[go: up one dir, main page]

WO2016172264A1 - Appareil et méthodes pour identifier un tissu endommagé au moyen de mesures de l'augmentation de la masse liquidienne sous-épidermique - Google Patents

Appareil et méthodes pour identifier un tissu endommagé au moyen de mesures de l'augmentation de la masse liquidienne sous-épidermique Download PDF

Info

Publication number
WO2016172264A1
WO2016172264A1 PCT/US2016/028516 US2016028516W WO2016172264A1 WO 2016172264 A1 WO2016172264 A1 WO 2016172264A1 US 2016028516 W US2016028516 W US 2016028516W WO 2016172264 A1 WO2016172264 A1 WO 2016172264A1
Authority
WO
WIPO (PCT)
Prior art keywords
sem
electrodes
anatomical site
khz
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2016/028516
Other languages
English (en)
Inventor
Ya-Chen TONAR
Shannon RHODES
Marta CLENDENIN
Martin Burns
Kindah JARADEH
William J. Kaiser
Frank Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruin Biometrics LLC
University of California Berkeley
University of California San Diego UCSD
Original Assignee
Bruin Biometrics LLC
University of California Berkeley
University of California San Diego UCSD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruin Biometrics LLC, University of California Berkeley, University of California San Diego UCSD filed Critical Bruin Biometrics LLC
Publication of WO2016172264A1 publication Critical patent/WO2016172264A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/447Skin evaluation, e.g. for skin disorder diagnosis specially adapted for aiding the prevention of ulcer or pressure sore development, i.e. before the ulcer or sore has developed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array

Definitions

  • the present disclosure provides apparatuses and computer readable media for measuring sub-epidermal moisture in patients to determine damaged tissue for clinical intervention.
  • the present disclosure also provides methods for determining damaged tissue.
  • the skin is the largest organ in the human body. It is readily exposed to different kinds of damages and injuries. When the skin and its surrounding tissues are unable to redistribute external pressure and mechanical forces, pressure ulcers may be formed.
  • Pressure ulcers occur over bony prominences, where there is less tissue for compression and the pressure gradient within the vascular network is altered. Pressure ulcers are categorized in one of four stages, ranging from the earliest stage currently recognized, in which the skin remains intact but may appear red over a bony prominence (Stage 1), to the last stage, in which tissue is broken and bone, tendon or muscle is exposed (Stage 4).
  • Stage 1 the earliest stage currently recognized (Stage 1) is the least expensive to treat at an average of $2,000 per ulcer, but is also the hardest to detect. In many cases, injuries on the epidermis layer are not present or apparent when the underlying subcutaneous tissue has become necrotic. As a result, it is common that a clinician's first diagnosis of a pressure ulcer in a patient occurs at late stages of the ulcer development ⁇ at which time the average cost of treatment is $43,000 per Stage 3 ulcer, or $129,000 per Stage 4 ulcer. If clinicians could identify and diagnose pressure ulcers at earlier stages of ulcer development, the healing process would be considerably shortened and the treatment costs would be significantly lower.
  • the present disclosure provides for, and includes, an apparatus for identifying damaged tissue.
  • the apparatus may comprise one or more electrodes capable of interrogating tissue at and around an anatomical site, where each of the one or more electrodes may be configured to emit and receive a radiofrequency signal to generate a bioimpedance signal; a circuit that may be electronically coupled to the one or more electrodes and may be configured to convert the bioimpedance signal into a sub-epidermal moisture ("SEM") value; a processor that may be electronically coupled to the circuit and may be configured to receive the SEM value; and a non-transitory computer readable medium that may be electronically coupled to the processor and may comprise instructions stored thereon that, when executed on the processor, may perform the steps of receiving from the processor a SEM value measured at the anatomical site and at least two SEM values measured around the anatomical site and their relative measurement locations; determining a maximum SEM value from the measurements around the anatomical site; determining a difference between the maximum SEM value and each of the at least two SEM
  • the apparatus may comprise one or more electrodes capable of interrogating tissue at and around an anatomical site, where each of the one or more electrodes may be configured to emit and receive a radiofrequency signal to generate a bioimpedance signal; a circuit that may be electronically coupled to the one or more electrodes and may be configured to convert the bioimpedance signal into a SEM value; a processor that may be electronically coupled to the circuit and may be configured to receive the SEM value; and a non-transitory computer readable medium that may be electronically coupled to the processor and may comprise instructions stored thereon that, when executed on the processor, may perform the steps of receiving from the processor a SEM value measured at the anatomical site and at least two SEM values measured around the anatomical site and their relative measurement locations; determining an average SEM value for each group of SEM values measured at approximately equidistance from the anatomical site; determining a maximum SEM value from the average SEM values; determining a difference between the maximum average SEM value and each of the average S
  • the present disclosure provides for, and includes, a non- transitory computer readable medium for identifying damaged tissue.
  • the non-transitory computer readable medium may comprise instructions stored thereon, that when executed on a processor, may perform the steps of receiving a SEM value at an anatomical site and at least two SEM values measured around the anatomical site and their relative measurement locations; determining a maximum SEM value from the measurements around the anatomical site, determining a difference between the maximum SEM value and each of the at least two SEM values measured around the anatomical site; and flagging the relative measurement locations associated with a difference greater than a predetermined value as damaged tissue.
  • a difference is determined between the maximum SEM value and a minimum SEM value measured around the anatomical site.
  • the non-transitory computer readable medium may comprise instructions stored thereon that when executed on a processor, may perform the steps of receiving a SEM value at an anatomical site, and at least two SEM values measured around the anatomical site and their relative measurement locations; determining an average SEM value for each group of SEM values measured at approximately equidistance from the anatomical site; determining a maximum SEM value from the average SEM values;
  • a method according to the present disclosure may comprise measuring at least three sub-epidermal moisture values at and around an anatomical site using an apparatus that may comprise one or more electrodes that may be capable of interrogating tissue at and around an anatomical site, wherein each of the one or more electrodes may be configured to emit and receive a radiofrequency signal to generate a bioimpedance signal; a circuit that may be electronically coupled to the one or more electrodes and configured to convert the bioimpedance signal into a SEM value; a processor that may be electronically coupled to the circuit and configured to receive the SEM value; and a non-transitory computer readable medium that may be electronically coupled to the processor and may comprise instructions stored thereon that when executed on the processor, may perform the steps of receiving from the processor a SEM value measured at the anatomical site and at least two SEM values measured around the anatomical site and their relative measurement locations; determining a maximum SEM value from the measurements around the anatomical
  • a method may comprise measuring at least three sub-epidermal moisture values at and around an anatomical site using an apparatus that may comprise one or more electrodes that may be capable of interrogating tissue at and around an anatomical site, wherein each of the one or more electrodes may be configured to emit and receive a radiofrequency signal to generate a bioimpedance signal; a circuit that may be electronically coupled to the one or more electrodes and configured to convert the bioimpedance signal into a SEM value; a processor that may be electronically coupled to the circuit and configured to receive the SEM value; and a non-transitory computer readable medium that may be electronically coupled to the processor and may comprise instructions stored thereon that, when executed on the processor, may perform the steps of receiving from the processor a SEM value measured at the anatomical site and at least two SEM values measured around the anatomical site and their relative measurement locations; determining an average SEM value for each group of SEM values measured at approximately equidistance from the anatomical site; determining
  • the present disclosure provides for, and includes, methods for generating a SEM image indicating damaged tissue on an anatomical graphical representation.
  • the SEM image may be generated by acquiring parameters of an anatomical site to be interrogated; measuring at least three sub-epidermal moisture values at and around an anatomical site using an apparatus that may comprise one or more electrodes that may be capable of interrogating tissue at and around an anatomical site, wherein each of the one or more electrodes may be configured to emit and receive a radiofrequency signal to generate a bioimpedance signal; a circuit that may be electronically coupled to the one or more electrodes and configured to convert the bioimpedance signal into a SEM value; a processor that may be electronically coupled to the circuit and configured to receive the SEM value; and a non-transitory computer readable medium that may be electronically coupled to the processor and may comprise instructions stored thereon that when executed on the processor, may perform the steps of receiving from the processor a SEM value measured at the anatomical site, and at least two SEM
  • a difference is determined between the maximum SEM value and a minimum SEM value measured around the anatomical site.
  • the method may further comprise plotting the measured SEM values in accordance with their relative measurement locations on a graphical representation of an area defined by the parameters of the anatomical site, and indicating the measurement locations that are flagged as damaged tissue.
  • the SEM image may be generated by acquiring parameters of an anatomical site to be interrogated; measuring at least three sub-epidermal moisture values at and around an anatomical site using an apparatus that may comprise one or more electrodes that may be capable of interrogating tissue at and around an anatomical site, wherein each of the one or more electrodes may be configured to emit and receive a radiofrequency signal to generate a bioimpedance signal; a circuit that may be electronically coupled to the one or more electrodes and configured to convert the bioimpedance signal into a SEM value; a processor that may be electronically coupled to the circuit and configured to receive the SEM value; and a non-transitory computer readable medium that may be electronically coupled to the processor and may comprise instructions stored thereon that, when executed on the processor, may perform the steps of receiving from the processor a SEM value measured at the anatomical site, and at least two SEM values measured around anatomical site and their relative measurement locations; determining an average SEM value for each group of SEM values measured at approximately
  • Figure 2 An exemplary sensing unit of the apparatus according to the present disclosure, comprising more than one coaxial electrode.
  • Figure 3B Exemplary coaxial electrodes constructed with a point source electrode surrounded by six hexagon pad electrodes according to the present disclosure.
  • Figure 3C An exemplary array of hexagon pad electrodes where each of the electrodes may be programmed to function as different parts of a coaxial electrode in accordance with the present disclosure.
  • Figure 3D Sample electronic connection of an array of hexagonal pad electrodes allowing for coaxial electrode emulation in accordance with the present disclosure.
  • Figure 3E An exemplary array of coaxial electrodes electronically coupled together.
  • Figure 4 A sample measurement scheme according to the present disclosure.
  • FIG. 5A Sample SEM measurement results obtained in accordance with the methods in the present disclosure, represented as a SEM map.
  • Figure 5B Sample SEM measurement results along the x-axis of Figure 5 A plotted on a graph.
  • Figure 5C Sample SEM measurement results along the y-axis of Figure 5A plotted on a graph.
  • Figure 6A - An exemplary method for taking SEM measurements starting at the posterior heel.
  • Figure 6B An exemplary method for taking SEM measurements starting at the lateral heel.
  • Figure 6C An exemplary method for taking SEM measurements starting at the medial heel.
  • Figure 7A Sample visual assessment of damaged tissue around a sacrum.
  • FIG. 7B Sample SEM measurement results of damaged tissue obtained in accordance with the methods in the present disclosure.
  • Figure 8A Sample visual assessment of healthy tissue around a sacrum.
  • FIG. 8B Sample SEM measurement results of healthy tissue obtained in accordance with the methods in the present disclosure.
  • FIG. 9A A sample SEM map obtained in accordance with the methods in the present disclosure.
  • Figure 9B Corresponding visual assessment of damaged tissue of Figure 9A.
  • Figure 10 A sample SEM image obtained in accordance with the methods in the present disclosure.
  • FIG 11 Sample time-lapsed SEM images showing the sensitivity of the detection apparatuses and methods in the present disclosure.
  • Figure 12A - A sample graphical representation of a finite element model showing the depth of various SEM levels in accordance with the methods in the present disclosure.
  • Figure 12B A sample plot of SEM measurements at various depth of a skin-like material.
  • the methods disclosed herein comprise one or more steps or actions for achieving the described method.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the present invention.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the present invention.
  • phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y.
  • phrases such as “between about X and Y” mean “between about X and about Y” and phrases such as “from about X to Y” mean “from about X to about Y.”
  • sub-epidermal moisture refers to the increase in tissue fluid and local edema caused by vascular leakiness and other changes that modify the underlying structure of the damaged tissue in the presence of continued pressure on tissue, apoptosis, necrosis, and the inflammatory process.
  • a “system” may be a collection of devices in wired or wireless communication with each other.
  • interrogate refers to the use of radiofrequency energy to penetrate into a patient's skin.
  • a “patient” may be a human or animal subject.
  • FIG. 1 and 2 An exemplary apparatus according to the present disclosure is shown in Figures 1 and 2. It will be understood that these are examples of an apparatus for measuring sub-epidermal moisture ("SEM").
  • the apparatus according to the present disclosure may be a handheld device, a portable device, a wired device, a wireless device, or a device that is fitted to measure a part of a human patient.
  • U.S. Publication No. 2014/0288397 Al to Sarrafzadeh et al. is directed to a SEM scanning apparatus, which is incorporated herein by reference in its entirety.
  • the apparatus may comprise one or more electrodes.
  • coaxial electrodes over electrodes such as tetrapolar ECG electrodes because coaxial electrodes are generally isotropic, which may allow SEM values to be taken irrespective of the direction of electrode placement.
  • the SEM values measured by coaxial electrodes may also be representative of the moisture content of the tissue underneath the coaxial electrodes, rather than the moisture content of the tissue surface across two bi-polar electrodes spaced apart.
  • the apparatus may comprise two or more coaxial electrodes, three or more coaxial electrodes, four or more coaxial electrodes, five or more coaxial electrodes, ten or more coaxial electrodes, fifteen or more coaxial electrodes, twenty or more coaxial electrodes, twenty five or more coaxial electrodes, or thirty or more coaxial electrodes.
  • the aforementioned coaxial electrodes may be configured to emit and receive an RF signal at a frequency of 32 kilohertz (kHz).
  • the coaxial electrodes may be configured to emit and receive an RF signal at a frequency of from about 5 kHz to about 100 kHz, from about 10 kHz to about 100 kHz, from about 20 kHz to about 100 kHz, from about 30 kHz to about 100 kHz, from about 40 kHz to about 100 kHz, from about 50 kHz to about 100 kHz, from about 60 kHz to about 100 kHz, from about 70 kHz to about 100 kHz, from about 80 kHz to about 100 kHz, or from about 90 kHz to about 100 kHz.
  • the coaxial electrodes may be configured to emit and receive an RF signal at a frequency of from about 5 kHz to about 10 kHz, from about 5 kHz to about 20 kHz, from about 5 kHz to about 30 kHz, from about 5 kHz to about 40 kHz, from about 5 kHz to about 50 kHz, from about 5 kHz to about 60 kHz, from about 5 kHz to about 70 kHz, from about 5 kHz to about 80 kHz, or from about 5 kHz to about 90 kHz.
  • the coaxial electrodes may be configured to emit and receive an RF signal at a frequency less than 100 kHz, less than 90 kHz, less than 80 kHz, less than 70 kHz, less than 60 kHz, less than 50 kHz, less than 40 kHz, less than 30 kHz, less than 20 kHz, less than 10 kHz, or less than 5 kHz.
  • all of the coaxial electrodes of the apparatus may operate at the same frequency.
  • some of the coaxial electrodes of the apparatus may operate at different frequencies.
  • the frequency of a coaxial electrode may be changed through programming specific pins on an integrated circuit in which they are connected.
  • the coaxial electrodes may comprise a bipolar configuration having a first electrode comprising an outer annular ring disposed around a second inner circular electrode.
  • the outer ring electrode may have an outer diameter D 0 and an inner diameter Di that is larger than the diameter D c of the circular inner electrode.
  • Each inner circular electrode and outer electrode may be coupled electrically to one or more circuits that are capable of applying a voltage waveform to each electrode; generating a bioimpedance signal; and converting the capacitance signal to a SEM value.
  • the bioimpedance signal may be a capacitance signal generated by, e.g. , measuring the difference of the current waveform applied between the central electrode and the annular ring electrode.
  • the conversion may be performed by a 24 bit capacitance-to-digital converter. In another embodiment, the conversion may be a 16 bit capacitance-to-digital converter, a charge-timing capacitance to digital converter, a sigma-delta capacitance to digital converter.
  • the one or more circuits may be electronically coupled to a processor. The processor may be configured to receive the SEM value generated by the circuit.
  • the one or more coaxial electrodes may have the same size. In other embodiments, the one or more coaxial electrodes may have different sizes, which may be configured to interrogate the patient's skin at different depths. The dimensions of the one or more coaxial electrodes may correspond to the depth of interrogation into the derma of the patient. Accordingly, a larger diameter electrode may penetrate deeper into the skin than a smaller pad. The desired depth may vary depending on the region of the body being scanned, or the age, skin anatomy or other characteristic of the patient. In some embodiments, the one or more coaxial electrodes may be coupled to two or more separate circuits to allow independent operation of each of the coaxial electrodes. In another embodiment, all, or a subset, of the one or more coaxial electrodes may be coupled to the same circuit.
  • the one or more coaxial electrodes may be capable of emitting RF energy to a skin depth of 4 millimeters (mm), 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm, 1.0 mm, or 0.5 mm.
  • the one or more coaxial electrodes may have an outer diameter D 0 from about 5 mm to about 55 mm, from about 10 mm to about 50 mm, from about 15 mm to about 45 mm, or from about 20 mm to about 40 mm.
  • the outer ring of the one or more coaxial electrodes may have an inner diameter Di from about 4 mm to about 40 mm, from about 9 mm to about 30 mm, or from about 14 mm to about 25 mm.
  • the inner electrode of the one or more coaxial electrodes may have a diameter D c from about 2 mm to 7 mm, 3 mm to 6 mm, or 4 mm to 5 mm.
  • the one or more coaxial electrodes may be spaced apart at a distance to avoid interference between the electrodes. The distance may be a function of sensor size and frequency to be applied.
  • each of the one or more coaxial electrodes may be activated sequentially. In certain embodiments, multiple coaxial electrodes may be activated at the same time.
  • a coaxial electrode may comprise a point source surrounded by hexagon pad electrodes spaced at approximately equidistance, as illustrated in Figure 3B.
  • the point source may comprise a hexagon pad electrode.
  • the point source may comprise two, three, four, five, or six hexagon pad electrodes.
  • a point source may be surrounded by six hexagon pad electrodes.
  • multiple coaxial electrodes may be emulated from an array comprising a plurality of hexagon pad electrodes, where each hexagon pad electrode may be programmed to be electronically coupled to a floating ground, a capacitance input, or a capacitance excitation signal, as illustrated in Figures 3C and 3D.
  • each of the hexagon pad electrodes may be connected to a multiplexer that may have a select line that controls whether the hexagon pad electrode is connected to a capacitance input or a capacitance excitation signal.
  • the multiplexer may also have an enable line that controls whether to connect the hexagon pad electrode to a floating ground.
  • the multiplexer may be a pass-gate multiplexer.
  • the one or more coaxial electrodes may be arranged as illustrated in Figure 3E to leverage multiplexer technology. Without being limited to theory, the arrangement illustrated in Figure 3E may limit interference between the one or more coaxial electrodes.
  • one or more coaxial electrodes may be embedded on a first side of a non-conductive substrate.
  • the substrate may be flexible or hard.
  • the flexible substrate may comprise kapton, polyimide, or a combination thereof.
  • an upper coverlay may be positioned directly above the one or more coaxial electrodes.
  • the upper coverlay may be a double-sided, copper-clad laminate and an all-polyimide composite of a polyimide film bonded to copper foil.
  • the upper coverlay may comprise Pyralux 5 mil FR0150. Without being limited by theory, the use this upper coverlay may avoid parasitic charges naturally present on the skin surface from interfering with the accuracy and precision of SEM measurements.
  • the one or more coaxial electrodes may be spring mounted to a substrate within an apparatus according to the present disclosure.
  • the apparatus may comprise a non-transitory computer readable medium electronically coupled to the processor.
  • the non- transitory computer readable medium may comprise instructions stored thereon that, when executed on a processor, may perform the steps of: (1) receiving at least one SEM value at an anatomical site; (2) receiving at least two SEM values measured around the anatomical site and their relative measurement locations; (3) determining a maximum SEM value from the measurements around the anatomical site; (4) determining a difference between the maximum SEM value and each of the at least two SEM values measured around the anatomical site; and (5) flagging the relative measurement locations associated with a difference greater than a predetermined value as damaged tissue.
  • the non-transitory computer readable medium may comprise instructions stored thereon that may carry out the following steps when executed by the processor: (1) receiving at least one SEM value measured at an anatomical site; (2) receiving at least two SEM values measured around the anatomical site, and their relative measurement locations; (3) determining an average SEM value for each group of SEM values measured at approximately equidistance from the anatomical site; (4) determining a maximum SEM value from the average SEM values; (5) determining a difference between the maximum average SEM value and each of the average SEM values measured around the anatomical site; and (6) flagging the relative measurement locations associated with a difference greater than a predetermined value as damaged tissue.
  • the non-transitory computer readable medium may comprise instructions stored thereon that, when executed on a processor, may perform the steps of: (1) receiving at least one SEM value at an anatomical site; (2) receiving at least two SEM values measured around the anatomical site and their relative measurement locations; (3) determining a maximum SEM value from the measurements around the anatomical site; (4) determining a minimum SEM value from the measurements around the anatomical site; (5) determining a difference between the maximum SEM value and the minimum SEM value; and (6) flagging the relative measurement locations associated with a difference greater than a predetermined value as damaged tissue.
  • the predetermined value may be 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2,
  • the predetermined value is not limited by design, but rather, one of ordinary skill in the art would be capable of choosing a predetermined value based on a given unit of SEM.
  • the leading edge of inflammation may be indicated by an SEM difference that is equal to or greater than the predetermined value.
  • the leading edge of inflammation may be identified by the maximum values out of a set of SEM measurements.
  • an anatomical site may be a bony prominence.
  • an anatomical site may be a sternum, sacrum, a heel, a scapula, an elbow, an ear, or other fleshy tissue.
  • one SEM value is measured at the anatomical site.
  • an average SEM value at the anatomical site is obtained from two, three, four, five, six, seven, eight, nine, ten, or more than ten SEM values measured at the anatomical site.
  • the apparatuses of the present disclosure may allow the user to control the pressure applied onto a patient's skin to allow for optimized measurement conditions.
  • a first pressure sensor may be placed on a second side opposing the first side of the substrate that the coaxial electrodes are disposed on.
  • a second pressure sensor may be disposed on a second side opposing the first side of the substrate that the coaxial electrodes are disposed on.
  • the first pressure sensor may be a low pressure sensor
  • the second pressure sensor may be a high pressure sensor.
  • the first and second pressure sensors may allow measurements to be taken at a predetermined range of target pressures.
  • a target pressure may be about 500 g.
  • the first and second pressure sensors may be resistive pressure sensors.
  • the first and second pressure sensors may be sandwiched between the substrate and a conformal pressure pad.
  • the conformal pressure pad may provide both support and conformity to enable
  • the apparatus may further comprise a plurality of contact sensors on the same planar surface as, and surrounding, each of the one or more coaxial electrodes to ensure complete contact of the one or more coaxial electrodes to the skin surface.
  • the plurality of contact sensors may be a plurality of pressure sensors, a plurality of light sensors, a plurality of temperature sensors, a plurality of pH sensors, a plurality of perspiration sensors, a plurality of ultrasonic sensors, a plurality of bone growth stimulator sensors, or a plurality of a combination of these sensors.
  • the plurality of contact sensors may comprise four, five, six, seven, eight, nine, or ten or more contact sensors surrounding the one or more coaxial electrodes.
  • the apparatus may comprise a temperature probe.
  • the temperature probe may be a thermocouple or an infrared thermometer.
  • the apparatus may further comprise a display having a user interface.
  • the user interface may allow the user to input measurement location data.
  • the user interface may further allow the user to view measured SEM values and/or damaged tissue locations.
  • the apparatus may further comprise a transceiver circuit configured to receive data from and transmit data to a remote device, such as a computer, tablet or other mobile or wearable device.
  • the transceiver circuit may allow for any suitable form of wired or wireless data transmission such as, for example, USB,
  • Methods according to the present disclosure provide for identifying damaged tissue.
  • the method may comprise measuring at least three SEM values at and around an anatomical site using an apparatus of the present invention, and obtaining from the apparatus measurement locations that are flagged as damaged tissue.
  • measurements may be taken at positions that are located on one or more concentric circles about an anatomic site.
  • Figure 4 provides a sample measurement strategy, with the center being defined by an anatomic site.
  • the measurements may be taken spatially apart from an anatomic site.
  • the measurements may be taken on a straight line across an anatomic site.
  • the measurements may be taken on a curve around an anatomic site.
  • surface moisture and matter above a patient's skin surface may be removed prior to the measuring step.
  • the measuring step may take less than one second, less than two seconds, less than three seconds, less than four seconds, or less than five seconds.
  • Example 1 Measuring sub-epidermal moisture (SEM) values at the bony prominence of the sacrum
  • Stage I or II pressure ulcers with unbroken skin were subjected to multiple SEM measurements at and around the boney prominence of the sacrum using an apparatus of this disclosure. Prior to performing the measurements, surface moisture and matter above the subjects' skin surface were removed. An electrode of the apparatus was applied to the desired anatomical site with sufficient pressure to ensure complete contact for approximately one second. Additional measurements were taken at the mapped location as laid out in Figure 4.
  • Figure 5A shows a sample SEM map centered on an anatomical site.
  • Figure 5B is a plot of the individual SEM values across the x-axis of the SEM map.
  • Figure 5C is a plot of the individual SEM values across the y-axis of the SEM map. Damaged tissue radiated from the center anatomical site to an edge of erythema defined by a difference in SEM values of greater than 0.5.
  • Figure 6A illustrates a method used to take SEM measurements starting at the posterior heel using an apparatus according to the present disclosure.
  • the forefoot was dorsiflexed such that the toes were pointing towards the shin.
  • an electrode was positioned at the base of the heel. The electrode was adjusted for full contact with the heel, and multiple SEM measurements were then taken in a straight line towards the toes.
  • Figure 6B illustrates a method used to take SEM measurements starting at the lateral heel using an apparatus according to the present disclosure.
  • the toes were pointed away from the body and rotated inward towards the medial side of the body.
  • an electrode was placed on the lateral side of the heel. The electrode was adjusted for full contact with the heel, and multiple SEM measurements were taken in a straight line towards the bottom of the foot.
  • Figure 6C illustrates a method used to take SEM measurements starting at the medial heel using an apparatus according to the present disclosure.
  • the toes were pointed away from the body and rotated outwards toward the lateral side of the body.
  • the electrode was placed on the medial side of the heel. The electrode was adjusted for full contact with the heel, and multiple measurements were taken around the back of the heel in a curve.
  • Example 3 Identifying a region of damaged tissue
  • FIG. 7A is a sample visual assessment of damaged tissue.
  • Figure 7B is a corresponding plot of the averages of SEM measurements taken at each location. The edges of erythema are defined by differences in SEM values of greater than 0.5.
  • Figure 8A is a sample visual assessment of healthy tissue.
  • Figure 8B is a corresponding plot of the averages of
  • the tissue is defined as healthy as the differences in SEM values are all less than 0.5.
  • Figure 9A is a sample map of averaged SEM values taken on concentric rings around an anatomical site.
  • Figure 9B is the corresponding visual assessment of the patient's skin.
  • Compromised tissue is identified by the solid circle, where the difference in SEM values compared to the maximum SEM value is greater than 0.5.
  • the leading edge of inflammation is identified by the dotted circle, where the difference in SEM values compared to the maximum SEM value is equal to or greater than 0.5.
  • the leading edge of inflammation is identified by a dotted line, indicating the largest values in the SEM map.
  • FIG. 10 is a sample output of a SEM measurement image showing the moisture content of the skin over a defined area. Different SEM values are indicated by different colors.
  • Example 7 SEM measurements of skin moisture content over time
  • Moisturizer was used to simulate the onset of a pressure ulcer.
  • 0.2 mL moisturizer was applied to the inner forearm of a subject for 60 seconds. The moisturizer was then wiped from the skin.
  • SEM measurements were taken with an array of coaxial electrodes every 10 minutes for 2 hours.
  • Figure 11 shows a sample time lapse of an SEM measurement image to monitor moisture content of a test subject.
  • Example 8 Selecting an optimal electrode for interrogating patient skin
  • Figure 12A is a sample graphical representation of a finite element model showing the depth of various SEM levels in accordance with the methods in the present disclosure. Each line indicates a SEM value and the depth of the moisture content.
  • the apparatus comprises one coaxial electrode.
  • the thickness of a blister bandage which simulates a skin-like material, was measured and placed on the coaxial electrode.
  • a downward force was then applied via a metal onto the coaxial electrode, in an acceptable range according to the present disclosure.
  • the metal is fitted to a second metal in tubular form.
  • the second metal was selected from brass, aluminum, and stainless steel.
  • the SEM measurement was recorded. Additional blister bandages were placed atop the coaxial electrodes for further SEM measurement recordings.
  • Figure 12B is a sample plot of SEM measurements at various thicknesses of the blister bandages.
  • the variations in the SEM values in the presence of different tubular metal may be due to potential magnetic field interference.
  • the maximum depth of a magnetic field generated by the coaxial sensor was determined by the distance from the coaxial sensor when the metal tube no longer interfered with the magnetic field. In this example, the maximum depth ranged from 0.135 inches to 0.145 inches. Accordingly, electrodes having an optimal penetration depth could be selected to interrogate specific depths of patient skin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

La présente invention concerne des appareils et des supports lisibles par ordinateur pour mesurer l'augmentation de la masse liquidienne sous-épidermique chez des patients afin d'identifier un tissu endommagé en vue d'une intervention clinique. La présente invention concerne également des méthodes permettant d'identifier un tissu endommagé.
PCT/US2016/028516 2015-04-24 2016-04-20 Appareil et méthodes pour identifier un tissu endommagé au moyen de mesures de l'augmentation de la masse liquidienne sous-épidermique Ceased WO2016172264A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562152561P 2015-04-24 2015-04-24
US62/152,561 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016172264A1 true WO2016172264A1 (fr) 2016-10-27

Family

ID=57143377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/028516 Ceased WO2016172264A1 (fr) 2015-04-24 2016-04-20 Appareil et méthodes pour identifier un tissu endommagé au moyen de mesures de l'augmentation de la masse liquidienne sous-épidermique

Country Status (1)

Country Link
WO (1) WO2016172264A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018144946A1 (fr) 2017-02-03 2018-08-09 Bruin Biometrics, Llc Mesure de la susceptibilité aux ulcères du pied diabétique
CN111295130A (zh) * 2017-11-16 2020-06-16 布鲁恩生物有限责任公司 在多个护理环境中提供护理连续性
US10950960B2 (en) 2018-10-11 2021-03-16 Bruin Biometrics, Llc Device with disposable element
US11253192B2 (en) 2010-05-08 2022-02-22 Bruain Biometrics, LLC SEM scanner sensing apparatus, system and methodology for early detection of ulcers
US11284810B2 (en) 2015-04-24 2022-03-29 Bruin Biometrics, Llc Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US11304652B2 (en) 2017-02-03 2022-04-19 Bbi Medical Innovations, Llc Measurement of tissue viability
US11337651B2 (en) 2017-02-03 2022-05-24 Bruin Biometrics, Llc Measurement of edema
US11471094B2 (en) 2018-02-09 2022-10-18 Bruin Biometrics, Llc Detection of tissue damage
EP4091537A1 (fr) * 2017-02-03 2022-11-23 Bruin Biometrics, LLC Comparaison bisymétrique de valeurs d'humidité sous-épidermique
US11642075B2 (en) 2021-02-03 2023-05-09 Bruin Biometrics, Llc Methods of treating deep and early-stage pressure induced tissue damage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070778A1 (en) * 2003-08-20 2005-03-31 Lackey Robert P. Hydration monitoring
US20050203435A1 (en) * 2004-03-15 2005-09-15 Tanita Corporation Skin condition estimating apparatus
US20120190989A1 (en) * 2009-08-17 2012-07-26 The Regents Of The University Of California Distributed external and internal wireless sensor systems for characterization of surface and subsurface biomedical structure and condition
US20130123587A1 (en) * 2010-05-08 2013-05-16 Bruin Biometrics, Llc Sem scanner sensing apparatus, system and methodology for early detection of ulcers
US20130121544A1 (en) * 2010-05-08 2013-05-16 The Regents Of The University Of California Method, system, and apparatus for pressure image registration
US20140316297A1 (en) * 2013-02-22 2014-10-23 Noninvasive Medical Technologies, Inc. Impedance monitors, electrode arrays and methods of use
US20150002168A1 (en) * 2013-06-27 2015-01-01 General Electric Company Systems and methods for soft-field tomography
US20150094548A1 (en) * 2013-09-27 2015-04-02 General Electric Company System and method for determining a hydration level of a tissue region

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070778A1 (en) * 2003-08-20 2005-03-31 Lackey Robert P. Hydration monitoring
US20050203435A1 (en) * 2004-03-15 2005-09-15 Tanita Corporation Skin condition estimating apparatus
US20120190989A1 (en) * 2009-08-17 2012-07-26 The Regents Of The University Of California Distributed external and internal wireless sensor systems for characterization of surface and subsurface biomedical structure and condition
US20130123587A1 (en) * 2010-05-08 2013-05-16 Bruin Biometrics, Llc Sem scanner sensing apparatus, system and methodology for early detection of ulcers
US20130121544A1 (en) * 2010-05-08 2013-05-16 The Regents Of The University Of California Method, system, and apparatus for pressure image registration
US20140316297A1 (en) * 2013-02-22 2014-10-23 Noninvasive Medical Technologies, Inc. Impedance monitors, electrode arrays and methods of use
US20150002168A1 (en) * 2013-06-27 2015-01-01 General Electric Company Systems and methods for soft-field tomography
US20150094548A1 (en) * 2013-09-27 2015-04-02 General Electric Company System and method for determining a hydration level of a tissue region

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, FT: "Biomedical System for Monitoring Pressure Ulcer Development'';", UCLA ELECTRONIC THESES AND DISSERTATIONS, 2013, California, USA ., pages 1 - 123, XP055141358, Retrieved from the Internet <URL:http://escholarship.org/uc/item/2cq3823d.pdf> [retrieved on 20160624] *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779265B2 (en) 2010-05-08 2023-10-10 Bruin Biometrics, Llc SEM scanner sensing apparatus, system and methodology for early detection of ulcers
US11253192B2 (en) 2010-05-08 2022-02-22 Bruain Biometrics, LLC SEM scanner sensing apparatus, system and methodology for early detection of ulcers
US11832929B2 (en) 2015-04-24 2023-12-05 Bruin Biometrics, Llc Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US11284810B2 (en) 2015-04-24 2022-03-29 Bruin Biometrics, Llc Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US11534077B2 (en) 2015-04-24 2022-12-27 Bruin Biometrics, Llc Apparatus and methods for determining damaged tissue using sub epidermal moisture measurements
US12290377B2 (en) 2017-02-03 2025-05-06 Bbi Medical Innovations, Llc Measurement of tissue viability
CN109890282A (zh) * 2017-02-03 2019-06-14 布鲁恩生物有限责任公司 糖尿病足溃疡易感性的测量
US10959664B2 (en) 2017-02-03 2021-03-30 Bbi Medical Innovations, Llc Measurement of susceptibility to diabetic foot ulcers
WO2018144946A1 (fr) 2017-02-03 2018-08-09 Bruin Biometrics, Llc Mesure de la susceptibilité aux ulcères du pied diabétique
JP2020513254A (ja) * 2017-02-03 2020-05-14 ブルーイン、バイオメトリクス、リミテッド、ライアビリティー、カンパニーBruin Biometrics, Llc 糖尿病性足部潰瘍に対する感受性の測定
EP3515306A4 (fr) * 2017-02-03 2020-03-11 Bruin Biometrics, LLC Mesure de la susceptibilité aux ulcères du pied diabétique
US11304652B2 (en) 2017-02-03 2022-04-19 Bbi Medical Innovations, Llc Measurement of tissue viability
EP4464242A3 (fr) * 2017-02-03 2025-02-19 BBI Medical Innovations, LLC Mesure de la susceptibilité aux ulcères du pied diabétique
US11337651B2 (en) 2017-02-03 2022-05-24 Bruin Biometrics, Llc Measurement of edema
JP7105767B2 (ja) 2017-02-03 2022-07-25 ブルーイン、バイオメトリクス、リミテッド、ライアビリティー、カンパニー 糖尿病性足部潰瘍に対する感受性の測定
CN114795173A (zh) * 2017-02-03 2022-07-29 布鲁恩生物有限责任公司 组织存活力的测量
US11627910B2 (en) 2017-02-03 2023-04-18 Bbi Medical Innovations, Llc Measurement of susceptibility to diabetic foot ulcers
CN115553725A (zh) * 2017-02-03 2023-01-03 布鲁恩生物有限责任公司 表皮下湿度值的两侧对称比较
EP4091537A1 (fr) * 2017-02-03 2022-11-23 Bruin Biometrics, LLC Comparaison bisymétrique de valeurs d'humidité sous-épidermique
US11191477B2 (en) 2017-11-16 2021-12-07 Bruin Biometrics, Llc Strategic treatment of pressure ulcer using sub-epidermal moisture values
CN111295130B (zh) * 2017-11-16 2023-11-28 布鲁恩生物有限责任公司 在多个护理环境中提供护理连续性
CN111295130A (zh) * 2017-11-16 2020-06-16 布鲁恩生物有限责任公司 在多个护理环境中提供护理连续性
US11426118B2 (en) 2017-11-16 2022-08-30 Bruin Biometrics, Llc Strategic treatment of pressure ulcer using sub-epidermal moisture values
US12336837B2 (en) 2017-11-16 2025-06-24 Bruin Biometrics, Llc Providing a continuity of care across multiple care settings
US10898129B2 (en) 2017-11-16 2021-01-26 Bruin Biometrics, Llc Strategic treatment of pressure ulcer using sub-epidermal moisture values
US11471094B2 (en) 2018-02-09 2022-10-18 Bruin Biometrics, Llc Detection of tissue damage
US11980475B2 (en) 2018-02-09 2024-05-14 Bruin Biometrics, Llc Detection of tissue damage
US12350064B2 (en) 2018-02-09 2025-07-08 Bruin Biometrics, Llc Detection of tissue damage
US11824291B2 (en) 2018-10-11 2023-11-21 Bruin Biometrics, Llc Device with disposable element
US10950960B2 (en) 2018-10-11 2021-03-16 Bruin Biometrics, Llc Device with disposable element
US12132271B2 (en) 2018-10-11 2024-10-29 Bruin Biometrics, Llc Device with disposable element
US11342696B2 (en) 2018-10-11 2022-05-24 Bruin Biometrics, Llc Device with disposable element
US11600939B2 (en) 2018-10-11 2023-03-07 Bruin Biometrics, Llc Device with disposable element
US11642075B2 (en) 2021-02-03 2023-05-09 Bruin Biometrics, Llc Methods of treating deep and early-stage pressure induced tissue damage
US12097041B2 (en) 2021-02-03 2024-09-24 Bruin Biometrics, Llc Methods of treating deep and early-stage pressure induced tissue damage

Similar Documents

Publication Publication Date Title
US11832929B2 (en) Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
AU2018289297B2 (en) Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US20240138696A1 (en) Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
WO2016172264A1 (fr) Appareil et méthodes pour identifier un tissu endommagé au moyen de mesures de l&#39;augmentation de la masse liquidienne sous-épidermique
HK40107202A (en) Apparatus for determining damaged tissue using sub-epidermal moisture measurements
HK40017600A (en) Apparatus for determining damaged tissue using sub-epidermal moisture measurements
HK40017600B (en) Apparatus for determining damaged tissue using sub-epidermal moisture measurements
HK1230907B (en) Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
HK1230907A1 (en) Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783803

Country of ref document: EP

Kind code of ref document: A1