[go: up one dir, main page]

WO2015167199A1 - Matériau de transport d'électrons et dispositif organique électroluminescent le comportant - Google Patents

Matériau de transport d'électrons et dispositif organique électroluminescent le comportant Download PDF

Info

Publication number
WO2015167199A1
WO2015167199A1 PCT/KR2015/004214 KR2015004214W WO2015167199A1 WO 2015167199 A1 WO2015167199 A1 WO 2015167199A1 KR 2015004214 W KR2015004214 W KR 2015004214W WO 2015167199 A1 WO2015167199 A1 WO 2015167199A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
electron transport
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2015/004214
Other languages
English (en)
Inventor
Chi-Sik Kim
Jeong-Eun YANG
Young-Jun Cho
Kyung-Hoon Choi
Sang-Hee Cho
Jae-Hoon Shim
Hong-Yoep NA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Specialty Materials Korea Ltd
DuPont Electronic Materials International LLC
Original Assignee
Rohm and Haas Electronic Materials Korea Ltd
Rohm and Haas Electronic Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150047543A external-priority patent/KR102427918B1/ko
Application filed by Rohm and Haas Electronic Materials Korea Ltd, Rohm and Haas Electronic Materials LLC filed Critical Rohm and Haas Electronic Materials Korea Ltd
Priority to EP15785470.4A priority Critical patent/EP3137451B1/fr
Priority to CN201580020622.3A priority patent/CN106232591B/zh
Priority to US15/306,497 priority patent/US10818846B2/en
Priority to JP2016563093A priority patent/JP6644005B2/ja
Publication of WO2015167199A1 publication Critical patent/WO2015167199A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/1062Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/1066Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • C09K2211/1077Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • C09K2211/1081Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to an electron transport material and an organic electroluminescent device comprising the same.
  • An electroluminescent (EL) device is a self-light-emitting device with the advantages of providing a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer (see Appl. Phys. Lett. 51, 913, 1987).
  • An organic EL device changes electric energy into light by the injection of a charge into an organic light-emitting material, and commonly comprises an anode, a cathode, and an organic layer formed between the two electrodes.
  • the organic layer of the organic EL device may be composed of a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), a light-emitting layer (EML) (containing host and dopant materials), an electron buffer layer, a hole blocking layer (HBL), an electron transport layer (ETL), an electron injection layer (EIL), etc.; the materials used in the organic layer can be classified into a hole injection material, a hole transport material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc., depending on functions.
  • the organic EL device In the organic EL device, holes from an anode and electrons from a cathode are injected into a light-emitting layer by electric voltage, and an exciton having high energy is produced by the recombination of holes and electrons.
  • the organic light-emitting compound moves into an excited state by the energy and emits light from energy when the organic light-emitting compound returns to the ground state from the excited state.
  • the most important factor determining luminous efficiency in an organic EL device is light-emitting materials.
  • the light-emitting materials are required to have the following features: high quantum efficiency, high movement degree of an electron and a hole, and formability of a uniform and stable layer.
  • the light-emitting material is classified into blue light-emitting materials, green light-emitting materials, and red light-emitting materials according to the light-emitting color, and further includes yellow light-emitting materials or orange light-emitting materials.
  • the light-emitting material is classified into a host material and a dopant material in a functional aspect. Recently, an urgent task is the development of an organic EL device having high efficacy and long operating lifespan.
  • a host material should have high purity, and a suitable molecular weight in order to be deposited under vacuum. Furthermore, a host material is required to have high glass transition temperature and pyrolysis temperature for guaranteeing thermal stability, high electrochemical stability for long lifespan, easy formability of an amorphous thin film, good adhesion with adjacent layers, and no movement between layers.
  • an electron transport material actively transports electrons from a cathode to a light-emitting layer and inhibits transport of holes which are not recombined in the light-emitting layer to increase recombination opportunity of holes and electrons in the light-emitting layer.
  • electron-affinitive materials are used as an electron transport material.
  • Organic metal complexes having light-emitting function such as Alq3 are excellent in transporting electrons, and thus have been conventionally used as an electron transport material.
  • Alq3 has problems in that it moves to other layers and shows reduction of color purity when used in blue light-emitting devices. Therefore, new electron transport materials have been required, which do not have the above problems, are highly electron-affinitive, and quickly transport electrons in organic EL devices to provide organic EL devices having high luminous efficiency.
  • Korean Patent Nos. 10-0957288 and 10-0948700 disclose compounds in which a nitrogen-containing heterocyclic group is bonded to a carbazolyl group, and compounds in which a nitrogen-containing heterocyclic group is bonded to an arylcarbazolyl group or a carbazolylalkylene group, respectively.
  • the above patents disclose the above compounds as materials used in a light-emitting layer, and merely recite conventional metal complex compounds, and oxazole, thiazole, oxadiazole, or thiadiazole derivatives as electron transport materials.
  • an organic EL device comprising compounds having a carbazole-fluorene skeleton, wherein a nitrogen-containing heterocyclic group is bonded to a nitrogen atom of the carbazole, which were conventionally used in a light-emitting layer, as an electron transport material in an electron transport layer has high efficiency and improved lifespan.
  • the object of the present invention is to provide an organic EL device having high efficiency and long lifespan.
  • a 1 represents a substituted or unsubstituted, nitrogen-containing 5- to 30-membered heteroaryl group
  • L 1 represents a single bond, a substituted or unsubstituted (C6-C30)arylene group, or a substituted or unsubstituted 5- to 30-membered heteroarylene group;
  • R 1 represents a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 5- to 30-membered heteroaryl group, a substituted or unsubstituted (C3-C30)cycloalkyl group, a substituted or unsubstituted (C1-C30)alkylamino group, a substituted or unsubstituted (C6-C30)arylamino group, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino group;
  • R 2 represents hydrogen, deuterium, a halogen, a cyano group, a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 5- to 30-membered heteroaryl group, a substituted or unsubstituted (C3-C30)cycloalkyl group, a substituted or unsubstituted (C1-C30)alkoxy group, a substituted or unsubstituted (C1-C30)alkylsilyl group, a substituted or unsubstituted (C6-C30)arylsilyl group, a substituted or unsubstituted (C6-C30)aryl(C1-C30)alkylsilyl group, a substituted or unsubstituted (C1-C30)alkylamino group, a substituted or un
  • R 2 fused to the carbazole structure, forms a benzocarbazole ring
  • R 3 represents hydrogen, deuterium, a halogen, a cyano group, a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 5- to 30-membered heteroaryl group, a substituted or unsubstituted (C3-C30)cycloalkyl group, a substituted or unsubstituted (C1-C30)alkoxy group, a substituted or unsubstituted (C1-C30)alkylsilyl group, a substituted or unsubstituted (C6-C30)arylsilyl group, a substituted or unsubstituted (C6-C30)aryl(C1-C30)alkylsilyl group, a substituted or unsubstituted (C1-C30)alkylamino group, a substituted or un
  • X represents O, S, NR 11 , or SiR 12 R 13 ;
  • R 4 , R 5 , and R 6 each independently represent hydrogen, deuterium, a halogen, a cyano group, a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 5- to 30-membered heteroaryl group, a substituted or unsubstituted (C3-C30)cycloalkyl group, a substituted or unsubstituted (C1-C30)alkoxy group, a substituted or unsubstituted (C1-C30)alkylsilyl group, a substituted or unsubstituted (C6-C30)arylsilyl group, a substituted or unsubstituted (C6-C30)aryl(C1-C30)alkylsilyl group, a substituted or unsubstituted (C1-C30)alky
  • R 11 to R 13 each independently represent a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, or a substituted or unsubstituted 5- to 30-membered heteroaryl group; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted mono- or polycyclic, (C3-C30) alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen and sulfur;
  • a, c, d, and e each independently represent an integer of 1 to 4; where a, c, d, or e is an integer of 2 or more, each R 2 , each R 4 , each R 5 , or each R 6 is the same or different;
  • b represents an integer of 1 to 3; where b is an integer of 2 or more, each R 3 is the same or different;
  • n an integer of 0 or 1;
  • n an integer of 1 or 2;
  • an electron transport material which provides an organic EL device with high efficiency and long lifespan, and the production of a light-emitting device, a display device, or a lighting device is possible by using an organic EL device.
  • Figure 1 shows one embodiment of the structure of the organic EL device comprising the electron transport layer according to the present invention.
  • Figure 2 shows graphs of current efficiency (cd/A) vs. luminance (cd/m 2 ) of the organic EL devices which are respectively produced according to Device Example 1 and Comparative Example 1.
  • Figure 3 shows energy diagram of the organic EL device comprising the electron transport layer according to the present invention.
  • the compound of formula 1 is represented by the following formula 3, 4, or 5:
  • a 1 , L 1 , R 1 , R 2 , R 3 , R 4 , R 5 , a, b, c, d, m, and n are as defined in formula 1.
  • a 1 preferably represents a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrazinyl, a substituted or unsubstituted quinolinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted naphthyridinyl, or a substituted or unsubstituted phenanthrolinyl.
  • L 1 preferably represents a single bond, or a substituted or unsubstituted (C6-C12)arylene group.
  • R 1 preferably represents a substituted or unsubstituted (C6-C12)aryl group, or a substituted or unsubstituted 5- to 15-membered heteroaryl group.
  • R 2 preferably represents hydrogen, a (C6-C12)aryl group which is unsubstituted or substituted with a di(C6-C12)arylamine group, a substituted or unsubstituted 5- to 15-membered heteroaryl group, or a structure of formula 2, wherein X represents O, S, or NR 11 and R 11 represents a substituted or unsubstituted (C6-C12)aryl group, or R 2 forms a benzocarbazole ring by fusing to the carbazole structure.
  • (C1-C30)alkyl(ene) is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.
  • (C3-C30)cycloalkyl is a mono- or polycyclic hydrocarbon having 3 to 30 carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • (C6-C30)aryl(ene) is a monocyclic or fused ring derived from an aromatic hydrocarbon having 6 to 30 carbon atoms, in which the number of carbon atoms is preferably 6 to 20, more preferably 6 to 15, and includes phenyl, biphenyl, terphenyl, naphthyl, fluorenyl, phenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e., a substituent.
  • the compound of formula 1 may be selected from the group consisting of the following compounds, but is not limited thereto:
  • the compound of formula 1 as an electron transport material according to the present invention can be prepared by known methods to one skilled in the art, and can be prepared, for example, according to the following reaction schemes 1 to 3:
  • a and L are the same as A 1 and L 1 defined in formula 1, respectively;
  • a 1 , L 1 , R 1 to R 6 , a, b, c, d, m, and n are as defined in formula 1; and
  • Hal represents a halogen.
  • the present invention further provides an electron transport material comprising the compound of formula 1, and an organic EL device comprising the material.
  • An electron transport material can be comprised of the compound of formula 1 alone, or can be a mixture or composition for an electron transport layer which further comprises a conventional material generally included in electron transport materials.
  • the present invention provides an organic EL device comprising an anode, a cathode, and at least one organic layer between the two electrodes, wherein the organic layer comprises a light-emitting layer which contains host and dopant compounds.
  • a light-emitting layer emitting light may be a single layer or multi-layers having two or more layers.
  • the doping concentration of dopant compounds to host compounds in a light-emitting layer is preferably less than 20 wt%.
  • the present invention provides an organic EL device comprising an electron transport material comprising the compound of formula 1 and a reducing dopant.
  • the organic EL device of the present invention may comprise an electron transport material in the organic layer and use a reducing dopant in a light-emitting layer.
  • the reducing dopant is one or more selected from the group consisting of an alkaline metal, an alkaline earth metal, a rare-earth metal, an oxide of an alkaline metal, a halide of an alkaline metal, an oxide of an alkaline earth metal, a halide of an alkaline earth metal, an oxide of a rare-earth metal, a halide of a rare-earth metal, an organic complex of an alkaline metal, an organic complex of an alkaline earth metal, and an organic complex of a rare-earth metal.
  • the organic EL device of the present invention may further include at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
  • an organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides, and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising the metal.
  • a surface layer selected from a chalcogenide layer, a metal halide layer, and a metal oxide layer may be placed on an inner surface(s) of one or both electrode(s).
  • a chalcogenide (including oxides) layer of silicon or aluminum is placed on an anode surface of a light-emitting medium layer, and a metal halide layer or metal oxide layer is placed on a cathode surface of an electroluminescent medium layer.
  • the surface layer provides operating stability for the organic EL device.
  • the chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.;
  • the metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and the metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a hole injection layer HIL
  • HTL hole transport layer
  • EBL electron blocking layer
  • a hole injection layer may be multi-layers in order to lower a hole injection barrier (or hole injection voltage) from an anode to a hole transport layer or electron blocking layer, wherein each of the multi-layers simultaneously may use two compounds.
  • a hole transport layer or an electron blocking layer may also be multi-layers.
  • An electron buffer layer a hole blocking layer (HBL), an electron transport layer (ETL), an electron injection layer (EIL), or their combinations can be used between a light-emitting layer and a cathode.
  • An electron buffer layer may be multi-layers in order to control the injection of an electron and improve interface properties between a light-emitting layer and an electron injection layer, wherein each of the multi-layers simultaneously may use two compounds.
  • a hole blocking layer or a electron transport layer may also be multi-layers, wherein each of the multi-layers may use a multi-component of compounds.
  • a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes.
  • an electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to a light-emitting medium.
  • a hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to a light-emitting medium.
  • an oxidative dopant includes various Lewis acids and acceptor compounds; and a reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge-generating layer to prepare an organic EL device having two or more light-emitting layers and emitting white light.
  • dry film-forming methods such as vacuum deposition, sputtering, plasma, ion plating methods, etc.
  • wet film-forming methods such as spin coating, dip coating, flow coating methods, etc.
  • a thin film is formed by dissolving or dispersing the material constituting each layer in suitable solvents, such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • suitable solvents such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvents are not specifically limited as long as the material constituting each layer is soluble or dispersible in the solvents, which do not cause any problems in forming a layer.
  • Tetrahydrofuran (THF) (1.0 L) was added to 2-bromobiphenyl (50.0 g, 214.0 mmol) in a 3L round-bottom flask (RBF) and the mixture was cooled to -78°C. 2.5 M n-butyl lithium (103.0 mL, 257.0 mmol) was added to the mixture. After 2 hrs, (4-bromophenyl)(phenyl)methanone (56.0 g, 214.0 mmol) was added to the mixture. After 17 hrs, the mixture was extracted with methylene chloride (MC) and H 2 O, and the MC layer was dried over MgSO 4 and was concentrated to obtain compound 1-1.
  • MC methylene chloride
  • An OLED device comprising an organic compound for an electron transport material of the present invention was produced as follows: A transparent electrode indium tin oxide (ITO) thin film (15 ⁇ /sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol. Next, the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus.
  • ITO indium tin oxide
  • N 4 ,N 4’ -diphenyl-N 4 ,N 4’ -bis(9-phenyl-9H-carbazol-3-yl)-[1,1’-biphenyl]-4,4’-diamine was introduced into a cell of the vacuum vapor depositing apparatus, and the pressure in the chamber of the apparatus was then controlled to 10 -6 torr. Thereafter, an electric current was applied to the cell to evaporate the introduced material, thereby forming a hole injection layer 1 having a thickness of 60 nm on the ITO substrate.
  • 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile was then introduced into another cell of the vacuum vapor depositing apparatus, and an electric current was applied to the cell to evaporate the introduced material, thereby forming a hole injection layer 2 having a thickness of 5 nm on hole injection layer 1.
  • N-([1,1’-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluorene-2-amine was introduced into one cell of the vacuum vapor depositing apparatus.
  • N,N-di([1,1’-biphenyl]-4-yl)-4’-(9H-carbazol-9-yl)-[1,1’-biphenyl]-4-amine was then introduced into another cell of the vacuum vapor depositing apparatus, and an electric current was applied to the cell to evaporate the introduced material, thereby forming a hole transport layer 2 having a thickness of 5 nm on hole transport layer 1.
  • BH-1 as a host compound was introduced into one cell of the vacuum vapor depositing apparatus and BD-1 as a dopant was introduced into another cell.
  • the two materials were evaporated at a different rate and the dopant was deposited in a doping amount of 2 wt%, based on the total weight of the host and dopant, to form a light-emitting layer having a thickness of 20 nm on the hole transport layer.
  • compound ETL-132 was evaporated on one cell to form an electron transport layer having a thickness of 35 nm on the light-emitting layer.
  • an Al cathode having a thickness of 80 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer.
  • All the materials used for producing the OLED device were purified by vacuum sublimation at 10 -6 torr prior to use.
  • An OLED device was produced in the same manner as in Device Example 1, except that compound ETL-57 was used in an electron transport layer.
  • An OLED device was produced in the same manner as in Device Example 1, except that compound ETL-50 was used in an electron transport layer.
  • An OLED device was produced in the same manner as in Device Example 1, except that compound ETL-137 was used in an electron transport layer.
  • Comparative Example 1 Production of an OLED device by using a conventional
  • An OLED device was produced in the same manner as in Device Example 1, except that the following comparative compound was used in an electron transport layer.
  • the current efficiency vs. luminance values of the OLED devices produced above are shown in a graph in Fig. 2. Furthermore, driving voltage at a luminance of 1,000 nit, luminous efficiency, and CIE color coordinate of the OLED devices produced in Device Examples 1 to 4 and Comparative Example 1 are provided in Table 1 below.
  • the devices according to the present invention have a big barrier between a light-emitting layer and an electron transport layer in the process of transporting electrons compared with the device of Comparative Example 1 (see LUMO energy value).
  • the devices of the present invention have fast electron current property, and thus have lower driving voltage and higher efficiency than the device of Comparative Example 1.
  • the compound of the present invention has higher HOMO energy value than the comparative compound of Comparative Example 1, and thus restricts efficiently movement of excitons produced in a light-emitting layer and hole carriers as shown in Fig. 3.
  • the compound of the present invention is regarded as showing color coordinate having the nearest to pure blue compared with the comparative compound of Comparative Example 1.
  • EOD Electron Only Device
  • the device was produced as follows: Barium, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) were introduced into cells in a vacuum vapor depositing apparatus. Thereafter, an electric current was applied to the cells to evaporate the introduced materials, thereby forming a hole blocking layer (HBL) having a thickness of 10 nm on the ITO substrate. Thereafter, BH-1 as a host compound was introduced into one cell of the vacuum vapor depositing apparatus and BD-1 as a dopant was introduced into another cell.
  • BCP barium, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • HBL hole blocking layer
  • the two materials were evaporated at a different rate and the dopant was deposited in a doping amount of 2 wt%, based on the total weight of the host and dopant, to form a light-emitting layer having a thickness of 20 nm on a hole transport layer.
  • the compounds in the table below were evaporated to form an electron transport layer having a thickness of 33 nm on the light-emitting layer.
  • an Al cathode having a thickness of 80 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer.
  • All the materials used for producing the OLED device were purified by vacuum sublimation at 10 -6 torr prior to use. Voltages at 10 and 50 mA/cm 2 according to each material of an electron transport layer are provided in Table 2 below.
  • the compounds of the present invention have faster electron current property at both voltages (10 and 50 mA/cm 2 ) than the comparative compound of Comparative Example 1.
  • the EOD identified that the compounds of the present invention were suitable to provide low driving voltage and high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La présente invention concerne un matériau de transport d'électrons et un dispositif organique électroluminescent comportant le matériau dans une couche de transport d'électrons. Les composés selon la présente invention en tant que matériau organique de transport d'électrons ont une propriété de transport d'électrons plus rapide par rapport à un matériau de transport d'électrons classique. Ainsi, un dispositif comprenant les composés selon la présente invention présentent une faible tension d'excitation, une efficacité élevée et d'excellentes propriétés de durée de vie. En outre, les composés de transport d'électrons présentent d'excellentes coordonnées de couleur, et, de ce fait, sont efficaces dans l'émission de la lumière bleue.
PCT/KR2015/004214 2014-04-29 2015-04-28 Matériau de transport d'électrons et dispositif organique électroluminescent le comportant Ceased WO2015167199A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15785470.4A EP3137451B1 (fr) 2014-04-29 2015-04-28 Matériau de transport d'électrons et dispositif organique électroluminescent le comportant
CN201580020622.3A CN106232591B (zh) 2014-04-29 2015-04-28 电子传输材料和包含其的有机电致发光装置
US15/306,497 US10818846B2 (en) 2014-04-29 2015-04-28 Electron transport material and organic electroluminescent device comprising the same
JP2016563093A JP6644005B2 (ja) 2014-04-29 2015-04-28 電子輸送材料及びそれを含む有機電界発光デバイス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140051726 2014-04-29
KR10-2014-0051726 2014-04-29
KR1020150047543A KR102427918B1 (ko) 2014-04-29 2015-04-03 전자전달재료 및 이를 포함하는 유기 전계 발광 소자
KR10-2015-0047543 2015-04-03

Publications (1)

Publication Number Publication Date
WO2015167199A1 true WO2015167199A1 (fr) 2015-11-05

Family

ID=54358858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004214 Ceased WO2015167199A1 (fr) 2014-04-29 2015-04-28 Matériau de transport d'électrons et dispositif organique électroluminescent le comportant

Country Status (1)

Country Link
WO (1) WO2015167199A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803542A (zh) * 2017-01-16 2017-06-06 中国科学院长春应用化学研究所 一种蓝色有机电致发光器件及其制备方法
CN106803541A (zh) * 2015-11-26 2017-06-06 三星显示有限公司 有机发光装置
EP3184522A1 (fr) * 2015-12-22 2017-06-28 Samsung Electronics Co., Ltd. Composé cyclique condensé, dispositif électroluminescent organique comprenant le composé cyclique condensé, et procédé de fabrication du dispositif électroluminescent organique
JP2017532754A (ja) * 2014-09-12 2017-11-02 エルジー・ケム・リミテッド 有機発光素子
WO2018174293A1 (fr) * 2017-03-24 2018-09-27 出光興産株式会社 Élément électroluminescent organique et dispositif électronique
US11696499B2 (en) 2016-05-10 2023-07-04 Samsung Display Co., Ltd. Organic light-emitting device
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device
US12137609B2 (en) 2019-08-02 2024-11-05 Lg Chem, Ltd. Compound and organic light emitting device comprising same
US12336426B2 (en) 2015-10-27 2025-06-17 Samsung Display Co., Ltd. Organic light-emitting device
US12359118B2 (en) 2015-03-03 2025-07-15 Samsung Display Co., Ltd. Organic light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042654A1 (en) * 2007-09-14 2011-02-24 Sung-Hyun Jung Organic compound, and organic photoelectric device comprising the same
CN102977006A (zh) * 2012-12-21 2013-03-20 南京邮电大学 吡啶芴类有机电致磷光主体发光材料及其制备方法
WO2013183851A1 (fr) * 2012-06-04 2013-12-12 (주)피엔에이치테크 Nouveau composé d'élément électroluminescent organique et élément électroluminescent organique le comprenant
KR20140130297A (ko) * 2013-04-30 2014-11-10 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2015084021A1 (fr) * 2013-12-04 2015-06-11 Rohm And Haas Electronic Materials Korea Ltd. Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent les comprenant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042654A1 (en) * 2007-09-14 2011-02-24 Sung-Hyun Jung Organic compound, and organic photoelectric device comprising the same
WO2013183851A1 (fr) * 2012-06-04 2013-12-12 (주)피엔에이치테크 Nouveau composé d'élément électroluminescent organique et élément électroluminescent organique le comprenant
CN102977006A (zh) * 2012-12-21 2013-03-20 南京邮电大学 吡啶芴类有机电致磷光主体发光材料及其制备方法
KR20140130297A (ko) * 2013-04-30 2014-11-10 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2015084021A1 (fr) * 2013-12-04 2015-06-11 Rohm And Haas Electronic Materials Korea Ltd. Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent les comprenant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3137451A4 *
ZHAO, J-F.: "One-pot synthesis of 2-bromo-4,5-diazafluoren-9-one via a tandem oxidation-bromination-rearrangement of phenanthroline and its hammer-shaped donoreacceptor organic semiconductors", TETRAHEDRON, vol. 67, 2011, pages 1977 - 1982, XP028365117 *
ZHAO, X-H. ET AL.: "Bulky pyridinylfluorene-fuctionalizing approach to synthesize diarylfluorene-based bipolar host materials for efficient red, green, blue and white electrophosphorescent devices", JOURNAL OF MATERIALS CHEMISTRY C, vol. 1, 2013, pages 3482 - 34 -90, XP055234374 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532754A (ja) * 2014-09-12 2017-11-02 エルジー・ケム・リミテッド 有機発光素子
US10050206B2 (en) 2014-09-12 2018-08-14 Lg Chem, Ltd. Organic light emitting device
US12359118B2 (en) 2015-03-03 2025-07-15 Samsung Display Co., Ltd. Organic light-emitting device
US12336426B2 (en) 2015-10-27 2025-06-17 Samsung Display Co., Ltd. Organic light-emitting device
US11856842B2 (en) 2015-11-26 2023-12-26 Samsung Display Co., Ltd. Organic light-emitting device
CN106803541A (zh) * 2015-11-26 2017-06-06 三星显示有限公司 有机发光装置
CN106803541B (zh) * 2015-11-26 2020-09-18 三星显示有限公司 有机发光装置
US10930853B2 (en) 2015-11-26 2021-02-23 Samsung Display Co., Ltd. Organic light-emitting device
EP3184522A1 (fr) * 2015-12-22 2017-06-28 Samsung Electronics Co., Ltd. Composé cyclique condensé, dispositif électroluminescent organique comprenant le composé cyclique condensé, et procédé de fabrication du dispositif électroluminescent organique
US10597403B2 (en) 2015-12-22 2020-03-24 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the condensed cyclic compound, organic light-emitting device including the condensed cyclic compound, and method of manufacturing the organic light-emitting device
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device
US11696499B2 (en) 2016-05-10 2023-07-04 Samsung Display Co., Ltd. Organic light-emitting device
US12232416B2 (en) 2016-05-10 2025-02-18 Samsung Display Co., Ltd. Organic light-emitting device
CN106803542A (zh) * 2017-01-16 2017-06-06 中国科学院长春应用化学研究所 一种蓝色有机电致发光器件及其制备方法
US10854820B2 (en) 2017-01-16 2020-12-01 Changchun Institute Of Applied Chemistry Chinese Academy Of Sciences Blue organic electroluminescent device and preparation method thereof
WO2018174293A1 (fr) * 2017-03-24 2018-09-27 出光興産株式会社 Élément électroluminescent organique et dispositif électronique
US12137609B2 (en) 2019-08-02 2024-11-05 Lg Chem, Ltd. Compound and organic light emitting device comprising same

Similar Documents

Publication Publication Date Title
EP3137451A1 (fr) Matériau de transport d'électrons et dispositif organique électroluminescent le comportant
WO2015167199A1 (fr) Matériau de transport d'électrons et dispositif organique électroluminescent le comportant
WO2015084021A1 (fr) Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent les comprenant
EP3140299A1 (fr) Matériau de transport d'électrons et dispositif électroluminescent organique comprenant celui-ci
WO2015099485A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2014030921A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique contenant ceux-ci
WO2015012618A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2013109030A1 (fr) Dispositif électroluminescent organique comprenant les composés électroluminescents organiques
WO2015099486A1 (fr) Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent les comprenant
WO2012121561A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique utilisant lesdits composés
WO2015084114A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2013165189A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique les contenant
WO2018151520A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
WO2013157886A1 (fr) Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent les comprenant
WO2014042420A1 (fr) Nouveau composé à électroluminescence organique et dispositif à électroluminescence organique le comprenant
WO2013180478A1 (fr) Nouveaux composés à électroluminescence organique et dispositif à électroluminescence organique les contenant
EP3177628A1 (fr) Composés électroluminescents organiques et dispositifs électroluminescents organiques les comprenant
WO2014061963A1 (fr) Composés à électroluminescence organique et dispositif à électroluminescence organique les comprenant
WO2016036207A1 (fr) Matériau de transport de trous et dispositif électroluminescent organique comprenant celui-ci
WO2014196805A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
WO2015046955A1 (fr) Nouveau composé organique électroluminescent et dispositif organique électroluminescent le contenant
WO2016018076A1 (fr) Matériau tampon d'électrons et dispositif électroluminescent organique
WO2014200244A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique les comprenant
WO2016006925A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
EP3169688A1 (fr) Matériau de transport d'électrons et dispositif organique électroluminescent le comportant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563093

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15306497

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015785470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015785470

Country of ref document: EP