[go: up one dir, main page]

WO2016076074A1 - Image processing device, x-ray ct device, and image processing method - Google Patents

Image processing device, x-ray ct device, and image processing method Download PDF

Info

Publication number
WO2016076074A1
WO2016076074A1 PCT/JP2015/079430 JP2015079430W WO2016076074A1 WO 2016076074 A1 WO2016076074 A1 WO 2016076074A1 JP 2015079430 W JP2015079430 W JP 2015079430W WO 2016076074 A1 WO2016076074 A1 WO 2016076074A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
blood vessel
hepatectomy
liver
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2015/079430
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 英明
中澤 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016558943A priority Critical patent/JP6634381B2/en
Publication of WO2016076074A1 publication Critical patent/WO2016076074A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention relates to an image processing apparatus, an X-ray CT apparatus, and an image processing method, and more particularly to an organ extraction from a CT image and an image processing technique of the extracted organ.
  • An image obtained with an X-ray CT apparatus describes the shape of an organ in a subject and is used for diagnostic imaging.
  • Patent Document 1 it is possible to display a simulation of an excision region of an organ such as a liver by using an image taken by an X-ray CT apparatus, which is useful for an operation plan.
  • Hepatectomy includes non-systematic hepatectomy and systematic hepatectomy.
  • Non-systematic hepatectomy includes enucleation and partial resection, where enucleation removes only the tumor, while partial resection provides a margin for the tumor and removes the tumor and the area containing the margin.
  • Systematic excision includes lobectomy, segmental excision, and subsegmental excision. These are determined in consideration of the position, size and number of tumors and liver function (liver reserve capacity). Also, it is desirable that the volume of the liver parenchyma to be excised is smaller.
  • Patent Document 1 describes a process of specifying an arterial control region and a vein control region, specifying an ablation region based on these information, and displaying the simulation. In order to reduce the burden on the subject, it is desirable to reduce the resection capacity of the liver parenchyma.
  • JP 2004-337257 A JP 2008-307145 JP
  • the cutting is set as a branch unit, and the branch point is set as the cutting position. Therefore, the resection volume of the liver parenchyma is not necessarily the minimum volume.
  • the dominant region is calculated from the relationship between a plurality of blood vessels and their blood vessel diameters. This is a case where the reserve capacity of the liver parenchyma is assumed to be constant depending on the location. Liver parenchymal reserve is not always constant, and in order to more accurately minimize excision volume, determine vascular cutting position and hepatectomy region considering local liver reserve changes There is a need.
  • the present invention has been made in view of the above problems, and provides an image processing apparatus, an X-ray CT apparatus, and an image processing method capable of obtaining and presenting an optimal hepatectomy line for a tumor. For the purpose.
  • the present invention provides a data acquisition unit that acquires image data depicting the inside of a subject including the liver and liver reserve data that is data related to a local reserve of the liver, and the image data
  • An extraction unit that separates and extracts a liver parenchymal region, a tumor, and a blood vessel from a blood vessel control region calculation unit that calculates each control region of an artery and a vein in the extracted liver parenchymal region based on the liver reserve capacity data;
  • a hepatectomy line determination unit that determines a vascular cutting position and a hepatectomy line based on the arrangement of each dominant region and the tumor, and a display unit that displays the vascular cutting position and the hepatectomy line.
  • An image processing apparatus that acquires image data depicting the inside of a subject including the liver and liver reserve data that is data related to a local reserve of the liver, and the image data
  • An extraction unit that separates and extracts a liver parenchymal region, a tumor, and a blood vessel from a blood vessel control
  • an X-ray CT apparatus provided with the image processing apparatus.
  • the image processing apparatus executes the step of obtaining image data depicting the inside of the subject including the liver and liver reserve data which is data relating to the local reserve of the liver, and the liver parenchymal region from the image data,
  • a step of separating and extracting tumors and blood vessels, a step of calculating each of the dominant regions of arteries and veins in the extracted liver parenchymal region based on the liver reserve data, and the arrangement of the calculated dominant regions and the tumor An image processing method comprising: determining a blood vessel cutting position and a hepatectomy line based on the step; and displaying the blood vessel cutting position and the hepatectomy line on a display device.
  • the present invention can provide an image processing apparatus, an X-ray CT apparatus, and an image processing method capable of obtaining and presenting an optimal hepatectomy line for a tumor.
  • Diagram showing the overall configuration of the X-ray CT apparatus 1 The block diagram which shows the function structure of the image processing apparatus 122 Flow chart explaining the flow of hepatectomy region determination processing Example of hepatic parenchymal region 11, arteries 21 to 23, veins 31 to 33, and tumor 41 isolated and extracted from the image
  • region The figure explaining the method of calculating the boundary 25 of an arterial control area
  • Diagram showing blood stasis area 71 Diagram showing blood vessel cutting position (arterial / venous cutting position) 81, 82 and hepatectomy region 83 Diagram showing blood vessel cutting position (arterial / venous cutting position) 91, 92 and hepatectomy region 93 Diagram showing blood vessel cutting positions (arterial / venous cutting positions) 91, 1001, hepatectomy region 1002, and hepatectomy line 1003 Diagram explaining how to determine the hepatectomy line Diagram showing the determined hepatectomy region 1201
  • the figure explaining the determination method of the blood vessel cutting position and the hepatectomy line according to the arrangement of the tumor The figure explaining the determination method of the blood vessel cutting position and the hepatectomy line according to the arrangement of the tumor
  • the X-ray CT apparatus 1 includes a scan gantry unit 100, a bed 105, and a console 120.
  • the scan gantry unit 100 is an apparatus that irradiates a subject with X-rays and detects X-rays transmitted through the subject.
  • the console 120 is a device that controls each part of the scan gantry unit 100, acquires transmission X-ray data measured by the scan gantry unit 100, and generates an image.
  • the bed 105 is a device that places a subject on the bed and carries the subject in and out of the X-ray irradiation range of the scan gantry unit 100.
  • the scan gantry unit 100 includes an X-ray source 101, a turntable 102, a collimator 103, an X-ray detector 106, a data collection device 107, a gantry control device 108, a bed control device 109, and an X-ray control device 110.
  • the console 120 includes an input device 121, an image processing device 122, a storage device 123, a system control device 124, and a display device 125.
  • the rotating plate 102 of the scan gantry unit 100 is provided with an opening 104, and the X-ray source 101 and the X-ray detector 106 are arranged to face each other through the opening 104.
  • the subject placed on the bed 105 is inserted into the opening 104.
  • the turntable 102 rotates around the subject by a driving force transmitted from the turntable drive device through a drive transmission system.
  • the turntable driving device is controlled by a gantry control device.
  • the X-ray source 101 is controlled by the X-ray control device 110 to irradiate X-rays having a predetermined intensity continuously or intermittently.
  • the X-ray controller 110 controls the X-ray tube voltage and the X-ray tube current applied or supplied to the X-ray source 101 according to the X-ray tube voltage and the X-ray tube current determined by the system controller 124 of the console 120. To do.
  • a collimator 103 is provided at the X-ray irradiation port of the X-ray source 101.
  • the collimator 103 limits the irradiation range of the X-rays emitted from the X-ray tube 101. For example, it is formed into a cone beam (conical or pyramidal beam).
  • the opening width of the collimator 103 is controlled by the system controller 124.
  • the X-ray detector 106 is a two-dimensional array of X-ray detection element groups configured by, for example, a combination of a scintillator and a photodiode, in the channel direction (circumferential direction) and the column direction (body axis direction).
  • the X-ray detector 106 is disposed so as to face the X-ray source 101 through the subject.
  • the X-ray detector 106 detects the X-ray dose irradiated from the X-ray source 101 and transmitted through the subject, and outputs it to the data collection device 107.
  • the data collection device 107 collects X-ray doses detected by the individual X-ray detection elements of the X-ray detector 106, converts them into digital signals, and sequentially outputs them to the image processing device 122 of the console 120 as transmitted X-ray data. To do.
  • the image processing device 122 is a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the image processing device 122 acquires transmission X-ray data input from the data collection device 107, and performs preprocessing such as logarithmic conversion and sensitivity correction to create projection data necessary for reconstruction.
  • the image processing apparatus 122 reconstructs an image depicting the inside of the subject such as a tomogram using the generated projection data.
  • the system control device 124 stores the image data reconstructed by the image processing device 122 in the storage device 123 and displays it on the display device 125.
  • the image processing apparatus 122 executes a process for determining a blood vessel cutting position and a hepatectomy line (hepatectomy area determination process) in the hepatectomy using the reconstructed image data. Details of the hepatectomy region determination process will be described later (see FIG. 3).
  • the system control device 124 is a computer that includes a CPU, a ROM, a RAM, and the like.
  • the storage device 123 is a data recording device such as a hard disk, and stores programs, data, and the like for realizing the functions of the X-ray CT apparatus 1 in advance.
  • the display device 125 includes a display device such as a liquid crystal panel and a CRT monitor, and a logic circuit for executing display processing in cooperation with the display device, and is connected to the system control device 124.
  • the display device 125 displays the image data output from the image processing device 122 and various information handled by the system control device 124.
  • the input device 121 includes, for example, a keyboard, a pointing device such as a mouse, a numeric keypad, and various switch buttons, and outputs various instructions and information input by the operator to the system control device 124.
  • the operator operates the X-ray CT apparatus 1 interactively using the display device 125 and the input device 121.
  • the input device 121 may be a touch panel type input device configured integrally with the display screen of the display device 125.
  • the couch 105 includes a couch for placing a subject, a vertical movement device, and a couch drive device.
  • the couch control device 109 controls the couch height to move up and down and move back and forth in the body axis direction. Or move left and right in the direction perpendicular to the body axis and parallel to the floor (left and right direction).
  • the couch controller 109 moves the couch at the couch moving speed and moving direction determined by the system controller 124.
  • the image processing apparatus 122 includes a data acquisition unit 122a, an extraction unit 122b, a blood vessel dominating region calculation unit 122c, a hepatectomy line determination unit 122d, a display unit 122e, and an input unit 122f.
  • the data acquisition unit 122a acquires image data depicting the inside of the subject including the liver and liver reserve data that is data related to the local reserve of the liver.
  • the image data is three-dimensional original image data obtained by stacking a plurality of tomographic images obtained by imaging a subject using an X-ray CT apparatus, an MR apparatus, or the like.
  • a case where the input image is a CT image will be described as an example.
  • Liver reserve data is data indicating the local reserve capability of the liver as described above. Specifically, the contrast agent diffusion rate at any plurality of points in the liver parenchyma region (see FIG. 6), and a line connecting the points of the liver parenchyma region where the contrast agent flowing out from each blood vessel reaches the same time (hereinafter, This is referred to as “contrast arrival time contour line” (see FIG. 17).
  • the contour lines of the contrast medium diffusion speed and the contrast medium arrival time are calculated from the contrast medium monitoring data measured at the time of imaging. Specific examples of the contrast medium monitoring data include TDC (Time Density Curve).
  • the data acquisition unit 122a acquires the contrast medium diffusion speed, the contrast medium arrival time contours, and the like together with the image data as hepatic reserve capacity data.
  • the data acquisition unit 122a acquires the contrast medium monitoring data at the time of image capturing, and the contour line of the contrast medium diffusion speed and the contrast medium arrival time. Calculate liver reserve capacity data.
  • the extraction unit 122b separates and extracts each organ such as blood vessels including liver parenchyma, tumor, and arteriovenous based on the luminance value of the image data.
  • each organ such as blood vessels including liver parenchyma, tumor, and arteriovenous based on the luminance value of the image data.
  • segmentation is a method of extracting an area by binarizing an image with a threshold value.
  • Region glowing is a method that compares the brightness value of an arbitrary pixel with the brightness values of its surrounding pixels, and extracts a region while combining pixels as the same region if the difference between the two is equal to or less than a set threshold value. .
  • the blood vessel dominating region calculating unit 122c calculates the dominating region of each blood vessel in the liver parenchymal region extracted by the extracting unit 122b based on the above-mentioned liver reserve data. Further, the blood vessel dominating region calculation unit 122c acquires the contrast medium monitoring data as necessary, and based on the contrast medium monitoring data, hepatic reserve capacity data such as the contrast medium diffusion speed and the contour line of the arrival time at each point of the image is obtained. calculate.
  • the hepatectomy line determination unit 122d determines the vascular cutting position where the hepatectomy region is minimized based on the control region of each blood vessel calculated by the blood vessel control region calculation unit 122c and the arrangement of the tumor.
  • a nutritional blood vessel of a tumor to be excised is identified, a branching point of the nutritional blood vessel is obtained, each control region of the artery and vein extending from the branching point is specified, and the arterial control region and The overlapping portion of the vein-dominated region is defined as a blood stagnation region.
  • a blood vessel cutting position for excising the tumor and the blood stagnation region is set, and an optimal hepatectomy line is calculated at the set blood vessel cutting position.
  • the hepatectomy line determination unit 122d calculates the volume of the hepatectomy region (hepatectomy volume) and the volume of the blood stasis region (blood stasis capacity) according to the blood vessel cutting position.
  • the hepatectomy line determination unit 122d executes a process for minimizing the hepatectomy region so that the blood stasis capacity is minimized.
  • the blood vessel cutting position of the artery that is the feeding blood vessel is moved from, for example, the vicinity of the branch point of the blood vessel toward the distal side, and the hepatectomy line that minimizes the blood stasis capacity while excising the tumor is obtained. decide.
  • the display unit 122e displays the blood vessel cutting position and the hepatectomy line (or hepatectomy region) determined by the hepatectomy region determination unit 122d on the image. At this time, the relationship between the blood vessel cutting position and the blood stasis region may be shown, or the hepatectomy volume may be displayed.
  • the input unit 122f receives input of designation of a blood vessel cutting position and various parameters used for calculation of a hepatectomy region.
  • the image processing apparatus 122 first acquires image data such as a CT image including a liver region and liver reserve capacity data (step S101).
  • the image processing device 122 separates and extracts liver parenchyma, blood vessels, and tumor from the input image data (steps S102 to S104).
  • the blood vessels extracted in step S103 are arteries 21, 22, and 23 including portal veins and veins 31, 32, and 33 as shown in FIG.
  • 11 indicates the liver parenchyma and 41 indicates the tumor.
  • Extraction of each organ in steps S102 to S104 may be performed by a known method such as segmentation or region growing.
  • the threshold used for organ extraction may be input by the operator via the input device 121 or the like, or may be a preset value.
  • the image processing apparatus 122 identifies a nutritional blood vessel that supplies nutrition to the tumor 41 to be excised (step S105).
  • the method described in Patent Document 2 may be used for the nutritional blood vessel specifying process. Specifically, a processing start point for specifying a blood vessel connected to a tumor is set, and a nutrient blood vessel is specified by a technique such as region growing.
  • the image processing device 122 calculates a branch point of the blood vessel (step S106).
  • the blood vessel branch points shown in FIG. 4 include an arterial branch point 24 and a venous branch point 34.
  • the image processing device 122 calculates the core line of each blood vessel extracted in step S103, and sets the branch part of the core line as the arterial branch point 24 and the vein branch point 34, respectively.
  • the image processing apparatus 122 identifies the control region of each blood vessel (step S107, step S108).
  • the arterial control region is referred to as an arterial control region
  • the vein control region is referred to as a vein control region.
  • the arterial control region is determined by the arterial control regions 26 and 27 of the adjacent arteries 22 and 23 and the boundary 25 of the arterial control region.
  • the image processing device 122 acquires or calculates liver reserve capacity data that is data related to the local reserve capacity of the liver, and uses the liver reserve capacity data to determine the arterial dominance area (arteries 22, Each of the 23 arterial control regions 26 and 27 and the boundary 25) of the arterial control region are determined.
  • FIG. 6 (a) shows time series data (TDC; Time Density Curve) indicating the contrast agent arrival time in each pixel
  • FIG. 6 (b) shows calculation points A, B, and C set in the vicinity of the arteries 22 and 23. , D.
  • the image processing device 122 calculates the contrast agent diffusion speed around each blood vessel from the TDC peak time tp at each calculation point and the distance between the two points (distance between point A and point B, distance between point C and point D). .
  • the contrast medium diffusion rate at the point A in the vicinity of the artery 22 can be obtained from the following equation (1).
  • the contrast agent diffusion rate at point C in the vicinity of the artery 23 can be obtained from the following equation (2).
  • the image processing device 122 obtains the ratio of the contrast agent diffusion speed at the points A and C in the vicinity of the arteries 22 and 23, and the obtained ratio is the distance d1 from the artery 22 to the boundary 25 of the arterial control region and the artery 23 to the artery.
  • the artery control region boundary 25 is calculated so as to have a ratio to the distance d2 to the control region boundary 25.
  • the following equation (3) is an equation representing the ratio of the distance d1 from the artery 22 to the boundary 25 of the arterial dominating region and the distance d2 from the artery 23 to the boundary 25 of the arterial dominating region.
  • the ranges from the calculated boundary 25 of the arterial dominating region to the respective arteries 22 and 23 are defined as arterial dominating regions 26 and 27 that are symmetrically expanded around the arteries 22 and 23, respectively.
  • two points A and B (or points C and D) on the line perpendicular to the blood vessel core line from the blood vessel cross-sectional position separated from the branch points of the arteries 22 and 23 by a predetermined distance are calculated points.
  • An example is shown.
  • the image processing device 122 sets calculation points in the same way at each blood vessel cross-sectional position from the branch point to the end of each blood vessel, and based on the ratio of the contrast agent diffusion speed at each calculation point, the boundary between the artery and the arterial control region A distance ratio up to 25 (distance d1: d2) is obtained, and thereby the position of the boundary 25 at each blood vessel cross-sectional position is calculated.
  • calculation points are not limited to the example of being points on a line perpendicular to the blood vessel core line.
  • calculation points are set radially from the blood vessel core line, or calculation points (points A, B, C, D) are set on points on a plurality of parallel lines set at equal intervals from the branch points 24 of the arteries 22, 23, respectively. ) May be set.
  • the image processing apparatus 122 similarly identifies the vein-dominated region (the boundary 35 of the vein-dominated region and the vein-dominated regions 36, 37) of each vein 32, 33 for the vein (step S108).
  • FIG. 7 is a diagram showing the vein-dominated region (the boundary 35 of the vein-dominated region and the vein-dominated regions 36 and 37).
  • the image processing device 122 After calculating the artery-dominated region and the vein-dominated region, the image processing device 122 next identifies the blood stagnation region 71 (step S109).
  • FIG. 8 is a diagram showing the arterial dominating region of FIG. 5 and the venous dominating region of FIG. 7 in an overlapping manner
  • FIG. 9 shows a blood stagnation region 71 when the vein 33 is excised in the vicinity of a branch point.
  • the blood stagnation region 71 is a region that becomes congested because there is no vein from which blood flowing in from the artery flows out when the vein is excised. That is, the blood stagnation region 71 is determined by the positional relationship between the artery-dominated region and the vein-dominated region and the blood vessel cutting position.
  • the blood stagnation region when the vein 33 is removed from the vicinity of the branch point 34 is a region 71 where the arterial control region 27 and the vein control region 37 overlap.
  • the image processing device 122 sets the cutting position of each blood vessel (step S110).
  • FIG. 10 shows a hepatectomy region when an arterial cutting position (blood vessel cutting position) 81 is set near the arterial branch point 24 and a venous cutting position (blood vessel cutting position) 82 is set near the venous branch point 34.
  • the image processing apparatus 122 sets a cutting position (arterial cutting position) 81 at a position close to the branch point 24 of the artery 22 that is a feeding blood vessel of the tumor 41.
  • the vein cutting position 82 is set on a line perpendicular to the core line of the vein 33.
  • the core wire of the vein 33 is obtained at the time of calculation in step S105.
  • the image processing apparatus 122 calculates a hepatectomy line at the blood vessel cutting position set in step S110 (step S111).
  • a hepatectomy line (line surrounding the hepatectomy area 83) is defined as an area 83 surrounded by the arterial control area 26, the blood stasis area 71, the extension line of the arterial cutting position 81, and the extension line of the venous cutting position 82. calculate.
  • the image processing apparatus 122 calculates the hepatectomy volume and the blood stasis capacity in the hepatectomy line calculated in step S111 (step S112), and stores them in the RAM or the like. Then, it is determined whether or not minimization of the hepatectomy region (minimization of blood stasis capacity) is possible (step S113).
  • the artery cutting position 81 can be moved from the position of the tumor 41 to the distal side, or if the artery cutting position 81 has reached the movement limit to the distal side, the vein It is determined whether the cutting position 82 can be moved to the distal side independently. When any one of these conditions is satisfied, it is determined that the blood stasis capacity can be reduced and the hepatectomy region can be minimized.
  • the image processing apparatus 122 performs the liver resection area minimization process. Specifically, the process returns to step S110, and the arterial cutting position (blood vessel cutting position) 91 is moved to the distal side along the core line of the artery 22 as shown in FIG.
  • the arterial cutting position 91 is automatically set from the position of the tumor 41 and a preset tumor margin.
  • the vein cutting position (blood vessel cutting position) 92 at this time is set on a line perpendicular to the core line of the artery 22 at the artery cutting position 91 after movement.
  • the hepatectomy region 93 is determined, and the hepatectomy line is calculated from the hepatectomy region 93.
  • the image processing apparatus 122 calculates the hepatectomy volume and the blood stasis capacity when excision is performed on the calculated hepatectomy line, and stores it in the RAM (steps S110 to S112).
  • the cutting position of the artery is determined.
  • the image processing device 122 further determines whether or not the liver resection region can be minimized (step S113), and performs the minimization processing if possible.
  • the image processing device 122 fixes only the venous cutting position (blood vessel cutting position) 1001 along the core line of the vein 33 while the arterial cutting position 91 is fixed as shown in FIG. Move to the distal side.
  • the region 1002 is the hepatectomy region when the position 1001 is set as the vein cutting position.
  • the image processing apparatus 122 calculates the hepatectomy line 1003 from the hepatectomy region 1002, calculates the hepatectomy volume and blood stasis capacity when the hepatectomy line 1003 is excised, and stores it in the RAM.
  • the vein resection position 1001 reaches the vicinity of the end of the vein 33.
  • the image processing apparatus 122 may further search for a hepatectomy line that eliminates the need for cutting the vein 33 from this state. That is, it is determined whether or not the vein 33 needs to be excised from the traveling direction of the distal end portion of the vein 33 and the positional relationship with another tumor.
  • the hepatectomy line 1003 can be set as the position of the boundary 25 (line 1105 in FIG. 13) of the arterial region of the artery 22. As shown in FIG. 14, the hepatectomy region 1201 can be further reduced.
  • the search for the hepatectomy line may be performed by a method such as adjusting (rotating) the angle of the line indicating the vein cutting position 1001 to positions 1102, 1103, 1104, and 1105 as shown in FIG. If it is known in advance that there is no tumor in the blood stagnation region 71, the angle of the line indicating the vein cutting position 1001 may be switched to the position of the boundary 25.
  • the image processing apparatus 122 determines a hepatectomy line in consideration of the position of the tumor 42.
  • the hepatic resection region 1301 is determined so that the vein 33 is not excised but the tumor 42 is included.
  • the hepatectomy line 1403 may be set so as to include the tumor 43 by adjusting (rotating) the angle of the hepatectomy line near the vein cutting position (blood vessel cutting position) 1401. Thereby, it is possible to minimize the blood stagnation region and the hepatectomy region while resecting a plurality of tumors.
  • each blood vessel and the hepatectomy line where the blood stagnation volume is minimized are determined by the minimization process in steps S110 to S113 (step S114).
  • the image processing device 122 displays on the image the blood vessel cutting position and the hepatectomy line determined in the processing of steps S101 to S114 (step S115). At this time, it is desirable to further display the hepatectomy volume calculated in step S112.
  • the procedure (Fig. 10) for determining the blood stasis capacity by placing the blood vessel cutting position at the branch point is omitted, and the arterial cutting position is set near the tumor 41 from the beginning to determine the blood stasis capacity, and the minimization process is performed. It may be a procedure to start.
  • the image processing apparatus 122 acquires the liver reserve capacity data, which is image data depicting the inside of the subject including the liver and data related to the local reserve capacity of the liver, A liver parenchyma region, a tumor, and a blood vessel are separated and extracted from the image data, and the dominant regions of the artery and vein in the extracted liver parenchyma region are calculated based on the liver reserve data. Then, the blood vessel cutting position and the hepatectomy line that minimize the hepatic resection region are determined based on the calculated arrangement of each dominant region and the tumor, and the determined blood vessel cutting position and the hepatectomy line are displayed on the display device 125.
  • the liver reserve capacity data is image data depicting the inside of the subject including the liver and data related to the local reserve capacity of the liver
  • a liver parenchyma region, a tumor, and a blood vessel are separated and extracted from the image data, and the dominant regions of the artery and vein in the extracted liver parenchyma region are calculated based on the liver reserve data.
  • the image processing device 122 may correct the blood vessel cutting position and the hepatectomy line based on clinical data related to the tumor. That is, the data acquisition unit 122a acquires the clinical data regarding the extracted tumor as a correction parameter related to the determination of the blood vessel cutting position and the hepatectomy line, and the hepatectomy line determination unit 122d further determines the hepatectomy region based on the correction parameter. It is desirable to determine the minimal vessel cutting position and hepatectomy line.
  • Clinical data regarding tumors include, for example, tumor size, position, degree of growth, excision time, excision range, excision volume, and the like.
  • Clinical data relating to this tumor is stored in, for example, a database for managing patient diagnosis information.
  • the data acquisition unit 122a reads the clinical data of the patient as a correction parameter from the database.
  • the hepatectomy line determination unit 122d may calculate the hepatectomy line according to the operation time of the tumor and the operation time based on the past clinical data.
  • the image processing device 122 calculates using the contrast agent diffusion rate ratio, but in the second embodiment, Furthermore, it is desirable to calculate the blood vessel dominating region in consideration of the blood vessel diameter.
  • the image processing apparatus 122 first sets at least two points (point A and point B, point C and point D) on a line perpendicular to each blood vessel core line as shown in FIG.
  • the contrast agent diffusion rates at points A and C are obtained from the peak time tp (FIG. 6 (a)) and the distance between two points (distance between point A and point B, distance between point C and point D).
  • the contrast agent diffusion rate at the point A in the vicinity of the artery 22 is obtained from the above equation (1), and the contrast agent diffusion rate at the point C in the vicinity of the artery 23 is obtained from the above equation (2).
  • the image processing device 122 calculates the boundary 25 between the control regions of the arteries 22 and 23 in consideration of the contrast agent diffusion speed and the blood vessel diameter at the points A and C in the vicinity of the arteries 22 and 23.
  • the following equation (4) is an equation representing the ratio of the distance d1 from the artery 22 to the boundary 25 of the arterial dominating region and the distance d2 from the artery 23 to the boundary 25 of the arterial dominating region.
  • the diameter of the blood vessel is the diameter at the cross-sectional position on the perpendicular drawn from the calculation point to the blood vessel core line.
  • the contrast medium flow rate varies depending on the blood vessel diameter.
  • the blood vessel dominating region can be calculated more accurately.
  • the image processing device 122 calculates, as liver reserve data, contour lines of arrival time for the contrast medium flowing out from each blood vessel to reach each point in the liver parenchymal region, and the contour lines for each blood vessel are calculated.
  • the intersecting boundary may be the boundary of the blood vessel dominating region.
  • FIG. 17 (a) shows time-series data (TDC) indicating the contrast medium arrival time at each pixel
  • FIG. 17 (b) shows the contrast medium flowing out from the arteries 22 and 23 reaching each point in the liver parenchyma region. It is a figure which shows the contour line which connects the points with equal arrival time tp. This contour line represents the diffusion state of the contrast agent.
  • the image processing device 122 sets a point where the contour lines generated from the artery 22 and the artery 23 intersect as a boundary 25 of the blood vessel control region.
  • the contour line of the contrast medium arrival time is also obtained for the liver parenchymal region around the vein, and the point where the contour lines generated from the blood vessel 32 and the vein 33 intersect is defined as the boundary 35 of the blood vessel control region.
  • the diffusion state of the contrast agent is obtained from the distribution of the contrast agent arrival time at each point around the blood vessel, finer local liver reserve data can be obtained. Thereby, a more accurate blood vessel dominating region can be obtained.
  • FIG. 18 is a diagram showing a user interface suitable for the hepatectomy region determination process executed by the image processing apparatus 122 of the present invention.
  • 18 has an image display area 51, a parameter setting area 52, an image selection area 53, a retouch instruction button 54, and the like.
  • the image 61 to be processed is displayed in the format selected in the image selection area 53. For example, if “3D” is selected in the image selection area 53, a 3D image created based on the original three-dimensional original image data is displayed. If “MPR” is selected in the image selection area 53, an MPR (Multi-Planar Reconstruction) image created based on the original three-dimensional original image data is displayed.
  • MPR Multi-Planar Reconstruction
  • blood vessels or tumors extracted by the extraction processing in steps S102 to S104 in FIG. 3 may be clearly shown so as to be distinguishable from the liver parenchyma.
  • lines 62 and 63 indicating the blood vessel cutting positions calculated in step S110 of FIG. 3 are displayed on each blood vessel. Further, it is desirable that the hepatectomy region 66 corresponding to the blood vessel cutting position is clearly indicated by a mask display or the like, or the hepatectomy line is clearly indicated.
  • each region is clearly shown on the image 61, such as a translucent mask superimposed on the blood vessel dominating region 64 calculated in step S107 and step S108, the line 67 indicating the boundary, and the blood stasis region 65 calculated in step S109. It is desirable.
  • the lines 62 and 63 indicating the blood vessel cutting position and the boundary line 67 are movable with a mouse or the like. When each line is moved, the hepatectomy region 66, the blood stagnation region 65, and the like are updated according to the line position.
  • the parameter setting area 52 is provided with an input field for receiving input of various parameters used in the hepatectomy region determination process.
  • the parameters include, for example, hepatectomy volume, arterial cutting position (X, Y, Z), venous cutting position (X, Y, Z), tumor margin, and the like.
  • the image selection area 53 is displayed so that the type of image displayed in the image display area 51 can be selected.
  • the types of images are not limited to 3D and MPR, and may include various images that can be created based on 3D original image data.
  • the retouch instruction button 54 is operated when an image displayed in the image display area 51 is updated. That is, when the retouch instruction button 54 is pressed after moving the lines 62 and 63 indicating the blood vessel cutting position, the boundary line 67, and the like, the image processing device 122 displays the hepatectomy capacity of the hepatectomy region according to the line position after the movement, The blood stagnation volume is recalculated, and the shape of the mask indicating each region is changed.
  • the blood vessel cutting position can be specified for the displayed image data using the input device 121 such as a mouse. Further, when determining the hepatectomy line, the image processing apparatus 122 determines the hepatectomy line that minimizes the resection volume (blood stasis capacity) at the vascular cutting position specified on the image, and performs the vascular cutting on the operation screen 5. Update the display of position, hepatectomy line, and resection volume. Thus, since a user interface suitable for the hepatectomy region determination process can be provided, the operability can be improved.
  • the hepatectomy region determination process described in each of the above embodiments may be executed by a general computer instead of the image processing apparatus 122 provided in the X-ray CT apparatus 1. Further, the system control device 124 of the X-ray CT apparatus 1 may perform the hepatectomy region determination process described in each of the above embodiments.
  • 1 X-ray CT device 100 scan gantry unit, 101 X-ray source, 102 turntable, 104 opening, 105 bed, 106 X-ray detector, 107 data collection device, 120 console, 121 input device, 122 image processing device , 123 storage device, 124 system control device, 125 display device, 25 arterial control region boundary, 26, 27 arterial control region, 35 vein control region boundary, 36, 37 vein control region, 41, 42 tumor, 5 operation screen , 61 Image data, 71 Blood stagnation area, 81, 82, 91, 92, 1001, 1401 Blood vessel cutting position, 83, 93, 1002, 1201, 1301, 1404 Hepatectomy area

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The purpose of the invention is to provide an image processing device, an X-ray CT device, and an image processing method which are capable of determining and showing the optimal liver resection line for a tumor. The image processing device 122 acquires image data depicting the interior of a subject including the liver and hepatic reserve data that is data relating to regional hepatic reserve; separates and extracts a liver parenchymal area, the tumor, and blood vessels from the image data; calculates a dominant region for arteries and for veins in the extracted liver parenchymal area on the basis of the hepatic reserve data; determines, on the basis of the locations of the calculated dominant regions and tumor, blood vessel cutting positions and a liver resection line which minimize a liver resection region by minimizing the liver resection region so that blood stasis volume is minimized; and displays the determined blood vessel cutting positions and liver resection line on a display device 125.

Description

画像処理装置、X線CT装置、及び画像処理方法Image processing apparatus, X-ray CT apparatus, and image processing method

 本発明は、画像処理装置、X線CT装置、及び画像処理方法に係り、詳細には、CT画像からの臓器抽出及び抽出臓器の画像処理技術に関する。 The present invention relates to an image processing apparatus, an X-ray CT apparatus, and an image processing method, and more particularly to an organ extraction from a CT image and an image processing technique of the extracted organ.

 X線CT装置で得られる画像は被検体内の臓器の形状を描写するものであり、画像診断に使用される。近年は、特許文献1に記載されるようにX線CT装置で撮影した画像を利用して、例えば肝臓等の臓器の切除領域をシミュレーション表示することが可能となり、手術計画に役立てられている。 An image obtained with an X-ray CT apparatus describes the shape of an organ in a subject and is used for diagnostic imaging. In recent years, as described in Patent Document 1, it is possible to display a simulation of an excision region of an organ such as a liver by using an image taken by an X-ray CT apparatus, which is useful for an operation plan.

 肝切除術には、非系統的肝切除と系統的肝切除がある。非系統的肝切除は、核出術と部分切除があり、核出術は腫瘍のみを切除するのに対し、部分切除は腫瘍にマージンを設け、腫瘍とマージンを含む領域を切除する。系統的切除は葉切除と区域切除と亜区域切除とがある。これらは、腫瘍の位置や大きさや個数並びに肝機能(肝予備能)を考慮し決定される。また、切除される肝実質の容量は小さい方が望ましいとされている。 Hepatectomy includes non-systematic hepatectomy and systematic hepatectomy. Non-systematic hepatectomy includes enucleation and partial resection, where enucleation removes only the tumor, while partial resection provides a margin for the tumor and removes the tumor and the area containing the margin. Systematic excision includes lobectomy, segmental excision, and subsegmental excision. These are determined in consideration of the position, size and number of tumors and liver function (liver reserve capacity). Also, it is desirable that the volume of the liver parenchyma to be excised is smaller.

 系統的切除を行うための手術計画においては、肝実質の肝切除ラインを決定するとともに切断(結紮)する血管を特定し、切断位置を決定する必要がある。従来技術では、切断は血管の枝単位とし、切断位置を血管の分枝点に設定するため、血管が複数の領域(葉、区域、亜区域)に跨る場合は一旦血管を切除し、その後、血管再建術を施すことがある。特許文献1には、動脈支配領域と静脈支配領域を特定し、これらの情報に基づいて切除領域を特定し、シミュレーション表示する処理について記載されている。
 被検体の負担を軽減するためには、肝実質の切除容量を小さくすることが望まれる。
In an operation plan for systematic resection, it is necessary to determine a hepatic resection line of the liver parenchyma, identify a blood vessel to be cut (ligated), and determine a cutting position. In the prior art, the cutting is performed on a branch unit of the blood vessel, and the cutting position is set to the branch point of the blood vessel, so when the blood vessel spans multiple regions (leaves, sections, sub-sections), the blood vessel is once excised, and then Vascular reconstruction may be done. Patent Document 1 describes a process of specifying an arterial control region and a vein control region, specifying an ablation region based on these information, and displaying the simulation.
In order to reduce the burden on the subject, it is desirable to reduce the resection capacity of the liver parenchyma.

特開2004-337257号公報JP 2004-337257 A 特開2008-307145号公報JP 2008-307145 JP

 特許文献1の手法では、切断を枝単位とし、分枝点を切断位置としている。そのため、肝実質の切除容量は必ずしも最小容量とはならない。また、特許文献1では複数の血管とその血管径の関係から支配領域を算出しているが、これは肝実質の予備能が場所によって一定であると仮定した場合である。肝実質の予備能は場所によって一定であるとは限らず、切除容量をより正確に最小化するためには、局所的な肝予備能変化を考慮して血管切断位置や肝切除領域を決定する必要がある。 In the method of Patent Document 1, the cutting is set as a branch unit, and the branch point is set as the cutting position. Therefore, the resection volume of the liver parenchyma is not necessarily the minimum volume. In Patent Document 1, the dominant region is calculated from the relationship between a plurality of blood vessels and their blood vessel diameters. This is a case where the reserve capacity of the liver parenchyma is assumed to be constant depending on the location. Liver parenchymal reserve is not always constant, and in order to more accurately minimize excision volume, determine vascular cutting position and hepatectomy region considering local liver reserve changes There is a need.

 本発明は、以上の問題点に鑑みてなされたものであり、腫瘍に対し最適な肝切除ラインを求め、提示することが可能な画像処理装置、X線CT装置、及び画像処理方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides an image processing apparatus, an X-ray CT apparatus, and an image processing method capable of obtaining and presenting an optimal hepatectomy line for a tumor. For the purpose.

 前述した目的を達成するために本発明は、肝臓を含む被検体内部を描出した画像データ及び肝臓の局所的な予備能に関するデータである肝予備能データを取得するデータ取得部と、前記画像データから肝実質領域、腫瘍、及び血管を分離抽出する抽出部と、抽出した肝実質領域における動脈及び静脈の各支配領域を前記肝予備能データに基づいて算出する血管支配領域算出部と、算出した各支配領域と前記腫瘍との配置に基づいて血管切断位置及び肝切除ラインを決定する肝切除ライン決定部と、前記血管切断位置及び肝切除ラインを表示する表示部と、を備えることを特徴とする画像処理装置である。 In order to achieve the above-described object, the present invention provides a data acquisition unit that acquires image data depicting the inside of a subject including the liver and liver reserve data that is data related to a local reserve of the liver, and the image data An extraction unit that separates and extracts a liver parenchymal region, a tumor, and a blood vessel from a blood vessel control region calculation unit that calculates each control region of an artery and a vein in the extracted liver parenchymal region based on the liver reserve capacity data; A hepatectomy line determination unit that determines a vascular cutting position and a hepatectomy line based on the arrangement of each dominant region and the tumor, and a display unit that displays the vascular cutting position and the hepatectomy line. An image processing apparatus.

 また、前記画像処理装置を備えたX線CT装置である。 Also, an X-ray CT apparatus provided with the image processing apparatus.

 また、画像処理装置が実行する、肝臓を含む被検体内部を描出した画像データ及び肝臓の局所的な予備能に関するデータである肝予備能データを取得するステップと、前記画像データから肝実質領域、腫瘍、及び血管を分離抽出するステップと、抽出した肝実質領域における動脈及び静脈の各支配領域を前記肝予備能データに基づいて算出するステップと、算出した各支配領域と前記腫瘍との配置に基づいて血管切断位置及び肝切除ラインを決定するステップと、前記血管切断位置及び肝切除ラインを表示装置に表示させるステップと、を含むことを特徴とする画像処理方法である。 Further, the image processing apparatus executes the step of obtaining image data depicting the inside of the subject including the liver and liver reserve data which is data relating to the local reserve of the liver, and the liver parenchymal region from the image data, A step of separating and extracting tumors and blood vessels, a step of calculating each of the dominant regions of arteries and veins in the extracted liver parenchymal region based on the liver reserve data, and the arrangement of the calculated dominant regions and the tumor An image processing method comprising: determining a blood vessel cutting position and a hepatectomy line based on the step; and displaying the blood vessel cutting position and the hepatectomy line on a display device.

 本発明により、腫瘍に対し最適な肝切除ラインを求め、提示することが可能な画像処理装置、X線CT装置、及び画像処理方法を提供できる。 The present invention can provide an image processing apparatus, an X-ray CT apparatus, and an image processing method capable of obtaining and presenting an optimal hepatectomy line for a tumor.

X線CT装置1の全体構成を示す図Diagram showing the overall configuration of the X-ray CT apparatus 1 画像処理装置122の機能構成を示すブロック図The block diagram which shows the function structure of the image processing apparatus 122 肝切除領域決定処理の流れを説明するフローチャートFlow chart explaining the flow of hepatectomy region determination processing 画像から分離抽出された肝実質領域11、動脈21~23、静脈31~33、及び腫瘍41の例Example of hepatic parenchymal region 11, arteries 21 to 23, veins 31 to 33, and tumor 41 isolated and extracted from the image 動脈22、23の動脈支配領域26、27及び動脈支配領域の境界25を示す図The figure which shows the boundary 25 of arterial control area | regions 26 and 27 of arteries 22 and 23, and arterial control area | region 造影剤拡散速度に基づいて動脈支配領域の境界25を算出する方法について説明する図The figure explaining the method of calculating the boundary 25 of an arterial control area | region based on contrast agent diffusion speed 静脈32、33の静脈支配領域36、37及び静脈支配領域の境界35を示す図The figure which shows the vein control area | regions 36 and 37 of the veins 32 and 33, and the boundary 35 of the vein control area 図5、図7に示す動脈支配領域26、27、静脈支配領域36、37を重ねて表した図A diagram in which the arterial control regions 26 and 27 and the vein control regions 36 and 37 shown in FIGS. 5 and 7 are overlapped. 血液うっ滞領域71を示す図Diagram showing blood stasis area 71 血管切断位置(動脈/静脈切断位置)81、82と肝切除領域83を示す図Diagram showing blood vessel cutting position (arterial / venous cutting position) 81, 82 and hepatectomy region 83 血管切断位置(動脈/静脈切断位置)91、92と肝切除領域93を示す図Diagram showing blood vessel cutting position (arterial / venous cutting position) 91, 92 and hepatectomy region 93 血管切断位置(動脈/静脈切断位置)91、1001、肝切除領域1002、及び肝切除ライン1003を示す図Diagram showing blood vessel cutting positions (arterial / venous cutting positions) 91, 1001, hepatectomy region 1002, and hepatectomy line 1003 肝切除ラインの決定方法を説明する図Diagram explaining how to determine the hepatectomy line 決定された肝切除領域1201を示す図Diagram showing the determined hepatectomy region 1201 腫瘍の配置に応じた血管切断位置及び肝切除ラインの決定方法について説明する図The figure explaining the determination method of the blood vessel cutting position and the hepatectomy line according to the arrangement of the tumor 腫瘍の配置に応じた血管切断位置及び肝切除ラインの決定方法について説明する図The figure explaining the determination method of the blood vessel cutting position and the hepatectomy line according to the arrangement of the tumor 造影剤の到達時間の等高線により血管支配領域を決定する方法について説明する図The figure explaining the method of determining the blood vessel dominating region by the contour line of the arrival time of the contrast agent 操作画面5の一例を示す図Figure showing an example of the operation screen 5

 以下図面に基づいて、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

 [第1の実施の形態]
 まず、図1を参照してX線CT装置1の全体構成について説明する。
[First embodiment]
First, the overall configuration of the X-ray CT apparatus 1 will be described with reference to FIG.

 図1に示すように、X線CT装置1は、スキャンガントリ部100、寝台105、及び操作卓120を備える。スキャンガントリ部100は、被検体に対してX線を照射するとともに被検体を透過したX線を検出する装置である。操作卓120は、スキャンガントリ部100の各部を制御するとともにスキャンガントリ部100で計測した透過X線データを取得し、画像の生成を行う装置である。寝台105は被検体を寝載し、スキャンガントリ部100のX線照射範囲に被検体を搬入・搬出する装置である。 As shown in FIG. 1, the X-ray CT apparatus 1 includes a scan gantry unit 100, a bed 105, and a console 120. The scan gantry unit 100 is an apparatus that irradiates a subject with X-rays and detects X-rays transmitted through the subject. The console 120 is a device that controls each part of the scan gantry unit 100, acquires transmission X-ray data measured by the scan gantry unit 100, and generates an image. The bed 105 is a device that places a subject on the bed and carries the subject in and out of the X-ray irradiation range of the scan gantry unit 100.

 スキャンガントリ部100は、X線源101、回転盤102、コリメータ103、X線検出器106、データ収集装置107、ガントリ制御装置108、寝台制御装置109、及びX線制御装置110を備える。 The scan gantry unit 100 includes an X-ray source 101, a turntable 102, a collimator 103, an X-ray detector 106, a data collection device 107, a gantry control device 108, a bed control device 109, and an X-ray control device 110.

 操作卓120は、入力装置121、画像処理装置122、記憶装置123、システム制御装置124、及び表示装置125を備える。 The console 120 includes an input device 121, an image processing device 122, a storage device 123, a system control device 124, and a display device 125.

 スキャンガントリ部100の回転盤102には開口部104が設けられ、開口部104を介してX線源101とX線検出器106とが対向配置される。開口部104に寝台105に載置された被検体が挿入される。回転盤102は、回転盤駆動装置から駆動伝達系を通じて伝達される駆動力によって被検体の周囲を回転する。回転盤駆動装置はガントリ制御装置108によって制御される。 The rotating plate 102 of the scan gantry unit 100 is provided with an opening 104, and the X-ray source 101 and the X-ray detector 106 are arranged to face each other through the opening 104. The subject placed on the bed 105 is inserted into the opening 104. The turntable 102 rotates around the subject by a driving force transmitted from the turntable drive device through a drive transmission system. The turntable driving device is controlled by a gantry control device.

 X線源101は、X線制御装置110に制御されて所定の強度のX線を連続的または断続的に照射する。X線制御装置110は、操作卓120のシステム制御装置124により決定されたX線管電圧及びX線管電流に従って、X線源101に印加または供給するX線管電圧及びX線管電流を制御する。 The X-ray source 101 is controlled by the X-ray control device 110 to irradiate X-rays having a predetermined intensity continuously or intermittently. The X-ray controller 110 controls the X-ray tube voltage and the X-ray tube current applied or supplied to the X-ray source 101 according to the X-ray tube voltage and the X-ray tube current determined by the system controller 124 of the console 120. To do.

 X線源101のX線照射口にはコリメータ103が設けられる。コリメータ103は、X線管101から放射されたX線の照射範囲を制限する。例えばコーンビーム(円錐形または角錐形ビーム)等に成形する。コリメータ103の開口幅はシステム制御装置124により制御される。 A collimator 103 is provided at the X-ray irradiation port of the X-ray source 101. The collimator 103 limits the irradiation range of the X-rays emitted from the X-ray tube 101. For example, it is formed into a cone beam (conical or pyramidal beam). The opening width of the collimator 103 is controlled by the system controller 124.

 X線源101から照射され、コリメータ103を通過し、被検体を透過したX線はX線検出器106に入射する。 The X-rays irradiated from the X-ray source 101, passed through the collimator 103, and transmitted through the subject enter the X-ray detector 106.

 X線検出器106は、例えばシンチレータとフォトダイオードの組み合わせによって構成されるX線検出素子群をチャンネル方向(周回方向)及び列方向(体軸方向)に2次元配列したものである。X線検出器106は、被検体を介してX線源101に対向するように配置される。X線検出器106はX線源101から照射されて被検体を透過したX線量を検出し、データ収集装置107に出力する。 The X-ray detector 106 is a two-dimensional array of X-ray detection element groups configured by, for example, a combination of a scintillator and a photodiode, in the channel direction (circumferential direction) and the column direction (body axis direction). The X-ray detector 106 is disposed so as to face the X-ray source 101 through the subject. The X-ray detector 106 detects the X-ray dose irradiated from the X-ray source 101 and transmitted through the subject, and outputs it to the data collection device 107.

 データ収集装置107は、X線検出器106の個々のX線検出素子により検出されるX線量を収集し、デジタル信号に変換し、透過X線データとして操作卓120の画像処理装置122に順次出力する。 The data collection device 107 collects X-ray doses detected by the individual X-ray detection elements of the X-ray detector 106, converts them into digital signals, and sequentially outputs them to the image processing device 122 of the console 120 as transmitted X-ray data. To do.

 画像処理装置122は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えたコンピュータである。画像処理装置122は、データ収集装置107から入力された透過X線データを取得し、対数変換、感度補正等の前処理を行って再構成に必要な投影データを作成する。また画像処理装置122は、生成した投影データを用いて断層像等の被検体内部を描出した画像を再構成する。システム制御装置124は、画像処理装置122によって再構成された画像データを記憶装置123に記憶するとともに表示装置125に表示する。 The image processing device 122 is a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The image processing device 122 acquires transmission X-ray data input from the data collection device 107, and performs preprocessing such as logarithmic conversion and sensitivity correction to create projection data necessary for reconstruction. The image processing apparatus 122 reconstructs an image depicting the inside of the subject such as a tomogram using the generated projection data. The system control device 124 stores the image data reconstructed by the image processing device 122 in the storage device 123 and displays it on the display device 125.

 また画像処置装置122は、再構成された画像データを用いて肝切除術における血管切断位置及び肝切除ラインを決定する処理(肝切除領域決定処理)を実行する。肝切除領域決定処理の詳細については後述する(図3参照)。 Also, the image processing apparatus 122 executes a process for determining a blood vessel cutting position and a hepatectomy line (hepatectomy area determination process) in the hepatectomy using the reconstructed image data. Details of the hepatectomy region determination process will be described later (see FIG. 3).

 システム制御装置124は、CPU、ROM、RAM等を備えたコンピュータである。
 記憶装置123はハードディスク等のデータ記録装置であり、X線CT装置1の機能を実現するためのプログラムやデータ等が予め記憶される。
The system control device 124 is a computer that includes a CPU, a ROM, a RAM, and the like.
The storage device 123 is a data recording device such as a hard disk, and stores programs, data, and the like for realizing the functions of the X-ray CT apparatus 1 in advance.

 表示装置125は、液晶パネル、CRTモニタ等のディスプレイ装置と、ディスプレイ装置と連携して表示処理を実行するための論理回路で構成され、システム制御装置124に接続される。表示装置125は画像処理装置122から出力される画像データ、並びにシステム制御装置124が取り扱う種々の情報を表示する。 The display device 125 includes a display device such as a liquid crystal panel and a CRT monitor, and a logic circuit for executing display processing in cooperation with the display device, and is connected to the system control device 124. The display device 125 displays the image data output from the image processing device 122 and various information handled by the system control device 124.

 入力装置121は、例えば、キーボード、マウス等のポインティングデバイス、テンキー、及び各種スイッチボタン等により構成され、操作者によって入力される各種の指示や情報をシステム制御装置124に出力する。操作者は、表示装置125及び入力装置121を使用して対話的にX線CT装置1を操作する。入力装置121は表示装置125の表示画面と一体的に構成されるタッチパネル式の入力装置としてもよい。 The input device 121 includes, for example, a keyboard, a pointing device such as a mouse, a numeric keypad, and various switch buttons, and outputs various instructions and information input by the operator to the system control device 124. The operator operates the X-ray CT apparatus 1 interactively using the display device 125 and the input device 121. The input device 121 may be a touch panel type input device configured integrally with the display screen of the display device 125.

 寝台105は、被検体を寝載する天板、上下動装置、及び天板駆動装置を備え、寝台制御装置109の制御により天板高さを上下に昇降したり、体軸方向へ前後動したり、体軸と垂直方向かつ床面に対し平行な方向(左右方向)への左右動する。撮影中において、寝台制御装置109はシステム制御装置124により決定された寝台移動速度及び移動方向で天板を移動させる。 The couch 105 includes a couch for placing a subject, a vertical movement device, and a couch drive device. The couch control device 109 controls the couch height to move up and down and move back and forth in the body axis direction. Or move left and right in the direction perpendicular to the body axis and parallel to the floor (left and right direction). During imaging, the couch controller 109 moves the couch at the couch moving speed and moving direction determined by the system controller 124.

 次に、図2を参照して、本発明に係る画像処理装置122の機能構成を説明する。 Next, the functional configuration of the image processing apparatus 122 according to the present invention will be described with reference to FIG.

 図2に示すように、画像処理装置122は、データ取得部122a、抽出部122b、血管支配領域算出部122c、肝切除ライン決定部122d、表示部122e、及び入力部122fを有する。 As shown in FIG. 2, the image processing apparatus 122 includes a data acquisition unit 122a, an extraction unit 122b, a blood vessel dominating region calculation unit 122c, a hepatectomy line determination unit 122d, a display unit 122e, and an input unit 122f.

 データ取得部122aは、肝臓を含む被検体内部を描出した画像データ及び肝臓の局所的な予備能に関するデータである肝予備能データを取得する。画像データは、被検体をX線CT装置やMR装置等を用いて撮影した複数の断層像を積み上げた3次元原画像データである。以下、入力画像がCT画像である場合を例として説明する。 The data acquisition unit 122a acquires image data depicting the inside of the subject including the liver and liver reserve data that is data related to the local reserve of the liver. The image data is three-dimensional original image data obtained by stacking a plurality of tomographic images obtained by imaging a subject using an X-ray CT apparatus, an MR apparatus, or the like. Hereinafter, a case where the input image is a CT image will be described as an example.

 肝予備能データは、上述したように肝臓の局所的な予備能を示すデータである。具体的には、肝実質領域における任意の複数点における造影剤拡散速度(図6参照)や、各血管から流出する造影剤が到達する時間が等しい肝実質領域の各点を結ぶ線(以下、「造影剤到達時間の等高線」という。図17参照)等を用いる。上述の造影剤拡散速度や造影剤到達時間の等高線は、撮影時に計測される造影剤監視データから算出される。造影剤監視データの具体例としては、TDC(Time Density Curve)等が挙げられる。 肝 Liver reserve data is data indicating the local reserve capability of the liver as described above. Specifically, the contrast agent diffusion rate at any plurality of points in the liver parenchyma region (see FIG. 6), and a line connecting the points of the liver parenchyma region where the contrast agent flowing out from each blood vessel reaches the same time (hereinafter, This is referred to as “contrast arrival time contour line” (see FIG. 17). The contour lines of the contrast medium diffusion speed and the contrast medium arrival time are calculated from the contrast medium monitoring data measured at the time of imaging. Specific examples of the contrast medium monitoring data include TDC (Time Density Curve).

 データ取得部122aは、造影剤拡散速度や造影剤到達時間の等高線等が予め算出されている場合は、これらを肝予備能データとして画像データとともに取得する。造影剤拡散速度や造影剤到達時間の等高線等が予め算出されていない場合は、データ取得部122aは画像撮影時の造影剤監視データを取得し、造影剤拡散速度や造影剤到達時間の等高線等の肝予備能データを算出する。 The data acquisition unit 122a acquires the contrast medium diffusion speed, the contrast medium arrival time contours, and the like together with the image data as hepatic reserve capacity data. When the contrast medium diffusion speed and the contour line of the contrast medium arrival time are not calculated in advance, the data acquisition unit 122a acquires the contrast medium monitoring data at the time of image capturing, and the contour line of the contrast medium diffusion speed and the contrast medium arrival time. Calculate liver reserve capacity data.

 抽出部122bは、画像データの輝度値に基づき、肝実質、腫瘍、動静脈を含む血管等の各臓器を分離抽出する。画像上で各臓器をそれぞれ分離して抽出するには、例えば、セグメンテーションやリージョングローイング、その他の各種の手法を用いることができる。セグメンテーションとは、閾値により画像を二値化して領域を抽出する方法である。リージョングローイングとは、任意の画素の輝度値とその周辺画素の輝度値を比較し、両者の差が設定した閾値以下であれば、同一領域として、画素を結合しながら領域を抽出する方法である。 The extraction unit 122b separates and extracts each organ such as blood vessels including liver parenchyma, tumor, and arteriovenous based on the luminance value of the image data. In order to separate and extract each organ on the image, for example, segmentation, region growing, and other various methods can be used. Segmentation is a method of extracting an area by binarizing an image with a threshold value. Region glowing is a method that compares the brightness value of an arbitrary pixel with the brightness values of its surrounding pixels, and extracts a region while combining pixels as the same region if the difference between the two is equal to or less than a set threshold value. .

 血管支配領域算出部122cは、抽出部122bにより抽出された肝実質領域における各血管の支配領域を上述の肝予備能データに基づいて算出する。また、血管支配領域算出部122cは、必要に応じて造影剤監視データを取得し、造影剤監視データに基づいて画像の各点における造影剤拡散速度や到達時間の等高線等の肝予備能データを算出する。 The blood vessel dominating region calculating unit 122c calculates the dominating region of each blood vessel in the liver parenchymal region extracted by the extracting unit 122b based on the above-mentioned liver reserve data. Further, the blood vessel dominating region calculation unit 122c acquires the contrast medium monitoring data as necessary, and based on the contrast medium monitoring data, hepatic reserve capacity data such as the contrast medium diffusion speed and the contour line of the arrival time at each point of the image is obtained. calculate.

 肝切除ライン決定部122dは、血管支配領域算出部122cにより算出された各血管の支配領域及び腫瘍の配置に基づいて肝切除領域が最小となる血管切断位置を決定する。具体的な決定手順としては、まず切除対象とする腫瘍の栄養血管を特定し、栄養血管の分枝点を求め、分枝点から延びる動脈及び静脈の各支配領域を特定し、動脈支配領域及び静脈支配領域の重なり部分を血液うっ滞領域とする。 The hepatectomy line determination unit 122d determines the vascular cutting position where the hepatectomy region is minimized based on the control region of each blood vessel calculated by the blood vessel control region calculation unit 122c and the arrangement of the tumor. As a specific determination procedure, first, a nutritional blood vessel of a tumor to be excised is identified, a branching point of the nutritional blood vessel is obtained, each control region of the artery and vein extending from the branching point is specified, and the arterial control region and The overlapping portion of the vein-dominated region is defined as a blood stagnation region.

 更に腫瘍と血液うっ滞領域とを切除するための血管切断位置を設定し、設定された血管切断位置で最適な肝切除ラインを算出する。このとき、肝切除ライン決定部122dは、血管切断位置に応じた肝切除領域の容量(肝切除容量)と血液うっ滞領域の容量(血液うっ滞容量)を算出する。肝切除ライン決定部122dは、血液うっ滞容量が最小となるように肝切除領域を最小化する処理を実行する。 Furthermore, a blood vessel cutting position for excising the tumor and the blood stagnation region is set, and an optimal hepatectomy line is calculated at the set blood vessel cutting position. At this time, the hepatectomy line determination unit 122d calculates the volume of the hepatectomy region (hepatectomy volume) and the volume of the blood stasis region (blood stasis capacity) according to the blood vessel cutting position. The hepatectomy line determination unit 122d executes a process for minimizing the hepatectomy region so that the blood stasis capacity is minimized.

 この最小化処理では、栄養血管である動脈の血管切断位置を、例えば血管の分枝点付近から末端側に向けて移動し、腫瘍を切除しつつ血液うっ滞容量が最小となる肝切除ラインを決定する。 In this minimization process, the blood vessel cutting position of the artery that is the feeding blood vessel is moved from, for example, the vicinity of the branch point of the blood vessel toward the distal side, and the hepatectomy line that minimizes the blood stasis capacity while excising the tumor is obtained. decide.

 表示部122eは、肝切除領域決定部122dにより決定された血管切断位置及び肝切除ライン(または肝切除領域)を画像上に表示する。このとき、血管切断位置と血液うっ滞領域との関係を示したり、肝切除容量等を表示したりするようにしてもよい。 The display unit 122e displays the blood vessel cutting position and the hepatectomy line (or hepatectomy region) determined by the hepatectomy region determination unit 122d on the image. At this time, the relationship between the blood vessel cutting position and the blood stasis region may be shown, or the hepatectomy volume may be displayed.

 入力部122fは、血管切断位置の指定入力や、肝切除領域算出に用いる各種のパラメータの入力を受け付ける。 The input unit 122f receives input of designation of a blood vessel cutting position and various parameters used for calculation of a hepatectomy region.

 次に、図3のフローチャートを参照して、第1の実施の形態の画像処理装置122が実行する肝切除領域決定処理の流れを説明する。 Next, the flow of hepatectomy region determination processing executed by the image processing apparatus 122 of the first embodiment will be described with reference to the flowchart of FIG.

 画像処理装置122は、まず肝臓領域を含むCT画像等の画像データ及び肝予備能データを取得する(ステップS101)。画像処理装置122は、入力された画像データから肝実質、血管、腫瘍をそれぞれ分離抽出する(ステップS102~ステップS104)。 The image processing apparatus 122 first acquires image data such as a CT image including a liver region and liver reserve capacity data (step S101). The image processing device 122 separates and extracts liver parenchyma, blood vessels, and tumor from the input image data (steps S102 to S104).

 ステップS103において抽出される血管は、図4に示すように門脈を含む動脈21、22、23、及び静脈31、32、33である。図4において、11は肝実質、41は腫瘍を示している。 The blood vessels extracted in step S103 are arteries 21, 22, and 23 including portal veins and veins 31, 32, and 33 as shown in FIG. In FIG. 4, 11 indicates the liver parenchyma and 41 indicates the tumor.

 ステップS102~ステップS104における各臓器(肝実質11、動脈21、22、23、静脈31、32、33、及び腫瘍41)の抽出は、セグメンテーションやリージョングローイング等といった公知の手法により行えばよい。また臓器抽出に使用する閾値は入力装置121等を介して操作者が入力するものとしてもよいし、予め設定されている値としてもよい。 Extraction of each organ (liver parenchyma 11, arteries 21, 22, 23, veins 31, 32, 33, and tumor 41) in steps S102 to S104 may be performed by a known method such as segmentation or region growing. The threshold used for organ extraction may be input by the operator via the input device 121 or the like, or may be a preset value.

 次に画像処理装置122は、切除対象とする腫瘍41に栄養を供給する栄養血管を特定する(ステップS105)。栄養血管特定処理は、例えば、特許文献2等に記載される手法を用いればよい。具体的には、腫瘍に接続している血管を特定するための処理開始点を設定し、リージョングローイング等の手法で栄養血管を特定する。 Next, the image processing apparatus 122 identifies a nutritional blood vessel that supplies nutrition to the tumor 41 to be excised (step S105). For example, the method described in Patent Document 2 may be used for the nutritional blood vessel specifying process. Specifically, a processing start point for specifying a blood vessel connected to a tumor is set, and a nutrient blood vessel is specified by a technique such as region growing.

 画像処理装置122は、血管の分枝点を算出する(ステップS106)。図4に示す血管の分枝点は動脈分枝点24と静脈分枝点34とがある。画像処理装置122は、ステップS103で抽出された各血管の芯線を算出し、芯線の分岐部をそれぞれ動脈分枝点24と静脈分枝点34とする。 The image processing device 122 calculates a branch point of the blood vessel (step S106). The blood vessel branch points shown in FIG. 4 include an arterial branch point 24 and a venous branch point 34. The image processing device 122 calculates the core line of each blood vessel extracted in step S103, and sets the branch part of the core line as the arterial branch point 24 and the vein branch point 34, respectively.

 次に画像処理装置122は、各血管の支配領域を特定する(ステップS107、ステップS108)。以下、動脈の支配領域を動脈支配領域と呼び、静脈の支配領域を静脈支配領域と呼ぶ。 Next, the image processing apparatus 122 identifies the control region of each blood vessel (step S107, step S108). Hereinafter, the arterial control region is referred to as an arterial control region, and the vein control region is referred to as a vein control region.

 動脈支配領域は、図5に示すように、隣接する各動脈22、23の動脈支配領域26、27と動脈支配領域の境界25とにより決定される。動脈支配領域を算出する際、画像処理装置122は、肝臓の局所的な予備能に関するデータである肝予備能データを取得または算出し、この肝予備能データを用いて動脈支配領域(動脈22、23の各動脈支配領域26、27と動脈支配領域の境界25)を決定する。 As shown in FIG. 5, the arterial control region is determined by the arterial control regions 26 and 27 of the adjacent arteries 22 and 23 and the boundary 25 of the arterial control region. When calculating the arterial dominance region, the image processing device 122 acquires or calculates liver reserve capacity data that is data related to the local reserve capacity of the liver, and uses the liver reserve capacity data to determine the arterial dominance area (arteries 22, Each of the 23 arterial control regions 26 and 27 and the boundary 25) of the arterial control region are determined.

 ここで、肝予備能データの算出方法について、図6を参照して説明する。 Here, a method for calculating liver reserve capacity data will be described with reference to FIG.

 図6(a)は各画素における造影剤到達時間を示す時系列データ(TDC;Time Density Curve)を示し、図6(b)は動脈22、23の近傍に設定した演算点A,B,C,Dを示す図である。 FIG. 6 (a) shows time series data (TDC; Time Density Curve) indicating the contrast agent arrival time in each pixel, and FIG. 6 (b) shows calculation points A, B, and C set in the vicinity of the arteries 22 and 23. , D.

 画像処理装置122は、各演算点におけるTDCのピーク時間tpと2点間距離(点Aと点Bとの距離、点Cと点Dとの距離)から各血管周辺の造影剤拡散速度を求める。 The image processing device 122 calculates the contrast agent diffusion speed around each blood vessel from the TDC peak time tp at each calculation point and the distance between the two points (distance between point A and point B, distance between point C and point D). .

 動脈22の近傍の点Aにおける造影剤拡散速度は、以下の式(1)から求められる。 The contrast medium diffusion rate at the point A in the vicinity of the artery 22 can be obtained from the following equation (1).

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 同様に、動脈23の近傍の点Cにおける造影剤拡散速度は、以下の式(2)から求められる。 Similarly, the contrast agent diffusion rate at point C in the vicinity of the artery 23 can be obtained from the following equation (2).

Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

 画像処理装置122は、各動脈22、23近傍の点A、点Cにおける造影剤拡散速度の比を求め、求めた比が動脈22から動脈支配領域の境界25までの距離d1と動脈23から動脈支配領域の境界25までの距離d2との比となるように動脈支配領域の境界25を算出する。以下の式(3)は、動脈22から動脈支配領域の境界25までの距離d1と動脈23から動脈支配領域の境界25までの距離d2との比を表す式である。 The image processing device 122 obtains the ratio of the contrast agent diffusion speed at the points A and C in the vicinity of the arteries 22 and 23, and the obtained ratio is the distance d1 from the artery 22 to the boundary 25 of the arterial control region and the artery 23 to the artery. The artery control region boundary 25 is calculated so as to have a ratio to the distance d2 to the control region boundary 25. The following equation (3) is an equation representing the ratio of the distance d1 from the artery 22 to the boundary 25 of the arterial dominating region and the distance d2 from the artery 23 to the boundary 25 of the arterial dominating region.

Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003

 算出した動脈支配領域の境界25から各動脈22、23までの範囲を、それぞれ動脈22、23を中心として対称に広げた範囲を動脈支配領域26、27とする。 The ranges from the calculated boundary 25 of the arterial dominating region to the respective arteries 22 and 23 are defined as arterial dominating regions 26 and 27 that are symmetrically expanded around the arteries 22 and 23, respectively.

 図6(b)では、動脈22、23の分枝点から所定の距離だけ離れた血管断面位置から血管芯線に垂直な線上にある2点A,B(または点C,D)を演算点とする例を示している。画像処理装置122は、各血管の分枝点から末端にわたる各血管断面位置でそれぞれ同様に演算点を設定し、各演算点での造影剤拡散速度の比に基づいて動脈と動脈支配領域の境界25までの距離比(距離d1:d2)を求め、これにより各血管断面位置での境界25の位置を算出する。 In FIG. 6 (b), two points A and B (or points C and D) on the line perpendicular to the blood vessel core line from the blood vessel cross-sectional position separated from the branch points of the arteries 22 and 23 by a predetermined distance are calculated points. An example is shown. The image processing device 122 sets calculation points in the same way at each blood vessel cross-sectional position from the branch point to the end of each blood vessel, and based on the ratio of the contrast agent diffusion speed at each calculation point, the boundary between the artery and the arterial control region A distance ratio up to 25 (distance d1: d2) is obtained, and thereby the position of the boundary 25 at each blood vessel cross-sectional position is calculated.

 なお、演算点(点A,B、点C,D)は、血管芯線に垂直な線上の点とする例に限定されない。例えば、血管芯線から放射状に演算点を設定したり、動脈22、23の分枝点24から等間隔に設定した複数の平行な線上の点にそれぞれ演算点(点A,B、点C,D)を設定したりしてもよい。 Note that the calculation points (points A, B, points C, D) are not limited to the example of being points on a line perpendicular to the blood vessel core line. For example, calculation points are set radially from the blood vessel core line, or calculation points (points A, B, C, D) are set on points on a plurality of parallel lines set at equal intervals from the branch points 24 of the arteries 22, 23, respectively. ) May be set.

 画像処理装置122は、静脈についても同様に各静脈32、33の静脈支配領域(静脈支配領域の境界35及び静脈支配領域36、37)を特定する(ステップS108)。図7は、静脈支配領域(静脈支配領域の境界35及び静脈支配領域36、37)を示す図である。 The image processing apparatus 122 similarly identifies the vein-dominated region (the boundary 35 of the vein-dominated region and the vein-dominated regions 36, 37) of each vein 32, 33 for the vein (step S108). FIG. 7 is a diagram showing the vein-dominated region (the boundary 35 of the vein-dominated region and the vein-dominated regions 36 and 37).

 動脈支配領域と静脈支配領域を算出すると、次に画像処理装置122は、血液うっ滞領域71を特定する(ステップS109)。 After calculating the artery-dominated region and the vein-dominated region, the image processing device 122 next identifies the blood stagnation region 71 (step S109).

 図8は、図5の動脈支配領域と図7の静脈支配領域を重ねて示した図であり、図9は、分枝点近傍で静脈33が切除された場合の血液うっ滞領域71を示す図である。血液うっ滞領域71とは、静脈を切除した際に動脈から流入する血液が流出する静脈がなくなるために鬱血状態となる領域である。つまり血液うっ滞領域71は、動脈支配領域と静脈支配領域との位置関係及び血管切断位置で決定される。 FIG. 8 is a diagram showing the arterial dominating region of FIG. 5 and the venous dominating region of FIG. 7 in an overlapping manner, and FIG. 9 shows a blood stagnation region 71 when the vein 33 is excised in the vicinity of a branch point. FIG. The blood stagnation region 71 is a region that becomes congested because there is no vein from which blood flowing in from the artery flows out when the vein is excised. That is, the blood stagnation region 71 is determined by the positional relationship between the artery-dominated region and the vein-dominated region and the blood vessel cutting position.

 静脈33が分枝点34近傍から切除された場合の血液うっ滞領域は、図9に示すように、動脈支配領域27と静脈支配領域37とが重なる領域71となる。肝切除術では、腫瘍とともに血液うっ滞領域71が切除されるように、肝切除ラインを決定する必要がある。 As shown in FIG. 9, the blood stagnation region when the vein 33 is removed from the vicinity of the branch point 34 is a region 71 where the arterial control region 27 and the vein control region 37 overlap. In the hepatectomy, it is necessary to determine the hepatectomy line so that the blood stagnation region 71 is removed together with the tumor.

 画像処理装置122は、各血管の切断位置を設定する(ステップS110)。図10は、動脈分枝点24の近傍に動脈切断位置(血管切断位置)81を設定し、静脈分枝点34の近傍に静脈切断位置(血管切断位置)82を設定した場合の肝切除領域83を示す図である。画像処理装置122は、まず、腫瘍41の栄養血管である動脈22の分枝点24に近い位置に切断位置(動脈切断位置)81を設定する。また、静脈33の芯線に垂直な線上に静脈切断位置82を設定する。
 静脈33の芯線はステップS105の演算時に求められている。
The image processing device 122 sets the cutting position of each blood vessel (step S110). FIG. 10 shows a hepatectomy region when an arterial cutting position (blood vessel cutting position) 81 is set near the arterial branch point 24 and a venous cutting position (blood vessel cutting position) 82 is set near the venous branch point 34. FIG. First, the image processing apparatus 122 sets a cutting position (arterial cutting position) 81 at a position close to the branch point 24 of the artery 22 that is a feeding blood vessel of the tumor 41. Further, the vein cutting position 82 is set on a line perpendicular to the core line of the vein 33.
The core wire of the vein 33 is obtained at the time of calculation in step S105.

 画像処理装置122は、ステップS110で設定した血管切断位置での肝切除ラインを算出する(ステップS111)。動脈支配領域26と血液うっ滞領域71と動脈切断位置81の延長線と静脈切断位置82の延長線とで囲まれる領域83を肝切除領域として肝切除ライン(肝切除領域83を囲むライン)を算出する。 The image processing apparatus 122 calculates a hepatectomy line at the blood vessel cutting position set in step S110 (step S111). A hepatectomy line (line surrounding the hepatectomy area 83) is defined as an area 83 surrounded by the arterial control area 26, the blood stasis area 71, the extension line of the arterial cutting position 81, and the extension line of the venous cutting position 82. calculate.

 画像処理装置122は、ステップS111で算出した肝切除ラインでの肝切除容量及び血液うっ滞容量を算出し(ステップS112)、RAM等に保持する。そして、肝切除領域の最小化(血液うっ滞容量の最小化)が可能であるか否かの判定を行う(ステップS113)。このステップS113の判定処理では、例えば、腫瘍41の位置から動脈切断位置81を末梢側に移動可能であるか、また、動脈切断位置81が末梢側への移動限界に達している場合には静脈切断位置82を独立して末梢側へ移動可能であるか等が判定される。これらのいずれかの条件を満たす場合、血液うっ滞容量を小さくすることができ、肝切除領域の最小化が可能と判定する。 The image processing apparatus 122 calculates the hepatectomy volume and the blood stasis capacity in the hepatectomy line calculated in step S111 (step S112), and stores them in the RAM or the like. Then, it is determined whether or not minimization of the hepatectomy region (minimization of blood stasis capacity) is possible (step S113). In the determination process of step S113, for example, the artery cutting position 81 can be moved from the position of the tumor 41 to the distal side, or if the artery cutting position 81 has reached the movement limit to the distal side, the vein It is determined whether the cutting position 82 can be moved to the distal side independently. When any one of these conditions is satisfied, it is determined that the blood stasis capacity can be reduced and the hepatectomy region can be minimized.

 肝切除領域の最小化が可能な場合(ステップS113;Yes)、画像処理装置122は、肝切除領域の最小化処理を行う。具体的には、ステップS110へ戻り、図11に示すように動脈切断位置(血管切断位置)91を動脈22の芯線に沿って末梢側へ移動させる。動脈切断位置91は腫瘍41の位置と予め設定された腫瘍マージンとから自動的に設定される。このときの静脈切断位置(血管切断位置)92は、移動後の動脈切断位置91における動脈22の芯線に垂直な線上に設定される。このように動脈切断位置91及び静脈切断位置92が設定されると、肝切除領域93が決定され、肝切除ラインは、肝切除領域93から算出される。画像処理装置122は、算出した肝切除ラインで切除を行った場合の肝切除容量及び血液うっ滞容量を算出し、RAMに保持する(ステップS110~ステップS112)。 When the liver resection area can be minimized (step S113; Yes), the image processing apparatus 122 performs the liver resection area minimization process. Specifically, the process returns to step S110, and the arterial cutting position (blood vessel cutting position) 91 is moved to the distal side along the core line of the artery 22 as shown in FIG. The arterial cutting position 91 is automatically set from the position of the tumor 41 and a preset tumor margin. The vein cutting position (blood vessel cutting position) 92 at this time is set on a line perpendicular to the core line of the artery 22 at the artery cutting position 91 after movement. When the arterial cutting position 91 and the vein cutting position 92 are thus set, the hepatectomy region 93 is determined, and the hepatectomy line is calculated from the hepatectomy region 93. The image processing apparatus 122 calculates the hepatectomy volume and the blood stasis capacity when excision is performed on the calculated hepatectomy line, and stores it in the RAM (steps S110 to S112).

 動脈切断位置91の移動が限界に達すると、動脈の切断位置が決定される。 When the movement of the arterial cutting position 91 reaches the limit, the cutting position of the artery is determined.

 画像処理装置122は、更に肝切除領域の最小化が可能であるかを判定し(ステップS113)、可能であれば最小化処理を行う。 The image processing device 122 further determines whether or not the liver resection region can be minimized (step S113), and performs the minimization processing if possible.

 動脈切断位置決定後の最小化処理において、画像処理装置122は、図12に示すように動脈切断位置91を固定したまま、静脈切断位置(血管切断位置)1001のみを静脈33の芯線に沿って末梢側へ移動させる。位置1001を静脈切断位置に設定した場合の肝切除領域は領域1002である。 In the minimization process after determining the arterial cutting position, the image processing device 122 fixes only the venous cutting position (blood vessel cutting position) 1001 along the core line of the vein 33 while the arterial cutting position 91 is fixed as shown in FIG. Move to the distal side. The region 1002 is the hepatectomy region when the position 1001 is set as the vein cutting position.

 画像処理装置122は、肝切除領域1002から肝切除ライン1003を算出し、算出した肝切除ライン1003で切除した場合の肝切除容量及び血液うっ滞容量を算出し、RAMに保持する。図12に示す例では、静脈切除位置1001が静脈33の末端付近に達している。画像処理装置122は、この状態から更に、静脈33の切断が不要となる肝切除ラインを探索するようにしてもよい。つまり、静脈33の末端部の走行方向や別の腫瘍との位置関係から、静脈33を切除する必要があるか否かを判定する。 The image processing apparatus 122 calculates the hepatectomy line 1003 from the hepatectomy region 1002, calculates the hepatectomy volume and blood stasis capacity when the hepatectomy line 1003 is excised, and stores it in the RAM. In the example shown in FIG. 12, the vein resection position 1001 reaches the vicinity of the end of the vein 33. The image processing apparatus 122 may further search for a hepatectomy line that eliminates the need for cutting the vein 33 from this state. That is, it is determined whether or not the vein 33 needs to be excised from the traveling direction of the distal end portion of the vein 33 and the positional relationship with another tumor.

 静脈33を切除する必要がなければ血液うっ滞領域71が発生せず、この場合は肝切除領域を更に縮小できる。つまり、肝切除ライン1003を動脈22の動脈支配領域の境界25(図13のライン1105)の位置とすることができる。図14に示すように肝切除領域1201を更に小さくすることができる。肝切除ラインの探索は、例えば図13に示すように、静脈切断位置1001を示すラインの角度を位置1102、1103、1104、1105のように調整(回転)する等の方法で行えばよい。また、血液うっ滞領域71内に腫瘍がないことが予めわかっている場合は、静脈切断位置1001を示すラインの角度を境界25の位置に切り替えるようにしてもよい。 If it is not necessary to excise the vein 33, the blood stagnation region 71 does not occur, and in this case, the hepatectomy region can be further reduced. That is, the hepatectomy line 1003 can be set as the position of the boundary 25 (line 1105 in FIG. 13) of the arterial region of the artery 22. As shown in FIG. 14, the hepatectomy region 1201 can be further reduced. The search for the hepatectomy line may be performed by a method such as adjusting (rotating) the angle of the line indicating the vein cutting position 1001 to positions 1102, 1103, 1104, and 1105 as shown in FIG. If it is known in advance that there is no tumor in the blood stagnation region 71, the angle of the line indicating the vein cutting position 1001 may be switched to the position of the boundary 25.

 また図15に示すように、腫瘍41とは別の腫瘍42が血液うっ滞領域71に存在する場合は、画像処理装置122は腫瘍42の位置を考慮して肝切除ラインを決定する。図15の例では、静脈33は切除されないが腫瘍42を含むように肝切除領域1301が決定されている。 As shown in FIG. 15, when a tumor 42 other than the tumor 41 is present in the blood stagnation region 71, the image processing apparatus 122 determines a hepatectomy line in consideration of the position of the tumor 42. In the example of FIG. 15, the hepatic resection region 1301 is determined so that the vein 33 is not excised but the tumor 42 is included.

 また図16(a)に示すように、腫瘍41とは別の腫瘍43が動脈切断位置91の延長線上より上方に存在する場合は、画像処理装置122は、図16(b)に示すように静脈切断位置(血管切断位置)1401付近で肝切除ラインの角度を調整(回転)して、腫瘍43を含むように肝切除ライン1403を設定するようにしてもよい。これにより、複数の腫瘍を切除しつつ、血液うっ滞領域及び肝切除領域の最小化を図ることができる。 Also, as shown in FIG. 16 (a), when a tumor 43 other than the tumor 41 is present above the extension line of the arterial cutting position 91, the image processing device 122 is shown in FIG. The hepatectomy line 1403 may be set so as to include the tumor 43 by adjusting (rotating) the angle of the hepatectomy line near the vein cutting position (blood vessel cutting position) 1401. Thereby, it is possible to minimize the blood stagnation region and the hepatectomy region while resecting a plurality of tumors.

 ステップS110~ステップS113の最小化処理により、血液うっ滞容量が最小となる各血管の切断位置、及び肝切除ラインを決定する(ステップS114)。 The cutting position of each blood vessel and the hepatectomy line where the blood stagnation volume is minimized are determined by the minimization process in steps S110 to S113 (step S114).

 画像処理装置122は、ステップS101~ステップS114の処理で決定した血管切断位置及び肝切除ラインを画像上に表示する(ステップS115)。このとき、更にステップS112で算出した肝切除容量を表示することが望ましい。 The image processing device 122 displays on the image the blood vessel cutting position and the hepatectomy line determined in the processing of steps S101 to S114 (step S115). At this time, it is desirable to further display the hepatectomy volume calculated in step S112.

 なお、上述の説明では、血管切断位置を血管の分枝点から末端側へ移動させることにより肝切除領域の最小化処理を行う例を示したが、これとは逆に、血管の末端側から分枝点側へ切断位置を移動させて肝切除領域の最小化を図るものとしてもよい。 In the above description, the example in which the hepatectomy region is minimized by moving the blood vessel cutting position from the branch point of the blood vessel to the end side is shown. On the contrary, from the end side of the blood vessel, It is also possible to minimize the hepatectomy region by moving the cutting position to the branch point side.

 また、分枝点に血管切断位置をおいて血液うっ滞容量を求める手順(図10)を省き、始めから腫瘍41付近に動脈切断位置を設定して血液うっ滞容量を求め、最小化処理を開始する手順としてもよい。 In addition, the procedure (Fig. 10) for determining the blood stasis capacity by placing the blood vessel cutting position at the branch point is omitted, and the arterial cutting position is set near the tumor 41 from the beginning to determine the blood stasis capacity, and the minimization process is performed. It may be a procedure to start.

 以上説明したように、第1の実施の形態の画像処理装置122は、肝臓を含む被検体内部を描出した画像データ及び肝臓の局所的な予備能に関するデータである肝予備能データを取得し、画像データから肝実質領域、腫瘍、及び血管を分離抽出し、抽出した肝実質領域における動脈及び静脈の各支配領域を肝予備能データに基づいて算出する。そして、算出した各支配領域と腫瘍との配置に基づいて肝切除領域が最小となる血管切断位置及び肝切除ラインを決定し、決定した血管切断位置及び肝切除ラインを表示装置125に表示させる。 As described above, the image processing apparatus 122 according to the first embodiment acquires the liver reserve capacity data, which is image data depicting the inside of the subject including the liver and data related to the local reserve capacity of the liver, A liver parenchyma region, a tumor, and a blood vessel are separated and extracted from the image data, and the dominant regions of the artery and vein in the extracted liver parenchyma region are calculated based on the liver reserve data. Then, the blood vessel cutting position and the hepatectomy line that minimize the hepatic resection region are determined based on the calculated arrangement of each dominant region and the tumor, and the determined blood vessel cutting position and the hepatectomy line are displayed on the display device 125.

 これにより、分枝点よりも末端側に血管切断位置を設定でき、より小さな切除領域を決定し、提示することができる。また、肝臓の局所的な肝予備能変化を考慮して、正確な血管支配領域を特定することが可能となるため、最適な肝切除ラインを正確に求めて提示することが可能となる。 This makes it possible to set the blood vessel cutting position on the terminal side of the branch point, and to determine and present a smaller resection area. In addition, since it is possible to specify an accurate blood vessel dominating region in consideration of a local liver reserve capacity change, an optimal hepatectomy line can be accurately obtained and presented.

 なお、肝切除領域決定処理において、画像処理装置122は、腫瘍に関する臨床データに基づいて血管切断位置及び肝切除ラインを補正するようにしてもよい。すなわち、データ取得部122aは、抽出された腫瘍に関する臨床データを血管切断位置及び肝切除ラインの決定に関する補正パラメータとして取得し、肝切除ライン決定部122dは、更に補正パラメータに基づいて肝切除領域が最小となる血管切断位置及び肝切除ラインを決定することが望ましい。 In the hepatectomy region determination process, the image processing device 122 may correct the blood vessel cutting position and the hepatectomy line based on clinical data related to the tumor. That is, the data acquisition unit 122a acquires the clinical data regarding the extracted tumor as a correction parameter related to the determination of the blood vessel cutting position and the hepatectomy line, and the hepatectomy line determination unit 122d further determines the hepatectomy region based on the correction parameter. It is desirable to determine the minimal vessel cutting position and hepatectomy line.

 腫瘍に関する臨床データとは、例えば、腫瘍の大きさ、位置、成長度、切除時期、切除範囲、及び切除容量等である。この腫瘍に関する臨床データは、例えば患者の診断情報を管理するデータベース等に記憶されている。データ取得部122aは、データベースから該当患者の臨床データを補正パラメータとして読み出す。 Clinical data regarding tumors include, for example, tumor size, position, degree of growth, excision time, excision range, excision volume, and the like. Clinical data relating to this tumor is stored in, for example, a database for managing patient diagnosis information. The data acquisition unit 122a reads the clinical data of the patient as a correction parameter from the database.

 更に、肝切除ライン決定部122dは、過去の臨床データに基づいて腫瘍の手術時期や手術時期に応じた肝切除ラインを算出するものとしてもよい。 Furthermore, the hepatectomy line determination unit 122d may calculate the hepatectomy line according to the operation time of the tumor and the operation time based on the past clinical data.

 [第2の実施の形態]
 次に、図3のステップS107、ステップS108の血管支配領域の算出処理の別の例について説明する。
[Second Embodiment]
Next, another example of the blood vessel dominating region calculation process in steps S107 and S108 in FIG. 3 will be described.

 図3に示す肝切除領域決定処理において血管支配領域を算出する際、第1の実施の形態では画像処理装置122は造影剤拡散速度の比を用いて算出したが、第2の実施の形態では、更に血管径を考慮して血管支配領域を算出することが望ましい。 When calculating the blood vessel dominating region in the hepatectomy region determination process shown in FIG. 3, in the first embodiment, the image processing device 122 calculates using the contrast agent diffusion rate ratio, but in the second embodiment, Furthermore, it is desirable to calculate the blood vessel dominating region in consideration of the blood vessel diameter.

 すなわち、画像処理装置122は、まず図6(b)に示すように各血管芯線に垂直な線上に少なくとも2点(点A及び点B、点C及び点D)を設定し、各点におけるTDC(図6(a))のピーク時間tpと2点間距離(点Aと点Bとの距離、点Cと点Dとの距離)から点A、点Cにおける造影剤拡散速度を求める。 That is, the image processing apparatus 122 first sets at least two points (point A and point B, point C and point D) on a line perpendicular to each blood vessel core line as shown in FIG. The contrast agent diffusion rates at points A and C are obtained from the peak time tp (FIG. 6 (a)) and the distance between two points (distance between point A and point B, distance between point C and point D).

 動脈22の近傍の点Aにおける造影剤拡散速度は、上述の式(1)から求められ、動脈23の近傍の点Cにおける造影剤拡散速度は、上述の式(2)から求められる。 The contrast agent diffusion rate at the point A in the vicinity of the artery 22 is obtained from the above equation (1), and the contrast agent diffusion rate at the point C in the vicinity of the artery 23 is obtained from the above equation (2).

 画像処理装置122は、各動脈22、23近傍の点A、点Cにおける造影剤拡散速度と血管径を考慮して、各動脈22、23の支配領域の境界25を算出する。以下の式(4)は、動脈22から動脈支配領域の境界25までの距離d1と動脈23から動脈支配領域の境界25までの距離d2との比を表す式である。 The image processing device 122 calculates the boundary 25 between the control regions of the arteries 22 and 23 in consideration of the contrast agent diffusion speed and the blood vessel diameter at the points A and C in the vicinity of the arteries 22 and 23. The following equation (4) is an equation representing the ratio of the distance d1 from the artery 22 to the boundary 25 of the arterial dominating region and the distance d2 from the artery 23 to the boundary 25 of the arterial dominating region.

Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004

 式(4)に血管の径は、演算点から血管芯線へ引いた垂線上の断面位置における径である。 In equation (4), the diameter of the blood vessel is the diameter at the cross-sectional position on the perpendicular drawn from the calculation point to the blood vessel core line.

 血管径に応じて血流量が異なるため、造影剤の流量も異なる。造影剤拡散速度と併せて血管径を考慮することにより、より正確に血管支配領域を算出できる。 Since the blood flow volume varies depending on the blood vessel diameter, the contrast medium flow rate also varies. By considering the blood vessel diameter together with the contrast agent diffusion rate, the blood vessel dominating region can be calculated more accurately.

 [第3の実施の形態]
 血管支配領域を算出する際、画像処置装置122は、各血管から流出する造影剤が肝実質領域の各点に到達する到達時間の等高線を肝予備能データとして算出し、各血管についての等高線が交わる境界を血管支配領域の境界とするものとしてもよい。
[Third embodiment]
When calculating the blood vessel dominating region, the image processing device 122 calculates, as liver reserve data, contour lines of arrival time for the contrast medium flowing out from each blood vessel to reach each point in the liver parenchymal region, and the contour lines for each blood vessel are calculated. The intersecting boundary may be the boundary of the blood vessel dominating region.

 図17(a)は、各画素における造影剤到達時間を示す時系列データ(TDC)を示し、図17(b)は動脈22、23から流出する造影剤が肝実質領域の各点に到達する到達時間tpが等しい点を結ぶ等高線を示す図である。この等高線は、造影剤の拡散状態を表している。 FIG. 17 (a) shows time-series data (TDC) indicating the contrast medium arrival time at each pixel, and FIG. 17 (b) shows the contrast medium flowing out from the arteries 22 and 23 reaching each point in the liver parenchyma region. It is a figure which shows the contour line which connects the points with equal arrival time tp. This contour line represents the diffusion state of the contrast agent.

 画像処理装置122は、動脈22及び動脈23から発生する等高線の交差する点を血管支配領域の境界25とする。 The image processing device 122 sets a point where the contour lines generated from the artery 22 and the artery 23 intersect as a boundary 25 of the blood vessel control region.

 静脈周辺の肝実質領域についても同様に、造影剤到達時間の等高線を求め、血管32及び静脈33から発生する等高線の交差する点を血管支配領域の境界35とする。 Similarly, the contour line of the contrast medium arrival time is also obtained for the liver parenchymal region around the vein, and the point where the contour lines generated from the blood vessel 32 and the vein 33 intersect is defined as the boundary 35 of the blood vessel control region.

 第3の実施の形態では、血管周辺の各点での造影剤到達時間の分布から造影剤の拡散状態が求められるため、より細密な局所的肝予備能データを得ることができる。これにより、より正確な血管支配領域を求めることができる。 In the third embodiment, since the diffusion state of the contrast agent is obtained from the distribution of the contrast agent arrival time at each point around the blood vessel, finer local liver reserve data can be obtained. Thereby, a more accurate blood vessel dominating region can be obtained.

 [第4の実施の形態]
 図18は、本発明の画像処理装置122が実行する肝切除領域決定処理に好適なユーザインターフェースを示す図である。
[Fourth embodiment]
FIG. 18 is a diagram showing a user interface suitable for the hepatectomy region determination process executed by the image processing apparatus 122 of the present invention.

 図18に示す操作画面5は、画像表示エリア51、パラメータ設定エリア52、画像選択エリア53、リタッチ指示ボタン54等を有する。 18 has an image display area 51, a parameter setting area 52, an image selection area 53, a retouch instruction button 54, and the like.

 画像表示エリア51には、処理対象とする画像61が画像選択エリア53にて選択された形式で表示される。例えば、画像選択エリア53で「3D」が選択されていれば、元となる3次元原画像データに基づいて作成された3D画像が表示される。また、画像選択エリア53で「MPR」が選択されていれば、元となる3次元原画像データに基づいて作成されたMPR(Multi Planar Reconstruction)画像が表示される。 In the image display area 51, the image 61 to be processed is displayed in the format selected in the image selection area 53. For example, if “3D” is selected in the image selection area 53, a 3D image created based on the original three-dimensional original image data is displayed. If “MPR” is selected in the image selection area 53, an MPR (Multi-Planar Reconstruction) image created based on the original three-dimensional original image data is displayed.

 表示される画像61には、図3のステップS102~ステップS104の抽出処理で抽出した血管や腫瘍等が肝実質と識別可能に明示されるようにしてもよい。また、図3のステップS110等で算出した血管切断位置を示すライン62、63が各血管上に表示される。更に、血管切断位置に対応する肝切除領域66がマスク表示等によって明示されたり、肝切除ラインが明示されたりすることが望ましい。 In the displayed image 61, blood vessels or tumors extracted by the extraction processing in steps S102 to S104 in FIG. 3 may be clearly shown so as to be distinguishable from the liver parenchyma. Also, lines 62 and 63 indicating the blood vessel cutting positions calculated in step S110 of FIG. 3 are displayed on each blood vessel. Further, it is desirable that the hepatectomy region 66 corresponding to the blood vessel cutting position is clearly indicated by a mask display or the like, or the hepatectomy line is clearly indicated.

 また、ステップS107、ステップS108で算出した血管支配領域64や境界を示すライン67、ステップS109で算出した血液うっ滞領域65に半透明なマスクを重畳するなど、各領域が画像61上に明示されることが望ましい。 In addition, each region is clearly shown on the image 61, such as a translucent mask superimposed on the blood vessel dominating region 64 calculated in step S107 and step S108, the line 67 indicating the boundary, and the blood stasis region 65 calculated in step S109. It is desirable.

 血管切断位置を示すライン62、63や、境界ライン67は、マウス等で移動可能とする。各ラインが移動されると、ライン位置に応じて肝切除領域66、血液うっ滞領域65等が更新される。 The lines 62 and 63 indicating the blood vessel cutting position and the boundary line 67 are movable with a mouse or the like. When each line is moved, the hepatectomy region 66, the blood stagnation region 65, and the like are updated according to the line position.

 パラメータ設定エリア52は、肝切除領域決定処理において使用する各種のパラメータの入力を受け付ける入力欄が設けられる。パラメータには、例えば、肝切除容量、動脈切断位置(X,Y,Z)、静脈切断位置(X,Y,Z)、腫瘍マージン等が含まれる。 The parameter setting area 52 is provided with an input field for receiving input of various parameters used in the hepatectomy region determination process. The parameters include, for example, hepatectomy volume, arterial cutting position (X, Y, Z), venous cutting position (X, Y, Z), tumor margin, and the like.

 画像選択エリア53は、画像表示エリア51に表示する画像の種類が選択可能に表示される。画像の種類は、3D,MPRに限定されず、その他、3次元原画像データをもとに作成可能な各種の画像を含むものとしてもよい。 The image selection area 53 is displayed so that the type of image displayed in the image display area 51 can be selected. The types of images are not limited to 3D and MPR, and may include various images that can be created based on 3D original image data.

 リタッチ指示ボタン54は、画像表示エリア51に表示される画像を更新する際に操作される。すなわち、血管切断位置を示すライン62、63や境界ライン67等を移動後、リタッチ指示ボタン54を押下すると、画像処理装置122は、移動後のライン位置に応じた肝切除領域の肝切除容量や血液うっ滞容量を再算出し、各領域を示すマスクの形状を変更する。 The retouch instruction button 54 is operated when an image displayed in the image display area 51 is updated. That is, when the retouch instruction button 54 is pressed after moving the lines 62 and 63 indicating the blood vessel cutting position, the boundary line 67, and the like, the image processing device 122 displays the hepatectomy capacity of the hepatectomy region according to the line position after the movement, The blood stagnation volume is recalculated, and the shape of the mask indicating each region is changed.

 以上説明したように、第4の実施の形態によれば、表示されている画像データに対して血管切断位置をマウス等の入力装置121を用いて指定できる。更に画像処理装置122は、肝切除ライン決定する際に、画像上で指定された血管切断位置において切除容量(血液うっ滞容量)が最小となる肝切除ラインを決定し、操作画面5における血管切断位置、肝切除ライン、及び切除容量の表示を更新する。このように、肝切除領域決定処理に好適なユーザインターフェースを提供できるため、操作性を向上できる。 As described above, according to the fourth embodiment, the blood vessel cutting position can be specified for the displayed image data using the input device 121 such as a mouse. Further, when determining the hepatectomy line, the image processing apparatus 122 determines the hepatectomy line that minimizes the resection volume (blood stasis capacity) at the vascular cutting position specified on the image, and performs the vascular cutting on the operation screen 5. Update the display of position, hepatectomy line, and resection volume. Thus, since a user interface suitable for the hepatectomy region determination process can be provided, the operability can be improved.

 なお、上述の各実施の形態で説明した肝切除領域決定処理を、X線CT装置1に設けられる画像処理装置122ではなく、一般のコンピュータにより実行するものとしてもよい。また、X線CT装置1のシステム制御装置124が上述の各実施の形態で説明した肝切除領域決定処理を行うものとしてもよい。 Note that the hepatectomy region determination process described in each of the above embodiments may be executed by a general computer instead of the image processing apparatus 122 provided in the X-ray CT apparatus 1. Further, the system control device 124 of the X-ray CT apparatus 1 may perform the hepatectomy region determination process described in each of the above embodiments.

 以上、添付図面を参照しながら、本発明に係る画像処理装置等の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the image processing apparatus and the like according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these naturally belong to the technical scope of the present invention. Understood.

 1 X線CT装置、100 スキャンガントリ部、101 X線源、102 回転盤、104 開口部、105 寝台、106 X線検出器、107 データ収集装置、120 操作卓、121 入力装置、122 画像処理装置、123 記憶装置、124 システム制御装置、125 表示装置、25 動脈支配領域の境界、26、27動脈支配領域、35 静脈支配領域の境界、36、37 静脈支配領域、41、42 腫瘍、5 操作画面、61 画像データ、71 血液うっ滞領域、81、82、91、92、1001、1401 血管切断位置、83、93、1002、1201、1301、1404 肝切除領域 1 X-ray CT device, 100 scan gantry unit, 101 X-ray source, 102 turntable, 104 opening, 105 bed, 106 X-ray detector, 107 data collection device, 120 console, 121 input device, 122 image processing device , 123 storage device, 124 system control device, 125 display device, 25 arterial control region boundary, 26, 27 arterial control region, 35 vein control region boundary, 36, 37 vein control region, 41, 42 tumor, 5 operation screen , 61 Image data, 71 Blood stagnation area, 81, 82, 91, 92, 1001, 1401 Blood vessel cutting position, 83, 93, 1002, 1201, 1301, 1404 Hepatectomy area

Claims (10)

 肝臓を含む被検体内部を描出した画像データ及び肝臓の局所的な予備能に関するデータである肝予備能データを取得するデータ取得部と、
 前記画像データから肝実質領域、腫瘍、及び血管を分離抽出する抽出部と、
 抽出した肝実質領域における動脈及び静脈の各支配領域を前記肝予備能データに基づいて算出する血管支配領域算出部と、
 算出した各支配領域と前記腫瘍との配置に基づいて血管切断位置及び肝切除ラインを決定する肝切除ライン決定部と、
 前記血管切断位置及び肝切除ラインを表示する表示部と、
 を備えることを特徴とする画像処理装置。
A data acquisition unit that acquires image data depicting the inside of the subject including the liver and liver reserve data that is data related to the local reserve of the liver;
An extraction unit that separates and extracts a hepatic parenchymal region, a tumor, and a blood vessel from the image data;
A blood vessel dominating region calculating unit for calculating each dominating region of arteries and veins in the extracted liver parenchymal region based on the liver reserve capacity data;
A hepatectomy line determination unit that determines a vascular cutting position and a hepatectomy line based on the calculated location of each dominant region and the tumor;
A display unit for displaying the blood vessel cutting position and the hepatectomy line;
An image processing apparatus comprising:
 造影剤監視データに基づいて前記肝予備能データを算出する肝予備能データ算出部を更に備えることを特徴とする請求項1に記載の画像処理装置。 2. The image processing apparatus according to claim 1, further comprising a liver reserve capacity data calculation unit that calculates the liver reserve capacity data based on contrast medium monitoring data.  前記肝予備能データ算出部は、前記肝実質領域における任意の複数点での造影剤到達時間の推移から求められる造影剤拡散速度を前記肝予備能データとして算出することを特徴とする請求項2に記載の画像処理装置。 The liver reserve capacity data calculating unit calculates a contrast medium diffusion rate obtained from a transition of contrast medium arrival time at a plurality of arbitrary points in the liver parenchymal region as the liver reserve capacity data. An image processing apparatus according to 1.  前記血管支配領域算出部は、前記造影剤拡散速度及び血管径に基づいて前記支配領域を算出することを特徴とする請求項3に記載の画像処理装置。 4. The image processing apparatus according to claim 3, wherein the blood vessel dominating region calculation unit calculates the dominating region based on the contrast agent diffusion rate and the blood vessel diameter.  前記肝予備能データ算出部は、各血管から流出する造影剤が前記肝実質領域の各点に到達する到達時間の等高線を前記肝予備能データとして算出し、
 前記血管支配領域算出部は、各血管についての前記等高線が交わる境界を前記支配領域の境界とすることを特徴とする請求項2に記載の画像処理装置。
The liver reserve capacity data calculating unit calculates the contour lines of the arrival time when the contrast medium flowing out from each blood vessel reaches each point of the liver parenchymal region as the liver reserve capacity data,
3. The image processing apparatus according to claim 2, wherein the blood vessel dominating region calculation unit sets a boundary where the contour lines of each blood vessel intersect as a boundary of the dominating region.
 前記表示部は、前記画像データ上に前記血管切断位置及び前記肝切除ラインを示すとともに、切除容量を表示することを特徴とする請求項1に記載の画像処理装置。 2. The image processing apparatus according to claim 1, wherein the display unit displays the resection volume as well as the blood vessel cutting position and the hepatectomy line on the image data.  表示されている前記画像データに対して前記血管切断位置を指定する入力部を更に備え、
 前記肝切除ライン決定部は、指定された血管切断位置において切除容量が最小となる肝切除ラインを決定し、
 前記表示部は、血管切断位置、肝切除ライン、及び切除容量の表示を更新することを特徴とする請求項1に記載の画像処理装置。
An input unit for designating the blood vessel cutting position for the displayed image data;
The hepatectomy line determination unit determines a hepatectomy line that minimizes the excision capacity at the designated blood vessel cutting position,
2. The image processing apparatus according to claim 1, wherein the display unit updates display of a blood vessel cutting position, a hepatectomy line, and an excision volume.
 前記データ取得部は、抽出された腫瘍に関する臨床データを前記血管切断位置及び肝切除ラインの決定に関する補正パラメータとして取得し、
 前記肝切除ライン決定部は、更に前記補正パラメータに基づいて肝切除領域が最小となる血管切断位置及び肝切除ラインを決定することを特徴とする請求項1に記載の画像処理装置。
The data acquisition unit acquires clinical data regarding the extracted tumor as a correction parameter related to the determination of the blood vessel cutting position and the hepatectomy line,
2. The image processing apparatus according to claim 1, wherein the hepatectomy line determination unit further determines a blood vessel cutting position and a hepatectomy line that minimize the hepatectomy region based on the correction parameter.
 請求項1に記載の画像処理装置を備えたX線CT装置。 An X-ray CT apparatus comprising the image processing apparatus according to claim 1.  画像処理装置が実行する、
 肝臓を含む被検体内部を描出した画像データ及び肝臓の局所的な予備能に関するデータである肝予備能データを取得するステップと、
 前記画像データから肝実質領域、腫瘍、及び血管を分離抽出するステップと、
 抽出した肝実質領域における動脈及び静脈の各支配領域を前記肝予備能データに基づいて算出するステップと、
 算出した各支配領域と前記腫瘍との配置に基づいて血管切断位置及び肝切除ラインを決定するステップと、
 前記血管切断位置及び肝切除ラインを表示装置に表示させるステップと、
 を含むことを特徴とする画像処理方法。
Executed by the image processing device,
Obtaining image data depicting the interior of the subject including the liver and liver reserve data that is data relating to the local reserve of the liver;
Separating and extracting liver parenchymal regions, tumors, and blood vessels from the image data;
Calculating the dominant regions of arteries and veins in the extracted liver parenchymal region based on the liver reserve data;
Determining a vascular cutting position and a hepatectomy line based on the calculated location of each dominant region and the tumor;
Displaying the blood vessel cutting position and the hepatectomy line on a display device;
An image processing method comprising:
PCT/JP2015/079430 2014-11-10 2015-10-19 Image processing device, x-ray ct device, and image processing method Ceased WO2016076074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016558943A JP6634381B2 (en) 2014-11-10 2015-10-19 Image processing apparatus, X-ray CT apparatus, and image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-227635 2014-11-10
JP2014227635 2014-11-10

Publications (1)

Publication Number Publication Date
WO2016076074A1 true WO2016076074A1 (en) 2016-05-19

Family

ID=55954166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079430 Ceased WO2016076074A1 (en) 2014-11-10 2015-10-19 Image processing device, x-ray ct device, and image processing method

Country Status (2)

Country Link
JP (1) JP6634381B2 (en)
WO (1) WO2016076074A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112801999A (en) * 2021-02-05 2021-05-14 深圳睿心智能医疗科技有限公司 Method and device for determining heart coronary artery dominant type
JP2022046808A (en) * 2017-06-22 2022-03-23 株式会社根本杏林堂 Medical image processing apparatus, medical image processing system, and medical image processing method
JPWO2022176874A1 (en) * 2021-02-22 2022-08-25
JP2022128218A (en) * 2021-02-22 2022-09-01 ザイオソフト株式会社 MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING METHOD, AND MEDICAL IMAGE PROCESSING PROGRAM
JP2023148348A (en) * 2022-03-30 2023-10-13 ザイオソフト株式会社 Medical image processing device, medical image processing method, and medical image processing program
WO2024101883A1 (en) * 2022-11-08 2024-05-16 가톨릭대학교 산학협력단 Device for operating on soft tissue tumor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033349A (en) * 2001-07-23 2003-02-04 Hitachi Medical Corp Method and equipment for extracting and displaying specific field of internal organ
JP2011516108A (en) * 2008-03-06 2011-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for processing data sets in a selective and interactive manner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5797124B2 (en) * 2012-01-31 2015-10-21 富士フイルム株式会社 Surgery support device, surgery support method, and surgery support program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033349A (en) * 2001-07-23 2003-02-04 Hitachi Medical Corp Method and equipment for extracting and displaying specific field of internal organ
JP2011516108A (en) * 2008-03-06 2011-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for processing data sets in a selective and interactive manner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022046808A (en) * 2017-06-22 2022-03-23 株式会社根本杏林堂 Medical image processing apparatus, medical image processing system, and medical image processing method
JP7298949B2 (en) 2017-06-22 2023-06-27 株式会社根本杏林堂 MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING SYSTEM AND MEDICAL IMAGE PROCESSING METHOD
JP2023110069A (en) * 2017-06-22 2023-08-08 株式会社根本杏林堂 MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING SYSTEM AND MEDICAL IMAGE PROCESSING METHOD
CN112801999A (en) * 2021-02-05 2021-05-14 深圳睿心智能医疗科技有限公司 Method and device for determining heart coronary artery dominant type
JPWO2022176874A1 (en) * 2021-02-22 2022-08-25
JP2022128218A (en) * 2021-02-22 2022-09-01 ザイオソフト株式会社 MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING METHOD, AND MEDICAL IMAGE PROCESSING PROGRAM
JP7553381B2 (en) 2021-02-22 2024-09-18 ザイオソフト株式会社 Medical image processing device, medical image processing method, and medical image processing program
JP7768966B2 (en) 2021-02-22 2025-11-12 富士フイルム株式会社 Medical image processing device, medical image processing method and program
JP2023148348A (en) * 2022-03-30 2023-10-13 ザイオソフト株式会社 Medical image processing device, medical image processing method, and medical image processing program
WO2024101883A1 (en) * 2022-11-08 2024-05-16 가톨릭대학교 산학협력단 Device for operating on soft tissue tumor

Also Published As

Publication number Publication date
JP6634381B2 (en) 2020-01-22
JPWO2016076074A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
US12495952B2 (en) Intelligent display
US20250054153A1 (en) Medical image processing apparatus, medical image processing method, and x-ray ct apparatus
JP6634381B2 (en) Image processing apparatus, X-ray CT apparatus, and image processing method
US12121385B2 (en) Medical image-processing apparatus, x-ray CT apparatus, and medical image-processing method performing fluid analysis to switch displayed color information
US9782134B2 (en) Lesion imaging optimization using a tomosynthesis/biopsy system
US8295913B2 (en) Method and device for planning and/or monitoring an interventional high-frequency thermoablation
JP2019069232A (en) System and method for navigating x-ray guided breast biopsy
US10548539B2 (en) X-ray CT apparatus and scanning method
JP2019502477A (en) System and method for creating a medical treatment plan
US10966688B2 (en) Image registration for CT or MR imagery and ultrasound imagery using mobile device
JP2018057835A (en) Medical information processing apparatus, x-ray ct apparatus, and medical information processing program
JP2007144177A (en) Method and apparatus for semi-automatic segmentation technique for low-contrast tubular shaped objects
JP2016049392A (en) Medical image processing apparatus
US6341152B1 (en) X-ray computerized tomography apparatus
EP3135203B1 (en) Systems and methods of image acquisition for surgical instrument reconstruction
JP6283872B2 (en) X-ray CT system, X-ray CT system
US10497115B2 (en) Method, apparatus and computer program for visually supporting a practitioner with the treatment of a target area of a patient
JP6662612B2 (en) Medical image diagnostic equipment
CN103732149B (en) X ray CT device
WO2013111791A1 (en) X-ray ct device and x-ray ct system
JP2020039406A (en) Puncture planning device and puncture control system
JP2010099348A (en) Medical image processor
JP7246915B2 (en) MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING METHOD, AND X-RAY DIAGNOSTIC APPARATUS
JP2014050465A (en) Image processor and region of interest setting method
CN103284744A (en) Medical apparatus and X-ray CT system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859756

Country of ref document: EP

Kind code of ref document: A1