WO2015145763A1 - 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 - Google Patents
呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 Download PDFInfo
- Publication number
- WO2015145763A1 WO2015145763A1 PCT/JP2014/059279 JP2014059279W WO2015145763A1 WO 2015145763 A1 WO2015145763 A1 WO 2015145763A1 JP 2014059279 W JP2014059279 W JP 2014059279W WO 2015145763 A1 WO2015145763 A1 WO 2015145763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sound
- respiratory
- sounds
- breathing
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
Definitions
- the present invention relates to a breathing sound analysis apparatus and a breathing sound analysis method for analyzing a breathing sound including a plurality of sound types, and a computer program and a recording medium.
- Patent Document 1 proposes a technique of outputting an abnormal sound analysis result with a three-dimensional display device.
- Patent Document 2 proposes a technique for detecting a rale as an abnormal sound included in a respiratory sound.
- Japanese Patent Application Laid-Open No. 2004-228688 proposes a technique of dividing a sound waveform into a plurality of sections and determining a sound type.
- Patent Documents 1 to 3 described above have a technical problem that a plurality of sound types included in the respiratory sound cannot be arbitrarily output.
- a breathing sound analyzing apparatus for solving the above-described problems includes a sorting unit that sorts a breathing sound into a normal sound and an abnormal sound, and an output unit that outputs an arbitrary breathing sound among the sorted breathing sounds.
- the respiratory sound analysis method for solving the above-described problems includes a classification process for classifying respiratory sounds into normal sounds and abnormal sounds, and an output process for outputting an arbitrary respiratory sound among the classified respiratory sounds.
- a computer program for solving the above-described problems causes a computer to execute a classification process for classifying respiratory sounds into normal sounds and abnormal sounds, and an output process for outputting arbitrary respiratory sounds among the classified respiratory sounds.
- the recording medium for solving the above problem is recorded with the computer program described above.
- the respiratory sound analysis apparatus includes a classification unit that classifies a respiratory sound into a normal sound and an abnormal sound, and an output unit that outputs an arbitrary respiratory sound among the sorted respiratory sounds.
- the respiratory sound analyzer during the operation, the respiratory sound is first classified into a normal sound and an abnormal sound.
- the breathing sound separated by the sorting means may not be the normal sound and the abnormal sound, and each of the normal sound and the abnormal sound may be further classified into a plurality of sound types.
- the abnormal sound may be classified into a whistle sound, an analogy sound, a haircut sound, and the like.
- it does not specifically limit about a specific classification method, What is necessary is just to be able to classify in the state which can output the arbitrary respiratory sounds mentioned later.
- any breathing sound among the separated breathing sounds is output. That is, a plurality of sorted respiratory sounds are selectively output.
- a plurality of sorted respiratory sounds are selectively output.
- it does not specifically limit about an output aspect You may output as an audio
- diagnosis of a health condition can be easily performed.
- diagnosis of a health condition can be easily performed.
- a sound is heard in a state where a plurality of breathing sounds are mixed, it is difficult for a skilled doctor to distinguish and listen to each sound type. It becomes possible to easily discriminate the included sound types.
- it is possible to easily listen to only a specific sound type included in the breathing sound, it can be utilized in doctor education and research.
- the respiratory sound analysis apparatus since the respiratory sound can be sorted and any respiratory sound can be output, the respiratory sound including a plurality of sound types can be suitably analyzed. Is possible.
- the output means outputs a plurality of respiratory sounds simultaneously among the sorted respiratory sounds.
- a plurality of respiratory sounds can be output simultaneously (in other words, in a superimposed state) as arbitrary respiratory sounds, desired respiratory sounds can be combined and output as appropriate.
- the output means outputs the arbitrary respiratory sound as a voice or a spectrum image.
- any respiratory sound among the sorted respiratory sounds is output as sound using, for example, a speaker or headphones.
- an arbitrary breathing sound is output as a spectrum image using a display such as a liquid crystal monitor. Therefore, any output breathing sound can be suitably used.
- the respiratory sound analyzing apparatus further includes changing means capable of changing the output state of the arbitrary respiratory sound for each sound type.
- the output state of any respiratory sound (for example, output volume, image display mode, etc.) can be changed for each sound type, the output arbitrary respiratory sound can be used more suitably.
- the specific abnormal sound can be easily heard even when a plurality of respiratory sounds are mixed.
- it is considered that it becomes easy to listen thereafter. Therefore, it can be effectively used for training of inexperienced doctors.
- the changing means may be capable of changing the output volume of the arbitrary respiratory sound for each sound type.
- the output volume can be changed for each sound type, the convenience can be improved by making it easy to hear only the desired breathing sound.
- the changing means may be able to change the output volume of the arbitrary breathing sound for each predetermined frequency band.
- the output volume for each sound type can be changed in more detail, for example, it is possible to increase only the output volume in a predetermined frequency band to make it easier to hear a desired breathing sound.
- the predetermined frequency band may be set according to the characteristics of the sound types to be sorted.
- the changing unit may be capable of executing predetermined image processing for each sound type on the image indicating the arbitrary breathing sound.
- a predetermined image processing is performed on an image showing an arbitrary breathing sound (for example, a spectrogram obtained by extracting only one kind of breathing sound), and a state where it can be easily recognized visually can be realized.
- the predetermined image processing include color change (for example, RGB adjustment), binarization, edge detection, and the like.
- the changing unit may be able to output an image obtained by performing the predetermined image processing for each sound type by superimposing the plurality of sound types.
- the classification unit is an acquisition unit that acquires information about a frequency corresponding to a predetermined characteristic of the respiratory sound spectrum, and is a reference for classifying the respiratory sound.
- Shift means for shifting a plurality of reference spectra in accordance with information on the frequency to obtain a frequency shift reference spectrum, and the plurality of the plurality of reference spectra included in the respiratory sound based on the respiratory sound and the frequency shift reference spectrum
- a ratio output means for outputting a ratio of the reference spectrum.
- the classification means first, information regarding the frequency corresponding to the predetermined characteristic of the spectrum of the respiratory sound is acquired.
- the “predetermined feature” means a feature that occurs at a specific frequency according to the sound type included in the spectrum of the body sound, and is, for example, a peak that appears in a frequency-analyzed signal.
- the “information about the frequency” is not limited to the information that directly indicates the frequency, but includes information that can indirectly derive the frequency.
- a plurality of reference spectra serving as a reference for classifying the respiratory sounds are shifted according to the information about the frequency, and the frequency shift reference spectrum is acquired.
- the “reference spectrum” here refers to each sound type in order to classify a plurality of sound types included in the respiratory sound (for example, normal respiratory sound, continuous rarity sound, haircut sound, etc.). This is a preset spectrum.
- the reference spectrum is frequency-shifted according to, for example, a peak position, which is a predetermined feature acquired from a respiratory sound, and becomes a frequency-shifted reference spectrum.
- a ratio of a plurality of reference spectra included in the respiratory sound is output based on the respiratory sound and the frequency shift reference spectrum. Specifically, the proportion of sound types corresponding to a plurality of reference spectra is calculated in the respiratory sound to be analyzed, and the result is output. More specifically, the ratio of the reference spectrum is calculated as a coupling coefficient by executing a calculation based on a plurality of reference spectra, for example, for the spectrum of the respiratory sound.
- respiratory sounds including a plurality of sound types can be suitably classified.
- the ratio of each sound type can be suitably classified.
- the predetermined feature may be a local maximum value.
- frequency analysis by fast Fourier transform FFT: Fourier ⁇ Transform
- FFT Fast Fourier transform
- information on a frequency corresponding to the maximum value (that is, peak) of the analysis result is acquired.
- the information about the frequency is acquired as corresponding to the position of the maximum value, but even if the frequency is not completely coincident with the position of the maximum value, it is acquired as information about the frequency corresponding to the position near the maximum value. Also good.
- the frequency-related information can be acquired more easily and accurately by using the maximum value as the predetermined characteristic of the spectrum of the respiratory sound.
- the respiratory sound analysis method includes a classification process for classifying respiratory sounds into normal sounds and abnormal sounds, and an output process for outputting an arbitrary respiratory sound among the classified respiratory sounds.
- the respiratory sound analysis method it is possible to suitably analyze a respiratory sound including a plurality of sound types, similarly to the respiratory sound analysis apparatus according to the present embodiment described above.
- the computer program according to the present embodiment causes the computer to execute a classification process of classifying respiratory sounds into normal sounds and abnormal sounds, and an output process of outputting arbitrary respiratory sounds among the classified respiratory sounds.
- the computer can execute the same processing as the above-described respiratory sound analysis method according to the present embodiment, so that a respiratory sound including a plurality of sound types can be suitably analyzed.
- the recording medium according to the present embodiment records the above-described computer program.
- the recording medium it is possible to suitably analyze a respiratory sound including a plurality of sound types by causing the computer program described above to be executed by a computer.
- FIG. 1 is a block diagram showing the overall configuration of the respiratory sound analysis apparatus according to this embodiment.
- the respiratory sound analysis apparatus includes, as main components, a body sound sensor 110, a signal storage unit 120, a signal processing unit 125, a sound output unit 130, and a base holding unit 140. , A display unit 150, an input unit 160, and a processing unit 200.
- the body sound sensor 110 is a sensor configured to be able to detect a breathing sound of a living body.
- the biological sound sensor 110 includes, for example, an ECM (Electret Condenser Microphone), a microphone using a piezo, a vibration sensor, and the like.
- the signal storage unit 120 is configured as a buffer such as a RAM (Random Access Memory), for example, and temporarily stores a signal indicating a respiratory sound detected by the biological sound sensor 110 (hereinafter, referred to as a “respiratory sound signal” as appropriate). To remember.
- the signal storage unit 120 is configured to be able to output the stored signal to the audio output unit 130 and the processing unit 200, respectively.
- the signal processing unit 125 processes the sound acquired by the biological sound sensor 110 and outputs the processed sound to the audio output unit 130.
- the signal processing unit 125 functions as, for example, an equalizer or a filter, and processes the acquired sound so that it can be easily heard by a person.
- the audio output unit 130 is configured as a speaker or a headphone, for example, and outputs a respiratory sound detected by the biological sound sensor 110 and processed by the signal processing unit 125.
- the base holding unit 140 is configured, for example, as a ROM (Read Only Memory) or the like, and stores a base corresponding to a predetermined sound type that can be included in the respiratory sound.
- the basis according to the present embodiment is an example of the “reference spectrum” in the present invention.
- the display unit 150 is configured as a display such as a liquid crystal monitor, for example, and displays image data output from the processing unit 200.
- the input unit 160 is a device that accepts input by the user, and is configured as, for example, a keyboard, a mouse, a touch panel, various switches, and the like.
- the input unit 160 is configured to be capable of performing an input operation for selecting at least a breathing sound to be output.
- the processing unit 200 includes a plurality of arithmetic circuits and memories.
- the processing unit 200 includes a frequency analysis unit 210, a frequency peak detection unit 220, a basis set generation unit 230, a coupling coefficient calculation unit 240, a signal intensity calculation unit 250, an image generation unit 260, and a breathing sound selection unit 270.
- FIG. 2 is a flowchart showing the operation of the respiratory sound analysis apparatus according to this embodiment.
- a simple description for grasping the overall flow of processing executed by the respiratory sound analysis apparatus according to the present embodiment will be given. Details of each process will be described later.
- a respiratory sound is first detected by the biological sound sensor 110, and a respiratory sound signal is acquired by the processing unit 200 (step S101).
- the frequency analysis unit 210 performs frequency analysis (for example, fast Fourier transform) (step S102). Further, the frequency peak detection unit 220 detects a peak (maximum value) using the frequency analysis result.
- frequency analysis for example, fast Fourier transform
- a base set is generated in the base set generation unit 230 (step S103). Specifically, the base set generation unit 230 generates a base set using the base stored in the base holding unit 140. At this time, the basis set generation unit 230 shifts the basis based on the peak position (that is, the corresponding frequency) obtained from the frequency analysis result.
- the coupling coefficient calculation unit 240 calculates the coupling coefficient based on the frequency analysis result and the basis set (step S104).
- the signal intensity calculation unit 250 calculates the signal intensity corresponding to the coupling coefficient (step S105). In other words, the ratio of each sound type included in the respiratory sound signal is calculated.
- the image generation unit 260 When the signal strength is calculated, the image generation unit 260 generates image data indicating the signal strength. The generated image data is displayed as an analysis result on the display unit 150 (step S106).
- step S107 After the analysis result is displayed, when the sound type to be output is input by the user (step S107: YES), the respiratory sound to be output is selected by the respiratory sound selection unit 270, and the selected sound type is the audio output unit 130. Or it outputs to the display part 150 (step S108).
- FIG. 3 is a spectrogram showing the frequency analysis result of the breathing sound including the haircut sound
- FIG. 4 is a spectrogram showing the frequency analysis result of the breathing sound including the whistle sound.
- the spectrogram pattern corresponding to the haircut sound in addition to the spectrogram pattern corresponding to the normal breathing sound, the spectrogram pattern corresponding to the haircut sound that is one of the abnormal breathing sounds is observed.
- the spectrogram pattern corresponding to the haircut sound has a shape close to a rhombus, as shown in the enlarged portion in the figure.
- the spectrogram pattern corresponding to the whistle voice which is one of the abnormal breathing sounds is observed.
- the spectrogram pattern corresponding to the whistle voice is shaped like a swan's neck as shown in the enlarged portion of the figure.
- the respiratory sound analysis apparatus executes an analysis for separating a plurality of mixed sound types in this way.
- FIG. 5 is a graph showing a spectrum at a predetermined timing of the breathing sound including the haircut sound
- FIG. 6 is a conceptual diagram showing an approximation method of the spectrum of the breathing sound including the haircut sound.
- FIG. 7 is a graph showing a spectrum of a breathing sound including a whistle sound at a predetermined timing
- FIG. 8 is a conceptual diagram showing an approximation method of a spectrum of a breathing sound including a whistle sound.
- the spectrum corresponding to the normal breathing sound and the spectrum corresponding to the haircut sound can be estimated in advance by experiments or the like. For this reason, if a pre-estimated pattern is used, it is possible to know in what ratio the component corresponding to the normal breathing sound and the component corresponding to the haircut sound are included in the above-described spectrum.
- the spectrum corresponding to the whistle sound can be estimated in advance by experiments or the like in the same manner as the normal breathing sound and the haircut sound described above. For this reason, if a pre-estimated pattern is used, it is possible to know in what ratio the component corresponding to the normal breathing sound and the component corresponding to the whistle sound are included in the above-described spectrum.
- FIG. 9 is a graph illustrating an example of the frequency analysis method
- FIG. 10 is a diagram illustrating an example of the frequency analysis result
- FIG. 11 is a conceptual diagram showing a spectrum peak detection result.
- frequency analysis is first performed on the acquired respiratory sound signal.
- the frequency can be obtained using an existing technique such as fast Fourier transform.
- an amplitude value for each frequency (that is, an amplitude spectrum) is used as a frequency analysis result.
- a window function for example, Hanning window etc.
- the frequency analysis result is obtained as consisting of n values.
- N is a value determined by a window size or the like in frequency analysis.
- peak detection is performed for the spectrum obtained by frequency analysis.
- peaks p1 to p4 are detected at positions of 100 Hz, 130 Hz, 180 Hz, and 320 Hz.
- the peak detection process may be a simple process because it is only necessary to know at which frequency the peak exists. However, it is preferable that the peak detection parameters are set so that even a small peak is not missed.
- N is a predetermined value
- the maximum value is obtained from the point where the sign of the difference switches from positive to negative.
- the second derivative is approximated by the difference.
- N values having a value smaller than a predetermined threshold (negative value) are selected in order from the smallest, and the positions are stored.
- FIG. 12 is a graph showing the normal alveolar respiratory sound base.
- FIG. 13 is a graph showing the haircut sound base,
- FIG. 14 is a graph showing the continuous ra sound base, and
- FIG. 15 is a graph showing the white noise base.
- FIG. 16 is a graph showing frequency-shifted continuous ra sound bases.
- each base corresponding to each sound type has a specific shape.
- Each base is composed of n numerical values (that is, amplitude values for each frequency) that are the same as the frequency analysis result.
- Each base is normalized so that an area surrounded by a line indicating the amplitude value for each frequency and the frequency axis becomes a predetermined value (for example, 1).
- the base corresponding to the continuous rale among the above-mentioned bases is frequency-shifted according to the peak position detected from the result of frequency analysis.
- the continuous ra sound base is frequency-shifted in accordance with each of the peaks p1 to p4 shown in FIG.
- the basis set is generated as a set of normal alveolar respiratory sound bases, hair hair sound bases, continuous ra sound bases corresponding to the number of detected peaks, and white noise bases.
- FIG. 17 is a diagram showing the relationship between the spectrum, the basis, and the coupling coefficient
- FIG. 18 is a diagram showing an example of the observed spectrum and the basis used for approximation
- FIG. 19 is a diagram showing an approximation result by non-negative matrix factorization.
- the spectrum y and each base h (f) have n values.
- the coupling coefficient has m values. “M” is the number of bases included in the base set.
- the coupling coefficient of each base included in the base set is calculated using non-negative matrix factorization. Specifically, u that minimizes the optimization criterion function D expressed by the following formula (2) (however, each component value of u is not negative) may be obtained.
- general non-negative matrix factorization is a method for calculating both a base matrix representing a set of base spectra and an activation matrix representing a coupling coefficient.
- the base matrix is fixed. Only the coupling coefficient is calculated.
- an approximation method other than non-negative matrix factorization may be used as means for calculating the coupling coefficient.
- the condition that it is non-negative is desired.
- the reason for using the non-negative approximation method will be described with a specific example.
- the expected coupling coefficient u under the condition of being non-negative is 1 for the base A, 1 for the base B, 0 for the base C, and 0 for the base D. It is 0 to do. That is, on the condition that it is non-negative, the observed spectrum is approximated as a spectrum obtained by adding the base A multiplied by 1 and the base B multiplied by 1.
- the expected coupling coefficient u when the condition is not negative is 0 for the base A, 0 for the base B, 1 for the base C, and 1 for the base D. What to do is -0.5. That is, if the condition is not negative, the observed spectrum is approximated as a spectrum obtained by adding the base C multiplied by 1 and the base D multiplied by ⁇ 0.5.
- the coupling coefficient u here represents the component amount for each spectrum, it must be obtained as a non-negative value. In other words, when the coupling coefficient u is obtained as a negative value, it cannot be interpreted as a component amount. On the other hand, if the approximation is performed under a non-negative condition, the coupling coefficient u corresponding to the component amount can be calculated.
- the coupling coefficient u is calculated as having seven values from u 1 to u 7 .
- the coupling coefficient u 1 corresponding to the normal alveolar respiratory sound base is a value indicating the ratio of the normal alveolar respiratory sound to the respiratory sound.
- the coupling coefficient u 2 corresponding to the hair hair base the coupling coefficient u 3 corresponding to the white noise base, the continuous coefficient shifted to 100 Hz, the coupling coefficient u 4 corresponding to the sound base, and the continuous coefficient shifted to 130 Hz.
- the coupling coefficient u 5 corresponding to the sound base the coupling coefficient u 6 corresponding to the continuous ra sound base shifted to 180 Hz
- the coupling coefficient u 7 corresponding to the continuous ra sound base shifted to 320 Hz breathing is also performed. It can be said that the value indicates the ratio of each sound type to the sound. Therefore, the signal intensity of each sound type can be calculated from the coupling coefficient u.
- a plurality of sound types included in the respiratory sound are classified using a plurality of bases corresponding to each sound type.
- the classification method described above is merely an example, and a plurality of sound types may be classified using other classification methods.
- FIGS. 20 and 21 are conceptual diagrams showing a method for separating continuous rales according to the first modification.
- the breathing sound is classified into a continuous ra sound and other sounds. Specifically, when the peak frequency detected from the frequency analysis result of the respiratory sound signal fluctuates within a predetermined range, it is determined that the sound is a continuous rale.
- the whistle sound and the like sound that are continuous rales fluctuate so that the peak positions continuously detected on the time axis fall within a predetermined range.
- the peak frequency changes so as to have continuity in time. Therefore, when the continuous peak position is within the predetermined range, it can be determined that the sound is a continuous ra-tone.
- the sounds other than the continuous rarity fluctuate so that the peak positions continuously detected on the time axis do not fall within a predetermined range.
- the peak frequency does not have temporal continuity and changes discretely. Therefore, when the continuous peak position is not within the predetermined range, it can be determined that the sound is not a continuous rarity.
- the determination result of multiple times can also be used for determination of continuous rales. Specifically, when the number of times the peak position continuously detected on the time axis has fluctuated so as to be within a predetermined range has continued for a predetermined number of times, the sound is a continuous rar sound. May be determined.
- FIG. 22 is a graph showing threshold values used for classification of whistle sounds and similar sounds according to the second modification.
- the continuous rar sound is classified into a whistle sound and a similar sound.
- whistle voice sounds and analogy sounds can be distinguished by their pitch (ie, frequency), as whistle voice sounds are called high-pitched continuous rales and analogy sounds are called low-pitched continuous rales.
- the peak frequency of the whistle sound and the like sound changes with time. For this reason, when trying to determine a whistle voice and similar sounds using a single threshold for the peak frequency (that is, one threshold whose value does not vary), the determination result changes over time. There is. For example, if the peak frequency changes so as to cross the determination threshold, what has been accurately determined until then will be determined as an incorrect sound type. For this reason, in the second modification, the determination threshold value is varied according to the peak frequency.
- the threshold value fluctuates so that the ratio for determining the whistle sound and the ratio for determining the analog sound smoothly change according to the peak frequency. For example, when the peak frequency is 200 Hz, it is determined that 7% of whistle sounds are included and 93% of similar sounds are included. When the peak frequency is 250 Hz, it is determined that 50% of whistle sounds are included and 50% of similar sounds are included. When the peak frequency is 280 Hz, it is determined that 78% of whistle sounds are included and 22% of similar sounds are included.
- the specific numerical values here are merely examples, and different values may be set. Moreover, you may make it have a variation characteristic which changes with sex, age, height, weight, etc. of the biological body which is a measuring object.
- the threshold value for determining the whistle voice sound and the analogy sound changes so as to become an appropriate value according to the peak frequency, and thus, for example, a single threshold value that does not change is used. Compared to the case, more accurate separation can be performed.
- FIG. 23 is a graph showing the initial value of the threshold value used for classification of the whistle sound and the analogy sound according to the third modification.
- FIG. 24 and FIG. 25 are graphs showing the adjusted values of the threshold values used for the distinction between the whistle vocal sound and the analogy sound according to the third modification.
- the classification method according to the third modified example is also a method of separating continuous rales into whistle sounds and similar sounds as in the second modified example already described. Moreover, it is the same as that of the 2nd modification also about the point determined using the threshold value with respect to the peak frequency obtained from the frequency analysis result.
- the determination result is set to change at a threshold of 250 Hz. Specifically, when the peak frequency is 250 Hz or more, it is determined that the continuous rale includes 100% of the whistle sound component and does not include the analogy sound. On the other hand, when the peak frequency is less than 250 Hz, it is determined that the continuous rale includes 100% of the similar sound component and does not include the whistle sound.
- the threshold value is lowered from 250 Hz to 220 Hz when it is determined that the whistle voice component is 100% in the immediately preceding determination. Therefore, it is easy to determine that the whistle voice component is 100%. Specifically, considering the case where the peak frequency is 230 Hz, according to the initial threshold value (see FIG. 23), it is determined as analogy, but according to the adjusted threshold value (see FIG. 24). Judged as a whistle sound.
- the threshold value is increased from 250 Hz to 280 Hz when it is determined in the previous determination that the analog sound component is 100%. Therefore, it is easy to determine that the analog sound component is 100%. Specifically, considering the case where the peak frequency is 270 Hz, the whistle sound is determined according to the initial threshold value (see FIG. 23), but according to the adjusted threshold value (see FIG. 25). Judged as roaring.
- the threshold value is adjusted as described above, erroneous determination due to fluctuations in peak frequency can be suitably prevented. That is, in the classification method according to the third modified example, the threshold value for determining the whistle sound and the analogy sound is adjusted to an appropriate value based on the past determination result. Compared with the case of using, more accurate determination can be performed.
- the adjustment of the threshold value may be performed based on a plurality of past determination results, not just the previous determination result. Further, when a plurality of past determination results are used, each determination result may be weighted. For example, weighting may be performed so that the influence becomes smaller as the past determination results.
- the smooth threshold value of the second modification may be used as the initial value of the threshold value to be adjusted (see FIG. 22).
- FIG. 26 is a spectrogram diagram of a breathing sound including a whistle voice
- FIG. 27 is a graph showing the peak frequency and the number of peaks of the whistle sound
- FIG. 28 is a spectrogram diagram of a respiratory sound including a similar sound
- FIG. 29 is a graph showing the peak frequency and the number of peaks of the similar sound.
- the separation method according to the fourth modification is also a method of separating continuous rales into whistle sounds and similar sounds, as in the second and third modifications already described.
- a breathing sound including a whistle voice sound is detected as a spectrum waveform having a predetermined peak.
- a frequency-amplitude graph corresponding to a single time of the spectrum waveform that is, a region surrounded by a white frame in the figure.
- the peak frequency F1 and the peak number N1 of the whistle voice can be detected. It is known that the distribution of the peak frequency of the whistle sound is about 180 to 900 Hz. As can be seen from the figure, the peak number N1 of the whistle voice sound is one.
- the breathing sound including the analogy sound is detected as a spectrum waveform having a predetermined peak different from the whistle sound.
- a frequency-amplitude graph corresponding to a single time of the spectrum waveform is similarly created.
- the peak frequency F2 and the number of peaks N2 of the analogy sound can be detected. It is known that the distribution of the peak frequency of analogy is about 100 to 260 Hz. That is, the peak frequency F2 of the analogy sound is distributed in a region lower than the peak frequency F1 of the whistle sound. Further, as can be seen from the figure, the number N2 of analogy sounds is, for example, three. That is, the peak number N2 of analogy sounds is not one, but a plurality, like the peak number N1 of whistle sounds.
- the determination is performed using the difference in the characteristics of the above-described whistle sound and analogy sound. Specifically, based on each of the peak frequency F and the peak number N, the whistle sound and the analogy sound are separated. In this way, for example, more accurate classification can be performed as compared with the case where only the peak frequency F is used to separate the whistle sound and the analogy sound.
- FIG. 30 is a plan view showing a display example on the display unit.
- the analysis results are displayed as a plurality of images in the display area 155 of the display unit 150.
- the waveform of the acquired respiratory sound is displayed in the area 155a.
- the spectrum of the acquired respiratory sound is displayed in the region 155b.
- a spectrogram of the acquired respiratory sound is displayed in the region 155c.
- a graph representing the time series change of the component amount of each classified sound type here, five sound types of normal breathing sound, analogy sound, whistle sound, haircut sound, and water bubble sound
- the ratio of each classified sound type is displayed as a radar chart.
- the ratio of each classified sound type may be displayed as a bar graph or a pie chart, or may be displayed as a numerical value.
- FIG. 31 is a spectrogram showing the extraction results for each sound type.
- FIG. 32 and FIG. 33 are conceptual diagrams showing examples of audio output for each classified sound type.
- the spectrogram displayed in the area 155c of the display unit 150 may be displayed for each sound type selected by the user. That is, instead of the spectrogram of the original (acquired original respiratory sound) shown in FIG. 31 (a), the spectrogram of normal respiratory sound shown in FIG. 31 (b) and the spectrogram of analogy sound shown in FIG. 31 (c)
- the spectrogram of the whistle voice shown in FIG. 31 (d), the spectrogram of the twisting sound shown in FIG. 31 (e), and the spectrogram of the water bubble sound shown in FIG. 31 (f) may be displayed. Also, a plurality of spectrograms for each sound type may be displayed side by side.
- a graph for each sound type displayed in the region 155d of the display unit 150 may be selected, and only the selected sound type may be output as a volume.
- a graph for each sound type displayed in the region 155d of the display unit 150 may be selected, and only the selected sound type may be output as a volume.
- the sound output unit 130 outputs a sound obtained by synthesizing the analogy sound, the whistle sound, the haircut sound, and the water bubble sound.
- FIG. 34 is a conceptual diagram showing a volume adjustment method for each classified sound type
- FIG. 35 is a conceptual diagram showing a volume adjustment method for each frequency band.
- FIG. 36 is a conceptual diagram illustrating an example of image processing executed for each sound type
- FIG. 37 is a plan view illustrating an example of an image generated by superimposing images processed for each sound type.
- FIG. 38 is a conceptual diagram showing a display color adjustment method for each classified sound type.
- the output volume of each sorted sound type may be adjustable for each sound type.
- ON / OFF for each sound type can be switched by a check box, and the volume for each sound type can be adjusted by a slider.
- a similar sound and a whistle sound are output, and the whistle sound is output at a volume higher than the similar sound.
- the output volume for each frequency band may be adjusted.
- the gain can be adjusted in each frequency band of 125 Hz, 250 Hz, 500 Hz, 1 kHz, and 2 kHz.
- image processing for example, binarization, edge detection, etc.
- image processing may be performed on the spectrogram extracted for each sound type. In this way, what is difficult to recognize in the state of being extracted can be displayed in a more visually understandable state.
- the image processing may be a combination of a plurality of processes. Also, different image processing may be performed depending on the sound type.
- an image for each sound type that has undergone image processing may be displayed in a superimposed manner.
- the spectrogram for each sound type can be collectively recognized with one image, so that visual grasp can be suitably performed.
- the sound type to be displayed can be selected, and only the desired sound type can be appropriately selected and displayed. Can do.
- the color of the image may be adjustable for each sound type.
- the RGB values can be adjusted for each sound type by adjusting the sliders corresponding to R (red), G (green), and B (blue). In this way, it is possible to display a plurality of sound types in different colors, and it is possible to realize display in a state that is easier to grasp visually.
- the respiratory sound analyzing apparatus As described above, according to the respiratory sound analyzing apparatus according to the present embodiment, after the respiratory sounds are sorted, they can be appropriately selected and output. Moreover, since the output mode can be changed for each sound type, the data for each sorted sound type can be suitably used.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Physiology (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
呼吸音解析装置は、呼吸音を正常音及び異常音に分別する分別手段(210~250)と、分別した呼吸音のうち任意の呼吸音を出力する出力手段(125,260,270)とを備える。この呼吸音解析装置によれば、呼吸音を分別して任意の呼吸音を出力できるため、複数の音種を含んでいる呼吸音を好適に解析することが可能である。なお、呼吸音解析装置は、任意の呼吸音の出力状態を音種毎に変更可能な変更手段(125,260,270)を更に備えてもよい。
Description
本発明は、複数の音種を含む呼吸音を解析する呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体の技術分野に関する。
この種の装置として、電子聴診器等によって検出される生体の呼吸音について、正常呼吸音と異常呼吸音とを判別するものが知られている。例えば特許文献1では、異常音の分析結果を3次元表示装置で出力するという技術が提案されている。特許文献2では、呼吸音に含まれる異常音としてラ音を検出するという技術が提案されている。特許文献3では、音波形を複数の区分に分割して音種を判別するという技術が提案されている。
しかしながら、上述した特許文献1から3に記載されているような技術では、呼吸音に含まれる複数の音種を任意に出力することができないという技術的問題点がある。
本発明が解決しようとする課題には、上記のようなものが一例として挙げられる。本発明は、呼吸音に含まれる複数の音種を分別して出力することが可能な呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体を提供することを課題とする。
上記課題を解決するための呼吸音解析装置は、呼吸音を正常音及び異常音に分別する分別手段と、前記分別した呼吸音のうち任意の呼吸音を出力する出力手段とを備える。
上記課題を解決するための呼吸音解析方法は、呼吸音を正常音及び異常音に分別する分別工程と、前記分別した呼吸音のうち任意の呼吸音を出力する出力工程とを備える。
上記課題を解決するためのコンピュータプログラムは、呼吸音を正常音及び異常音に分別する分別工程と、前記分別した呼吸音のうち任意の呼吸音を出力する出力工程とをコンピュータに実行させる。
上記課題を解決するための記録媒体は、上述したコンピュータプログラムが記録されている。
<1>
本実施形態に係る呼吸音解析装置は、呼吸音を正常音及び異常音に分別する分別手段と、前記分別した呼吸音のうち任意の呼吸音を出力する出力手段とを備える。
本実施形態に係る呼吸音解析装置は、呼吸音を正常音及び異常音に分別する分別手段と、前記分別した呼吸音のうち任意の呼吸音を出力する出力手段とを備える。
本実施形態に係る呼吸音解析装置によれば、その動作時には、先ず呼吸音が正常音と異常音とに分別される。分別手段によって分別される呼吸音は、正常音及び異常音の2音でなくともよく、正常音及び異常音の各々が更に複数の音種に分別されてもよい。例えば、異常音を、笛声音、類鼾音及び捻髪音等に夫々分別してもよい。なお、具体的な分別手法については特に限定されるものではなく、後述する任意の呼吸音の出力が可能となるような状態で分別できればよい。
呼吸音が分別されると、分別された呼吸音のうち任意の呼吸音が出力される。即ち、分別された複数の呼吸音が選択的に出力される。これにより、例えばユーザが所望する呼吸音のみを出力することが可能である。より具体的には、例えば呼吸音に含まれる笛声音のみを出力したり、笛声音及び類鼾音のみを出力したりできる。なお、出力態様については特に限定されず、音声又は画像として出力されてもよいし、他の態様で出力されてもよい。
上述したように呼吸音を分別して出力することで、例えば健康状態の診断等が容易に行える。具体的には、例えば複数の呼吸音が混ざった状態で聞こえるような場合には、熟練した医師でも各音種を区別して聴きとることが難しいが、任意の呼吸音を出力できれば、呼吸音に含まれる音種を容易に判別することが可能となる。このように、呼吸音に含まれる特定の音種だけを聴きとり易くすることができれば、医師の教育や研究においても活用することができる。
以上説明したように、本実施形態に係る呼吸音解析装置によれば、呼吸音を分別して任意の呼吸音を出力できるため、複数の音種を含んでいる呼吸音を好適に解析することが可能である。
<2>
本実施形態に係る呼吸音解析装置の一態様では、前記出力手段は、前記分別した呼吸音のうち複数の呼吸音を同時に出力する。
本実施形態に係る呼吸音解析装置の一態様では、前記出力手段は、前記分別した呼吸音のうち複数の呼吸音を同時に出力する。
この態様によれば、任意の呼吸音として複数の呼吸音を同時に(言い換えれば、重畳した状態で)出力することができるため、所望の呼吸音を適宜組み合わせて出力させることができる。
<3>
本実施形態に係る呼吸音解析装置の他の態様では、前記出力手段は、前記任意の呼吸音を音声又はスペクトル画像として出力する。
本実施形態に係る呼吸音解析装置の他の態様では、前記出力手段は、前記任意の呼吸音を音声又はスペクトル画像として出力する。
この態様によれば、分別された呼吸音のうち任意の呼吸音は、例えばスピーカーやヘッドフォンを用いて音声として出力される。或いは、任意の呼吸音は、液晶モニタ等のディスプレイを用いてスペクトル画像として出力される。よって、出力された任意の呼吸音を好適に利用できる。
<4>
本実施形態に係る呼吸音解析装置の他の態様では、前記任意の呼吸音の出力状態を音種毎に変更可能な変更手段を更に備える。
本実施形態に係る呼吸音解析装置の他の態様では、前記任意の呼吸音の出力状態を音種毎に変更可能な変更手段を更に備える。
この態様によれば、任意の呼吸音の出力状態(例えば、出力音量や画像の表示態様等)を音種毎に変更できるため、出力された任意の呼吸音をより好適に利用できる。例えば、呼吸音に含まれる特定の異常音だけ音量を大きくして出力することで、複数の呼吸音が混ざった状態でも、特定の異常音を聴き易い状態にできる。また、一度聴き易い状態にしてから再び通常の音量に戻しても、以降は聴きとり易い状態になるものと考えられる。よって、経験の浅い医師のトレーニング等にも有効に活用することができる。
<5>
上述した変更手段を更に備える態様では、前記変更手段は、前記任意の呼吸音の出力音量を音種毎に変更可能であってもよい。
上述した変更手段を更に備える態様では、前記変更手段は、前記任意の呼吸音の出力音量を音種毎に変更可能であってもよい。
この場合、出力音量を音種毎に変更できるため、所望の呼吸音のみを聴き易い状態にするなどして、利便性を向上させることができる。
<6>
上述した出力音量を音種毎に変更可能な態様では、前記変更手段は、前記任意の呼吸音の出力音量を所定の周波数帯域毎に変更可能であってもよい。
上述した出力音量を音種毎に変更可能な態様では、前記変更手段は、前記任意の呼吸音の出力音量を所定の周波数帯域毎に変更可能であってもよい。
この場合、音種毎の出力音量の変更をより詳細に行えるため、例えば所定の周波数帯域の出力音量だけを大きくして、所望の呼吸音を更に聴き易い状態にすることができる。なお、所定の周波数帯域は、分別される音種の特性等に応じて設定されればよい。
<7>
或いは変更手段を更に備える態様では、前記変更手段は、前記任意の呼吸音を示す画像に対して音種毎に所定の画像処理を実行可能であってもよい。
或いは変更手段を更に備える態様では、前記変更手段は、前記任意の呼吸音を示す画像に対して音種毎に所定の画像処理を実行可能であってもよい。
この場合、任意の呼吸音を示す画像(例えば、一種の呼吸音のみを抽出したスペクトログラム等)について、所定の画像処理を施し、視覚的に認識し易い状態を実現できる。所定の画像処理としては、例えば、色の変更(例えば、RGB調整)、二値化、エッジ検出等が挙げられる。
<8>
上述した画像処理を音種毎に実行可能な態様では、前記変更手段は、音種毎に前記所定の画像処理を実行した画像を、複数の音種で重ね合わせて出力可能であってもよい。
上述した画像処理を音種毎に実行可能な態様では、前記変更手段は、音種毎に前記所定の画像処理を実行した画像を、複数の音種で重ね合わせて出力可能であってもよい。
この場合、別々に画像処理が施された音種毎の画像を複数重ね合わせて表示できるため、画像処理によって適切な態様で表示された複数の音種を1つの画像でまとめて認識でき、例えば複数の音種間での比較等を好適に行うことができる。
<9>
本実施形態に係る呼吸音解析装置の他の態様では、前記分別手段は、呼吸音のスペクトルの所定の特徴に対応する周波数に関する情報を取得する取得手段と、前記呼吸音を分類する基準となる複数の基準スペクトルを、前記周波数に関する情報に応じてシフトさせ、周波数シフト基準スペクトルを取得するシフト手段と、前記呼吸音と前記周波数シフト基準スペクトルとに基づいて、前記呼吸音に含まれる前記複数の基準スペクトルの割合を出力する割合出力手段とを有する。
本実施形態に係る呼吸音解析装置の他の態様では、前記分別手段は、呼吸音のスペクトルの所定の特徴に対応する周波数に関する情報を取得する取得手段と、前記呼吸音を分類する基準となる複数の基準スペクトルを、前記周波数に関する情報に応じてシフトさせ、周波数シフト基準スペクトルを取得するシフト手段と、前記呼吸音と前記周波数シフト基準スペクトルとに基づいて、前記呼吸音に含まれる前記複数の基準スペクトルの割合を出力する割合出力手段とを有する。
この態様によれば、分別手段において、先ず呼吸音のスペクトルの所定の特徴に対応する周波数に関する情報が取得される。なお、ここでの「所定の特徴」とは、生体音のスペクトルに含まれる音種に応じて特定の周波数に発生する特徴を意味しており、例えば周波数解析された信号に現れるピーク等である。更に、「周波数に関する情報」とは、周波数を直接的に示す情報に限定されず、その周波数を間接的に導き出すことができるような情報を含む趣旨である。
周波数に関する情報が取得されると、呼吸音を分類する基準となる複数の基準スペクトルが、周波数に関する情報に応じてシフトされ、周波数シフト基準スペクトルが取得される。なお、ここでの「基準スペクトル」とは、呼吸音に含まれる複数の音種(例えば、正常呼吸音や連続性ラ音、捻髪音等)を分類するために、各音種に応じて予め設定されたスペクトルである。基準スペクトルは、例えば呼吸音から取得された所定の特徴であるピーク位置等に応じて周波数シフトされ、周波数シフト基準スペクトルとされる。
周波数シフト基準スペクトルが取得されると、呼吸音と周波数シフト基準スペクトルとに基づいて、呼吸音に含まれる複数の基準スペクトルの割合が出力される。具体的には、解析対象である呼吸音に、複数の基準スペクトルに対応する音種がどのような割合で含まれているのかが算出され、その結果が出力される。より具体的には、例えば呼吸音のスペクトルに対して、複数の基準スペクトルを基底とする演算が実行されることで、基準スペクトルの割合が結合係数として算出される。
以上の結果、本実施形態に係る分別手段によれば、複数の音種を含む呼吸音を好適に分別できる。本実施形態では特に、複数の呼吸音が同一の周波数軸上で混じり合っている場合においても、各音種の割合を好適に分別できる。
<10>
上述した周波数シフト基準スペクトルを用いる態様では、前記所定の特徴は、極大値であってもよい。
上述した周波数シフト基準スペクトルを用いる態様では、前記所定の特徴は、極大値であってもよい。
この場合、例えば呼吸音を示す信号に対して、高速フーリエ変換(FFT:Fast Fourier Transform)等による周波数解析が実行され、解析結果の極大値(即ち、ピーク)に対応する周波数に関する情報が取得される。なお、周波数に関する情報は、極大値の位置に対応するものとして取得されるが、極大値の位置と完全に一致する周波数でなくとも、極大値の近傍位置に対応する周波数に関する情報として取得されてもよい。
上述したように、呼吸音のスペクトルの所定の特徴として極大値を利用することで、より容易且つ的確に周波数に関する情報を取得できる。
<11>
本実施形態に係る呼吸音解析方法は、呼吸音を正常音及び異常音に分別する分別工程と、前記分別した呼吸音のうち任意の呼吸音を出力する出力工程とを備える。
本実施形態に係る呼吸音解析方法は、呼吸音を正常音及び異常音に分別する分別工程と、前記分別した呼吸音のうち任意の呼吸音を出力する出力工程とを備える。
本実施形態に係る呼吸音解析方法によれば、上述した本実施形態に係る呼吸音解析装置と同様に、複数の音種を含む呼吸音を好適に解析できる。
なお、本実施形態に係る呼吸音解析方法においても、上述した本実施形態に係る呼吸音解析装置における各種態様と同様の各種態様を採ることが可能である。
<12>
本実施形態に係るコンピュータプログラムは、呼吸音を正常音及び異常音に分別する分別工程と、前記分別した呼吸音のうち任意の呼吸音を出力する出力工程とをコンピュータに実行させる。
本実施形態に係るコンピュータプログラムは、呼吸音を正常音及び異常音に分別する分別工程と、前記分別した呼吸音のうち任意の呼吸音を出力する出力工程とをコンピュータに実行させる。
本実施形態に係るコンピュータプログラムによれば、上述した本実施形態に係る呼吸音解析方法と同様の処理をコンピュータに実行させることができるため、複数の音種を含む呼吸音を好適に解析できる。
なお、本実施形態に係るコンピュータプログラムにおいても、上述した本実施形態に係る呼吸音解析装置における各種態様と同様の各種態様を採ることが可能である。
<13>
本実施形態に係る記録媒体は、上述したコンピュータプログラムが記録されている。
本実施形態に係る記録媒体は、上述したコンピュータプログラムが記録されている。
本実施形態に係る記録媒体によれば、上述したコンピュータプログラムをコンピュータにより実行させることにより、複数の音種を含む呼吸音を好適に解析することが可能となる。
本実施形態に係る呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。
以下では、図面を参照して呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体の実施例について詳細に説明する。
<全体構成>
先ず、本実施例に係る呼吸音解析装置の全体構成について、図1を参照して説明する。ここに図1は、本実施例に係る呼吸音解析装置の全体構成を示すブロック図である。
先ず、本実施例に係る呼吸音解析装置の全体構成について、図1を参照して説明する。ここに図1は、本実施例に係る呼吸音解析装置の全体構成を示すブロック図である。
図1において、本実施例に係る呼吸音解析装置は、主な構成要素として、生体音センサ110と、信号記憶部120と、信号処理部125と、音声出力部130と、基底保持部140と、表示部150と、入力部160と、処理部200とを備えて構成されている。
生体音センサ110は、生体の呼吸音を検出可能に構成されたセンサである。生体音センサ110は、例えばECM(Electret Condenser Microphone)やピエゾを利用したマイク、振動センサ等で構成されている。
信号記憶部120は、例えばRAM(Random Access Memory)等のバッファとして構成されており、生体音センサ110で検出された呼吸音を示す信号(以下、適宜「呼吸音信号」と称する)を一時的に記憶する。信号記憶部120は、記憶した信号を、音声出力部130及び処理部200に夫々出力可能に構成されている。
信号処理部125は、生体音センサ110で取得した音を加工して音声出力部130に出力する。信号処理部125は、例えばイコライザーやフィルターとして機能し、取得した音を人が聴き易い状態に加工する。
音声出力部130は、例えばスピーカーやヘッドフォンとして構成されており、生体音センサ110で検出され、信号処理部125で加工された呼吸音を出力する。
基底保持部140は、例えばROM(Read Only Memory)等として構成されており、呼吸音に含まれ得る所定の音種に対応する基底を記憶している。なお、本実施例に係る基底は、本発明の「基準スペクトル」の一例である。
表示部150は、例えば液晶モニタ等のディスプレイとして構成されており、処理部200から出力される画像データを表示する。
入力部160は、ユーザによる入力を受け付けるデバイスであり、例えばキーボード、マウス、タッチパネル、各種スイッチ等として構成されている。入力部160は、少なくとも出力すべき呼吸音を選択するための入力操作が可能なものとして構成されている。
処理部200は、複数の演算回路やメモリ等を含んで構成されている。処理部200は、周波数解析部210、周波数ピーク検出部220、基底集合生成部230、結合係数算出部240、信号強度算出部250、画像生成部260、及び呼吸音選択部270を備えている。
処理部200の各部の動作については後に詳述する。
<動作説明>
次に、本実施例に係る呼吸音解析装置の動作について、図2を参照して説明する。ここに図2は、本実施例に係る呼吸音解析装置の動作を示すフローチャートである。ここでは、本実施例に係る呼吸音解析装置が実行する処理の全体的な流れを把握するための簡単な説明を行う。各処理の詳細については、後述する。
次に、本実施例に係る呼吸音解析装置の動作について、図2を参照して説明する。ここに図2は、本実施例に係る呼吸音解析装置の動作を示すフローチャートである。ここでは、本実施例に係る呼吸音解析装置が実行する処理の全体的な流れを把握するための簡単な説明を行う。各処理の詳細については、後述する。
図2において、本実施例に係る呼吸音解析装置の動作時には、先ず生体音センサ110において呼吸音が検出され、処理部200による呼吸音信号の取得が行われる(ステップS101)。
呼吸音信号が取得されると、周波数解析部210において周波数解析(例えば、高速フーリエ変換)が実行される(ステップS102)。また、周波数ピーク検出部220において、周波数解析結果を用いてピーク(極大値)の検出が実行される。
続いて、基底集合生成部230において基底集合が生成される(ステップS103)。具体的には、基底集合生成部230は、基底保持部140に記憶されている基底を用いて基底集合を生成する。この際、基底集合生成部230は、周波数解析結果から得られたピーク位置(即ち、対応する周波数)に基づいて、基底をシフトさせる。
基底集合が生成されると、結合係数算出部240において、周波数解析結果及び基底集合に基づく結合係数の算出が実行される(ステップS104)。
結合係数が算出されると、信号強度算出部250において、結合係数に応じた信号強度が算出される(ステップS105)。言い換えれば、呼吸音信号に含まれる各音種の割合が算出される。
信号強度が算出されると、画像生成部260において、信号強度を示す画像データが生成される。生成された画像データは、表示部150において解析結果として表示される(ステップS106)。
解析結果表示後は、ユーザによって出力すべき音種が入力されると(ステップS107:YES)、呼吸音選択部270により出力すべき呼吸音が選択され、選択された音種が音声出力部130又は表示部150に出力される(ステップS108)。
その後、解析処理を継続するか否かの判定が実行される(ステップS109)。解析処理を継続すると判定された場合(ステップS109:YES)、ステップS101からの処理が再び実行される。解析処理を継続しないと判定された場合(ステップS109:NO)、一連の処理は終了する。
<呼吸音信号の具体例>
次に、本実施例に係る呼吸音解析装置で解析される呼吸音信号の具体例について、図3及び図4を参照して説明する。ここに図3は、捻髪音を含む呼吸音の周波数解析結果を示すスペクトログラム図であり、図4は、笛声音を含む呼吸音の周波数解析結果を示すスペクトログラム図である。
次に、本実施例に係る呼吸音解析装置で解析される呼吸音信号の具体例について、図3及び図4を参照して説明する。ここに図3は、捻髪音を含む呼吸音の周波数解析結果を示すスペクトログラム図であり、図4は、笛声音を含む呼吸音の周波数解析結果を示すスペクトログラム図である。
図3に示す例では、正常呼吸音に対応するスペクトログラムパターンに加えて、異常呼吸音の1つである捻髪音に対応するスペクトログラムパターンが観測されている。捻髪音に対応するスペクトログラムパターンは、図中の拡大部分に示すように、菱形に近い形状である。
図4に示す例では、正常呼吸音に対応するスペクトログラムパターンに加えて、異常呼吸音の1つである笛声音に対応するスペクトログラムパターンが観測されている。笛声音に対応するスペクトログラムパターンは、図中の拡大部分に示すように、白鳥の首のような形状である。
このように、異常呼吸音には複数の音種が存在し、その音種によって異なる形状のスペクトログラムパターンとして観測される。ただし、図を見ても分かるように、正常呼吸音及び異常呼吸音は互いに混じり合った状態で検出される。本実施例に係る呼吸音解析装置は、このように混じり合った複数の音種を分離するための解析を実行する。
<呼吸音信号の近似方法>
次に、本実施例に係る呼吸音解析装置による解析方法について、図5から図8を参照して簡単に説明する。ここに図5は、捻髪音を含む呼吸音の所定タイミングにおけるスペクトルを示すグラフであり、図6は、捻髪音を含む呼吸音のスペクトルの近似方法を示す概念図である。また図7は、笛声音を含む呼吸音の所定タイミングにおけるスペクトルを示すグラフであり、図8は、笛声音を含む呼吸音のスペクトルの近似方法を示す概念図である。
次に、本実施例に係る呼吸音解析装置による解析方法について、図5から図8を参照して簡単に説明する。ここに図5は、捻髪音を含む呼吸音の所定タイミングにおけるスペクトルを示すグラフであり、図6は、捻髪音を含む呼吸音のスペクトルの近似方法を示す概念図である。また図7は、笛声音を含む呼吸音の所定タイミングにおけるスペクトルを示すグラフであり、図8は、笛声音を含む呼吸音のスペクトルの近似方法を示す概念図である。
図5において、捻髪音を含む呼吸音信号(図3参照)について、捻髪音に対応するスペクトログラムパターンが強く現れているタイミングでスペクトルを抽出すると、図に示すような結果が得られる。このスペクトルは、正常呼吸音と捻髪音とを含んでいると考えられる。
図6において、正常呼吸音に対応するスペクトル及び捻髪音に対応するスペクトルは、予め実験等により推定できる。このため、予め推定したパターンを利用すれば、上述したスペクトルについて、正常呼吸音に対応する成分と捻髪音に対応する成分とがどのような割合で含まれているかを知ることができる。
図7において、笛声音を含む呼吸音信号(図4参照)について、笛声音に対応するスペクトログラムパターンが強く現れているタイミングでスペクトルを抽出すると、図に示すような結果が得られる。このスペクトルは、正常呼吸音と笛声音とを含んでいると考えられる。
図8において、上述した正常呼吸音及び捻髪音と同様に、笛声音に対応するスペクトルについても、予め実験等により推定できる。このため、予め推定したパターンを利用すれば、上述したスペクトルについて、正常呼吸音に対応する成分と笛声音に対応する成分とがどのような割合で含まれているかを知ることができる。
以下では、このような解析を実現するための各処理について、より具体的に説明する。
<周波数解析>
呼吸音信号の周波数解析及び解析結果におけるピークの検出について、図9から図11を参照して詳細に説明する。ここに図9は、周波数解析方法の一例を示すグラフであり、図10は、周波数解析結果の一例を示す図である。また図11は、スペクトルのピーク検出結果を示す概念図である。
呼吸音信号の周波数解析及び解析結果におけるピークの検出について、図9から図11を参照して詳細に説明する。ここに図9は、周波数解析方法の一例を示すグラフであり、図10は、周波数解析結果の一例を示す図である。また図11は、スペクトルのピーク検出結果を示す概念図である。
図9において、取得された呼吸音信号に対しては、先ず周波数解析が実行される。周波数は、高速フーリエ変換等の既存の技術を利用して行うことができる。本実施例では、周波数毎の振幅値(即ち、振幅スペクトル)を周波数解析結果として用いている。なお、データ取得時のサンプリング周波数、窓サイズ、窓関数(例えば、ハニング窓等)については、適宜決定すればよい。
図10に示すように、周波数解析結果は、n個の値で構成されるものとして得られる。なお、「n」は、周波数解析における窓サイズ等によって決まる値である。
図11において、周波数解析によって得られたスペクトルについては、ピークの検出が実行される。図に示す例では、100Hz、130Hz、180Hz,及び320Hzの位置にピークp1~p4が検出されている。なお、ピークの検出処理については、どの周波数にピークが存在するかだけわかればよいため、簡易的な処理でも構わない。ただし、小さなピークでも取りこぼしがないよう、ピーク検出のパラメータ設定されていることが好ましい。
本実施例では、極大値を取る点を求め、更にその点の2階微分値の小さいもの(即ち、絶対値が大きいもの)から順に最大N個(Nは所定の値)を検出している。極大値は、差分の符号が正から負に切り替わる点から求められる。2階微分値は差分の差分で近似する。この値が所定の閾値(負の値)より小さいものを、小さいものから順に最大N個選び、その位置を記憶する。
<基底集合の生成>
次に、基底集合の生成について、図12から図16を参照して詳細に説明する。ここに図12は、正常肺胞呼吸音基底を示すグラフである。また図13は、捻髪音基底を示すグラフであり、図14は、連続性ラ音基底を示すグラフであり、図15は、ホワイトノイズ基底を示すグラフである。図16は、周波数シフトされた連続性ラ音基底を示すグラフである。
次に、基底集合の生成について、図12から図16を参照して詳細に説明する。ここに図12は、正常肺胞呼吸音基底を示すグラフである。また図13は、捻髪音基底を示すグラフであり、図14は、連続性ラ音基底を示すグラフであり、図15は、ホワイトノイズ基底を示すグラフである。図16は、周波数シフトされた連続性ラ音基底を示すグラフである。
図12から図15に示すように、各音種に対応する基底は、特有の形状を有している。なお、各基底は周波数解析結果と同じn個の数値(即ち、周波数ごとの振幅値)で構成されている。なお、各基底は、周波数毎の振幅値を示す線と周波数軸とで囲まれた面積が所定の値(例えば1)になるように正規化されている。
ちなみに、ここでは正常肺胞呼吸音基底、捻髪音基底、連続性ラ音基底、ホワイトノイズ基底の4つの基底を示しているが、1つの基底しかない場合でも解析を実行することができる。また、ここで挙げた基底以外の基底を用いることもできる。なお、ここで挙げた呼吸音に対応する基底に代えて、例えば心拍音や腸音に対応する基底を用いれば、心拍音や腸音の解析を実行することが可能となる。
図16において、上述した基底のうち連続性ラ音に対応する基底は、周波数解析の結果から検出されたピーク位置に合わせて周波数シフトされる。ここでは、図11で示したピークp1~p4の各々に合わせて、連続性ラ音基底を周波数シフトさせた例を示している。なお、連続性ラ音に対応する基底以外の基底を周波数シフトさせてもよい。
以上の結果、基底集合は、正常肺胞呼吸音基底、捻髪音基底、ピーク検出個数分の連続性ラ音基底、及びホワイトノイズ基底の集合として生成される。
<結合係数の算出>
次に、結合係数の算出について、図17から図19を参照して詳細に説明する。ここに図17は、スペクトルと、基底及び結合係数との関係を示す図であり、図18は、観測されたスペクトル及び近似に用いられる基底の一例を示す図である。また図19は、非負値行列因子分解による近似結果を示す図である。
次に、結合係数の算出について、図17から図19を参照して詳細に説明する。ここに図17は、スペクトルと、基底及び結合係数との関係を示す図であり、図18は、観測されたスペクトル及び近似に用いられる基底の一例を示す図である。また図19は、非負値行列因子分解による近似結果を示す図である。
解析対象であるスペクトルy、基底h(f)、及び結合係数uの関係は、以下の数式(1)で表すことができる。
図17に示すように、スペクトルy及び各基底h(f)は、n個の値を有している。他方、結合係数は、m個の値を有している。なお、「m」は、基底集合に含まれる基底の数である。
本実施例に係る呼吸音解析装置では、非負値行列因子分解を利用して基底集合に含まれる各基底の結合係数を算出する。具体的には、以下の数式(2)で示される最適化基準関数Dを最小化するu(ただし、uの各成分値は非負)を求めればよい。
なお、一般的な非負値行列因子分解は、基底スペクトルの集合を表す基底行列と、結合係数を表すアクティベーション行列を共に算出する手法であるが、本実施例においては、基底行列を固定して結合係数のみを算出している。
ちなみに、結合係数を算出するための手段として、非負値行列因子分解以外の近似法を用いてもよい。ただし、この場合においても非負であるという条件が望まれる。以下では、非負の近似法を用いる理由について、具体例を挙げて説明する
図18に示すように、観測されたスペクトルを、基底A~Dの4つの基底で近似して結合係数を算出する場合を考える。なお、非負であることを条件とした場合の期待する結合係数uは、基底Aに対応するものが1、基底Bに対応するものが1、基底Cに対応するものが0、基底Dに対応するもの0である。即ち、非負であることを条件とした場合、観測されたスペクトルは、基底Aに1を乗じたものと、基底Bに1を乗じたものとを足し合わせたスペクトルとして近似される。
図18に示すように、観測されたスペクトルを、基底A~Dの4つの基底で近似して結合係数を算出する場合を考える。なお、非負であることを条件とした場合の期待する結合係数uは、基底Aに対応するものが1、基底Bに対応するものが1、基底Cに対応するものが0、基底Dに対応するもの0である。即ち、非負であることを条件とした場合、観測されたスペクトルは、基底Aに1を乗じたものと、基底Bに1を乗じたものとを足し合わせたスペクトルとして近似される。
一方、非負であることを条件としない場合の期待する結合係数uは、基底Aに対応するものが0、基底Bに対応するものが0、基底Cに対応するものが1、基底Dに対応するものが-0.5である。即ち、非負であることを条件としない場合、観測されたスペクトルは、基底Cに1を乗じたものと、基底Dに-0.5を乗じたものとを足し合わせたスペクトルとして近似される。
上述した2つの例を比較した場合、非負であることを条件とする場合よりも、非負であることを条件としない場合の方が高い近似精度を得られることがある。しかしながら、ここでの結合係数uはスペクトルごとの成分量を表すものであるため、非負の値として得られなければならない。言い換えれば、結合係数uが負の値で得られた場合には、成分量としての解釈ができない。これに対し、非負の条件を課して近似を行えば、成分量に対応する結合係数uを算出することができる。
図19において、本実施例に係る生体解析装置では、上述したように、正常肺胞呼吸音基底、捻髪音基底、4つの連続性ラ音基底、及びホワイトノイズ基底からなる基底集合を用いて結合係数uを算出するため、結合係数uは、u1からu7の7個の値を有するものとして算出される。
ここで、正常肺胞呼吸音基底に対応する結合係数u1は、呼吸音に対する正常肺胞呼吸音の割合を示す値であると言える。同様に、捻髪音基底に対応する結合係数u2、ホワイトノイズ基底に対応する結合係数u3、100Hzにシフトした連続性ラ音基底に対応する結合係数u4、130Hzにシフトした連続性ラ音基底に対応する結合係数u5、180Hzにシフトした連続性ラ音基底に対応する結合係数u6、及び320Hzにシフトした連続性ラ音基底に対応する結合係数u7の各々についても、呼吸音に対する各音種の割合を示す値であると言える。従って、結合係数uから各音種の信号強度を算出することができる。
以上のように、本実施例では、各音種に対応する複数の基底を利用して呼吸音に含まれる複数の音種を分別する。ただし、上述した分別方法はあくまで一例であり、他の分別方法を用いて複数の音種を分別しても構わない。
<分別方法の変形例>
以下では、既に説明した複数の基底を利用する分別方法以外の分別方法について、いくつか例を挙げて説明する。
以下では、既に説明した複数の基底を利用する分別方法以外の分別方法について、いくつか例を挙げて説明する。
<第1変形例>
先ず、第1変形例に係る分別方法について、図20及び図21を参照して説明する。ここに図20及び図21は夫々、第1変形例に係る連続性ラ音の分別方法を示す概念図である。
先ず、第1変形例に係る分別方法について、図20及び図21を参照して説明する。ここに図20及び図21は夫々、第1変形例に係る連続性ラ音の分別方法を示す概念図である。
第1変形例に係る分別方法では、呼吸音を連続性ラ音とそれ以外の音に分別する。具体的には、呼吸音信号の周波数解析結果から検出されるピーク周波数が、所定の範囲内で変動している場合に連続性ラ音であると判定する。
図20に示すように、連続性ラ音である笛声音や類鼾音は、時間軸上で連続して検出されるピークの位置が所定の範囲内に収まるように変動する。言い換えれば、ピーク周波数が時間的に連続性を有するように変化する。よって、連続するピーク位置が所定の範囲内にある場合には、その音が連続性ラ音であると判別できる。
他方、図21に示すように、連続性ラ音以外の音は、時間軸上で連続して検出されるピークの位置が所定の範囲内に収まらないように変動する。言い換えれば、ピーク周波数が時間的な連続性を有さず離散的に変化する。よって、連続するピーク位置が所定の範囲内でない場合には、その音が連続性ラ音でないと判別できる。
なお、連続性ラ音の判定には、複数回の判定結果を用いることもできる。具体的には、時間軸上で連続して検出されるピークの位置が所定の範囲内に収まるように変動している回数が所定回数以上継続した場合に、その音が連続性ラ音であると判定するようにしてもよい。
<第2変形例>
次に、第2変形例に係る分別方法について、図22を参照して説明する。ここに図22は、第2変形例に係る笛声音と類鼾音との分別に用いる閾値を示すグラフである。
次に、第2変形例に係る分別方法について、図22を参照して説明する。ここに図22は、第2変形例に係る笛声音と類鼾音との分別に用いる閾値を示すグラフである。
第2変形例に係る分別方法では、連続性ラ音を笛声音と類鼾音とに分別する。ここで、笛声音は高音性連続性ラ音、類鼾音は低音性連続性ラ音と呼ばれるように、笛声音と類鼾音とは音の高さ(即ち、周波数)で判別することが可能である。しかしながら、笛声音及び類鼾音は、ピーク周波数が時間的に変化する。このため、ピーク周波数に対する単一の閾値(即ち、値が変動しない一つの閾値)を利用して笛声音及び類鼾音を判定しようとすると、時間の経過により、判定結果が変化してしまうことがある。例えば、ピーク周波数が判定閾値を跨ぐように変化してしまうと、それまでは正確に判定されていたものが、誤った音種として判定されることになってしまう。このため第2変形例では、ピーク周波数に応じて判定閾値を変動させる。
図22に示すように、第2変形例に係る分別方法では、笛声音と判定する割合及び類鼾音と判定する割合がピーク周波数に応じてなめらかに変化するように閾値が変動する。例えば、ピーク周波数が200Hzの場合には、笛声音が7%含まれ、類鼾音が93%含まれると判定する。ピーク周波数が250Hzの場合には、笛声音が50%含まれ、類鼾音が50%含まれると判定する。ピーク周波数が280Hzの場合には、笛声音が78%含まれ、類鼾音が22%含まれると判定する。なお、ここでの具体的な数値はあくまで一例であり、異なる値を設定してもよい。また、測定対象である生体の性別、年齢、身長、体重等によって異なる変動特性を有するようにしてもよい。
上述した変動する閾値を利用することで、ピーク周波数の変動に起因する誤判定を好適に防止することができる。即ち、第2変形例に係る分別方法では、笛声音及び類鼾音を判定するための閾値がピーク周波数に応じて適切な値にとなるよう変動するため、例えば変動しない単一の閾値を用いる場合と比較して、より正確な分別が行える。
<第3変形例>
次に、第3変形例に係る分別方法について、図23から図25を参照して説明する。ここに図23は、第3変形例に係る笛声音と類鼾音との分別に用いる閾値の初期値を示すグラフである。また図24及び図25は夫々、第3変形例に係る笛声音と類鼾音との分別に用いる閾値の調整後の値を示すグラフである。
次に、第3変形例に係る分別方法について、図23から図25を参照して説明する。ここに図23は、第3変形例に係る笛声音と類鼾音との分別に用いる閾値の初期値を示すグラフである。また図24及び図25は夫々、第3変形例に係る笛声音と類鼾音との分別に用いる閾値の調整後の値を示すグラフである。
第3変形例に係る分別方法も、既に説明した第2変形例と同様に、連続性ラ音を笛声音と類鼾音とに分別する方法である。また、周波数解析結果から得られたピーク周波数に対する閾値を用いて判定する点についても、第2変形例と同様である。
図23に示すように、第3変形例に係る分別方法では、閾値である250Hzを境にして判定結果が変化するものとして設定されている。具体的には、ピーク周波数が250Hz以上である場合には、連続性ラ音は笛声音成分を100%含んでおり、類鼾音は含んでいないと判定される。一方、ピーク周波数が250Hz未満である場合には、連続性ラ音は類鼾音成分を100%含んでおり、笛声音は含んでいないと判定される。
図24に示すように、第3変形例に係る分別方法では、直前の判定において笛声音成分を100%含むものであると判定された場合、閾値が250Hzから220Hzへと低くされる。よって、笛声音成分を100%含むものとして判定され易くなる。具体的には、ピーク周波数が230Hzの場合を考えると、初期の閾値(図23参照)によれば類鼾音と判定されることになるが、調整後の閾値(図24参照)によれば笛声音と判定される。
図25に示すように、第3変形例に係る分別方法では、直前の判定において類鼾音成分を100%含むものであると判定された場合、閾値が250Hzから280Hzへと高くされる。よって、類鼾音成分を100%含むものとして判定され易くなる。具体的には、ピーク周波数が270Hzの場合を考えると、初期の閾値(図23参照)によれば笛声音と判定されることになるが、調整後の閾値(図25参照)によれば類鼾音と判定される。
上述したように閾値を調整すれば、ピーク周波数の変動に起因する誤判定を好適に防止することができる。即ち、第3変形例に係る分別方法では、笛声音及び類鼾音を判定するための閾値が過去の判定結果に基づいて適切なものへと調整されるため、例えば調整されない単一の閾値を用いる場合と比較して、より正確な判定が行える。
なお、閾値の調整は、直前の判定結果だけによらず、複数回の過去の判定結果に基づいて行われてもよい。また、複数回の過去の判定結果を利用する場合は、各判定結果に対して重み付けを行ってもよい。例えば、過去の判定結果であるほど影響が小さくなるように重み付けをおこなってもよい。また、調整する閾値の初期値として、第2変形例のなめらかな閾値を用いてもよい(図22参照)。
<第4変形例>
次に、第3変形例に係る分別方法について、図26から図26を参照して説明する。ここに図26は、笛声音を含む呼吸音のスペクトログラム図であり、図27は、笛声音のピーク周波数及びピーク数を示すグラフである。また図28は、類鼾音を含む呼吸音のスペクトログラム図であり、図29は、類鼾音のピーク周波数及びピーク数を示すグラフである。
次に、第3変形例に係る分別方法について、図26から図26を参照して説明する。ここに図26は、笛声音を含む呼吸音のスペクトログラム図であり、図27は、笛声音のピーク周波数及びピーク数を示すグラフである。また図28は、類鼾音を含む呼吸音のスペクトログラム図であり、図29は、類鼾音のピーク周波数及びピーク数を示すグラフである。
第4変形例に係る分別方法も、既に説明した第2及び第3変形例と同様に、連続性ラ音を笛声音と類鼾音とに分別する方法である。
図26において、笛声音を含む呼吸音は、所定のピークを有するスペクトラム波形として検出される。ここからピーク周波数F及びピーク数Nを検出するには、先ずスペクトラム波形の単一時間(即ち、図中の白枠で囲った領域)に対応する周波数-振幅グラフを作成する。
図27に示すグラフから、笛声音のピーク周波数F1及びピーク数N1が検出できる。なお、笛声音のピーク周波数の分布は、180~900Hz程度であることが分かっている。また、図を見ても分かるように、笛声音のピーク数N1は1個である。
図28において、類鼾音を含む呼吸音は、笛声音とは異なる所定のピークを有するスペクトラム波形として検出される。ここからピーク周波数F及びピーク数Nを検出するには、同様にスペクトラム波形の単一時間に対応する周波数-振幅グラフを作成する。
図29に示すグラフから、類鼾音のピーク周波数F2及びピーク数N2が検出できる。なお、類鼾音のピーク周波数の分布は、100~260Hz程度であることが分かっている。即ち、類鼾音のピーク周波数F2は、笛声音のピーク周波数F1よりも低い領域に分布していることになる。また、図を見ても分かるように、類鼾音のピーク数N2は例えば、3個である。即ち、類鼾音のピーク数N2は、笛声音のピーク数N1のように1つでなく、複数である。
第4変形例に係る分別方法では、上述した笛声音及び類鼾音の特性の違いを利用して判定が行われる。具体的には、ピーク周波数F及びピーク数Nの各々に基づいて、笛声音と類鼾音とが分別される。このようにすれば、例えばピーク周波数Fだけを利用して笛声音と類鼾音とを分別する場合と比べて、より正確な分別が行える。
<解析結果の表示>
次に、解析結果の表示について、図30を参照して詳細に説明する。ここに図30は、表示部における表示例を示す平面図である。
次に、解析結果の表示について、図30を参照して詳細に説明する。ここに図30は、表示部における表示例を示す平面図である。
図30に示すように、表示部150の表示領域155には、解析結果が複数の画像として表示される。具体的には、領域155aには、取得された呼吸音の波形が表示されている。領域155bには、取得された呼吸音のスペクトルが表示されている。領域155cには、取得された呼吸音のスペクトログラムが表示されている。領域155dには、分別された各音種(ここでは、正常呼吸音、類鼾音、笛声音、捻髪音、水泡音の5音種)の成分量の時系列変化を表すグラフが表示されている。領域155eには、分別された各音種の割合がレーダーチャートとして表示されている。
なお、このような解析結果の表示態様はあくまで一例であり、他の表示態様で解析結果が表示されてもよい。例えば、分別された各音種の割合は、棒グラフや円グラフとして表示されてもよいし、数値化して表示されてもよい。
<音種の選択及び出力>
次に、ユーザによる音種の選択、及び選択された音種毎の出力について、図31から図33を参照して説明する。ここに図31は、音種毎の抽出結果を示すスペクトログラム図である。また図32及び図33は夫々、分別された音種毎の音声出力の一例を示す概念図である。
次に、ユーザによる音種の選択、及び選択された音種毎の出力について、図31から図33を参照して説明する。ここに図31は、音種毎の抽出結果を示すスペクトログラム図である。また図32及び図33は夫々、分別された音種毎の音声出力の一例を示す概念図である。
図31に示すように、表示部150の領域155cに表示されるスペクトログラムは、ユーザによって選択された音種毎に表示してもよい。即ち、図31(a)に示すオリジナル(取得された元の呼吸音)のスペクトログラムに代えて、図31(b)に示す正常呼吸音のスペクトログラム、図31(c)に示す類鼾音のスペクトログラム、図31(d)に示す笛声音のスペクトログラム、図31(e)に示す捻髪音のスペクトログラム、及び図31(f)に示す水泡音のスペクトログラムを表示するようにしてもよい。また、これらの音種毎のスペクトログラムを複数並べて表示するようにしてもよい。
図32及び図33に示すように、表示部150の領域155dに表示される音種毎のグラフを選択して、選択された音種のみを音量出力するようにしてもよい。例えば図32の例では、正常呼吸音だけが選択されており、その他の類鼾音、笛声音、捻髪音及び水泡音はいずれも選択されていない。このため、音声出力部130からは、正常呼吸音のみが音声出力される。また図33の例では、正常呼吸音だけが選択されておらず、その他の類鼾音、笛声音、捻髪音及び水泡音がいずれも選択されている。このため、音声出力部130からは、類鼾音、笛声音、捻髪音及び水泡音を合成した音声が出力される。
<出力態様の変更>
次に、音種毎の出力態様の変更方法について、図34から図38を参照して具体的に説明する。ここに図34は、分別された音種毎の音量調整方法を示す概念図であり、図35は、周波数帯域毎の音量調整方法を示す概念図である。また図36は、音種毎に実行される画像処理の一例を示す概念図であり、図37は、音種毎に画像処理した画像を重ね合わせて生成した画像の一例を示す平面図である。図38は、分別された音種毎の表示色調整方法を示す概念図である。
次に、音種毎の出力態様の変更方法について、図34から図38を参照して具体的に説明する。ここに図34は、分別された音種毎の音量調整方法を示す概念図であり、図35は、周波数帯域毎の音量調整方法を示す概念図である。また図36は、音種毎に実行される画像処理の一例を示す概念図であり、図37は、音種毎に画像処理した画像を重ね合わせて生成した画像の一例を示す平面図である。図38は、分別された音種毎の表示色調整方法を示す概念図である。
図34に示すように、分別された各音種の出力音量を音種毎に調整可能としてもよい。図に示す操作画面では、音種毎のON/OFFがチェックボックスにより切替え可能とされており、音種毎の音量がスライダーによって調整可能とされている。図に示す例では、類鼾音及び笛声音が夫々出力されており、笛声音が類鼾音より大きい音量で出力されている。
図35に示すように、音種毎の出力音量の調整に加えて、周波数帯域毎の出力音量の調整が可能とされてもよい。図に示す例では、125Hz、250Hz、500Hz、1kHz、2kHzの各周波数帯域でゲインが調整可能とされている。
図36に示すように、音種毎に抽出されたスペクトログラムに対して、画像処理(例えば、二値化やエッジ検出等)を実行するようにしてもよい。このようにすれば、抽出しただけの状態では認識しにくかったものを、より視覚的に分かりやすい状態で表示させることができる。なお、画像処理は複数の処理を組み合わせたものであってもよい。また、音種によって異なる画像処理を施すようにしても構わない。
図37に示すように、画像処理が施された音種毎の画像(図36参照)を、重ね合わせて表示するようにしてもよい。このようにすれば、音種毎のスペクトログラムを1つの画像でまとめて認識できるため、視覚的な把握が好適に行える。なお、ここでは正常呼吸音及び笛声音の画像を重ねて表示した例を示したが、重ねて表示する音種は選択可能とされており、所望の音種のみを適宜選択して表示させることができる。
図38に示すように、音種毎に画像の色を調整可能としてもよい。図に示す例では、R(赤)、G(緑)、B(青)に対応するスライダーを夫々調整することで、音種毎にRGB値を調整することが可能である。このようにすれば、複数の音種を互いに異なる色で表示させることが可能となり、より視覚的に把握し易い状態での表示が実現できる。
以上説明したように、本実施例に係る呼吸音解析装置によれば、呼吸音を分別した後、適宜選択して出力することができる。また、出力態様を音種毎に変更することができるため、分別した音種毎のデータを好適に利用することができる。
本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体もまた本発明の技術的範囲に含まれるものである。
110 生体音センサ
120 信号記憶部
125 信号処理部
130 音声出力部
140 基底保持部
150 表示部
155 表示領域
160 入力部
200 処理部
210 周波数解析部
220 周波数ピーク検出部
230 基底集合生成部
240 結合係数算出部
250 信号強度算出部
260 画像生成部
270 呼吸音選択部
y スペクトル
h(f) 基底
u 結合係数
120 信号記憶部
125 信号処理部
130 音声出力部
140 基底保持部
150 表示部
155 表示領域
160 入力部
200 処理部
210 周波数解析部
220 周波数ピーク検出部
230 基底集合生成部
240 結合係数算出部
250 信号強度算出部
260 画像生成部
270 呼吸音選択部
y スペクトル
h(f) 基底
u 結合係数
Claims (13)
- 呼吸音を正常音及び異常音に分別する分別手段と、
前記分別した呼吸音のうち任意の呼吸音を出力する出力手段と
を備えることを特徴とする呼吸音解析装置。 - 前記出力手段は、前記分別した呼吸音のうち複数の呼吸音を同時に出力することを特徴とする請求項1に記載の呼吸音解析装置。
- 前記出力手段は、前記任意の呼吸音を音声又はスペクトル画像として出力することを特徴とする請求項1又は2に記載の呼吸音解析装置。
- 前記任意の呼吸音の出力状態を音種毎に変更可能な変更手段を更に備えることを特徴とする請求項1から3のいずれか一項に記載の呼吸音解析装置。
- 前記変更手段は、前記任意の呼吸音の出力音量を音種毎に変更可能であることを特徴とする請求項4に記載の呼吸音解析装置。
- 前記変更手段は、前記任意の呼吸音の出力音量を所定の周波数帯域毎に変更可能であることを特徴とする請求項5に記載の呼吸音解析装置。
- 前記変更手段は、前記任意の呼吸音を示す画像に対して音種毎に所定の画像処理を実行可能であることを特徴とする請求項4から7のいずれか一項に記載の呼吸音解析装置。
- 前記変更手段は、音種毎に前記所定の画像処理を実行した画像を、複数の音種で重ね合わせて出力可能であることを特徴とする請求項7に記載の呼吸音解析装置。
- 前記分別手段は、
呼吸音のスペクトルの所定の特徴に対応する周波数に関する情報を取得する取得手段と、
前記呼吸音を分類する基準となる複数の基準スペクトルを、前記周波数に関する情報に応じてシフトさせ、周波数シフト基準スペクトルを取得するシフト手段と、
前記呼吸音と前記周波数シフト基準スペクトルとに基づいて、前記呼吸音に含まれる前記複数の基準スペクトルの割合を出力する割合出力手段と
を有することを特徴とする請求項1から8のいずれか一項に記載の呼吸音解析装置。 - 前記所定の特徴は、極大値であることを特徴とする請求項9に記載の呼吸音解析装置。
- 呼吸音を正常音及び異常音に分別する分別工程と、
前記分別した呼吸音のうち任意の呼吸音を出力する出力工程と
を備えることを特徴とする呼吸音解析方法。 - 呼吸音を正常音及び異常音に分別する分別工程と、
前記分別した呼吸音のうち任意の呼吸音を出力する出力工程と
をコンピュータに実行させることを特徴とするコンピュータプログラム。 - 請求項12に記載のコンピュータプログラムが記録されていることを特徴とする記録媒体。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2014/059279 WO2015145763A1 (ja) | 2014-03-28 | 2014-03-28 | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 |
| JP2016509855A JPWO2015145763A1 (ja) | 2014-03-28 | 2014-03-28 | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2014/059279 WO2015145763A1 (ja) | 2014-03-28 | 2014-03-28 | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015145763A1 true WO2015145763A1 (ja) | 2015-10-01 |
Family
ID=54194349
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2014/059279 Ceased WO2015145763A1 (ja) | 2014-03-28 | 2014-03-28 | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JPWO2015145763A1 (ja) |
| WO (1) | WO2015145763A1 (ja) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2018117170A1 (ja) * | 2016-12-20 | 2019-10-31 | パイオニア株式会社 | 生体音解析装置、生体音解析方法、プログラム及び記憶媒体 |
| WO2024213095A1 (zh) * | 2023-04-14 | 2024-10-17 | 漳州松霖智能家居有限公司 | 一种鼾声检测方法及装置 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003180681A (ja) * | 2001-12-17 | 2003-07-02 | Matsushita Electric Ind Co Ltd | 生体情報収集装置 |
| JP2004531309A (ja) * | 2001-04-18 | 2004-10-14 | ニューモパートナーズ | 副雑音の分析支援装置 |
| JP2004357758A (ja) * | 2003-06-02 | 2004-12-24 | Konica Minolta Medical & Graphic Inc | 生体音検出データ処理装置、生体音検出データ処理方法及び生体音検出データ処理プログラム |
| US20060266356A1 (en) * | 2004-05-26 | 2006-11-30 | Apneos Corp. | System and method for managing sleep disorders |
| WO2010044452A1 (ja) * | 2008-10-16 | 2010-04-22 | 国立大学法人長崎大学 | 情報判定支援方法、音情報判定方法、音情報判定支援装置、音情報判定装置、音情報判定支援システム及びプログラム |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58109037A (ja) * | 1981-12-22 | 1983-06-29 | 本田 利幸 | 聴診器 |
| JP2005052521A (ja) * | 2003-08-07 | 2005-03-03 | Stn:Kk | 電子聴診器 |
| JP2007029749A (ja) * | 2006-09-26 | 2007-02-08 | Konica Minolta Medical & Graphic Inc | 診察支援システム |
| JP5603789B2 (ja) * | 2011-01-26 | 2014-10-08 | 旭化成株式会社 | 体内音取得装置、及び、それを備えた電子聴診器 |
-
2014
- 2014-03-28 WO PCT/JP2014/059279 patent/WO2015145763A1/ja not_active Ceased
- 2014-03-28 JP JP2016509855A patent/JPWO2015145763A1/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004531309A (ja) * | 2001-04-18 | 2004-10-14 | ニューモパートナーズ | 副雑音の分析支援装置 |
| JP2003180681A (ja) * | 2001-12-17 | 2003-07-02 | Matsushita Electric Ind Co Ltd | 生体情報収集装置 |
| JP2004357758A (ja) * | 2003-06-02 | 2004-12-24 | Konica Minolta Medical & Graphic Inc | 生体音検出データ処理装置、生体音検出データ処理方法及び生体音検出データ処理プログラム |
| US20060266356A1 (en) * | 2004-05-26 | 2006-11-30 | Apneos Corp. | System and method for managing sleep disorders |
| WO2010044452A1 (ja) * | 2008-10-16 | 2010-04-22 | 国立大学法人長崎大学 | 情報判定支援方法、音情報判定方法、音情報判定支援装置、音情報判定装置、音情報判定支援システム及びプログラム |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2018117170A1 (ja) * | 2016-12-20 | 2019-10-31 | パイオニア株式会社 | 生体音解析装置、生体音解析方法、プログラム及び記憶媒体 |
| WO2024213095A1 (zh) * | 2023-04-14 | 2024-10-17 | 漳州松霖智能家居有限公司 | 一种鼾声检测方法及装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2015145763A1 (ja) | 2017-04-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6231681B2 (ja) | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 | |
| JP7684367B2 (ja) | 呼吸音解析装置、呼吸音解析方法、及びコンピュータプログラム | |
| JP6136394B2 (ja) | 呼吸音分析装置、呼吸音分析方法および呼吸音分析プログラム | |
| JP2014512022A (ja) | スペクトル挙動の変換を実行する音響信号処理システム及び方法 | |
| EP3678553B1 (en) | Diagnosis of pathologies using infrasonic signatures | |
| US20180228468A1 (en) | Diagnosis of pathologies using infrasonic signatures | |
| CN102188250A (zh) | 听力测试方法 | |
| Liu et al. | An objective parameter to classify voice signals based on variation in energy distribution | |
| WO2015145763A1 (ja) | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 | |
| KR20160075178A (ko) | 수면중 호흡상태 판별 방법 | |
| JP2018167062A (ja) | 呼吸音解析装置 | |
| KR101907276B1 (ko) | 악기연주 연습 시스템 및 악기연주 지원 방법 | |
| CN105489228A (zh) | 一种基于频域图处理的干罗音识别方法 | |
| JP6298527B2 (ja) | 生体音解析装置及び生体音解析方法、並びにコンピュータプログラム及び記録媒体 | |
| Aichinger et al. | Comparison of an audio-based and a video-based approach for detecting diplophonia | |
| JP2015188642A (ja) | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 | |
| Barker et al. | Automated acoustic analysis of 50-kHz ultrasonic vocalizations using template matching and contour analysis | |
| JP7089648B2 (ja) | 生体音解析装置、プログラム、及び生体音解析方法 | |
| KR101517957B1 (ko) | 음향 지각 능력 평가 방법 및 평가 장치 | |
| JP6298339B2 (ja) | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 | |
| JP6298340B2 (ja) | 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体 | |
| JP2019150641A (ja) | 呼吸音解析装置 | |
| JP7408096B2 (ja) | 評価装置、及び評価プログラム | |
| JP6630149B2 (ja) | 生体音解析装置及び生体音解析方法、並びにコンピュータプログラム及び記録媒体 | |
| JP2021053460A (ja) | 呼吸音解析装置、呼吸音解析方法、コンピュータプログラム及び記録媒体 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14887640 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2016509855 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14887640 Country of ref document: EP Kind code of ref document: A1 |