial dos pontos de vista das fotografias de referência.  - Figure 2 illustrates the spatial arrangement of the viewpoints of reference photographs.

- A figura 3 ilustra as diferentes condições de registro das imagens nas diversas condições de direção, ponto de vista, horário, condição atmosférica e modelo de câmera.- Figure 3 illustrates the different recording conditions of the images under the different driving conditions, view, time, weather, and camera model.

- A figura 4 ilustra as etapas do método de reconhecimento de imagens . - Figure 4 illustrates the steps of the image recognition method.

- A figura 5 ilustra o critério de exclusão de pares de pontos característicos encontrados em função do seu desvio em relação aos outros pares.  - Figure 5 illustrates the criterion for excluding characteristic point pairs found as a function of their deviation from other pairs.

- A figura 6 ilustra o sistema de reconhecimento de imagens e seu funcionamento.  - Figure 6 illustrates the image recognition system and its operation.

- A figura 7 ilustra a comparação de duas imagens com os pontos característicos marcados e as retas que os unem. - Figure 7 illustrates the comparison of two images with the marked characteristic points and the lines joining them.

- A figura 8 ilustra a comparação das duas imagens a partir de outro ângulo com os pares de pontos característicos unidos por retas, porém com a presença de duas retas altamente divergentes das demais. - Figure 8 illustrates the comparison of the two images from another angle with the pairs of characteristic points joined by lines, but with the presence of two lines that are highly divergent from the others.

- A figura 9 ilustra a situação de que o ponto turístico em questão é fotografado a partir do ângulo oposto às situações anteriores. ; .  - Figure 9 illustrates the situation that the tourist spot in question is photographed from the opposite angle to previous situations. ; .

DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION

[17] A presente invenção se refere a um método de construção de uma base de imagens, a um método de reconhecimento de imagens, a um sistema de reconhecimento de imagens e seus usos .  [17] The present invention relates to a method of constructing an image base, an image recognition method, an image recognition system and its uses.

[18] O método de construção de uma base de imagens compreende as etapas de:  [18] The method of building an image base comprises the steps of:

(a) Aquisição das imagens de referência a partir de posições diferentes a uma distância suficiente para o seu enquadramento, preferencialmente dispostas em um círculo ao redor da referência e igualmente espaçadas, e em diferentes condições de iluminação, conforme o horário do dia e a condição atmosférica. (b) Pré-processamento das imagens; (a) Acquisition of reference images from different positions at a sufficient distance for framing, preferably arranged in a circle around the reference and equally spaced, and under different lighting conditions, depending on the time of day and condition atmospheric. (b) preprocessing of the images;

(c) Extração dos pontos característicos da imagem; (c) Extraction of characteristic points from the image;

(d) Armazenamento na base de dados dos pontos característicos de cada local. (d) Storage in the database of the characteristic points of each location.

[19] A figura 1 ilustra as etapas do método de construção da base de imagens, a partir da aquisição de imagens de referência de um local de interesse (101) . A construção da base de dados e definição dos mecanismos de indexação e busca é realizada por meio do pré-processamento destas imagens (102), extração dos seus pontos característicos [19] Figure 1 illustrates the steps of the image base construction method from acquiring reference images from a place of interest (101). The construction of the database and definition of the indexing and search mechanisms is performed by pre-processing these images (102), extracting their characteristic points.

(103) e armazenamento na base de dados dos pontos característicos de cada local (104). (103) and storage in the database of the characteristic points of each site (104).

[20] A etapa de aquisição das imagens (101) seguè um protocolo bem definido, ilustrado pelas figuras 2 e 3. 'Cada local de interesse ou referência a ser empregada na construção . da base de imagens deve ser fotografada a partir de posições diferentes, preferencialmente dispostas em um círculo ao redor da referência, igualmente espaçadas ; e a uma distância suficiente para o seu enquadramento. Opcionalmente, as fotografias podem ser feitas também no sentido oposto ao local de interesse, associando o seu entorno e conferindo robustez à base de imagens (figura.2) . [20] The image acquisition step 101 follows a well-defined protocol illustrated by Figures 2 and 3. Each site of interest or reference to be employed in the construction . The image base should be photographed from different positions, preferably arranged in a circle around the reference, equally spaced ; and at a distance sufficient for your frame. Optionally, the photographs can also be taken in the opposite direction of the place of interest, associating their surroundings and giving robustness to the image base (figure 2).

[21] Este procedimento deve ser repetido para diferentes condições de iluminação, levando em conta o horário do dia (manhã, tarde e noite) e a condição atmosférica (céu limpo ou nublado) . Opcionalmente, diferentes modelos de câmeras fotográficas e resoluções podem ser utilizadas para aumentar a variabilidade das imagens de referência geradas (figura 3) . [21] This procedure should be repeated for different lighting conditions, taking into account the time of day (morning, afternoon and night) and the atmospheric condition (clear or cloudy). Optionally, different camera models and resolutions can be used to increase the variability of the generated reference images (Figure 3).

[22] É importante notar que cada local de referência pode requerer ura procedimento especifico, sendo o protocolo de aquisição de imagens personalizável . Quanto maior a quantidade de imagens adquiridas de um local de interesse, maior será a probabilidade de uma foto desse local ser associada a uma imagem da base de imagens. Locais de interesse com acesso ou posições de visualização restritos em determinados ângulos não exigem que sejam utilizados o total de 8 posições para a aquisição das imagens, sendo necessários somente fotos a partir das posições sem impedimento de acesso. [22] It is important to note that each reference site may require a specific procedure, the image acquisition protocol being customizable. The more images acquired from a place of interest, the more likely it is that a photo of that place will be associated with an image from the image base. Places of interest with access or restricted viewing positions at certain angles do not require a total of 8 positions to be used for image acquisition, requiring only photos from positions without access impediment.

[23] O pré-processamento destas imagens (102) consiste em promover o redimensionamento de cada imagem de forma a garantir que o maior lado de todas as imagens apresente a mesma dimensão. Esse redimensionamento ocorre de forma a manter a razão de aspecto (largura dividida pela altura) original da imagem. Em realizações desta invenção, foram utilizadas dimensões entre 300 a 1000 pixels.  [23] Preprocessing these images (102) is to resize each image to ensure that the largest side of all images is the same size. This resizing occurs to maintain the original aspect ratio (width divided by height) of the image. In embodiments of this invention, dimensions between 300 to 1000 pixels have been used.

[24] Sobre a imagem redimensionada, aplica-se um algoritmo de detecção e extração de pontos característicos (103), que são transformados em uma representação de dados a ser gravada na base de dados. Esta representação contém toda a informação necessária para o funcionamento do método de reconhecimento, não sendo mais necessário manter a imagem original armazenada.  [24] On the resized image, a feature detection and extraction algorithm (103) is applied, which is transformed into a data representation to be recorded in the database. This representation contains all the information necessary for the recognition method to function, and it is no longer necessary to keep the original image stored.

[25] Em uma implementação desta invenção, foi utilizado o algoritmo SURF (Speeded Up Robust Features) com a finalidade de extração de pontos característicos da imagem, e o formato JSON para representação dos dados no banco de dados. 0 algoritmo SIFT {Scale-Invariant Feature Transform) pode ser utilizado como alternativa ao SURF, porém, sendo menos eficiente em relação a desempenho e menos robusto quando aplicado a imagens com diferentes transformações. Outro formato de representação de dados adequado também pode ser utilizado sem comprometer a essência da invenção. [25] In one implementation of this invention, the Speed-Up Robust Features (SURF) algorithm was used for the extraction of feature points from the image, and the JSON format for data representation in the database. The SIFT algorithm {Scale-Invariant Feature Transform) can be used as an alternative to SURF, however, being less performance-efficient and less robust when applied to images with different transformations. Another suitable data representation format may also be used without compromising the essence of the invention.

[26] Ao final deste método, é criada uma estrutura de dados para manter as associações entre as representações de dados dos locais de interesses correspondentes a uma fotografia e o nome do local de interesse associado àquela fotografia [26] At the end of this method, a data structure is created to maintain associations between the place of interest data representations of a photograph and the place of interest name associated with that photograph.

(104), resultando na base de imagens em si. (104), resulting in the image base itself.

[27] 0 método de reconhecimento de imagens, responsável pela identificação e pelo reconhecimento de uma imagem de entrada por meio da comparação eficiente com os registros na base de dados, é ilustrado na figura 4, e pode ser descrito conforme suas etapas principais:  [27] The image recognition method, which is responsible for identifying and recognizing an input image through efficient comparison with the records in the database, is illustrated in Figure 4, and can be described according to its main steps:

(a) Recebimento de uma imagem de entrada (401) a ser identificada ;  (a) Receiving an input image (401) to be identified;

(b) Pré-processamento da imagem (402);  (b) Image preprocessing (402);

(c) Extração dos pontos característicos (403) ;  (c) extraction of characteristic points (403);

(d) Comparação dos pontos extraídos com pontos da base de dados (404) ;  (d) Comparison of extracted points with database points (404);

(e) Identificação do local fotografado (409 ou 410) .  (e) Identification of the photographed location (409 or 410).

[28] O método de reconhecimento tem seu funcionamento a partir do recebimento de uma imagem de entrada a ser identificada (401), que também deve passar por uma etapa de pré-processamento (402), onde ocorre seu redimensionamento mantendo a razão de aspecto, e a extração dos seus pontos característicos (403), que também pode se utilizar do algoritmo SURF e da representação de dados JSON, em uma: das implementações desta invenção. [29] Em seguida, o método percorre a base de dados e compara os pontos característicos da imagem de entrada com os pontos característicos das imagens de referência que compõem a;base, buscando por similaridades (404). Esta etapa procura encontrar correspondências ou pontos característicos comuns nas duas imagens, então gerando uma lista com os pares de pontos que contemplaram o requisito de similaridade proposto. : [28] The recognition method works by receiving an input image to be identified (401), which must also go through a preprocessing step (402), where it resizes while maintaining the aspect ratio. and extracting its feature points (403), which can also be used SURF algorithm and the representation of JSON data in one: the implementations of this invention. [29] The method then traverses the database and compares the characteristic points of the input image with the characteristic points of the reference images that make up a ; looking for similarities (404). This step seeks to find correspondences or common characteristic points in the two images, then generating a list of the pairs of points that met the proposed similarity requirement. :

[30] Então é calculada a mediana dos ângulos entre as retas formadas por cada. par de pontos desta lista, excluindo-se os pares cujo ângulo de reta diverge da mediana dos ângulos. Em uma implementação da invenção foram desconsiderados pares de pontos com ângulo de reta divergindo mais do que 2;5° em relação à mediana dos ângulos. Na figura 5, observa-se que a reta tracejada (formada por um par correspondente) entre pontos da foto de entrada (501) e da foto da base de dados[30] Then the median of the angles between the lines formed by each is calculated . points of this list, excluding the pairs whose line angle deviates from the median of the angles. In one embodiment of the invention disregarded straight-angle pairs of points diverging more than 2.5 ° from the median of the angles. Figure 5 shows that the dashed line (formed by a matching pair) between points in the input photo (501) and the database photo

(502) diverge do padrão encontrado para as outras retas, de modo que o seu par de pontos associado é excluído da análise. (502) deviates from the pattern found for the other lines, so that their associated pair of points is excluded from the analysis.

[31] Grupos de pares de pontos característicos que possuam o mesmo ponto característico na imagem de entrada e diferentes pontos característicos na imagem de referência também são descartados. O mesmo ocorre para a situação inversa. Após este processo, é contabilizado o número final de pares de pontos característicos (405), que se encontrando acima do limiar definido previamente, é considerada uma associação positiva de imagens referentes a um mesmo local, identificando a entrada (410).  [31] Groups of feature point pairs that have the same feature point in the input image and different feature points in the reference image are also discarded. The same is true for the reverse situation. After this process, the final number of characteristic point pairs (405), which is above the previously defined threshold, is considered a positive association of images referring to the same place, identifying the input (410).

[32] O valor do limiar influencia a robustez da solução. Um valor pequeno de limiar resulta em um processo de reconhecimento menos exigente, podendo levar a falsos reconhecimentos. Um valor demasiadamente alto é restritivo, podendo levar ao não reconhecimento do ponto de interesse. [32] The threshold value influences the robustness of the solution. A small threshold value results in a less demanding recognition process and can lead to false acknowledgments. Too high a value is restrictive and may lead to non-recognition of the point of interest.

[33] Este limiar pode variar entre 10 pares para imagens menores (maior lado próximo de 300 pixels) até 20 pares para imagens maiores (acima de 1000 pixels), e os valores ; foram determinados a partir da comparação entre várias imagens de diferentes resoluções e verificando o resultado das comparações para diferentes valores de limiar. [33] This threshold can range from 10 pairs for smaller images (largest side near 300 pixels) to 20 pairs for larger images (over 1000 pixels), and values ; were determined by comparing various images of different resolutions and verifying the results of the comparisons for different threshold values.

[34] O valor de 15 pares demonstrou-se empiricamente adequado para ser usado como limiar para qualquer par de imagens sem prejuízos significativos ao processamento e à confiabi lidade do método.  [34] The 15-pair value has been shown to be empirically adequate to be used as the threshold for any pair of images without significant impairment to method processing and reliability.

[35] Em uma implementação desta invenção, foi utilizado um valor para limiar de 15 pares de pontos, e a associação positiva encontrada foi obtida com 100% de credibilidade. Usando como limiar valores cada vez maiores, o algoritmo fica mais restritivo. Para valores cada vez menores, o algoritmo fica mais relaxado. Para valores entre 10 e 20 pares como limiar, observou-se os melhores resultados.  [35] In one implementation of this invention, a threshold value of 15 point pairs was used, and the positive association found was obtained with 100% credibility. Using ever larger values as a threshold, the algorithm becomes more restrictive. For smaller and smaller values, the algorithm becomes more relaxed. For values between 10 and 20 pairs as threshold, the best results were observed.

[36] Caso o número de pares encontrados esteja abaixo do limiar definido (406), a melhor associação (com maior número de pares) encontrada (407) que possua pelo menos 2 pares de pontos característicos é considerada a solução correta após toda a varredura do banco de imagens de referência (408), obtendo o resultado ' mais próximo (409) , mas com confiabilidade reduzida. [36] If the number of pairs found is below the defined threshold (406), the best association (with the highest number of pairs) found (407) that has at least 2 pairs of characteristic points is considered the correct solution after every scan. the reference stock photography (408), obtaining the result 'closest (409), but with reduced reliability.

[37] 0 processo acima pode ser realizado utilizando threads para paralelizar o processo de comparação com a base de dados, aumentando sua velocidade, sendo que cada thread fica responsável por comparar a imagem de entrada com uma parte do banco de dados. Pode ser definido ainda um critério adicional de parada baseado em tempo de processamento para evitar uma busca muito demorada. Além disso, a confiabilidade e rapidez do processo podem ser ainda melhoradas a partir da utilização de metadados associados à imagem, como dados de GPS, horário do registro da foto, direção do dispositivo etc , que eventualmente podem estar disponíveis no caso de ter sido utilizado um dispositivo móvel, com um smartphone ou tablet, por exemplo. Nestes casos, o dispositivo utilizado envia ao servidor a imagem a ser identificada e outros metadados disponíveis (horário da foto, latitude e longitude, direção do dispositivo, etc) . Esses metadados são então utilizados pelo servidor para orientar a busca das imagens do banco de dados que devem ser primeiro comparadas com a imagem de entrada, permitindo acelerar o processo de identificação da imagem de entrada pela redução do número de comparações necessárias até se encontrar uma correspondência satisfatória. Para otimizar a varredura do banco de dados, recebem prioridade maior na comparação com a imagem de entrada os registros do banco de dados que correspondem a imagens com metadados que possuem um maior grau de similaridade com os metadados associados à imagem de entrada. [37] The above process can be performed using threads to parallelize the database comparison process, increasing its speed, with each thread being responsible for comparing the input image with a part of the database. An additional processing time-based stopping criterion can also be defined to avoid a long search. In addition, process reliability and speed can be further enhanced by using image-associated metadata such as GPS data, photo registration time, device direction, etc., which may eventually be available if used. a mobile device, such as a smartphone or tablet. In these cases, the device used sends to the server the image to be identified and other available metadata (photo time, latitude and longitude, device direction, etc.). This metadata is then used by the server to guide the search for database images that must first be compared to the input image, allowing you to speed up the input image identification process by reducing the number of comparisons required until a match is found. satisfactory. To optimize database scanning, database records that correspond to metadata images that have a greater degree of similarity to the metadata associated with the input image receive higher priority when compared to the input image.

[38] Ainda, o sistema de reconhecimento de imagens compreende a aplicação dos métodos citados acima, era conjunto com os equipamentos de aquisição e processamento das imagens, a saber, pelo menos um dispositivo móvel com câmera fotográfica e conexão com a Internet, e ainda um servidor para processamento remoto. Seu funcionamento geral ilustrado na figura 6 e consiste em um usuário portador de dispositivo móvel de fotografia identificar um local de interesse (1), registrar o local por meio de uma fotografia (2) e enviar a sua foto para um servidor (3), que remotamente analisa a foto e, no caso de uma associação positiva identificada, retorna com o nome, outra informação de identificação, do local de interesse identificado e informações adicionais cadastradas na base de dados (4). [38] Still, the image recognition system comprises the application of the methods mentioned above, was combined with the image acquisition and processing equipment, namely at least one mobile device with camera and internet connection, and also a server for remote processing. Its general operation is illustrated in Figure 6 and consists of a mobile photography user identifying a place of interest (1), register the location by means of a photograph (2) and send your photo to a server (3), which remotely analyzes the photo and, in the case of a positive identified association, returns with the name, other identifying information, of the location of interest identified and additional information registered in the database (4).

[39] Por fim, são ainda considerados objetos da presente invenção seus diversos usos, como reconhecimento de pontos turísticos, fachadas de construções, paisagens, regiões e construções por fotografias aéreas, além do uso em ambientes de realidade aumentada. A invenção não se limita às aplicações apresentadas, podendo ser utilizada no reconhecimento de fotografias e representações visuais em geral.  Finally, its various uses are still considered objects of the present invention, such as recognition of sights, building facades, landscapes, regions and buildings by aerial photography, in addition to use in augmented reality environments. The invention is not limited to the presented applications and can be used for the recognition of photographs and general visual representations.

EXEMPLOS DE CONCRETIZAÇÃO  CONCRETIZATION EXAMPLES

[40] As figuras 7, 8 e 9 ilustram a aplicação da invenção em questão para a identificação da Igreja São Francisco de Assis da Pampulha, em Belo Horizonte. |  [40] Figures 7, 8 and 9 illustrate the application of the invention in question to the identification of the São Francisco de Assis da Pampulha Church in Belo Horizonte. |

[41] A figura 7 ilustra a comparação entre a imagem a ser identificada (7b) e a imagem do banco de dados (7a) , com os pontos característicos marcados, assim como as retas que unem pares de pontos característicos semelhantes nas? duas imagens .  [41] Figure 7 illustrates the comparison between the image to be identified (7b) and the image from the database (7a), with the characteristic points marked, as well as the lines joining similar pairs of characteristic points at? Two images.

[42] A figura 8, cuja imagem a ser identificada (8b) é tomada por outro ângulo, e comparada à imagem do banco de dados (8a) , também ilustra os pares de pontos característicos unidos por retas. Nesta situação, observam-se duas retas com ângulos muito diferentes da mediana dos ângulos das retas de todos os pares de pontos característicos encontrados. Os pares de pontos dessas duas retas são descartados pelo critério de aceitação de ângulos de retas do algoritmo. [42] Figure 8, whose image to be identified (8b) is taken from another angle, and compared to the database image (8a), also illustrates the pairs of characteristic points joined by lines. In this situation, two straight lines are observed with angles very different from the median of the straight angles of all pairs of characteristic points found. The Point pairs of these two lines are discarded by the straight line acceptance criterion of the algorithm.

[43] A figura 9, por sua vez, ilustra a situação de que o ponto turístico em questão é fotografado a partir de sua outra extremidade, evidenciando a importância do protocolo de captura no que se refere à montagem de uma base de imagens com vários ângulos para um determinado local de interesse. No par de imagens superior, a imagem sendo identificada (9b) não é associada à imagem da base de dados (9a) . Já no par de imagens na parte de baixo da figura, onde os ângulos de captura são semelhantes tanto na imagem da base de dados (9c) quanto na imagem a ser identificada (9b), ocorre uma identificação positiva do local de interesse.  [43] Figure 9, in turn, illustrates the situation that the tourist spot in question is photographed from its other end, highlighting the importance of the capture protocol for setting up a multi-image base. angles to a particular place of interest. In the upper pair of images, the image being identified (9b) is not associated with the database image (9a). In the pair of images at the bottom of the figure, where the capture angles are similar in both the database image (9c) and the image to be identified (9b), there is a positive identification of the place of interest.

Referências : References :

- Fei Liu and Stefan Seipel. Detection of Façade Regions in Street Vie Images from Split-and-Merge of Perspective Patches Journal of Iraage and Graphics, Vol. 2, No. 1, pp. 8-14, June 2014.  - Fei Liu and Stefan Seipel. Detection of Façade Regions in Street Vie Images from Split-and-Merge of Perspective Patches Journal of Iraage and Graphics, Vol. 2, No. 1, pp. 8-14, June 2014.

- Jingjing Hu, Joshua Sawyer, and Jean-Yves Herve Building Detection and Recognition for an Automated Tour Guide. Systems, Man and Cybernetics, 2006. SMC '06. IEEE International Conference on (Volume 1) 2006. pp. 283-289. - Jingjing Hu, Joshua Sawyer, and Jean-Yves Herve Building Detection and Recognition for an Automated Tour Guide. Systems, Man and Cybernetics, 2006. SMC '06. IEEE International Conference on (Volume 1) 2006. pp. 283-289.

- Shio- en Chen, Yi-Hao Chung, Hsin-Fu Chien and Chueh-Wei Chang A SURF Feature Based Building Recognition System for Distinctive Architectures , Information Technology Convergence. Lecture Notes in Electrical Engineering Volume 253, 2013, pp 111-119 - Shioen Chen, Yi-Hao Chung, Hsin-Fu Chien and Chueh-Wei Chang A SURF Feature Based Recognition System for Distinctive Architectures, Information Technology Convergence. Lecture Notes in Electrical Engineering Volume 253, 2013, pp 111-119

- Yan-Tao Zheng, Ming Zhao, Yang Song, Hartwig Adam Ulrich Buddemeier, Alessandro Bissacco, Fernando Brucher TatTSeng Chua, and Hartmut Neven, Tour the World: building a : web- scale landmark recognition engíne, Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009. pp 1085 - 1092 - Yan-Tao Zheng, Ming Zhao, Yang Song, Hartwig Adam Ulrich Buddemeier, Alessandro Bissacco, Fernando Brucher Tat T Seng Chua, and Hartmut Neven, Tour the World: building a : web- scale landmark recognition engineer, Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009. pp 1085-1092

- Naoyuki Abe, ataru Oogami, Atsushi Shimada, Hajime Nagahara, Rin-ichiro Taniguchi. Clickable Real World: Interaction with Real-world Landmarks using Mobile Phone Camera TENCON 2010 - 2010 IEEE Region 10 Conference ;21-24 Nov. 2010. 914 - 917 ;  - Naoyuki Abe, Atogu Oogami, Atsushi Shimada, Hajime Nagahara, Rin-ichiro Taniguchi. Clickable Real World: Interaction with Real-world Landmarks using Mobile Phone Camera TENCON 2010 - 2010 IEEE Region 10 Conference; 21-24 Nov. 2010. 914 - 917;

- Daehoon Kim and Eenjun Hwang, Seungmin Rho, Location-based large-scale landmark image recognition scheme for mobile devices, Mobile, Ubiquitous, and Intelligent Computing (MUSIC) , 2012 Third FTRA International Conference on. 2012. pp 47 - 52  - Daehoon Kim and Eenjun Hwang, Seungmin Rho, Location-based Large-scale Landmark Recognition Scheme for Mobile Devices, Mobile, Ubiquitous, and Intelligent Computing (MUSIC), 2012 Third FTRA International Conference on. 2012. pp 47 - 52

- Byungsoo Lim and Joonoo Kim. 2009. Efficient database reduction method of building recognition using global positioning systeirt on mobile device. In Proceedings of the 4th international conference on Wireless pervasive computing (ISWPC'09). IEEE Press, Piscataway, NJ, USA,5 168- 172. ; - Byungsoo Lim and Joonoo Kim. 2009. Efficient database reduction method of building recognition using global positioning systeirt on mobile device. In Proceedings of the 4th International Conference on Wireless Pervasive Computing (ISWPC'09). IEEE Press, Piscataway, NJ, USA, 168- 172. 5;

- Jan Knopp, Josef Sivic, and Tomas Pajdla. 2010. Avoiding confusing features in place recognition. In Proceedings of the llth European conference on Computer vision: Part I {ECCV'10) , Kostas Daniilidis, Petros Maragos, and Nikos Paragios (Eds.). Springer-Verlag, Berlin, Heidelberg, 748- 761.  - Jan Knopp, Josef Sivic, and Tomas Pajdla. 2010. Avoiding confusing features in place recognition. In Proceedings of the 11th European Conference on Computer Vision: Part I (ECCV'10), Kostas Daniilidis, Petros Maragos, and Nikos Paragios (Eds.). Springer-Verlag, Berlin, Heidelberg, 748-761.

- Tao Chen, Zhen Li, Kim-Hui Yap, Kui Wu, Lap-Pui Chau A Multi-scale Learning Approach for Landmark Recognition Using Mobile Devices. Information, Communications and Signal Processing, 2009. ICICS 2009. 7th International Conference on, 8-10 Dec. 2009, 1 - 4.  - Tao Chen, Zhen Li, Kim-Hui Yap, Kui Wu, Lap-Pui Chau A Multi-scale Learning Approach for Landmark Recognition Using Mobile Devices. Information, Communications and Signal Processing, 2009. ICICS 2009. 7th International Conference on, 8-10 Dec. 2009, 1 - 4.

Claims

REIVINDICAÇÕES 1. Método de construção de uma base de imagens caracterizado por compreender as etapas de:  1. Method of building an image base comprising the steps of: (a) Aquisição das imagens de referência a partir de posições diferentes a uma distância suficiente para o seu enquadramento, preferencialmente dispostas em um circulo ao redor da referência e igualmente espaçadas, e em diferentes condições de iluminação, conforme o horário do dia e a condição atmosférica. (a) Acquisition of reference images from different positions at a sufficient distance for framing, preferably arranged in a circle around the reference and equally spaced, and under different lighting conditions, depending on the time of day and condition atmospheric. (b) Pré-processamento das imagens; (b) preprocessing of the images; (c) Extração dos pontos característicos da imagem;.  (c) Extraction of characteristic points from the image. (d) Armazenamento na base de dados dos pontos característicos de cada local.  (d) Storage in the database of the characteristic points of each location. 2. Método, de acordo com a reivindicação 1, caracterizado pela etapa (a) opcionalmente ser realizada também no sentido oposto ao local de interesse.  Method according to claim 1, characterized in that step (a) is optionally also carried out in the opposite direction of the place of interest. 3. Método, de acordo com a reivindicação 1, caracterizado por a etapa (a) se repetir utilizando diferentes resoluções de imagens.  Method according to claim 1, characterized in that step (a) is repeated using different image resolutions. 4. Método, de acordo com a reivindicação 1, caracterizado pela etapa (a) ser realizada pelo menos a partir de 8 (oito) posições diferentes no sentido direto ao local de interesse, em pelo menos 2 (duas) condições de luminosidade diferentes, e utilizando pelo menos 1 (uma) resolução.  Method according to claim 1, characterized in that step (a) is performed from at least eight (8) different positions in a direction directly to the place of interest under at least two (2) different lighting conditions, and using at least 1 (one) resolution. 5. Método, de acordo com a reivindicação 1, caracterizado pela etapa (b) compreender o redimensionamento de cada imagem e igualar o maior lado de todas as imagens, mantendo sua razão de aspecto original.  Method according to claim 1, characterized in that step (b) comprises resizing each image and equalizing the largest side of all images while maintaining their original aspect ratio. 6. Método, de acordo com a reivindicação 1, caracterizado pela etapa (c) compreender a detecção e extração de pontos característicos. Method according to claim 1, characterized in that step (c) comprises detecting and extracting stitches. characteristic. 7. Método, de acordo com a reivindicação 1, caracterizado pela etapa (c) ser realizada preferencialmente pelo algoritmo SURF {Speeded Up Robust Features) ou o SIFT (Scale-Invariant Feature Transform) para a extração dos pontos caraterísticos .  Method according to claim 1, characterized in that step (c) is preferably performed by the Speed-Up Robust Features (SURF) algorithm or the Scale-Invariant Feature Transform (SIFT) for the extraction of the characteristic points. 8. Método, de acordo com a reivindicação 1, caracterizado pela a etapa (d) compreender a transformação dos pontos característicos em uma representação de dados e seu registro em uma base de dados.  Method according to claim 1, characterized in that step (d) comprises the transformation of the characteristic points into a data representation and their registration in a database. 9. Método, de acordo com a reivindicação 1, caracterizado pela etapa (d) utilizar preferencialmente o formato JSON para representação dos dados no banco de dados.  Method according to claim 1, characterized in that step (d) preferably uses the JSON format for representation of data in the database. 10. Método, de acordo com a reivindicação 1, caracterizado por obter uma estrutura de dados que mantém as associações entre as representações de dados dos locais de interesses correspondentes a uma fotografia e o nome do local de interesse associado àquela fotografia.  Method according to claim 1, characterized in that it obtains a data structure which maintains the associations between the data representations of the places of interest corresponding to a photograph and the name of the place of interest associated with that photograph. 11. Método de reconhecimento de imagens caracterizado por compreender as etapas de:  11. Image recognition method comprising the steps of: (a) Recebimento de uma imagem de entrada a ser identificada;  (a) Receiving an input image to be identified; (b) Pré-processamento da imagem;  (b) image preprocessing; (c) Extração dos pontos característicos;  (c) extraction of characteristic points; (d) Comparação dos pontos característicos extraídos com pontos característicos da base de dados;  (d) Comparison of feature points extracted with feature points from the database; (e) Identificação do local fotografado.  (e) Identification of the photographed location. 12. Método, de acordo com a reivindicação 11, caracterizado pela etapa (b) compreender o redimensionamento da imagem a ser identificada mantendo a sua razão de aspecto. Method according to claim 11, characterized in that step (b) comprises resizing the image to be identified while maintaining its aspect ratio. 13. Método, de acordo com a reivindicação 11, caracterizado pela etapa (c) compreender a extração dos seus pontos característicos e a sua representação de dados. A method according to claim 11, characterized in that step (c) comprises extracting its characteristic points and their data representation. 14. Método, de acordo com a reivindicação 11, caracterizado pela etapa (d) compreender a inspeção da base de dados e comparação os pontos característicos da imagem de entrada com os pontos característicos das imagens de referência que compõem a base.  Method according to claim 11, characterized in that step (d) comprises inspecting the database and comparing the characteristic points of the input image with the characteristic points of the reference images that make up the base. 15. Método, de acordo com a reivindicação 11, caracterizado pela etapa (d) buscar correspondências ou pontos característicos comuns nas duas imagens, e então gerar uma lista com os pares de pontos que contemplarem o requisito de similaridade proposto.  Method according to claim 11, characterized in that step (d) seeks common matches or characteristic points in the two images, and then generates a list of the pairs of points that meet the proposed similarity requirement. 16. Método, de acordo com a reivindicação 11, caracterizado pela etapa (e) compreender o cálculo da mediana dos ângulos entre as retas formadas por cada par de pontos desta lista, e posteriormente excluir os pares cujo ângulo de reta diverge da mediana dos ângulos.  Method according to claim 11, characterized in that step (e) comprises calculating the median of the angles between the lines formed by each pair of points in this list, and subsequently excluding the pairs whose line angle deviates from the median of the angles. . 17. Método, de acordo com a reivindicação 11, caracterizado pela etapa (e) excluir grupos de pares de pontos característicos que possuam o mesmo ponto característico na imagem de entrada e diferentes pontos característicos na imagem de referência, e vice-versa.  A method according to claim 11, characterized in that step (e) excludes groups of feature point pairs that have the same feature point in the input image and different feature points in the reference image, and vice versa. 18. Método, de acordo com a reivindicação 11, caracterizado pelo limiar para uma associação positiva ser compreendido entre 10 a 20 pares, preferencialmente 15.  Method according to claim 11, characterized in that the threshold for positive association is between 10 and 20 pairs, preferably 15. 19. Método, de acordo com a reivindicação 11, caracterizado pela etapa (e) contabilizar o número final de pares de pontos característicos, e caso este número esteja acima de um limiar definido, considerar uma associação positiva de imagens referentes a um mesmo local e identificar a entrada. Method according to claim 11, characterized in that step ( e ) counts the final number of characteristic point pairs, and if this number is above a threshold defined, consider a positive association of images referring to the same place and identify the input. 20. Método, de acordo com a reivindicação 11, caracterizado pela etapa (e) , caso nenhuma imagem atinja o valor limiar definido após toda a varredura do banco de imagens de referência, escolher a melhor associação (com maior número de pares) encontrada e que possua pelo menos 2 pares de pontos característicos como solução correta.  Method according to claim 11, characterized by step (e), if no image reaches the threshold value defined after all reference image scan, choose the best association (with most pairs) found and that has at least 2 pairs of characteristic points as the correct solution. 21. Método, de acordo com a reivindicação 11, caracterizado por alternativamente utilizar metadados associados à imagem, como dados de GPS, horário do registro da foto, direção do dispositivo etc,  Method according to claim 11, characterized in that it alternatively uses metadata associated with the image, such as GPS data, time of photo recording, device direction, etc. 22. Método, de acordo com a reivindicação 11, caracterizado pelos metadados priorizarem a comparação os registros do banco de dados em função da similaridade com os metadados associados à imagem de entrada. ■  Method according to claim 11, characterized in that the metadata prioritizes the comparison of database records according to the similarity with the metadata associated with the input image. ■ 23. Sistema de reconhecimento de imagens caracterizado por compreender a aplicação dos métodos conforme descritos de 1 a 21 em conjunto a pelo menos um dispositivo móvel com cãmera fotográfica e conexão com a Internet, e um servidor ,para processamento remoto. 23. image recognition system comprises the application of methods as described from 1 to 21 together with at least one mobile camera and with connection to the Internet, and a server for remote processing. 24. Sistema, de acordo com a reivindicação 23, caracterizado por preferencialmente ter o processamento paralelizado por threads .  System according to claim 23, characterized in that it has thread-parallel processing. 25. Sistema, de acordo com a reivindicação 23, caracterizado por compreender um critério de parada baseado em tempo de processamento.  System according to claim 23, characterized in that it comprises a stopping criterion based on processing time. 26. Uso do sistema conforme definido nas reivindicações de 23 a 25 caracterizado por ser para reconhecimento de pontos turísticos, fachadas de construções, paisagens, regiões e construções por fotografias aéreas. Use of the system as defined in claims 23 to 25, characterized in that it is for point recognition sights, building facades, landscapes, regions and buildings by aerial photography. 27. Uso do sistema conforme definido nas reivindicações de 23 a 25 caracterizado por ser para ambientes de realidade aumentada, reconhecimento de fotografias e representações visuais em geral.  Use of the system as defined in claims 23 to 25 characterized in that it is for augmented reality environments, photo recognition and general visual representations.
PCT/BR2016/000017 2015-05-28 2016-02-22 Method for building an image data base, image recognition method, image recognition system and uses thereof Ceased WO2016187681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020150124376 2015-05-28
BR102015012437-6A BR102015012437B1 (en) 2015-05-28 IMAGE RECOGNITION METHOD, IMAGE RECOGNITION SYSTEM AND THEIR USES

Publications (1)

Publication Number Publication Date
WO2016187681A1 true WO2016187681A1 (en) 2016-12-01

Family

ID=57392274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/000017 Ceased WO2016187681A1 (en) 2015-05-28 2016-02-22 Method for building an image data base, image recognition method, image recognition system and uses thereof

Country Status (1)

Country Link
WO (1) WO2016187681A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7565139B2 (en) * 2004-02-20 2009-07-21 Google Inc. Image-based search engine for mobile phones with camera
US20100260426A1 (en) * 2009-04-14 2010-10-14 Huang Joseph Jyh-Huei Systems and methods for image recognition using mobile devices
US7872669B2 (en) * 2004-01-22 2011-01-18 Massachusetts Institute Of Technology Photo-based mobile deixis system and related techniques
US20110123120A1 (en) * 2008-06-03 2011-05-26 Eth Zurich Method and system for generating a pictorial reference database using geographical information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872669B2 (en) * 2004-01-22 2011-01-18 Massachusetts Institute Of Technology Photo-based mobile deixis system and related techniques
US7565139B2 (en) * 2004-02-20 2009-07-21 Google Inc. Image-based search engine for mobile phones with camera
US20110123120A1 (en) * 2008-06-03 2011-05-26 Eth Zurich Method and system for generating a pictorial reference database using geographical information
US20100260426A1 (en) * 2009-04-14 2010-10-14 Huang Joseph Jyh-Huei Systems and methods for image recognition using mobile devices

Also Published As

Publication number Publication date
BR102015012437A8 (en) 2022-09-20
BR102015012437A2 (en) 2017-04-25

Similar Documents

Publication Publication Date Title
CN112016401B (en) Cross-mode pedestrian re-identification method and device
Chen et al. Crowd map: Accurate reconstruction of indoor floor plans from crowdsourced sensor-rich videos
Ardeshir et al. GIS-assisted object detection and geospatial localization
WO2019042426A1 (en) Augmented reality scene processing method, device and computer storage medium
WO2020052530A1 (en) Image processing method and device and related apparatus
US9390330B2 (en) Apparatus and method for extracting correspondences between aerial images
CN108509859A (en) A kind of non-overlapping region pedestrian tracting method based on deep neural network
WO2018014828A1 (en) Method and system for recognizing location information in two-dimensional code
JP2014531097A (en) Text detection using multi-layer connected components with histograms
CN111310728B (en) Pedestrian re-identification system based on monitoring camera and wireless positioning
WO2022237048A1 (en) Pose acquisition method and apparatus, and electronic device, storage medium and program
WO2018207426A1 (en) Information processing device, information processing method, and program
Chen et al. Camera geolocation from mountain images
CN103488966A (en) Intelligent mobile phone capable of identifying real-name ticket information
CN111767839A (en) Vehicle driving track determining method, device, equipment and medium
Tarrit et al. Vanishing point detection for visual surveillance systems in railway platform environments
KR102249380B1 (en) System for generating spatial information of CCTV device using reference image information
Haider et al. Zebra crosswalk region detection and localization based on deep convolutional neural network
CN111242139B (en) Point-line-feature-based maximum histogram heterogeneous image matching method
WO2016187681A1 (en) Method for building an image data base, image recognition method, image recognition system and uses thereof
Tu et al. Automatic recognition of civil infrastructure objects in mobile mapping imagery using a markov random field model
CN103903269B (en) The description method and system of ball machine monitor video
BR102015012437B1 (en) IMAGE RECOGNITION METHOD, IMAGE RECOGNITION SYSTEM AND THEIR USES
KR102555668B1 (en) Method of generating map and visual localization using the map
Nowicki et al. Experimental evaluation of visual place recognition algorithms for personal indoor localization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16798968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16798968

Country of ref document: EP

Kind code of ref document: A1