[go: up one dir, main page]

WO2015193521A1 - Method and system for the automatic classification of kidney stones, computer program, and computer program product - Google Patents

Method and system for the automatic classification of kidney stones, computer program, and computer program product Download PDF

Info

Publication number
WO2015193521A1
WO2015193521A1 PCT/ES2015/000076 ES2015000076W WO2015193521A1 WO 2015193521 A1 WO2015193521 A1 WO 2015193521A1 ES 2015000076 W ES2015000076 W ES 2015000076W WO 2015193521 A1 WO2015193521 A1 WO 2015193521A1
Authority
WO
WIPO (PCT)
Prior art keywords
classification
image
analysis
fragment
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/ES2015/000076
Other languages
Spanish (es)
French (fr)
Inventor
Montserrat LÓPEZ MESAS
Francisco Blanco Lucena
Joan Serrat Gual
Felipe Lumbreras Ruiz
Manuel Valiente Malmagro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre De Visio Per Computador (cvc)
Universitat Autonoma de Barcelona UAB
Original Assignee
Centre De Visio Per Computador (cvc)
Universitat Autonoma de Barcelona UAB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre De Visio Per Computador (cvc), Universitat Autonoma de Barcelona UAB filed Critical Centre De Visio Per Computador (cvc)
Publication of WO2015193521A1 publication Critical patent/WO2015193521A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention concerns in general a method and a system for the automatic classification of kidney stones, based on image analysis, and more particularly a method and a system that use computer vision techniques to carry out the analysis. of images of kidney stones and their subsequent classification as a result of such analysis.
  • Kidney stones are usually classified according to their chemical composition as calcium oxalate monohydrate (COM), calcium oxalate dihydrate (COD), calcium oxalate dihydrate transformed into monohydrate (TRA), brushite (BRU), apatite carbonate (CAP) also known as hydroxyapatite (PAH), struvite (STR), anhydrous uric acid (AUA), uric acid dihydrate (AUD), mixed calcium oxalate and apatite carbonate (MXD) calculations, with remarkable variability within each class.
  • COM calcium oxalate monohydrate
  • COD calcium oxalate dihydrate
  • TRA calcium oxalate dihydrate transformed into monohydrate
  • BRU brushite
  • CAP apatite carbonate
  • PAH hydroxyapatite
  • STR struvite
  • AUA anhydrous uric acid
  • AUD uric acid dihydrate
  • MXD mixed calcium oxalate and apatite carbonate
  • kidney stones This chemical classification of kidney stones leads to a description of the metabolic alterations that a patient has gone through, and thus, the selection of a useful treatment to prevent recurrence of colic (recurrence).
  • the specific treatment that each patient can receive should be based on recommendations and restrictions in the diet and suggestions on dietary supplements (which can modify some urinary parameters, such as inhibitors and promoters of stone formation), along with monitoring the levels of some components of the urine.
  • dietary supplements which can modify some urinary parameters, such as inhibitors and promoters of stone formation
  • the formation of kidney stones is a disease with an especially high recurrence rate. Therefore, by proper treatment of the patient, further stone formation is drastically reduced. This provides a better quality of life for the patient, along with considerable savings for health organizations. This is well known to urologists, but their access to this information is limited due to the partially incomplete results normally offered by clinical laboratories.
  • Infrared (IR) spectroscopy is the most widespread technique, since it is simple and allows a classification of stones based on the chemical composition and the percentage of the main components of the sample.
  • the strength of this classification lies in the recognition of spectral bands (in the infrared range, defined by wave numbers ranging from 400 to 4000 cm "1 ), which are directly related to the chemical composition.
  • the three main drawbacks of this Technique are:
  • infrared light is sensitive to chemical components that appear naturally in kidney stones, it is not sensitive enough to detect minor components.
  • the nature and distribution of the components found in kidney stones induce a characteristic visual appearance, which can be recognized by optical techniques.
  • a morpho-constitutional analysis based on the optical and physical characteristics of the samples can be carried out, since it is performed using a stereo microscope.
  • Features such as hardness, color and distribution of the components are used to give a classification of the calculations.
  • the sample is cut to observe the inner part of the calculation, if necessary.
  • the classes resulting from this type of analysis are not the same as those obtained with infrared spectroscopy, but an extension / specialization of them because this technique is sensitive to the presence of minor components thus offering a second order classification.
  • the classes not only depend on the chemical composition, but also on their spatial distribution.
  • the main drawbacks of this technique are:
  • a method for the characterization and classification of kidney stones is proposed, by analyzing different spectra of pre-cut kidney stones, applying a hyperspectral imaging technique.
  • the information analyzed is relative to the intensity of the radiation reflected in the calculation at different wavelengths.
  • the method proposed in said application comprises analyzing each pixel of each image, so that the image of the renal calculus is divided into a matrix of pixels and each of them is analyzed independently of the neighboring pixels.
  • Hyperspectral analysis is carried out in the near-infrared spectrum (in a spectral range covering 1000-1700 nm), taking into account all the variables, relative to reflectance measured for all wavelengths, individually in an analysis multiparameter That is, in the proposal made in WO2012136874A1, a sample is considered as composed of a given number of pixels, each consisting of variables related to reflectance of energies in the near-infrared spectrum. This spectrum carries information on the chemical composition of the stone.
  • a method is described to determine the type of renal calculus, in particular its composition, by lighting the renal calculus with different wavelengths and comparing the reflectances generated in the renal calculus for each wavelength, classifying the renal calculus based on the differences found in these reflectances for different wavelengths.
  • the method is implemented by an endoscope that carries both the lighting means of different wavelengths and an image sensor sensitive to said wavelengths and that acquires images that include information related to said reflectances.
  • JP2008197081A it is also proposed to perform a classification of calculations based on a multispectral analysis thereof, in particular quantifying the components in the calculation based on absorbance values of some spectral bands in the infrared region.
  • the present invention concerns, in a first aspect, a method for the automatic classification of kidney stones, comprising:
  • step b the analysis of step b ) is carried out using computer vision techniques, preferably together with computational learning techniques, where said information to be analyzed refers to the image characteristics associated with at least the texture of the kidney stone.
  • the acquired image is a digital image
  • the analysis of step b) is carried out at once on the complete digital image acquired in stage a), without performing an individual classification of each pixel.
  • the information to be analyzed refers to associated image characteristics, in addition to texture, to other visual characteristics of renal calculus, including size and / or shape and / or color.
  • step a) comprises acquiring at least two images of a fragment of the kidney stone, one corresponding to a view of an outer surface and another to a view of an exposed inner surface, and analyzing them in the stage b).
  • the method comprises cutting it to expose said inner surface whose image is acquired in step a).
  • the method comprises acquiring in stage a) and analyzing in stage b), a plurality of images of corresponding views of each of the outer and inner surfaces of the kidney stone fragment, each under conditions of different lighting and / or exposure time.
  • the method comprises carrying out said image acquisitions with the same image sensor sensitive to the wavelengths associated with all the illuminations included in said different lighting conditions, which are within the range from the visible light at the initial near-infrared wavelengths.
  • the method comprises carrying out said acquisitions with several image sensors sensitive, together, to all said different wavelengths.
  • the method comprises, according to an embodiment, making said acquisition, in step a), and analysis, in step b), of images of the views of the outer and inner surfaces for a plurality of fragments thereof. sample.
  • stage c) explained so far, that is, based on the analysis of the images of the fragment or fragments of renal calculus, is a classification of a first level, or classification of sight, which includes, for each view, a estimate of the probability of belonging to a class of renal calculus associated with chemical composition, from the calculation of a vector of probabilities for each view that includes information on the spatial distribution of said probabilities.
  • the result of said classification of a first level is considered as a final result for an embodiment example, but for another more elaborate embodiment example for which the precision required for the classification result is higher, in order to obtain such more precise classification, the method comprises performing, in step c), a second level classification, or fragment classification, which comprises combining the results obtained in the classification of a first level for several views of the same kidney stone fragment , to determine a unique class for each fragment based also on chemical composition also on the location and distribution of the chemical components associated with these probabilities and to what view they correspond.
  • the system contemplates the application of a previously defined cost matrix.
  • the costs related to each class are included in a classification vector of each fragment, and are fixed, contrary to the information obtained as a result of the classification of the first level, which depends on the images and measurements taken.
  • the cost values that are applied make it possible to correct disparate results to give a single class value to a second level.
  • the method comprises correcting the result of the classification of a second level if the result for a given fragment differs from those obtained for each of the views of the same, in the classification of a first level, above a cost value determined.
  • a determined cost value is defined prior to the analysis, and included in a classification vector, which includes an associated cost value that marks the dependence of such classification.
  • One way of carrying out said correction comprises reclassifying said fragment taking less into account, or not taking into account at all, the location and distribution of the chemical components associated with said probabilities and to what view they correspond, that is, based on everything, or only (in the most extreme case), in the chemical composition.
  • the method comprises performing steps a), b) and c) for two or more fragments of the same sample, the method comprising performing, in step c), a third level classification, or sample classification , which comprises, if the classification of a second level of said fragments is not coincident, assign a unique class for the sample.
  • the classification result may be terminated after the classification of a first level, after the classification of a second level or after the classification of a third level.
  • the method comprises:
  • - generate, prior to stage a), a set of training, or learning, for a plurality of samples of kidney stones classified manually by an expert, including, in a correlated way, information on chemical composition, spatial distribution and of visual appearance for internal and external views of different fragments of each sample represented in images obtained with different types of lighting and exposure times, and
  • the method comprises training said training set and / or automatic classifiers used to perform at least said first, second and third level classifications using the results of the classifications.
  • the method of the first aspect of the invention comprises carrying out the classification of step c) complementing the analysis of the stage b) with additional information regarding the patient from whom the kidney stone comes and / or obtained from the kidney stone with non-camera based sensors.
  • patient information includes at least one of the following information, or a combination thereof:
  • collateral analytics including at least one of the following data collected in the patient's urine analysis: pH, calcium, oxalate, magnesium, ammonium and phosphate.
  • a second aspect of the invention concerns a system for the automatic classification of kidney stones, comprising:
  • the system proposed by the second aspect of the invention complements the method according to any one of the preceding claims, implementing the means of processing of the electronic system one or more algorithms based on computer vision techniques, and preferably also computational learning, for perform steps b) and c) of the first aspect method.
  • said image acquisition means comprise a system that has an image focusing mechanism of kidney stones, manually or automatically controllable by the electronic system.
  • the system comprises a housing that defines an interior space that is lightly insulated from the exterior that houses, supported and / or fixed in an internal support structure:
  • kidney stone sample (s) arranged on said support;
  • control means for controlling at least the lighting means.
  • the system also optionally comprises one or more sensors sensitive to a range of the electromagnetic spectrum (such as the corresponding infrared spectrum) different from that associated with the image acquisition means, arranged or arranged facing the kidney stone sample (s) arranged on said support, and in connection with the electronic system, to capture the global reflectivity (without performing a pixel analysis) of the sample or samples in a spectral range suitable for characterization.
  • a range of the electromagnetic spectrum such as the corresponding infrared spectrum
  • the entire electronic system is local and is housed inside the housing.
  • said part of said electronic system housed within the housing is a local part and the electronic system comprises a remote part, such as a computer, communicated bi-directionally with said local part and with the image acquisition means.
  • a remote part such as a computer
  • a third aspect of the invention concerns a computer program that includes code instructions which, when executed on a computer, implements steps b) and c) of the method of the first aspect.
  • a fourth aspect of the invention concerns a computer program product comprising the computer program of the third aspect.
  • the computer program product comprises or is stored or implemented in a medium that may contain, store, communicate, propagate or transport the computer program for use by a system, apparatus or device of execution of instructions, or in connection with it.
  • Said means is or comprises, according to some examples of embodiment, a physical and / or logical support readable by a computer and / or an electromagnetic, optical or acoustic signal that transports the computer program.
  • the present invention allows, therefore, in its different aspects, to perform an automatic classification of kidney stones in a way that is useful for doctors, that is, the results are similar to those they are accustomed to manage and comply with their needs in the allocation of treatments for patients
  • the definition of the classes used for the ciasmcacion is Dasa in the chemical composition of the calculations, the way in which the samples are analyzed according to the present invention is not based on chemical parameters but on the visible characteristics (mainly the texture of the sample ).
  • the classification of the samples is automatic, because the chemical analysis is replaced by a visual analysis carried out by computer at once, avoiding the need for a qualified technician and, therefore, without depending on their aptitudes.
  • the sample is not destroyed, so it can be re-analyzed if necessary.
  • the spatial distribution of the components can be performed, which allows the history of renal calculus to be traced and used to prevent recurrence.
  • the doctor receives the diagnosis and treatment proposed by the device and according to the type of kidney stone generated, thus facilitating the work of the urologist, which can be transmitted directly to the patient.
  • the present invention is capable of providing the information required by the urologist, but using unconventional techniques that achieve an equal or improved result.
  • recommendations on diet and treatment to be followed along with the classification are provided. These recommendations are useful for the urologist and their relationship with the specific kind of kidney stone not known to most of them.
  • the present invention has been developed, in its different aspects, by a team composed of experts in image analysis and experts in kidney stone analysis who are continually in contact with urologists who were constantly asked for advice on, for example, what Type of information they need and would expect.
  • a team composed of experts in image analysis and experts in kidney stone analysis who are continually in contact with urologists who were constantly asked for advice on, for example, what Type of information they need and would expect.
  • Fig. 1 shows, schematically, the system proposed by the second aspect of the present invention, which is apt to implement the method of the first aspect.
  • - Fragment Part of a kidney stone that has been obtained directly from the patient (after treatment with extracorporeal shock wave lithotripsy or ESWL) or after cutting an entire stone, in order to leave the discovered its internal part.
  • - Image For each view the camera acquires different images, each one under a particular lighting source and exposure time.
  • the samples In order to create a database suitable for training the designed system, that is, a training set, the samples must be chosen carefully, that is, the samples cannot be chosen at random. For this, the samples were selected from a bank of 1300 samples by an expert (a qualified person) in the analysis and classification of kidney stones. Due to the remarkable variability within each class, the selection criterion was chosen in order to reflect this variation in the group of samples selected for each type of stone.
  • the data set includes the stones that comprised all the possibilities for each class in the inner and outer part of the stones. These possibilities include the chemical composition (defined by infrared), the distribution of the components and the visual appearance of the sample (defined by morpho-constitutional analysis), both performed by a qualified specialist.
  • this library or sample database is based on the experience of the present inventors in the study of the causes of stone formation and the classification of kidney stones.
  • the results obtained with the method proposed by the present invention cannot be achieved if the stone data set is chosen at random, or if the selected samples do not cover the full range of possibilities for each kind of stone. This can only be developed by an expert in this field, as a result of experimental work on the classification of samples.
  • the samples were chosen in order to cover all the different classes (which could be done from an analysis of the results obtained by infrared spectroscopy) and also the different, second-order classification (the which can only be done by a well trained person).
  • the image acquisition procedure has been designed as follows. One or two fragments were selected from each selected sample so that both the inner and outer surfaces can be observed. Then, for each of the two surfaces or views, a series of 6 images were recorded varying the type of lighting source and the exposure time. The choice of the light source depends on the knowledge and experience gained after analyzing several spectra of kidney stones. The total number of samples selected was 346, from which 606 fragments were selected resulting in 1212 surface views indoor and outdoor (and the acquisition and registration of 6 images of each view).
  • a class is determined for that view as well as the probability of each class for that view is estimated, almost always coinciding with the class determined with the most probable.
  • This class is based entirely on the visual characteristics of size, shape, color and texture (a feature never used before). At this level it is also possible to take into account the pH level of the urine as another characteristic, if this is known.
  • the output classes are comparable to those obtained by chemical analysis (COD, COM, STR ...) in order to facilitate a classification to the urologist known.
  • the output of this classification is an estimate of the probability or belief that a fragment with such a view (external or internal) belongs to each of the previous classes. Therefore, the method and system developed by the present invention calculates a probability vector for each view of a fragment. From them you can easily infer also the most probable class for a given view, as a first approximation of the class of the fragment.
  • a second classifier produces a class fragment from the results of outputs of the classifier of a first level. This is a second-order classification, a very useful information that can only be achieved by an expert in morpho-constitutional analysis and not by one in infrared spectroscopy.
  • the classification of the fragments is done after both views (inner and outer parts) have been assigned to a class.
  • the system is trained in the definition of a single specific class for the fragment based on the combination of the results for the individual views. Therefore, the classification of each fragment is not only limited to the chemical components present in the stone, but also to its location and distribution.
  • the class assigned to a fragment will be different if compound A is inside the stone and B on the surface, or if the situation is the opposite.
  • the definition of these classes by fragments is based on the differences between the possible treatments administered to the patient.
  • the relationship between the possible combinations for internal and external views is given below in Table 1, referring to the classification of fragments according to their internal (Interior) and external (Surface) views.
  • the system may be wrong, that is, an incorrect class is assigned to a fragment, and depending on the difference between the actual and the assigned class, the associated cost will be different (in the second classification level).
  • the classes described in Table 1, on which the classification is based can be reordered or assigned as described in Table 2. If such reordering is carried out, always according to the potential cost, which is also shown in Table 2 in the range of 0 to 10, 10 being associated with the highest error, the class system can be simplify, getting closer and closer to the first level of classification, based only on chemical composition, not on the distribution of components. That is, the stone classification algorithm can be very strict, but it has also been designed with an important flexibility component. This feature allows the method and system of the present invention to adapt its performance to the specific conditions that the user needs.
  • the values shown in Table 2 can be used as a percentage of probability of one class being assigned, instead, during the training process. For example, if a sample is known to be of class 2b, the cost if the assigned class (and learned) is 2ct is low, so the model will be freer to assign this other class to the fragment. However, if the same sample 2b is initially recognized as class 6, this decision will be affected and modified by the risk of assigning that class.
  • the criteria used for this transposition are shown in the cost matrix of Table 2, which is set out below. If classes are combined with a low risk of confusion, the classification is simplified to the first level of classification. Logically, the percentage accuracy of the classification increases as the subtypes of stones decrease (when different groups are combined), since errors usually occur between similar classes, which give a low value in the cost matrix.
  • a third classifier has been designed in order to offer a final classification. If the most probable class of each of the two fragments both have a probability greater than a certain threshold, if they are the same class, this is the one assigned. If they are not but the two exceed this threshold, the method and system of the present invention has been designed to assign a single class to the sample, using the combination table as seen in Table 3, designed based on the experience and knowledge in the analysis of kidney stones. When either of the two classes does not exceed this probability threshold, it is classified based on the output results of the second level classifier.
  • the output or final result offered by the method and system of the present invention consists not only in the classification of kidney stones, but also in treatment recommendations for the physician. These recommendations depend directly on the type of kidney stone detected, related to the direct origin of the stone. The recommendations are linked to a strict classification system that has been defined specifically for this case. In the literature, some classification systems for kidney stones have been defined, but based on the experience of the present inventors these systems have been reconstructed and adapted to this specific problem and combined with the requirements of image analysis. In accordance with the present invention, the stones are classified according to a combination of classes defined in a table designed specifically for this purpose, which considers the outer part and the inner part of the stones. This form of kidney stone classification has never been used previously.
  • the present inventors have designed a prototype of the system proposed by the second aspect of the invention, specially configured to complement the method of the invention All components were chosen independently to meet both high performance and low cost criteria.
  • the lighting configuration was chosen based on the experience of the present inventors in stone classification (thus the most useful energy ranges for this application were chosen) and image treatment (the physical configuration of the hardware was based on the experience in the image analysis and laboratory work, so a high number of lighting configurations were tested before selecting the most appropriate one).
  • a control unit 5 (or local part of the electronic system, according to the terminology used in a previous section) to control the intensity and type of light emitted by the LEDs L of the lighting board 3, connected to an external computer 7 (or remote part of the electronic system, according to the terminology used in a previous section),
  • a digital camera 4 also connected to the external computer 7, in addition to a suitable optic 8, which includes an extension tube and a lens,
  • a housing 1 that defines an interior space insulated from the outside to insulate the sample S from ambient light
  • the images of the samples which are used for the description of the characteristics of the stone necessary for classification (texture, shape and color), are taken using a conventional camera, equipped with a Silicon sensor.
  • the lighting energies used are in the Visible range - Near infrared (400-1000 nm) within the sensitivity range of this sensor.
  • the image information can be complemented with the use of other LEDs, which emit at specific wavelengths, allowing measurements of particular reflectance intensities.
  • the illumination plate 3 has been specially designed so that the lenses allow to observe the renal calculus S, and the location of the LEDs L has been chosen to avoid shadows in the sample S.
  • an infrared sensor 6 arranged in this plate 3 provides a signal of the reflected light to the computer 7.
  • sample tray 2 in the prototype built this is a mobile sample tray 2 with a homogeneous bottom, designed for the placement of the different samples S in the field of view of the camera 4, and for optically distinguish the background stone fragment (segmentation).
  • the sample tray 2 has been placed on a mobile platform, which serves for the best placement of the S stone for a simpler approach and lighting adaptation.
  • the sample tray is not mobile.
  • a suitable support structure (not shown) has also been designed to support the system elements inside the housing 1. It keeps all the components in the defined position, while allowing the sample tray 2 to move as necessary, both to place the sample in the field of view of the camera and to adjust the focus of the image.
  • the system operates from a computer 7 using special software designed for this purpose.
  • This software controls the captured image, as well as the lighting conditions.
  • an appropriate graphical user interface has been designed for stone image acquisition, classification and visualization of the result.
  • This interface allows naming the sample and the collection and storage of several images, as well as the associated near-infrared data for each stone fragment, and also for more than one stone fragment for each sample (stones with ESWL origin generally consisted of several fragments).
  • other patient data, relevant for classification such as age, sex and urine pH level can be entered.
  • the results of the classification are given as the probability distribution for each class based on the degree of belief in terms of perception, illustrated, for example, by a diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The method comprises: a) acquiring an image of a kidney stone; b) analysing, using computer-aided vision technology, information contained in the acquired image, referring to the characteristics of the image associated with at least the texture of the kidney stone; and c) classifying the kidney stone based on the result of said analysis. The system is suitable for carrying out the method according to the invention. The computer program carries out the analysis and classification steps of the method according to the invention, and the computer program product incorporates the computer program.

Description

MÉTODO Y SISTEMA PARA LA CLASIFICACIÓN AUTOMÁTICA DE CÁLCULOS RENALES. PROGRAMA DE ORDENADOR Y PRODUCTO DE PROGRAMA DE  METHOD AND SYSTEM FOR AUTOMATIC CLASSIFICATION OF RENAL CALCULATIONS. COMPUTER PROGRAM AND PRODUCT PROGRAM

ORDENADOR Sector de la técnica  COMPUTER Technical sector

La presente invención concierne en general a un método y a un sistema para la clasificación automática de cálculos renales, basado en el análisis de imágenes, y más en particular a un método y a un sistema que utilizan técnicas de visión por computador para llevar a cabo el análisis de imágenes de cálculos renales y su posterior clasificación como resultado de tal análisis.  The present invention concerns in general a method and a system for the automatic classification of kidney stones, based on image analysis, and more particularly a method and a system that use computer vision techniques to carry out the analysis. of images of kidney stones and their subsequent classification as a result of such analysis.

Otros aspectos de la invención conciernen a un programa de ordenador que implementa las etapas de análisis y clasificación del método de la invención, y a un producto que incorpora a tal programa de ordenador. Estado de la técnica anterior  Other aspects of the invention concern a computer program that implements the analysis and classification stages of the method of the invention, and a product that incorporates such a computer program. Prior art

Los cálculos renales se suelen clasificar de acuerdo a su composición química como oxalato cálcico monohidrato (COM), oxalato cálcico dihidrato (COD), oxalato cálcico dihidrato transformado en monohidrato (TRA), brushita (BRU), carbonato apatita (CAP) también conocido como hidroxiapatita (HAP), estruvita (STR), ácido úrico anhidro (AUA), ácido úrico dihidrato (AUD), cálculos mixtos de oxalato cálcico y carbonato de apatita (MXD), con una notable variabilidad dentro de cada clase.  Kidney stones are usually classified according to their chemical composition as calcium oxalate monohydrate (COM), calcium oxalate dihydrate (COD), calcium oxalate dihydrate transformed into monohydrate (TRA), brushite (BRU), apatite carbonate (CAP) also known as hydroxyapatite (PAH), struvite (STR), anhydrous uric acid (AUA), uric acid dihydrate (AUD), mixed calcium oxalate and apatite carbonate (MXD) calculations, with remarkable variability within each class.

Esta clasificación química de cálculos renales conduce a una descripción de las alteraciones metabólicas por las que ha pasado un paciente, y así, a la selección de un tratamiento útil para evitar la repetición de cólicos (recurrencia). El tratamiento específico que cada paciente puede recibir debe basarse en recomendaciones y restricciones en la dieta y en sugerencias sobre suplementos dietéticos (que pueden modificar algunos parámetros urinarios, tales como inhibidores y promotores de la formación de cálculos), junto con el seguimiento de los niveles de algunos componentes de la orina. Es importante señalar que la formación de cálculos renales es una enfermedad con una tasa de recurrencia especialmente alta. Por lo tanto, mediante el tratamiento adecuado del paciente, la formación ulterior de cálculos se reduce drásticamente. Esto proporciona una mayor calidad de vida para el paciente, junto con un ahorro considerable para las organizaciones de salud. Esto es bien conocido por los urólogos, pero su acceso a esta información es limitada debido a los resultados parcialmente incompletos normalmente ofrecidos por los laboratorios clínicos.  This chemical classification of kidney stones leads to a description of the metabolic alterations that a patient has gone through, and thus, the selection of a useful treatment to prevent recurrence of colic (recurrence). The specific treatment that each patient can receive should be based on recommendations and restrictions in the diet and suggestions on dietary supplements (which can modify some urinary parameters, such as inhibitors and promoters of stone formation), along with monitoring the levels of some components of the urine. It is important to note that the formation of kidney stones is a disease with an especially high recurrence rate. Therefore, by proper treatment of the patient, further stone formation is drastically reduced. This provides a better quality of life for the patient, along with considerable savings for health organizations. This is well known to urologists, but their access to this information is limited due to the partially incomplete results normally offered by clinical laboratories.

Técnicas de análisis existentes: Conscientes del problema, algunas técnicas se han aplicado al análisis de cálculos renales. Este tipo de muestras generalmente se clasifican, utilizando metodologías ópticas y espectroscópicas, de acuerdo con su composición química. Existing analysis techniques: Aware of the problem, some techniques have been applied to the analysis of kidney stones. These types of samples are generally classified, using optical and spectroscopic methodologies, according to their chemical composition.

La espectroscopia de infrarrojos (IR) es la técnica más extendida, ya que es simple y permite una clasificación de piedras basada en la composición química y en el porcentaje de los componentes principales de la muestra. La fuerza de esta clasificación radica en el reconocimiento de bandas espectrales (en el rango de infrarrojos, definido por números de onda que van de 400 a 4000 cm"1), que están directamente relacionados con la composición química. Los tres principales inconvenientes de esta técnica son: Infrared (IR) spectroscopy is the most widespread technique, since it is simple and allows a classification of stones based on the chemical composition and the percentage of the main components of the sample. The strength of this classification lies in the recognition of spectral bands (in the infrared range, defined by wave numbers ranging from 400 to 4000 cm "1 ), which are directly related to the chemical composition. The three main drawbacks of this Technique are:

- La piedra debe molerse para su análisis, por lo que cualquier distribución espacial de los componentes se pierde inevitablemente.  - The stone must be ground for analysis, so any spatial distribution of the components is inevitably lost.

- Los espectros infrarrojos obtenidos necesitan ser estudiados por un experto en el área de espectroscopia y con conocimientos de litiasis.  - The infrared spectra obtained need to be studied by an expert in the area of spectroscopy and with knowledge of lithiasis.

- Sólo entonces se pueden obtener los resultados sobre composición y cuantificación, y traducirse en las sugerencias de tratamiento más adecuadas.  - Only then can the results on composition and quantification be obtained, and translated into the most appropriate treatment suggestions.

Aunque la luz infrarroja es sensible a los componentes químicos que aparecen de forma natural en los cálculos renales, no es lo suficientemente sensible para detectar componentes menores.  Although infrared light is sensitive to chemical components that appear naturally in kidney stones, it is not sensitive enough to detect minor components.

Por otro lado, la naturaleza y distribución de los componentes que se encuentran en los cálculos renales inducen una apariencia visual característica, que puede ser reconocida por técnicas ópticas. Sobre la base de ello, puede llevarse a cabo un análisis morfo-constitucional basado en las características ópticas y físicas de las muestras, ya que se realiza usando un estéreo-microscopio. Características tales como la dureza, el color y la distribución de los componentes se utilizan para dar una clasificación de los cálculos. La muestra se corta para observar la parte interior del cálculo, si es necesario. Las clases resultantes de este tipo de análisis no son las mismas que las obtenidas con la espectroscopia de infrarrojos, sino una extensión/especialización de ellas porque esta técnica es sensible a la presencia de componentes menores ofreciendo así una clasificación de segundo orden. Así, las clases no sólo dependen de la composición química, sino también de su distribución espacial. Los principales inconvenientes de esta técnica son:  On the other hand, the nature and distribution of the components found in kidney stones induce a characteristic visual appearance, which can be recognized by optical techniques. On the basis of this, a morpho-constitutional analysis based on the optical and physical characteristics of the samples can be carried out, since it is performed using a stereo microscope. Features such as hardness, color and distribution of the components are used to give a classification of the calculations. The sample is cut to observe the inner part of the calculation, if necessary. The classes resulting from this type of analysis are not the same as those obtained with infrared spectroscopy, but an extension / specialization of them because this technique is sensitive to the presence of minor components thus offering a second order classification. Thus, the classes not only depend on the chemical composition, but also on their spatial distribution. The main drawbacks of this technique are:

- Es una técnica que consume mucho tiempo y que requiere de un técnico especializado debidamente entrenado en el reconocimiento de la constitución de cálculos. - Debido a que el reconocimiento se realiza visualmente, éste está sujeto a la aptitud y la experiencia del técnico. - It is a technique that consumes a lot of time and that requires a specialized technician duly trained in the recognition of the constitution of calculations. - Because the recognition is done visually, it is subject to the aptitude and experience of the technician.

En la solicitud Internacional WO2012136874A1 se propone, un método para la caracterización y clasificación de cálculos renales, mediante el análisis de diferentes espectros de cálculos renales pre-cortados, aplicando una técnica de formación de imágenes hiperespectrales. La información analizada es relativa a la intensidad de la radiación reflejada en el cálculo a diferentes longitudes de onda. El método propuesto en dicha solicitud comprende analizar cada pixel de cada imagen, de manera que la imagen del cálculo renal se divide en una matriz de píxeles y cada uno de ellos es analizado independientemente de los píxeles vecinos. El análisis hiperespectral se lleva a cabo en el espectro del infrarrojo cercano (en un rango espectral que cubre 1000- 1700 nm), tomando en consideración todas las variables, relativas a reflectancia medida para todas las longitudes de onda, de manera individual en un análisis multiparamétrico. Es decir, en la propuesta hecha en WO2012136874A1 se considera una muestra como compuesta por un número dado de píxeles, cada uno de ellos formado por unas variables relativas a reflectancia de energías en el espectro del infrarrojo cercano. Este espectro es portador de información de la composición química de la piedra.  In the International application WO2012136874A1, a method for the characterization and classification of kidney stones is proposed, by analyzing different spectra of pre-cut kidney stones, applying a hyperspectral imaging technique. The information analyzed is relative to the intensity of the radiation reflected in the calculation at different wavelengths. The method proposed in said application comprises analyzing each pixel of each image, so that the image of the renal calculus is divided into a matrix of pixels and each of them is analyzed independently of the neighboring pixels. Hyperspectral analysis is carried out in the near-infrared spectrum (in a spectral range covering 1000-1700 nm), taking into account all the variables, relative to reflectance measured for all wavelengths, individually in an analysis multiparameter That is, in the proposal made in WO2012136874A1, a sample is considered as composed of a given number of pixels, each consisting of variables related to reflectance of energies in the near-infrared spectrum. This spectrum carries information on the chemical composition of the stone.

En la patente US8280496B2 se describe un método para determinar el tipo de cálculo renal, en particular su composición, mediante la iluminación del cálculo renal con diferentes longitudes de onda y la comparación de las reflectancias generadas en el cálculo renal para cada longitud de onda, clasificándose el cálculo renal en función de las diferencias encontradas en dichas reflectancias para distintas longitudes de onda. El método se implementa mediante un endoscopio que porta tanto los medios de iluminación de diferentes longitudes de onda como un sensor de imagen sensible a dichas longitudes de onda y que adquiere imágenes que incluyen información relativa a dichas reflectancias.  In US8280496B2 a method is described to determine the type of renal calculus, in particular its composition, by lighting the renal calculus with different wavelengths and comparing the reflectances generated in the renal calculus for each wavelength, classifying the renal calculus based on the differences found in these reflectances for different wavelengths. The method is implemented by an endoscope that carries both the lighting means of different wavelengths and an image sensor sensitive to said wavelengths and that acquires images that include information related to said reflectances.

En el documento de patente japonés JP2008197081A también se propone realizar una clasificación de cálculos basándose en un análisis multiespectral de los mismos, en particular cuantificando los componentes en el cálculo basándose en valores de absorbancia de algunas bandas espectrales en la región de infrarrojos.  In Japanese patent document JP2008197081A it is also proposed to perform a classification of calculations based on a multispectral analysis thereof, in particular quantifying the components in the calculation based on absorbance values of some spectral bands in the infrared region.

En ninguno de los documentos citados se realiza un análisis de imagen, entendido como relativo a la textura y características generales del cálculo renal, sino simplemente de sus características espectrales. Explicación de la invención Aparece necesario, por tanto, ofrecer una alternativa al estado de la técnica que supere los inconvenientes de los que adolecen las técnicas tradicionales de análisis de cálculos renales. In none of the cited documents is an image analysis performed, understood as relative to the texture and general characteristics of the kidney stone, but simply of its spectral characteristics. Explanation of the invention. It seems necessary, therefore, to offer an alternative to the state of the art that overcomes the disadvantages of those suffering from traditional kidney stone analysis techniques.

Con tal fin, la presente invención concierne, en un primer aspecto, a un método para la clasificación automática de cálculos renales, que comprende:  To this end, the present invention concerns, in a first aspect, a method for the automatic classification of kidney stones, comprising:

a) adquirir una imagen de un cálculo renal;  a) acquire an image of a kidney stone;

b) analizar información contenida en dicha imagen adquirida; y  b) analyze information contained in said acquired image; Y

c) clasificar dicho cálculo renal en función del resultado de dicho análisis.  c) classify said renal calculus according to the result of said analysis.

A diferencia de los métodos de clasificación automática conocidos, en los cuales se realiza un análisis espectral de las diferentes partes de la imagen adquirida, en el método propuesto por el primer aspecto de la presente invención, de manera característica, el análisis de la etapa b) se lleva a cabo usando técnicas de visión por computador, preferentemente junto con técnicas de aprendizaje computacional, donde dicha información a analizar se refiere a las características de imagen asociadas a como mínimo la textura del cálculo renal.  Unlike the known automatic classification methods, in which a spectral analysis of the different parts of the acquired image is performed, in the method proposed by the first aspect of the present invention, characteristically, the analysis of step b ) is carried out using computer vision techniques, preferably together with computational learning techniques, where said information to be analyzed refers to the image characteristics associated with at least the texture of the kidney stone.

Según un ejemplo de realización preferido, la imagen adquirida es una imagen digital, y el análisis de la etapa b) se lleva cabo de una vez sobre la imagen digital completa adquirida en la etapa a), sin realizar una clasificación individual de cada píxel.  According to a preferred embodiment, the acquired image is a digital image, and the analysis of step b) is carried out at once on the complete digital image acquired in stage a), without performing an individual classification of each pixel.

Para un ejemplo de realización, la información a analizar se refiere a características de imagen asociadas, además de a textura, a otras características visuales del cálculo renal, incluyendo tamaño y/o forma y/o color.  For an exemplary embodiment, the information to be analyzed refers to associated image characteristics, in addition to texture, to other visual characteristics of renal calculus, including size and / or shape and / or color.

De acuerdo con un ejemplo de realización, la etapa a) comprende adquirir como mínimo dos imágenes de un fragmento del cálculo renal, una correspondiente a una vista de una superficie exterior y otra a una vista de una superficie interior expuesta, y analizarlas en la etapa b). Cuando el fragmento de cálculo renal no tiene expuesta ninguna superficie interior, el método comprende cortarlo para exponer dicha superficie interior cuya imagen se adquiere en la etapa a).  According to an exemplary embodiment, step a) comprises acquiring at least two images of a fragment of the kidney stone, one corresponding to a view of an outer surface and another to a view of an exposed inner surface, and analyzing them in the stage b). When the kidney stone fragment has no exposed inner surface, the method comprises cutting it to expose said inner surface whose image is acquired in step a).

Preferentemente, el método comprende adquirir en la etapa a) y analizar en la etapa b), una pluralidad de imágenes de unas correspondientes vistas de cada una de las superficies exterior e interior del fragmento de cálculo renal, cada una de ellas bajo unas condiciones de iluminación y/o tiempo de exposición diferentes.  Preferably, the method comprises acquiring in stage a) and analyzing in stage b), a plurality of images of corresponding views of each of the outer and inner surfaces of the kidney stone fragment, each under conditions of different lighting and / or exposure time.

Según un ejemplo de realización, el método comprende llevar a cabo dichas adquisiciones de imagen con un mismo sensor de imagen sensible a las longitudes de onda asociadas a todas las iluminaciones incluidas en dichas condiciones de iluminación diferentes, que se encuentran dentro del rango que va desde la luz visible a las longitudes de onda iniciales del infrarrojo cercano. Alternativamente, el método comprende llevar a cabo dichas adquisiciones con varios sensores de imagen sensibles, en conjunto, a todas dichas diferentes longitudes de onda. According to an embodiment, the method comprises carrying out said image acquisitions with the same image sensor sensitive to the wavelengths associated with all the illuminations included in said different lighting conditions, which are within the range from the visible light at the initial near-infrared wavelengths. Alternatively, the method comprises carrying out said acquisitions with several image sensors sensitive, together, to all said different wavelengths.

El método comprende, de acuerdo con un ejemplo de realización, realizar dicha adquisición, en la etapa a), y análisis, en la etapa b), de imágenes de las vistas de las superficies exterior e interior para una pluralidad de fragmentos de una misma muestra.  The method comprises, according to an embodiment, making said acquisition, in step a), and analysis, in step b), of images of the views of the outer and inner surfaces for a plurality of fragments thereof. sample.

La clasificación de la etapa c) explicada hasta aquí, es decir la basada en el análisis de las imágenes del fragmento o fragmentos de cálculo renal, es una clasificación de un primer nivel, o clasificación de vista, que incluye, para cada vista, una estimación de la probabilidad de su pertenencia a una clase de cálculo renal asociada a composición química, a partir del cálculo de un vector de probabilidades para cada vista que incluye información sobre la distribución espacial de dichas probabilidades.  The classification of stage c) explained so far, that is, based on the analysis of the images of the fragment or fragments of renal calculus, is a classification of a first level, or classification of sight, which includes, for each view, a estimate of the probability of belonging to a class of renal calculus associated with chemical composition, from the calculation of a vector of probabilities for each view that includes information on the spatial distribution of said probabilities.

El resultado de dicha clasificación de un primer nivel es considerado como un resultado final para un ejemplo de realización, pero para otro ejemplo de realización más elaborado para el que la precisión requerida para el resultado de la clasificación sea superior, con el fin de obtener tal clasificación más precisa, el método comprende realizar, en la etapa c), una clasificación de un segundo nivel, o clasificación de fragmento, que comprende combinar los resultados obtenidos en la clasificación de un primer nivel para varias vistas de un mismo fragmento de cálculo renal, para determinar una clase única para cada fragmento basándose además de en composición química también en la localización y distribución de los componentes químicos asociados a dichas probabilidades y a qué vista corresponden.  The result of said classification of a first level is considered as a final result for an embodiment example, but for another more elaborate embodiment example for which the precision required for the classification result is higher, in order to obtain such more precise classification, the method comprises performing, in step c), a second level classification, or fragment classification, which comprises combining the results obtained in the classification of a first level for several views of the same kidney stone fragment , to determine a unique class for each fragment based also on chemical composition also on the location and distribution of the chemical components associated with these probabilities and to what view they correspond.

En el caso de obtener resultados divergentes para diferentes vistas, el sistema contempla la aplicación de una matriz de costes definida previamente. Los costes relativos a cada clase están comprendidos en un vector de clasificación de cada fragmento, y son fijos, al contrario de la información obtenida como resultado de la clasificación del primer nivel, que depende de las capturas de imágenes y medidas realizadas. Los valores de coste que se aplican permiten corregir resultados dispares para dar un único valor de clase a un segundo nivel.  In the case of obtaining divergent results for different views, the system contemplates the application of a previously defined cost matrix. The costs related to each class are included in a classification vector of each fragment, and are fixed, contrary to the information obtained as a result of the classification of the first level, which depends on the images and measurements taken. The cost values that are applied make it possible to correct disparate results to give a single class value to a second level.

Opcionalmente, el método comprende corregir el resultado de la clasificación de un segundo nivel si el resultado para un fragmento determinado difiere de los obtenidos para cada una de las vistas del mismo, en la clasificación de un primer nivel, por encima de un valor de coste determinado. En general, tal valor de coste determinado se encuentra definido previamente al análisis, e incluido en un vector de clasificación, que incluye un valor de coste asociado que marca la dependencia de tal clasificación. Una manera de llevar a cabo dicha corrección comprende reclasificar dicho fragmento teniendo menos en cuenta, o no teniendo en cuenta en absoluto, la localización y distribución de los componentes químicos asociados a las mencionadas probabilidades y a qué vista corresponden, es decir basándose sobre todo, o solamente (en el caso más extremo), en la composición química. Optionally, the method comprises correcting the result of the classification of a second level if the result for a given fragment differs from those obtained for each of the views of the same, in the classification of a first level, above a cost value determined. In general, such a determined cost value is defined prior to the analysis, and included in a classification vector, which includes an associated cost value that marks the dependence of such classification. One way of carrying out said correction comprises reclassifying said fragment taking less into account, or not taking into account at all, the location and distribution of the chemical components associated with said probabilities and to what view they correspond, that is, based on everything, or only (in the most extreme case), in the chemical composition.

El resultado de dicha clasificación de un segundo nivel es considerado como un resultado final para un ejemplo de realización, pero para otro ejemplo de realización más elaborado para el que la precisión requerida para el resultado de la clasificación sea superior, con el fin de obtener tal clasificación aún más precisa, el método comprende realizar las etapas a), b) y c) para dos o más fragmentos de una misma muestra, comprendiendo el método realizar, en la etapa c), una clasificación de un tercer nivel, o clasificación de muestra, que comprende, si la clasificación de un segundo nivel de dichos fragmentos no es coincidente, asignar una clase única para la muestra.  The result of said classification of a second level is considered as a final result for an embodiment example, but for another more elaborate embodiment example for which the precision required for the classification result is higher, in order to obtain such Even more precise classification, the method comprises performing steps a), b) and c) for two or more fragments of the same sample, the method comprising performing, in step c), a third level classification, or sample classification , which comprises, if the classification of a second level of said fragments is not coincident, assign a unique class for the sample.

Como ya se ha indicado anteriormente, en función de la precisión requerida para el resultado de la clasificación, ésta puede darse por finalizada tras la clasificación de un primer nivel, tras la clasificación de un segundo nivel o tras la clasificación de un tercer nivel.  As indicated above, depending on the accuracy required for the classification result, it may be terminated after the classification of a first level, after the classification of a second level or after the classification of a third level.

De acuerdo con un ejemplo de realización, el método comprende:  According to an embodiment example, the method comprises:

- generar, de manera previa a la etapa a), un conjunto de entrenamiento, o de aprendizaje, para una pluralidad de muestras de cálculos renales clasificadas manualmente por un experto, incluyendo, de manera correlacionada, información de composición química, de distribución espacial y de apariencia visual para vistas internas y externas de diferentes fragmentos de cada muestra representadas en imágenes obtenidas con distintos tipos de iluminación y tiempos de exposición, y  - generate, prior to stage a), a set of training, or learning, for a plurality of samples of kidney stones classified manually by an expert, including, in a correlated way, information on chemical composition, spatial distribution and of visual appearance for internal and external views of different fragments of each sample represented in images obtained with different types of lighting and exposure times, and

- realizar las clasificaciones de un primer, un segundo y un tercer nivel consultando las imágenes adquiridas en dicho conjunto de entrenamiento y extrayendo la información de clase correlacionada con las imágenes más similares a las consultadas.  - make the classifications of a first, a second and a third level by consulting the images acquired in said training set and extracting the class information correlated with the images more similar to those consulted.

El método comprende entrenar a dicho conjunto de entrenamiento y/o a unos clasificadores automáticos utilizados para realizar como mínimo dichas clasificaciones de un primer, un segundo y un tercer nivel utilizando los resultados de las clasificaciones.  The method comprises training said training set and / or automatic classifiers used to perform at least said first, second and third level classifications using the results of the classifications.

Según un ejemplo de realización, el método del primer aspecto de la invención comprende llevar a cabo la clasificación de la etapa c) complementando el análisis de la etapa b) con información adicional relativa al paciente del que proviene el cálculo renal y/u obtenida del cálculo renal con sensores no basados en cámara. According to an embodiment, the method of the first aspect of the invention comprises carrying out the classification of step c) complementing the analysis of the stage b) with additional information regarding the patient from whom the kidney stone comes and / or obtained from the kidney stone with non-camera based sensors.

Con respecto a dicha información relativa al paciente, ésta incluye como mínimo una de las siguientes informaciones, o una combinación de las mismas:  With respect to said patient information, it includes at least one of the following information, or a combination thereof:

- datos simples relativos a sexo y/o edad y/o raza y/o complexión y/o índice de masa corporal y/o desórdenes de salud asociados a la litiasis renal, y/o  - simple data related to sex and / or age and / or race and / or complexion and / or body mass index and / or health disorders associated with renal lithiasis, and / or

- datos ligados a analíticas colaterales, incluyendo al menos uno de los siguientes datos recogidos en análisis de orina del paciente: pH, calcio, oxalato, magnesio, amonio y fosfato.  - data linked to collateral analytics, including at least one of the following data collected in the patient's urine analysis: pH, calcium, oxalate, magnesium, ammonium and phosphate.

Por lo que se refiere a dicha información obtenida del cálculo renal con sensores no basados en cámara, ésta incluye, según un ejemplo de realización, como mínimo información de reflectividad en otras zonas del espectro electromagnético no incluidas en la imagen adquirida en a), tal como el espectro correspondiente al infrarrojo.  As regards said information obtained from renal calculus with non-camera based sensors, this includes, according to an example of embodiment, at least reflectivity information in other areas of the electromagnetic spectrum not included in the image acquired in a), such as the spectrum corresponding to infrared.

Un segundo aspecto de la invención concierne a un sistema para la clasificación automática de cálculos renales, que comprende:  A second aspect of the invention concerns a system for the automatic classification of kidney stones, comprising:

- medios de adquisición de imágenes para adquirir al menos una imagen de un cálculo renal; y  - means of acquiring images to acquire at least one image of a kidney stone; Y

- un sistema electrónico en conexión con dichos medios de adquisición de imágenes y que incluyen unos medios de procesamiento para procesar información contenida en dicha imagen adquirida y para clasificar dicho cálculo renal en función del resultado de dicho análisis.  - an electronic system in connection with said image acquisition means and including processing means to process information contained in said acquired image and to classify said renal calculus according to the result of said analysis.

El sistema propuesto por el segundo aspecto de la invención ¡mplementa el método según una cualquiera de las reivindicaciones anteriores, implementando los medios de procesamiento del sistema electrónico uno o más algoritmos basados en técnicas de visión por computador, y preferentemente también de aprendizaje computacional, para realizar las etapas b) y c) del método del primer aspecto.  The system proposed by the second aspect of the invention complements the method according to any one of the preceding claims, implementing the means of processing of the electronic system one or more algorithms based on computer vision techniques, and preferably also computational learning, for perform steps b) and c) of the first aspect method.

Preferentemente, los citados medios de adquisición de imágenes comprenden un sistema que posee un mecanismo de enfoque de imágenes de cálculos renales, controlable manualmente o automáticamente mediante el sistema electrónico.  Preferably, said image acquisition means comprise a system that has an image focusing mechanism of kidney stones, manually or automatically controllable by the electronic system.

Según un ejemplo de realización, el sistema comprende una carcasa que define un espacio interior aislado lumínicamente del exterior que alberga, sustentados y/o fijados en una estructura de soporte interior:  According to an exemplary embodiment, the system comprises a housing that defines an interior space that is lightly insulated from the exterior that houses, supported and / or fixed in an internal support structure:

- a un soporte para muestras de cálculos renales, que preferentemente es extraíble respecto a dicha estructura de soporte y a dicha carcasa; - a unos medios de iluminación dispuestos para iluminar, con luz de una o más longitudes de onda, la o las muestras de cálculos renales dispuestas sobre dicho soporte; - to a support for kidney stone samples, which is preferably removable with respect to said support structure and said housing; - to lighting means arranged to illuminate, with light of one or more wavelengths, the kidney stone sample (s) arranged on said support;

- a dichos medios de adquisición de imágenes, los cuales incluyen un sensor de imagen sensible a dicha o dichas longitudes de onda; y  - to said image acquisition means, which include an image sensor sensitive to said or said wavelengths; Y

- a como mínimo parte de dicho sistema electrónico, que también incluye a unos medios de control para controlar a al menos los medios de iluminación.  - at least part of said electronic system, which also includes control means for controlling at least the lighting means.

El sistema también comprende, opcionalmente, uno o más sensores sensibles a un rango del espectro electromagnético (tal como el espectro correspondiente al infrarrojo) diferente al asociado a los medios de adquisición de imágenes, dispuesto o dispuestos enfrentados a la o las muestras de cálculos renales dispuestas sobre dicho soporte, y en conexión con el sistema electrónico, para captar la reflectividad global (sin realizar un análisis por píxels) de la muestra o muestras en un rango espectral adecuado para su caracterización.  The system also optionally comprises one or more sensors sensitive to a range of the electromagnetic spectrum (such as the corresponding infrared spectrum) different from that associated with the image acquisition means, arranged or arranged facing the kidney stone sample (s) arranged on said support, and in connection with the electronic system, to capture the global reflectivity (without performing a pixel analysis) of the sample or samples in a spectral range suitable for characterization.

Según un ejemplo de realización preferido, todo el sistema electrónico es local y está albergado dentro de la carcasa.  According to a preferred embodiment, the entire electronic system is local and is housed inside the housing.

De manera alternativa, dicha parte de dicho sistema electrónico albergada dentro de la carcasa es una parte local y el sistema electrónico comprende una parte remota, tal como un ordenador, comunicada bidireccionalmente con dicha parte local y con los medios de adquisición de imágenes.  Alternatively, said part of said electronic system housed within the housing is a local part and the electronic system comprises a remote part, such as a computer, communicated bi-directionally with said local part and with the image acquisition means.

Un tercer aspecto de la invención concierne a un programa de ordenador que incluye instrucciones de código que, al ejecutarse en un ordenador, implementa las etapas b) y c) del método del primer aspecto.  A third aspect of the invention concerns a computer program that includes code instructions which, when executed on a computer, implements steps b) and c) of the method of the first aspect.

Un cuarto aspecto de la invención concierne a un producto de programa de ordenador que comprende el programa de ordenador del tercer aspecto.  A fourth aspect of the invention concerns a computer program product comprising the computer program of the third aspect.

Según un ejemplo de realización, el producto de programa de ordenador comprende o se encuentra almacenado o implementado en un medio que pueda contener, almacenar, comunicar, propagar o transportar el programa de ordenador para su uso por un sistema, un aparato o un dispositivo de ejecución de instrucciones, o en conexión con el mismo. Dicho medio es o comprende, según unos ejemplos de realización, un soporte físico y/o lógico legible por un ordenador y/o una señal electromagnética, óptica o acústica que transporte al programa de ordenador.  According to an exemplary embodiment, the computer program product comprises or is stored or implemented in a medium that may contain, store, communicate, propagate or transport the computer program for use by a system, apparatus or device of execution of instructions, or in connection with it. Said means is or comprises, according to some examples of embodiment, a physical and / or logical support readable by a computer and / or an electromagnetic, optical or acoustic signal that transports the computer program.

La presente invención permite, por tanto, en sus diferentes aspectos, realizar una clasificación automática de cálculos renales de una manera tal que es útil para los médicos, es decir, los resultados son similares a los que éstos están acostumbrados para gestionar y cumplir con sus necesidades en la asignación de tratamientos para los pacientes. Aunque la definición de las clases utilizadas para la ciasmcacion se Dasa en la composición química de los cálculos, la forma en que las muestras se analizan según la presente invención no se basa en parámetros químicos sino en las características visibles (principalmente la textura de la muestra). Las ventajas que la presente invención ofrece frente a las técnicas conocidas, según sus diferentes ejemplos de realización, son: The present invention allows, therefore, in its different aspects, to perform an automatic classification of kidney stones in a way that is useful for doctors, that is, the results are similar to those they are accustomed to manage and comply with their needs in the allocation of treatments for patients Although the definition of the classes used for the ciasmcacion is Dasa in the chemical composition of the calculations, the way in which the samples are analyzed according to the present invention is not based on chemical parameters but on the visible characteristics (mainly the texture of the sample ). The advantages that the present invention offers over known techniques, according to its different embodiments, are:

- La clasificación de las muestras es automática, porque el análisis químico se sustituye por un análisis visual realizado por ordenador de una vez, evitando la necesidad de un técnico cualificado y, por tanto, sin depender de sus aptitudes. - La muestra no se destruye, por lo que se puede volver a analizar si es necesario.  - The classification of the samples is automatic, because the chemical analysis is replaced by a visual analysis carried out by computer at once, avoiding the need for a qualified technician and, therefore, without depending on their aptitudes. - The sample is not destroyed, so it can be re-analyzed if necessary.

- Puede realizarse la distribución espacial de los componentes, lo que permite que pueda trazarse la historia del cálculo renal y utilizarse para evitar la recurrencia.  - The spatial distribution of the components can be performed, which allows the history of renal calculus to be traced and used to prevent recurrence.

- Por lo que se refiere al sistema, éste es de una gran robustez.  - As far as the system is concerned, it is very robust.

- El análisis se realiza en pocos minutos en la misma visita al urólogo.  - The analysis is carried out in a few minutes during the same visit to the urologist.

- El médico recibe el diagnóstico y tratamiento propuestos por el dispositivo y de acuerdo con el tipo de cálculo renal generado, facilitando así el trabajo del urólogo, que puede transmitir directamente al paciente.  - The doctor receives the diagnosis and treatment proposed by the device and according to the type of kidney stone generated, thus facilitating the work of the urologist, which can be transmitted directly to the patient.

- Bajo coste del sistema, que se puede amortizar en poco tiempo, ya que se puede implementar basado en una cámara, microprocesador y componentes de iluminación estándar.  - Low cost of the system, which can be amortized in a short time, since it can be implemented based on a camera, microprocessor and standard lighting components.

- Bajo coste del análisis, incluso en comparación con un análisis químico, ya que puede ser realizado por el propio urólogo y no por un técnico entrenado de un servicio de espectroscopia de infrarrojos.  - Low cost of the analysis, even in comparison with a chemical analysis, since it can be performed by the urologist himself and not by a technician trained in an infrared spectroscopy service.

Por lo tanto, la presente invención es capaz de proporcionar la información requerida por el urólogo, pero utilizando técnicas no convencionales que logran un resultado igual o mejorado. Además, se proporcionan recomendaciones sobre la dieta y el tratamiento a seguir junto con la clasificación. Esas recomendaciones son útiles para el urólogo y su relación con la clase específica de cálculo renal no conocida por la mayoría de ellos.  Therefore, the present invention is capable of providing the information required by the urologist, but using unconventional techniques that achieve an equal or improved result. In addition, recommendations on diet and treatment to be followed along with the classification are provided. These recommendations are useful for the urologist and their relationship with the specific kind of kidney stone not known to most of them.

La presente invención ha sido desarrollada, en sus diferentes aspectos, por un equipo compuesto por expertos en análisis de imagen y expertos en análisis de cálculos renales que están continuamente en contacto con urólogos a los cuales se les pidió consejo constantemente sobre, por ejemplo, qué tipo de información necesitan y esperarían. Breve descripción de los dibujos The present invention has been developed, in its different aspects, by a team composed of experts in image analysis and experts in kidney stone analysis who are continually in contact with urologists who were constantly asked for advice on, for example, what Type of information they need and would expect. Brief description of the drawings

Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización, alguno de los cuales con referencia al dibujo adjunto, que deben tomarse a título ilustrativo y no limitativo, en los que:  The foregoing and other advantages and features will be more fully understood from the following detailed description of some examples of embodiment, some of which with reference to the attached drawing, which should be taken by way of illustration and not limitation, in which:

La Fig. 1 muestra, de manera esquemática, al sistema propuesto por el segundo aspecto de la presente invención, que es apto para implementar el método del primer aspecto.  Fig. 1 shows, schematically, the system proposed by the second aspect of the present invention, which is apt to implement the method of the first aspect.

Descripción detallada de unos ejemplos de realización Detailed description of some embodiments

En el presente apartado se describirá una implementación práctica de la presente invención, tanto por lo que se refiere al método como al sistema, un prototipo del cual se ha fabricado y describirá más adelante.  In this section a practical implementation of the present invention will be described, both as regards the method and the system, a prototype of which it has been manufactured and will be described later.

En primer lugar, se describe la implementación del método propuesto por el primer aspecto de la invención, que incluye la selección de las muestras y el posterior procedimiento de clasificación.  First, the implementation of the method proposed by the first aspect of the invention is described, which includes the selection of the samples and the subsequent classification procedure.

Terminología:  Terminology:

- Muestra: cálculo o fragmentos de cálculo generados por un paciente durante un episodio.  - Sample: calculation or calculation fragments generated by a patient during an episode.

- Fragmento: Parte de un cálculo renal que se ha obtenido directamente del paciente (después de un tratamiento con litotricia extracorpórea por onda de choque o ESWL, de las siglas en inglés) o después de cortar una piedra entera, con el fin de dejar al descubierto su parte interna.  - Fragment: Part of a kidney stone that has been obtained directly from the patient (after treatment with extracorporeal shock wave lithotripsy or ESWL) or after cutting an entire stone, in order to leave the discovered its internal part.

- Vista: Parte de la piedra o fragmento expuesta a la cámara. Existen dos tipos diferentes de vista, superficial y de corte; es decir, la parte externa o interna de un fragmento o de una piedra.  - View: Part of the stone or fragment exposed to the chamber. There are two different types of sight, superficial and cutting; that is, the outer or inner part of a fragment or a stone.

- Imagen: Para cada vista la cámara adquiere diferentes imágenes, cada una bajo una fuente de iluminación y un tiempo de exposición particulares.  - Image: For each view the camera acquires different images, each one under a particular lighting source and exposure time.

Las muestras se obtuvieron del Servicio de Urología del Hospital Universitari de The samples were obtained from the Urology Service of the Hospital Universitari de

Bellvitge, Barcelona (España). Las piedras fueron expulsadas o bien de forma natural (por lo que se recibió la piedra completa) o recolectadas después de romperla aplicando un tratamiento con litotricia extracorpórea por ondas de choque (recibiéndose fragmentos de la piedra). Para los cálculos o piedras no fragmentadas (enteras), éstas se cortaron con un cuchillo quirúrgico con el fin de alcanzar el núcleo. Cuando la muestra contiene fragmentos, tanto la parte interior como la exterior de la piedra es en general visible sin la necesidad de realizar ninguna manipulación (a menos que el fragmento no muestre el núcleo de la piedra, entonces debe ser cortado). Después de la recogida, la piedra o fragmentos se enjuagaron con agua y etanol y después se almacenaron en viales individuales, limpios. Las muestras se pueden almacenar así durante años sin signos visibles de descomposición o daños en la estructura. Bellvitge, Barcelona (Spain). The stones were expelled either naturally (so that the whole stone was received) or collected after breaking it by applying a treatment with extracorporeal lithotripsy by shock waves (fragments of the stone being received). For stones or non-fragmented stones (whole), these were cut with a surgical knife in order to reach the nucleus. When the sample contains fragments, both the inner and outer part of the stone is in general visible without the need for any manipulation (unless the fragment does not show the core of the stone, then it must be cut). After collection, the stone or fragments were rinsed with water and ethanol and then stored in clean, individual vials. Samples can thus be stored for years without visible signs of decomposition or damage to the structure.

Con el fin de crear una base de datos adecuada para entrenar al sistema diseñado, es decir un conjunto de entrenamiento, las muestras deben ser elegidas cuidadosamente, es decir las muestras no pueden ser elegidas al azar. Para ello las muestras fueron seleccionadas de un banco de 1300 muestras por un experto (una persona cualificada) en el análisis y la clasificación de los cálculos renales. Debido a la variabilidad notable dentro de cada clase, el criterio de selección fue elegido con el fin de reflejar esta variación en el grupo de muestras seleccionadas para cada tipo de piedra. El conjunto de datos incluye las piedras que comprendían todas las posibilidades para cada clase en la parte interna y externa de las piedras. Estas posibilidades incluyen la composición química (definida por infrarrojos), la distribución de los componentes y el aspecto visual de la muestra (que se define por el análisis morfoconstitucional), ambas realizadas por un especialista cualificado. La creación de esta biblioteca o base de datos de muestras se basa en la experiencia de los presentes inventores en el estudio de las causas de la formación de cálculos y la clasificación de los cálculos renales. Los resultados obtenidos con el método propuesto por la presente invención no se pueden lograr si el conjunto de datos de piedras se elige al azar, o si las muestras seleccionadas no cubren toda la gama de posibilidades para cada clase de piedra. Esto sólo puede ser desarrollado por un experto en este campo, como resultado de un trabajo experimental en la clasificación de las muestras.  In order to create a database suitable for training the designed system, that is, a training set, the samples must be chosen carefully, that is, the samples cannot be chosen at random. For this, the samples were selected from a bank of 1300 samples by an expert (a qualified person) in the analysis and classification of kidney stones. Due to the remarkable variability within each class, the selection criterion was chosen in order to reflect this variation in the group of samples selected for each type of stone. The data set includes the stones that comprised all the possibilities for each class in the inner and outer part of the stones. These possibilities include the chemical composition (defined by infrared), the distribution of the components and the visual appearance of the sample (defined by morpho-constitutional analysis), both performed by a qualified specialist. The creation of this library or sample database is based on the experience of the present inventors in the study of the causes of stone formation and the classification of kidney stones. The results obtained with the method proposed by the present invention cannot be achieved if the stone data set is chosen at random, or if the selected samples do not cover the full range of possibilities for each kind of stone. This can only be developed by an expert in this field, as a result of experimental work on the classification of samples.

Como se dijo anteriormente, se eligieron las muestras con el fin de cubrir todas las diferentes clases (lo que podría hacerse a partir de un análisis de los resultados de obtenidos por espectroscopia de infrarrojos) y también la clasificación, diferente, de segundo orden (lo que sólo se puede hacer por una persona bien entrenada). El procedimiento de adquisición de imágenes se ha diseñado de la siguiente manera. De cada muestra seleccionada se seleccionaron uno o dos fragmentos de manera que tanto la superficie interior como la exterior pueden observarse. Entonces, para cada una de las dos superficies o vistas, se registraron una serie de 6 imágenes variando el tipo de fuente de iluminación y el tiempo de exposición. La elección de la fuente de luz depende de los conocimientos y la experiencia adquirida después de analizar varios espectros de cálculos renales. El número total de muestras seleccionadas era 346, a partir del cual se seleccionaron 606 fragmentos dando lugar a 1212 vistas superficiales interiores y exteriores (y la adquisición y registro de 6 imágenes de cada vista). Se seleccionaron, por tanto, en total 7272 imágenes, todas ellas utilizadas para el entrenamiento y la validación de un novedoso esquema clasificador jerárquico, diseñado específicamente para ese propósito en tres niveles por dos expertos en el procesamiento de imágenes, el cual ya se ha explicado en un apartado anterior para un ejemplo de realización del método propuesto por la presente invención, pero que se describirá seguidamente de manera más detallada y con referencia al experimento aquí expuesto. Esquema del Clasificador: As stated earlier, the samples were chosen in order to cover all the different classes (which could be done from an analysis of the results obtained by infrared spectroscopy) and also the different, second-order classification (the which can only be done by a well trained person). The image acquisition procedure has been designed as follows. One or two fragments were selected from each selected sample so that both the inner and outer surfaces can be observed. Then, for each of the two surfaces or views, a series of 6 images were recorded varying the type of lighting source and the exposure time. The choice of the light source depends on the knowledge and experience gained after analyzing several spectra of kidney stones. The total number of samples selected was 346, from which 606 fragments were selected resulting in 1212 surface views indoor and outdoor (and the acquisition and registration of 6 images of each view). Therefore, a total of 7272 images were selected, all of them used for training and validation of a new hierarchical classification scheme, specifically designed for that purpose on three levels by two experts in image processing, which has already been explained in an earlier section for an embodiment of the method proposed by the present invention, but which will be described in more detail below and with reference to the experiment set forth herein. Classifier Scheme:

Primer nivel: Clasificación de vistas.  First level: Classification of views.

Usando el conjunto de 6 imágenes de una vista de un fragmento, se determina una clase para esa vista así como se estima la probabilidad de cada clase para esa vista, coincidiendo casi siempre la clase determinada con la más probable. Esta clase se basa totalmente en las características visuales de tamaño, forma, color y textura (una característica nunca utilizado antes). En este nivel también es posible tener en cuenta también el nivel de pH de la orina como otra característica, si éste es conocido. Aunque la medición de las características químicas no se utiliza en la presente invención para la clasificación, las clases de salida son comparables a las obtenidas por el análisis químico (COD, COM, STR...) con el fin de facilitar al urólogo una clasificación conocida. El resultado de salida de esta clasificación es una estimación de la probabilidad o creencia de que un fragmento con tal vista (externa o interna) pertenezca a cada una de las clases anteriores. Por lo tanto, el método y sistema desarrollado por la presente invención calcula un vector de probabilidades para cada vista de un fragmento. A partir de ellos se puede inferir fácilmente también la clase más probable para una vista determinada, como una primera aproximación de la clase del fragmento.  Using the set of 6 images of a view of a fragment, a class is determined for that view as well as the probability of each class for that view is estimated, almost always coinciding with the class determined with the most probable. This class is based entirely on the visual characteristics of size, shape, color and texture (a feature never used before). At this level it is also possible to take into account the pH level of the urine as another characteristic, if this is known. Although the measurement of chemical characteristics is not used in the present invention for classification, the output classes are comparable to those obtained by chemical analysis (COD, COM, STR ...) in order to facilitate a classification to the urologist known. The output of this classification is an estimate of the probability or belief that a fragment with such a view (external or internal) belongs to each of the previous classes. Therefore, the method and system developed by the present invention calculates a probability vector for each view of a fragment. From them you can easily infer also the most probable class for a given view, as a first approximation of the class of the fragment.

Para la creación y entrenamiento de este clasificador, se incluyeron todas las especies posibles que aparecen naturalmente como componentes principales en las piedras. Los tipos de cálculos que figuran en este análisis se definieron de acuerdo a la composición química (por lo que son comparables con la espectroscopia IR), pero fueron reconocidas según características visuales. Se seleccionaron las clases oxalato cálcico monohidrato (COM), oxalato cálcico dihidrato (COD), oxalato cálcico dihidrato transformado en monohidrato (TRA), brushita (BRU), carbonato apatita (CAP), estruvita (STR), ácido úrico anhidro (AUA), ácido úrico dihidrato (AUD), cálculos mixtos de oxalato cálcico y carbonato apatita (MXD). Esta composición química es el esquema de clasificación compartido con la técnica de espectroscopia por infrarrojos. Segundo nivel: Clasificación de fragmentos. For the creation and training of this classifier, all possible species that appear naturally as main components in the stones were included. The types of stones contained in this analysis were defined according to the chemical composition (so they are comparable with IR spectroscopy), but were recognized according to visual characteristics. Calcium oxalate monohydrate (COM), calcium oxalate dihydrate (COD), calcium oxalate dihydrate monohydrate (TRA), brushite (BRU), apatite carbonate (CAP), struvite (STR), anhydrous uric acid (AUA) classes were selected , uric acid dihydrate (AUD), mixed calcium oxalate and apatite carbonate (MXD) stones. This chemical composition is the classification scheme shared with the infrared spectroscopy technique. Second level: Classification of fragments.

Una vez que para las dos vistas de un fragmento, se ha computado una de estas clases y también una distribución de probabilidades, un segundo clasificador produce una clase fragmento a partir de los resultados de salidas del clasificador de un primer nivel. Esta es una clasificación de segundo orden, una información muy útil que sólo se puede lograr por un experto en el análisis morfoconstitucional y no por uno en espectroscopia de infrarrojos.  Once for the two views of a fragment, one of these classes and also a probability distribution has been computed, a second classifier produces a class fragment from the results of outputs of the classifier of a first level. This is a second-order classification, a very useful information that can only be achieved by an expert in morpho-constitutional analysis and not by one in infrared spectroscopy.

La clasificación de los fragmentos se realiza después de que ambas vistas (partes interior y exterior) han sido asignadas a una clase. El sistema es entrenado en la definición de una única clase específica para el fragmento basada en la combinación de los resultados para las vistas individuales. Por lo tanto, la clasificación de cada fragmento no se limita solamente a los componentes químicos presentes en la piedra, sino también a su localización y distribución. Por ejemplo, la clase asignada a un fragmento será diferente si el compuesto A está dentro de la piedra y B en la superficie, o si la situación es la contraria. La definición de estas clases por fragmentos se basa en las diferencias entre los posibles tratamientos administrados al paciente. La relación entre las posibles combinaciones para vistas internas y externas se da a continuación en la Tabla 1 , referente a clasificación de fragmentos de acuerdo con sus vistas internas (Interior) y externas (Superficie).  The classification of the fragments is done after both views (inner and outer parts) have been assigned to a class. The system is trained in the definition of a single specific class for the fragment based on the combination of the results for the individual views. Therefore, the classification of each fragment is not only limited to the chemical components present in the stone, but also to its location and distribution. For example, the class assigned to a fragment will be different if compound A is inside the stone and B on the surface, or if the situation is the opposite. The definition of these classes by fragments is based on the differences between the possible treatments administered to the patient. The relationship between the possible combinations for internal and external views is given below in Table 1, referring to the classification of fragments according to their internal (Interior) and external (Surface) views.

Interior IDE IDE interior

COM COD TRA MXD HAP STR BRU AUA AUD CYS COM COD TRA MXD HAP STR BRU AUA AUD CYS

COM 2 3t 3t 5b COM 2 3t 3t 5b

Figure imgf000015_0001
Figure imgf000015_0001

CYS 10  CYS 10

Tabla 1. Segundo nivel de clasificación Table 1. Second level of classification

Sin embargo, el sistema puede estar equivocado, es decir, se le asigna una clase incorrecta a un fragmento, y en función de la diferencia entre la clase real y la asignada el coste asociado será diferente (en el segundo nivel de clasificación). En otras palabras, no todos los errores que el sistema puede cometer tienen la misma influencia sobre el tratamiento. Para hacerlo, las clases que se describen en la Tabla 1 , en la que se basa la clasificación, pueden ser reordenadas o asignadas como se describe en la Tabla 2. Si tal reordenamiento se realiza, siempre de acuerdo con el coste potencial, que también se muestra en la Tabla 2 en el rango de 0 a 10 siendo 10 el asociado al error más alto, el sistema de clases se puede simplificar, acercándose cada vez más al del primer nivel de clasificación, basado sólo en composición química, no en la distribución de componentes. Es decir, el algoritmo de clasificación de piedras puede ser muy estricto, pero ha sido diseñado también con un importante componente de flexibilidad. Esta característica permite que el método y sistema de la presente invención adapten su actuación a las condiciones específicas que necesita el usuario. However, the system may be wrong, that is, an incorrect class is assigned to a fragment, and depending on the difference between the actual and the assigned class, the associated cost will be different (in the second classification level). In other words, not all errors that the system can make have the same influence on the treatment. To do so, the classes described in Table 1, on which the classification is based, can be reordered or assigned as described in Table 2. If such reordering is carried out, always according to the potential cost, which is also shown in Table 2 in the range of 0 to 10, 10 being associated with the highest error, the class system can be simplify, getting closer and closer to the first level of classification, based only on chemical composition, not on the distribution of components. That is, the stone classification algorithm can be very strict, but it has also been designed with an important flexibility component. This feature allows the method and system of the present invention to adapt its performance to the specific conditions that the user needs.

Por lo tanto, los valores que se muestran en la Tabla 2 se pueden utilizar como un porcentaje de probabilidad de que una clase para ser asignada, en lugar de otra, durante el proceso de entrenamiento. Por ejemplo, si se conoce que una muestra es de clase 2b, el coste si la clase asignada (y aprendida) es 2ct es baja, por lo que el modelo será más libre para asignar esta otra clase al fragmento. Sin embargo, si la misma muestra 2b se reconoce inicialmente como clase 6, esta decisión se verá afectada y modificada por el riesgo de asignar dicha clase.  Therefore, the values shown in Table 2 can be used as a percentage of probability of one class being assigned, instead, during the training process. For example, if a sample is known to be of class 2b, the cost if the assigned class (and learned) is 2ct is low, so the model will be freer to assign this other class to the fragment. However, if the same sample 2b is initially recognized as class 6, this decision will be affected and modified by the risk of assigning that class.

Como se ha dicho anteriormente, los criterios utilizados para esta transposición se muestran en la matriz de costes de la Tabla 2, que se expone a continuación. Si se combinan las clases con un bajo riesgo de confusión, la clasificación se simplifica hasta el primer nivel de clasificación. Lógicamente, el porcentaje de exactitud de la clasificación aumenta a medida que los subtipos de piedras disminuye (al combinarse diferentes grupos), ya que los errores suelen darse entre clases similares, que dan un valor bajo en la matriz de costes.  As stated above, the criteria used for this transposition are shown in the cost matrix of Table 2, which is set out below. If classes are combined with a low risk of confusion, the classification is simplified to the first level of classification. Logically, the percentage accuracy of the classification increases as the subtypes of stones decrease (when different groups are combined), since errors usually occur between similar classes, which give a low value in the cost matrix.

Figure imgf000016_0001
Figure imgf000016_0001

Tabla 2. Matriz de costes Tercer nivel: clasificación de las muestras. Table 2. Cost matrix Third level: classification of the samples.

Aprovechando que se seleccionaron dos fragmentos para cada piedra, se ha diseñado un tercer clasificador con el fin de ofrecer una clasificación final. Si la clase más probable de cada uno de los dos fragmentos tienen ambas una probabilidad mayor que un cierto umbral, si son la misma clase es ésta la que se asigna. Si no lo son pero las dos superan este umbral, el método y el sistema de la presente invención ha sido diseñado para asignar una sola clase para la muestra, utilizando la tabla de combinaciones como se ve en la Tabla 3, diseñada en base a la experiencia y el conocimiento en el análisis de cálculos renales. Cuando alguna de las dos clases no supera este umbral de probabilidad, se clasifica a partir de los resultados de salidas del clasificador de segundo nivel.  Taking advantage of the fact that two fragments were selected for each stone, a third classifier has been designed in order to offer a final classification. If the most probable class of each of the two fragments both have a probability greater than a certain threshold, if they are the same class, this is the one assigned. If they are not but the two exceed this threshold, the method and system of the present invention has been designed to assign a single class to the sample, using the combination table as seen in Table 3, designed based on the experience and knowledge in the analysis of kidney stones. When either of the two classes does not exceed this probability threshold, it is classified based on the output results of the second level classifier.

Figure imgf000017_0001
Figure imgf000017_0001

Figure imgf000018_0001
Figure imgf000018_0001

Ta la 3. Resulta os e tercer nivel e clas icac n. ragm.1 o 2 correspon e a los fragmentos individuales. La clase resultante es el resultado final asignado. La salida o resultado final ofrecido por el método y sistema de la presente invención consiste no sólo en la clasificación de cálculos renales, sino también en recomendaciones de tratamiento para el médico. Estas recomendaciones dependen directamente del tipo de cálculo renal detectado, relacionado con el origen directo de la piedra. Las recomendaciones están vinculadas a un sistema de clasificación estricto que ha sido definido específicamente para este caso. En la literatura, se han definido algunos sistemas de clasificación para los cálculos renales, pero basándose en la experiencia de los presentes inventores estos sistemas se han reconstruido y adaptado a este problema específico y se ha combinado con los requisitos de análisis de imagen. De acuerdo con la presente invención, las piedras se clasifican de acuerdo a una combinación de clases definidas en una tabla diseñada específicamente para este propósito, que considera la parte exterior y la parte interior de las piedras. Esta forma de clasificación de cálculos renales no se ha utilizado nunca previamente.  Ta la 3. It is the third level and classification. ragm.1 or 2 corresponds to the individual fragments. The resulting class is the final result assigned. The output or final result offered by the method and system of the present invention consists not only in the classification of kidney stones, but also in treatment recommendations for the physician. These recommendations depend directly on the type of kidney stone detected, related to the direct origin of the stone. The recommendations are linked to a strict classification system that has been defined specifically for this case. In the literature, some classification systems for kidney stones have been defined, but based on the experience of the present inventors these systems have been reconstructed and adapted to this specific problem and combined with the requirements of image analysis. In accordance with the present invention, the stones are classified according to a combination of classes defined in a table designed specifically for this purpose, which considers the outer part and the inner part of the stones. This form of kidney stone classification has never been used previously.

La clasificación de imágenes basada puramente en parámetros ópticos se complementa, opcionalmente, tal y como ya se indicó en un apartado anterior, con información adicional procedente de la historia clínica del paciente. Por lo tanto, la tasa de muestras correctamente clasificadas se mejora mediante la consideración de algunos parámetros como el pH de la orina, ya que éste está directamente relacionado con el tipo de cálculo renal formado. La inclusión del pH de la orina en la clasificación de la piedra es otra característica exclusiva de la presente invención, ya que ninguna otra metodología que utilice dicho parámetro ha sido descrita con anterioridad.  The classification of images based purely on optical parameters is optionally complemented, as already indicated in a previous section, with additional information from the patient's medical history. Therefore, the rate of correctly classified samples is improved by considering some parameters such as urine pH, since this is directly related to the type of kidney stone formed. The inclusion of urine pH in the stone classification is another exclusive feature of the present invention, since no other methodology using said parameter has been described previously.

Los presentes inventores han diseñado un prototipo del sistema propuesto por el segundo aspecto de la invención, especialmente configurado para ¡mplementar el método de la invención. Todos los componentes fueron elegidos de forma independiente para satisfacer tanto un alto rendimiento como un criterio de bajo coste. La configuración de iluminación fue elegida basándose en la experiencia de los presentes inventores en clasificación de piedras (así se escogieron los rangos de energía más útiles para esta aplicación) y tratamiento de la imagen (la configuración física del hardware se basó en la experiencia en el análisis de imágenes y en trabajo de laboratorio, por lo que se probaron un alto número de configuraciones de iluminación antes de seleccionar la más adecuada). The present inventors have designed a prototype of the system proposed by the second aspect of the invention, specially configured to complement the method of the invention All components were chosen independently to meet both high performance and low cost criteria. The lighting configuration was chosen based on the experience of the present inventors in stone classification (thus the most useful energy ranges for this application were chosen) and image treatment (the physical configuration of the hardware was based on the experience in the image analysis and laboratory work, so a high number of lighting configurations were tested before selecting the most appropriate one).

En la Figura 2 se ¡lustra esquemáticamente el sistema propuesto por la presente invención, para un ejemplo de realización, para el cual el sistema comprende:  In Figure 2 the system proposed by the present invention is schematically illustrated, for an exemplary embodiment, for which the system comprises:

- Una placa de iluminación 3, con LEDs L de diferentes longitudes de onda en el espectro visible y de infrarrojo cercano,  - A lighting plate 3, with L LEDs of different wavelengths in the visible and near-infrared spectrum,

- Una unidad de control 5 (o parte local del sistema electrónico, según la terminología utilizada en un apartado anterior) para controlar la intensidad y el tipo de luz emitida por los diodos LED L de la placa de iluminación 3, conectada a un ordenador externo 7 (o parte remota del sistema electrónico, según la terminología utilizada en un apartado anterior),  - A control unit 5 (or local part of the electronic system, according to the terminology used in a previous section) to control the intensity and type of light emitted by the LEDs L of the lighting board 3, connected to an external computer 7 (or remote part of the electronic system, according to the terminology used in a previous section),

- Una cámara digital 4, también conectada al ordenador externo 7, además de una óptica adecuada 8, que incluye un tubo extensor y una lente,  - A digital camera 4, also connected to the external computer 7, in addition to a suitable optic 8, which includes an extension tube and a lens,

- Una carcasa 1 que define un espacio interior aislado lumínicamente del exterior para aislar a la muestra S de la luz ambiente,  - A housing 1 that defines an interior space insulated from the outside to insulate the sample S from ambient light,

- Un sensor de infrarrojos 6,  - An infrared sensor 6,

- Un soporte o bandeja de muestras 2,  - A stand or sample tray 2,

- Una estructura de soporte interior (no ilustrada).  - An internal support structure (not illustrated).

Las imágenes de las muestras, que se utilizan para la descripción de las características de la piedra necesarias para la clasificación (textura, forma y color), se toman usando una cámara convencional, equipada con un sensor de Silicio. Las energías de iluminación utilizadas están en el rango Visible - Infrarrojo cercano (400- 1000 nm) dentro del rango de sensibilidad de este sensor. La información de la imagen se puede complementar con el uso de otros LEDs, que emiten a longitudes de onda específicas, lo que permite las mediciones de intensidades de reflectancias particulares. La placa de iluminación 3 ha sido especialmente diseñada para que las lentes permitan observar el cálculo renal S, y la ubicación de los LED L se ha escogido para evitar sombras en la muestra S. Además, un sensor de infrarrojos 6 dispuesto en esta placa 3 proporciona una señal de la luz reflejada al ordenador 7. Los parámetros de funcionamiento de los diferentes tipos de iluminación se controlan mediante el software. Por lo que se refiere a la bandeja para muestras 2, en el prototipo construido ésta es una bandeja de muestras móvil 2 con un fondo homogéneo, diseñada para la colocación de las diferentes muestras S en el campo de visión de la cámara 4, y para distinguir ópticamente el fragmento de piedra del fondo (segmentación). La bandeja de muestras 2 se ha colocado en una plataforma móvil, que sirve para la mejor colocación de la piedra S para un enfoque y una adaptación de la iluminación más simples. Para otro ejemplo de realización, la bandeja de muestras no es móvil. The images of the samples, which are used for the description of the characteristics of the stone necessary for classification (texture, shape and color), are taken using a conventional camera, equipped with a Silicon sensor. The lighting energies used are in the Visible range - Near infrared (400-1000 nm) within the sensitivity range of this sensor. The image information can be complemented with the use of other LEDs, which emit at specific wavelengths, allowing measurements of particular reflectance intensities. The illumination plate 3 has been specially designed so that the lenses allow to observe the renal calculus S, and the location of the LEDs L has been chosen to avoid shadows in the sample S. In addition, an infrared sensor 6 arranged in this plate 3 provides a signal of the reflected light to the computer 7. The operating parameters of the different types of lighting are controlled by the software. As regards the sample tray 2, in the prototype built this is a mobile sample tray 2 with a homogeneous bottom, designed for the placement of the different samples S in the field of view of the camera 4, and for optically distinguish the background stone fragment (segmentation). The sample tray 2 has been placed on a mobile platform, which serves for the best placement of the S stone for a simpler approach and lighting adaptation. For another embodiment, the sample tray is not mobile.

Se ha diseñado asimismo una estructura de soporte adecuada (no ilustrada) para soportar a los elementos del sistema dentro de la carcasa 1. Ésta mantiene a todos los componentes en la posición definida, permitiendo al mismo tiempo que la bandeja de muestras 2 se pueda mover según sea necesario, tanto para colocar la muestra en el campo de vista de la cámara como para ajustar el enfoque de la imagen.  A suitable support structure (not shown) has also been designed to support the system elements inside the housing 1. It keeps all the components in the defined position, while allowing the sample tray 2 to move as necessary, both to place the sample in the field of view of the camera and to adjust the focus of the image.

El sistema opera desde un ordenador 7 usando software especial diseñado para este propósito. Este software controla la imagen capturada, así como las condiciones de iluminación. Además, una interfaz gráfica de usuario adecuada ha sido diseñada para la adquisición de imágenes de piedras, la clasificación y la visualización del resultado. Esta interfaz permite nombrar la muestra y la recogida y el almacenamiento de varias imágenes, así como los datos de infrarrojo cercano asociados para cada fragmento de piedra, y también para más de un fragmento de piedra para cada muestra (piedras con origen ESWL consistían generalmente en varios fragmentos). Una vez grabadas todas las imágenes y datos de las piedras de una determinada muestra, se clasificaron usando un conjunto de algoritmos supervisados diseñados exclusivamente para la presente invención. Además de esas imágenes y de la información IR, se pueden introducir otros datos del paciente, relevantes para la clasificación, tal como edad, sexo y nivel de pH de la orina. Los resultados de la clasificación se dan como la distribución de probabilidad para cada clase basada en el grado de creencia en término de percepción, ilustrándose, por ejemplo, mediante un diagrama.  The system operates from a computer 7 using special software designed for this purpose. This software controls the captured image, as well as the lighting conditions. In addition, an appropriate graphical user interface has been designed for stone image acquisition, classification and visualization of the result. This interface allows naming the sample and the collection and storage of several images, as well as the associated near-infrared data for each stone fragment, and also for more than one stone fragment for each sample (stones with ESWL origin generally consisted of several fragments). Once all the images and data of the stones of a given sample were recorded, they were classified using a set of supervised algorithms designed exclusively for the present invention. In addition to these images and IR information, other patient data, relevant for classification, such as age, sex and urine pH level can be entered. The results of the classification are given as the probability distribution for each class based on the degree of belief in terms of perception, illustrated, for example, by a diagram.

Un experto en la materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de la invención según está definido en las reivindicaciones adjuntas.  A person skilled in the art could introduce changes and modifications in the described embodiments without departing from the scope of the invention as defined in the appended claims.

Claims

REIVINDICACIONES 1.- Método para la clasificación automática de cálculos renales, que comprende: a) adquirir una imagen de un cálculo renal; 1.- Method for the automatic classification of kidney stones, which includes: a) acquiring an image of a kidney stone; b) analizar información contenida en dicha imagen adquirida; y  b) analyze information contained in said acquired image; Y c) clasificar dicho cálculo renal en función del resultado de dicho análisis;  c) classify said renal calculus according to the result of said analysis; estando el método caracterizado porque dicho análisis de dicha etapa b) se lleva a cabo usando técnicas de visión por computador, donde dicha información a analizar se refiere a las características de imagen asociadas a al menos la textura del cálculo renal. the method being characterized in that said analysis of said stage b) is carried out using computer vision techniques, where said information to be analyzed refers to the image characteristics associated with at least the texture of the kidney stone. 2.- Método según la reivindicación 1 , caracterizado porque para el análisis de la etapa b) también se utilizan técnicas de aprendizaje computacional.  2. Method according to claim 1, characterized in that for the analysis of step b) computational learning techniques are also used. 3. - Método según la reivindicación 1 , caracterizado porque dicha imagen adquirida es una imagen digital, y porque el análisis de la etapa b) se lleva a cabo de una vez sobre la imagen digital completa adquirida en la etapa a), sin realizar una clasificación individual de cada píxel.  3. - Method according to claim 1, characterized in that said acquired image is a digital image, and that the analysis of step b) is carried out once on the complete digital image acquired in stage a), without performing a individual classification of each pixel. 4. - Método según la reivindicación 1 , 2 ó 3, caracterizado porque dicha información a analizar se refiere a características de imagen asociadas, además de a textura, a otras características visuales del cálculo renal, incluyendo tamaño y/o forma y/o color.  4. - Method according to claim 1, 2 or 3, characterized in that said information to be analyzed refers to associated image characteristics, in addition to texture, to other visual characteristics of renal calculus, including size and / or shape and / or color . 5.- Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque dicha etapa a) comprende adquirir al menos dos imágenes de un fragmento de dicho cálculo renal, una correspondiente a una vista de una superficie exterior y otra a una vista de una superficie interior expuesta, y analizarlas en la etapa b).  5. Method according to any one of the preceding claims, characterized in that said step a) comprises acquiring at least two images of a fragment of said renal calculus, one corresponding to a view of an outer surface and another to a view of an inner surface exposed, and analyze them in stage b). 6.- Método según la reivindicación 5, caracterizado porque si dicho fragmento de cálculo renal no tiene expuesta ninguna superficie interior, el método comprende cortarlo para exponer dicha superficie interior cuya imagen se adquiere en la etapa a).  6. Method according to claim 5, characterized in that if said kidney stone fragment has no exposed inner surface, the method comprises cutting it to expose said inner surface whose image is acquired in step a). 7. - Método según la reivindicación 5 ó 6, caracterizado porque comprende adquirir en la etapa a) y analizar en la etapa b), una pluralidad de imágenes de unas correspondientes vistas de cada una de dichas superficies exterior e interior de dicho fragmento de cálculo renal, cada una de ellas bajo unas condiciones de iluminación y/o tiempo de exposición diferentes.  7. - Method according to claim 5 or 6, characterized in that it comprises acquiring in stage a) and analyzing in stage b), a plurality of images of corresponding views of each of said exterior and interior surfaces of said calculation fragment renal, each under different lighting conditions and / or exposure time. 8. - Método según la reivindicación 7, caracterizado porque comprende llevar a cabo dichas adquisiciones con un mismo sensor de imagen sensible a las longitudes de onda asociadas a todas las iluminaciones incluidas en dichas condiciones de iluminación diferentes, que se encuentran dentro del rango que va desde la luz visible al ¡nfrarrojo cercano, o con varios sensores de imagen sensibles, en conjunto, a todas dichas diferentes longitudes de onda. 8. - Method according to claim 7, characterized in that it comprises carrying out said acquisitions with the same image sensor sensitive to the wavelengths associated with all the illuminations included in said different lighting conditions, which are within the range from visible light to Near infrared, or with several image sensors sensitive, together, to all such different wavelengths. 9. - Método según una cualquiera de las reivindicaciones 5 a 8, caracterizado porque comprende realizar dicha adquisición, en la etapa a), y análisis, en la etapa b), de imágenes de dichas vistas de dichas superficies exterior e interior para una pluralidad de fragmentos de una misma muestra.  9. - Method according to any one of claims 5 to 8, characterized in that it comprises carrying out said acquisition, in step a), and analysis, in step b), of images of said views of said exterior and interior surfaces for a plurality of fragments of the same sample. 10. - Método según una cualquiera de las reivindicaciones 5 a 9, caracterizado porque dicha clasificación de dicha etapa c) basada en el análisis de dichas imágenes de dicho fragmento o dichos fragmentos de cálculo renal, es una clasificación de un primer nivel, o clasificación de vista, que incluye, para cada vista, una estimación de la probabilidad de su pertenencia a una clase de cálculo renal asociada a composición química, a partir del cálculo de un vector de probabilidades para cada vista que incluye información sobre la distribución espacial de dichas probabilidades.  10. - Method according to any one of claims 5 to 9, characterized in that said classification of said step c) based on the analysis of said images of said fragment or said fragments of renal calculus, is a classification of a first level, or classification of view, which includes, for each view, an estimate of the probability of belonging to a class of renal calculus associated with chemical composition, from the calculation of a vector of probabilities for each view that includes information on the spatial distribution of said odds 1 1. - Método según la reivindicación 10, caracterizado porque comprende realizar, en la etapa c), una clasificación de un segundo nivel, o clasificación de fragmento, que comprende combinar los resultados obtenidos en la clasificación de un primer nivel para varias vistas de un mismo fragmento de cálculo renal, para determinar una clase única para cada fragmento basándose además de en composición química también en la localización y distribución de los componentes químicos asociados a dichas probabilidades y a qué vista corresponden.  1. Method according to claim 10, characterized in that it comprises performing, in step c), a second level classification, or fragment classification, which comprises combining the results obtained in the classification of a first level for several views of the same renal calculus fragment, to determine a unique class for each fragment also based on chemical composition also on the location and distribution of the chemical components associated with said probabilities and to what view they correspond. 12. - Método según la reivindicación 1 1 , caracterizado porque comprende corregir el resultado de dicha clasificación de un segundo nivel si el resultado para un fragmento determinado difiere de los obtenidos para cada una de las vistas del mismo, en la clasificación de un primer nivel, por encima de un valor de coste determinado.  12. - Method according to claim 1, characterized in that it comprises correcting the result of said classification of a second level if the result for a given fragment differs from those obtained for each of the views thereof, in the classification of a first level , above a certain cost value. 13.- Método según la reivindicación 12, caracterizado porque dicha corrección comprende reclasificar dicho fragmento teniendo menos en cuenta, o no teniendo en cuenta en absoluto, la localización y distribución de los componentes químicos asociados a las mencionadas probabilidades y a qué vista corresponden.  13. Method according to claim 12, characterized in that said correction comprises reclassifying said fragment taking less into account, or not taking into account at all, the location and distribution of the chemical components associated with said probabilities and to what extent they correspond. 14.- Método según la reivindicación 11 , 12 ó 13, caracterizado porque comprende realizar dichas etapas a), b) y c) para al menos dos fragmentos de una misma muestra, comprendiendo el método realizar, en la etapa c), una clasificación de un tercer nivel, o clasificación de muestra, que comprende, si la clasificación de un segundo nivel de dichos fragmentos, que son al menos dos, no es coincidente, asignar una clase única para la muestra.  14. Method according to claim 11, 12 or 13, characterized in that it comprises performing said steps a), b) and c) for at least two fragments of the same sample, the method comprising performing, in step c), a classification of a third level, or sample classification, comprising, if the classification of a second level of said fragments, which are at least two, is not coincidental, assign a unique class for the sample. 15.- Método según la reivindicación 10, 1 1 ó 14, caracterizado porque comprende: - generar, de manera previa a dicha etapa a), un conjunto de entrenamiento, o de aprendizaje, para una pluralidad de muestras de cálculos renales clasificadas manualmente por un experto, incluyendo, de manera correlacionada, información de composición química, de distribución espacial y de apariencia visual para vistas internas y externas de diferentes fragmentos de cada muestra representadas en imágenes obtenidas con distintos tipos de iluminación y tiempos de exposición, y 15. Method according to claim 10, 1 or 14, characterized in that it comprises: - generate, prior to said stage a), a set of training, or learning, for a plurality of samples of kidney stones classified manually by an expert, including, in a correlated manner, information on chemical composition, spatial distribution and of visual appearance for internal and external views of different fragments of each sample represented in images obtained with different types of lighting and exposure times, and - realizar dichas clasificaciones de un primer, un segundo y un tercer nivel consultando las imágenes adquiridas en dicho conjunto de entrenamiento y extrayendo la información de clase correlacionada con las imágenes más similares a las consultadas.  - make said classifications of a first, a second and a third level by consulting the images acquired in said training set and extracting the class information correlated with the images more similar to those consulted. 16.- Método según la reivindicación 15, caracterizado porque comprende entrenar a dicho conjunto de entrenamiento y/o a unos clasificadores automáticos utilizados para realizar al menos dichas clasificaciones de un primer, un segundo y un tercer nivel utilizando los resultados de las clasificaciones.  16. Method according to claim 15, characterized in that it comprises training said training set and / or automatic classifiers used to perform at least said classifications of a first, a second and a third level using the results of the classifications. 17.- Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende llevar a cabo dicha clasificación de la etapa c) complementando el análisis de la etapa b) con información adicional relativa al paciente del que proviene el cálculo renal y/u obtenida del cálculo renal con sensores no basados en cámara.  17. Method according to any one of the preceding claims, characterized in that it comprises carrying out said classification of stage c) complementing the analysis of stage b) with additional information relative to the patient from whom the kidney stone and / or obtained from the renal calculus with non-camera based sensors. 18.- Método según la reivindicación 17, caracterizado porque dicha información relativa al paciente incluye al menos una de las siguientes informaciones, o una combinación de las mismas:  18. Method according to claim 17, characterized in that said patient information includes at least one of the following information, or a combination thereof: - datos simples relativos a sexo y/o edad y/o raza y/o complexión y/o índice de masa corporal y/o desórdenes de salud asociados a la litiasis renal, y/o  - simple data related to sex and / or age and / or race and / or complexion and / or body mass index and / or health disorders associated with renal lithiasis, and / or - datos ligados a analíticas colaterales, incluyendo al menos uno de los siguientes datos recogidos en análisis de orina del paciente: pH, calcio, oxalato, magnesio, amonio y fosfato.  - data linked to collateral analytics, including at least one of the following data collected in the patient's urine analysis: pH, calcium, oxalate, magnesium, ammonium and phosphate. 19. - Método según la reivindicación 17 ó 18, caracterizado porque dicha información obtenida del cálculo renal con sensores no basados en cámara incluye al menos información de reflectividad en otras zonas del espectro electromagnético no incluidas en dicha imagen adquirida en a).  19. - Method according to claim 17 or 18, characterized in that said information obtained from the renal calculation with non-camera based sensors includes at least reflectivity information in other areas of the electromagnetic spectrum not included in said image acquired in a). 20. - Sistema para la clasificación automática de cálculos renales, que comprende:  20. - System for the automatic classification of kidney stones, comprising: - medios de adquisición de imágenes para adquirir al menos una imagen de un cálculo renal; - un sistema electrónico en conexión con dichos medios de adquisición de imágenes y que incluyen unos medios de procesamiento para procesar información contenida en dicha imagen adquirida y para clasificar dicho cálculo renal en función del resultado de dicho análisis; - means of acquiring images to acquire at least one image of a kidney stone; - an electronic system in connection with said image acquisition means and including processing means for processing information contained in said acquired image and for classifying said renal calculus according to the result of said analysis; estando el sistema caracterizado porque implementa el método según una cualquiera de las reivindicaciones anteriores, ¡mplementando dichos medios de procesamiento al menos un algoritmo basado en técnicas de visión por computador para realizar las etapas b) y c) del método. the system being characterized in that it implements the method according to any one of the preceding claims, said process means complementing at least one algorithm based on computer vision techniques to perform steps b) and c) of the method. 21. - Sistema según la reivindicación 20, caracterizado porque dicho algoritmo implementando en dichos medios de procesamiento está basado también en aprendizaje computacional, para realizar las etapas b) y c) del método según la reivindicación 2.  21. - System according to claim 20, characterized in that said algorithm implementing in said processing means is also based on computational learning, to perform steps b) and c) of the method according to claim 2. 22. - Sistema según la reivindicación 21 , caracterizado porque comprende una carcasa (1 ) que define un espacio interior aislado lumínicamente del exterior que alberga, sustentados y/o fijados en una estructura de soporte interior:  22. - System according to claim 21, characterized in that it comprises a housing (1) defining an interior space that is luminously insulated from the exterior that houses, supported and / or fixed in an internal support structure: - a un soporte (2) para muestras (S) de cálculos renales;  - to a support (2) for samples (S) of kidney stones; - a unos medios de iluminación dispuestos para ¡luminar, con luz de una o más longitudes de onda, la o las muestras (S) de cálculos renales dispuestas sobre dicho soporte (2);  - to lighting means arranged to illuminate, with light of one or more wavelengths, the sample (S) of kidney stones arranged on said support (2); - a dichos medios de adquisición de imágenes, los cuales incluyen al menos un sensor de imagen (4) sensible a dicha o dichas longitudes de onda; y  - to said image acquisition means, which include at least one image sensor (4) sensitive to said or said wavelengths; Y - a al menos parte de dicho sistema electrónico que también incluye a unos medios de control (5) para controlar a al menos los medios de iluminación.  - to at least part of said electronic system which also includes control means (5) for controlling at least the lighting means. 23. - Sistema según la reivindicación 22, caracterizado porque comprende también uno o más sensores (6) sensibles a un rango del espectro electromagnético diferente al asociado a dichos medios de adquisición de imágenes, dispuesto o dispuestos enfrentados a la o las muestras (S) de cálculos renales dispuestas sobre dicho soporte (2), y en conexión con el sistema electrónico, para captar la reflectividad global de la muestra o muestras (S) en un rango espectral adecuado para su caracterización.  23. - System according to claim 22, characterized in that it also comprises one or more sensors (6) sensitive to a range of the electromagnetic spectrum different from that associated with said image acquisition means, arranged or arranged facing the sample (s) (S) of kidney stones arranged on said support (2), and in connection with the electronic system, to capture the overall reflectivity of the sample or samples (S) in a spectral range suitable for characterization. 24. - Sistema según la reivindicación 22 ó 23, caracterizado porque dicha parte de dicho sistema electrónico albergada dentro de la carcasa (1 ) es una parte local (5) y porque el sistema electrónico comprende una parte remota (7) comunicada bidireccionalmente con dicha parte local (5) y con los medios de adquisición de imágenes. 24. - System according to claim 22 or 23, characterized in that said part of said electronic system housed within the housing (1) is a local part (5) and that the electronic system comprises a remote part (7) communicated bi-directionally with said local part (5) and with the means of image acquisition. 25. - Programa de ordenador que incluye instrucciones de código que, al ejecutarse en un ordenador, implementa las etapas b) y c) del método según una cualquiera de las reivindicaciones 1 a 19. 25. - Computer program that includes code instructions that, when executed on a computer, implements steps b) and c) of the method according to any one of claims 1 to 19. 26. - Producto de programa de ordenador que comprende el programa de ordenador de la reivindicación 25.  26. - Computer program product comprising the computer program of claim 25.
PCT/ES2015/000076 2014-06-18 2015-06-17 Method and system for the automatic classification of kidney stones, computer program, and computer program product Ceased WO2015193521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201430927A ES2556558B1 (en) 2014-06-18 2014-06-18 Method and system for automatic classification of kidney stones, computer program and computer program product
ESP201430927 2014-06-18

Publications (1)

Publication Number Publication Date
WO2015193521A1 true WO2015193521A1 (en) 2015-12-23

Family

ID=54934899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/000076 Ceased WO2015193521A1 (en) 2014-06-18 2015-06-17 Method and system for the automatic classification of kidney stones, computer program, and computer program product

Country Status (2)

Country Link
ES (1) ES2556558B1 (en)
WO (1) WO2015193521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025163380A1 (en) * 2024-12-18 2025-08-07 Ali Kaya The ai-powered and real-time kidney stone management system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092261B (en) * 2021-05-20 2021-11-05 中国矿业大学 Method for determining macroscopic and microscopic whole process of rock deformation destruction based on four-parameter test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4310608A1 (en) * 1993-03-31 1994-10-06 Madaus Ag Method for the summary determination of processes which form urinary calculi in the urine
US20070249933A1 (en) * 2006-03-31 2007-10-25 Bernhard Krauss Method and device for automatically differentiating types of kidney stones by means of computed tomography
US20090156900A1 (en) * 2007-12-13 2009-06-18 Robertson David W Extended spectral sensitivity endoscope system and method of using the same
EP2696191A1 (en) * 2011-04-06 2014-02-12 Universitat Autònoma De Barcelona Method for the characterisation and classification of kidney stones

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4310608A1 (en) * 1993-03-31 1994-10-06 Madaus Ag Method for the summary determination of processes which form urinary calculi in the urine
US20070249933A1 (en) * 2006-03-31 2007-10-25 Bernhard Krauss Method and device for automatically differentiating types of kidney stones by means of computed tomography
US20090156900A1 (en) * 2007-12-13 2009-06-18 Robertson David W Extended spectral sensitivity endoscope system and method of using the same
EP2696191A1 (en) * 2011-04-06 2014-02-12 Universitat Autònoma De Barcelona Method for the characterisation and classification of kidney stones

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025163380A1 (en) * 2024-12-18 2025-08-07 Ali Kaya The ai-powered and real-time kidney stone management system

Also Published As

Publication number Publication date
ES2556558B1 (en) 2017-01-31
ES2556558A2 (en) 2016-01-18
ES2556558R2 (en) 2016-04-18

Similar Documents

Publication Publication Date Title
US20230414311A1 (en) Imaging and display system for guiding medical interventions
ES3033565T3 (en) Apparatus for visualization of tissue
US11656448B2 (en) Method and apparatus for quantitative hyperspectral fluorescence and reflectance imaging for surgical guidance
US20240388810A1 (en) Variable frame rates for different imaging modalities
ES2847230T3 (en) RAMAN spectroscopy system, apparatus and procedure to analyze, characterize and / or diagnose a type or nature of a sample or tissue, such as abnormal growth
JP7641082B2 (en) A system for assessing or predicting wound status and a method for operating a device to detect cell survival or damage, collagen degeneration, skin appendage damage or necrosis, and/or vascular damage after a burn occurs in a subject.
ES2787384T3 (en) Efficient modulated imaging
US20070038118A1 (en) Subcutaneous tissue imager
US20160139039A1 (en) Imaging system and imaging method
AU2019236680A1 (en) Methods and systems for assessing healing of tissue
US20080103390A1 (en) Apparatus and methods for fluorescence guided surgery
US20080015446A1 (en) Systems and methods for generating fluorescent light images
CN116829057A (en) Systems and devices for multispectral 3D imaging and diagnosis of tissue and methods thereof
CN104541153A (en) Methods related to real-time cancer diagnostics at endoscopy utilizing fiber-optic raman spectroscopy
WO2009154765A1 (en) Systems and methods for hyperspectral imaging
US12061328B2 (en) Method and apparatus for quantitative hyperspectral fluorescence and reflectance imaging for surgical guidance
US20220095998A1 (en) Hyperspectral imaging in automated digital dermoscopy screening for melanoma
US20240138665A1 (en) Dental imaging system and image analysis
JP6844093B2 (en) Devices and methods for capturing medical images for ulcer analysis
CN115605124A (en) Methods and devices for multimodal soft tissue diagnosis
ES2556558B1 (en) Method and system for automatic classification of kidney stones, computer program and computer program product
US12238265B2 (en) Optical filter for improved multispectral imaging performance in stereo camera
US11918177B2 (en) Dynamic illumination to identify tissue type
KR20160147171A (en) An astral lamp and astral lamp system about projection for near infrared fluoresence diagnosis
Verma et al. Idiopathic'Half and half'nails.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810355

Country of ref document: EP

Kind code of ref document: A1