[go: up one dir, main page]

WO2015142307A1 - Système vecteur de médicament auto-micro/nanoémulsifiant destiné à l'administration par voie orale de rosuvastatine - Google Patents

Système vecteur de médicament auto-micro/nanoémulsifiant destiné à l'administration par voie orale de rosuvastatine Download PDF

Info

Publication number
WO2015142307A1
WO2015142307A1 PCT/TR2015/000120 TR2015000120W WO2015142307A1 WO 2015142307 A1 WO2015142307 A1 WO 2015142307A1 TR 2015000120 W TR2015000120 W TR 2015000120W WO 2015142307 A1 WO2015142307 A1 WO 2015142307A1
Authority
WO
WIPO (PCT)
Prior art keywords
rosuvastatin
surface active
surfactants
phase
drug delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/TR2015/000120
Other languages
English (en)
Inventor
H. Yesim KARASULU
Sebnem APAYDIN
Evren GUNDOGDU
Ilgin YILDIRIM SIMSIR
Ugur Onsel TURK
Ercument KARASULU
Candeger YILMAZ
Tugce TURGAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TC EGE UNIVERSITESI
Original Assignee
TC EGE UNIVERSITESI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TC EGE UNIVERSITESI filed Critical TC EGE UNIVERSITESI
Priority to EP15720228.4A priority Critical patent/EP3119381A1/fr
Publication of WO2015142307A1 publication Critical patent/WO2015142307A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters

Definitions

  • the subject of invention is about self-micro / nano emulsifying system as a pharmaceutical carrier of rosuvastatin for oral administration.
  • This formulation can be used in the pharmaceutical industry and intended to the treatment of dyslipidemia.
  • Rosuvastatin is the newest of the statin group in 2003, has received approval for the treatment of hyperlipidemia. Rosuvastatin shows the effect by inhibiting the HMG-CoA( hydroxymethylglutaryl coenzyme A ) reductase enzyme. In addition rosuvastatin decreases total and LDL cholesterol, plasma triglycerides and apolipoprotein B levels. However, the studies showed that rosuvastatin had around 20 % of the bioavailability. Therefore, although achieve more LDL-C reduction with rosuvastatin; compared to atorvastatin, pravastatin and simvastatin 8, 26, 18 % of LDL-C reduction; oral bioavailability of rosuvastatin is not at the desired level.
  • WO 2012032414 describes the micro and nano emulsifying drug delivery system, but this formulation is in the form of tablets or capsules.
  • different statin groups were used. Simvastatin, iovastatin, pravastatin, fluvastatin and l atorvastatin considered between the statin groups.
  • SMEDD formulation has been developed. Eicosapentaenoik acid (EPA) and docozahegzaenoik acid (DHA) ethy! ester or triglyceride form as an oil phase; poiysorbate 20, polysorbate 80 and the mixture of these two materials with different proportions as surfactant are used.
  • EPA Eicosapentaenoik acid
  • DHA docozahegzaenoik acid
  • oleic acid is used as an oil phase. Different surfactants and cosurfactants with different ratios are used. Rosuvastatin is used as active ingredient in our patent application.
  • K 20020042218 A describes micro emulsion drug delivery systems for the treatment of hypercholesterolemia.
  • lovastatin or simvastatin is used as active ingredient.
  • Twin, Span, Brij as surfactants; propylene glycol monocaprylate containing fatty acid esters polyglycolate oleic acid and linoieic acid, propylene glycol monolaurate and polyglyceryl dioleate as enhancing dissolution agent, coconut oil, olive oil, corn oil, castor oil, hazelnut oil, apricot oil as vegetable oil is used.
  • Polyethylene glycol, dimetylsosorbid, diethyleneglycolmonoethylether is used as cosurfactant.
  • statin group is different.
  • surfactants cosurfactants and the oil phase are different ratios and types.
  • KR 20050011323 A discloses a nano emulsion drug delivery systems for the treatment of hyperlipidemia.
  • nanoemu!sions systems contained simvastatin,, polyoxyiated castor oil 35, the diethyleneglycolmonoethylether, transcuto!, dimethyl isosorbide, polyethylene glycol, and tocopherol acetate.
  • statin group is different.
  • surfactants cosurfactants and the oil phase are different ratios and types.
  • Rosuvastatin is widely used for dyslipidemia treatment but it has bioavailability problem.
  • the invention aims to develop self-micro / na no-emulsifying drug delivery systems containing Rosuvastatin for the treatment of dyslipidemia and demonstrate its treatment efficacy.
  • the formulations were selected at desired component ratios.
  • the rosuvastatin-incorporating SMEDDS were prepared by dissolving the drug powder into the SMEDD system.
  • % Amount of substance ranges are as follows:
  • Macrogoigiyceroli oleas (Labrafii M 1944) % 6-11
  • the surfactant, cosurfactant, oil and water ratios were given in Table 2 during test period.
  • the SMEDDS were freeze (5 °C ⁇ 3 °C, 24 hour) and thawed (40°C ⁇ 2°C, 75% ⁇ 5%, 24 hour) three times. After that, they were centrifuged at 3000 rpm/min during 5 minutes. Phase separation and turbidity of SMEDDS were controlled. The results are shown in Table 3.
  • SMEDDS formuiations were diluted with certain amount of distilled water that provided from pseudo ternary phase diagram results.
  • SMEDDS were stored at 25°C ⁇ 2°C, 60% ⁇ 5% RH and 40°C ⁇ 2°C, 75% ⁇ 5% RH conditions during 30 days and particle size of SMEDD was measured. The particle size measurement results are shown in Table 4.
  • PDI 0,61 0,766667 0,726667 0,416667 0,235 Fl, F2 and F3 showed both in terms of droplet size and more stable physicochemical perspective when compared to other formulations for 30 days.
  • droplet size is between 250-270 nm.
  • the droplet size of SMEDDS is 40-70 nm in anhydrous.
  • Coronary heart disease in the Vietnamese population (CHD) is increasing in frequency and takes first place among the causes of mortality, Hyperiipidemia is the most important risk factor for CHD and statins are the most commonly used for treatment.
  • rosuvastatin to increase oral bioavailability and effectiveness of rosuvastatin and to decrease dose the drug for treating hyperiipidemia will aim with to develop new SMEDDS.
  • new form of rosuvastatin is improved patient compliance and intended to be an alternative to other oral formulations.
  • SEDD systems are creating opaque emulsion with a droplet size between 100 and 300 nm; SMEDD systems generally comprise a transparent emulsion with a droplet size less than 50 nm. Oil phase composition is 40-80% at SEDD systems whereas oil phase ratio in SMEDD system is less than 20%. SEDD systems are irritating the gastrointestinal tract and low chemical stability. However SMEDD system is physically stable and produced easily. SMEDD system is biocompatible and has oil, surfactant and one or more co surfactants. These systems are more sensitive and metastable dispersible dosage forms. In gastrointestinal channel lumen, SMEDD systems are transformed to the emulsion systems (micro / nano) with helping of liquid phase at this channel. Because of these advantages of SMEDD system, it was found appropriate to eliminate solubility and low bioavailability problems of rosuvastatin.
  • This invention aims to increase the bioavailability and of course pharmacodynamics activity of the drug by changing in the pharmacokinetic profile with SMEDD.
  • SMEDD self-micro / nano -emulsifying drug delivery systems can be solved an important health problem in our country and the world.
  • the wide range of health expenditure in this area is reduced by drug dose reducing.
  • the target audiences of the invention are the pharmaceutical industry and patients with dyslipidemia treated.
  • the present invention as an alternative is to self-micro / nano -emulsifying drug delivery systems in an inert pharmaceutical co-agent adsorbed lipid tablet can be prepared.
  • S EDDS have been identified to be a pharmaceutical dosage forms for the rosuvastatin in the literature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Formulation d'un produit apte à être utilisé dans l'industrie pharmaceutique et destiné à être utilisé dans le traitement de dyslipidémia. L'invention faisant objet de la demande concerne un système vecteur de médicament auto-micro/nano émulsifiable destiné à l'administration par voie orale de rosuvastatine.
PCT/TR2015/000120 2014-03-21 2015-03-23 Système vecteur de médicament auto-micro/nanoémulsifiant destiné à l'administration par voie orale de rosuvastatine Ceased WO2015142307A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15720228.4A EP3119381A1 (fr) 2014-03-21 2015-03-23 Système vecteur de médicament auto-micro/nanoémulsifiant destiné à l'administration par voie orale de rosuvastatine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR2014/03323A TR201403323A2 (tr) 2014-03-21 2014-03-21 Rosuvastatinin oral yolla kullanımı için kendiliğinden mikro/nano emülsifiye olabilen ilaç taşıyıcı sistemi.
TR2014/03323 2014-03-21

Publications (1)

Publication Number Publication Date
WO2015142307A1 true WO2015142307A1 (fr) 2015-09-24

Family

ID=53040673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2015/000120 Ceased WO2015142307A1 (fr) 2014-03-21 2015-03-23 Système vecteur de médicament auto-micro/nanoémulsifiant destiné à l'administration par voie orale de rosuvastatine

Country Status (3)

Country Link
EP (1) EP3119381A1 (fr)
TR (1) TR201403323A2 (fr)
WO (1) WO2015142307A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242002A (zh) * 2015-10-13 2016-01-13 国网山东省电力公司电力科学研究院 一种油酸值的自动检测的系统与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042218A (ko) 2000-11-30 2002-06-05 김충섭 자가미세유화형 약물전달시스템을 이용한 고지혈증치료용약제 조성물
KR20050011323A (ko) 2003-07-22 2005-01-29 한국화학연구원 자가미세유화형 약물전달시스템을 이용한 고지혈증치료용약제 조성물
WO2012032414A2 (fr) 2010-09-08 2012-03-15 Pronova Biopharma Norge As Compositions comprenant un mélange d'huile constituée d'acides gras, un tensioactif et une statine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2613767A4 (fr) * 2010-09-08 2014-03-19 Pronova Biopharma Norge As Compositions comprenant un mélange d'huiles d'acides gras, un acide gras libre et une statine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042218A (ko) 2000-11-30 2002-06-05 김충섭 자가미세유화형 약물전달시스템을 이용한 고지혈증치료용약제 조성물
KR20050011323A (ko) 2003-07-22 2005-01-29 한국화학연구원 자가미세유화형 약물전달시스템을 이용한 고지혈증치료용약제 조성물
WO2012032414A2 (fr) 2010-09-08 2012-03-15 Pronova Biopharma Norge As Compositions comprenant un mélange d'huile constituée d'acides gras, un tensioactif et une statine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRISHNAMOORTHY BALAKUMAR ET AL: "Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 112, 28 August 2013 (2013-08-28), pages 337 - 343, XP055197690, ISSN: 0927-7765, DOI: 10.1016/j.colsurfb.2013.08.025 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242002A (zh) * 2015-10-13 2016-01-13 国网山东省电力公司电力科学研究院 一种油酸值的自动检测的系统与方法

Also Published As

Publication number Publication date
TR201403323A2 (tr) 2015-10-21
EP3119381A1 (fr) 2017-01-25

Similar Documents

Publication Publication Date Title
Sarpal et al. Self-emulsifying drug delivery systems: a strategy to improve oral bioavailability
Borhade et al. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: Preformulation studies, formulation design and physicochemical evaluation
JP5753157B2 (ja) 親水性薬剤の自己マイクロエマルジョン化経口医薬組成物およびその調製方法
Sriamornsak et al. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution
Perlman et al. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib
JP6896019B2 (ja) 脂質化合物、トリグリセリドおよび界面活性剤を含む組成物、ならびにその使用方法
TW200817046A (en) An effective pharmaceutical carrier for poorly bioavailable drugs
GB2556960A (en) Cannabinoid formulations
Uppulurj Self nano emulsifying drug delivery systems for oral delivery of hydrophobic drugs
ES2210056T3 (es) Preconcentrados en microemulsion y microemulsiones que contienen coenzima q10.
CN112618488A (zh) 阿昔替尼的自微乳制剂
JP2017537976A (ja) タキサンを含む経口投与用薬学的組成物
CN100566758C (zh) 紫杉烷类口服给药的自乳化和自微乳化制剂
TWI824830B (zh) 卡博替尼的自微乳組合物
AU2004262496B2 (en) Semi-solid formulations for the oral administration of taxoids
ES2643135T3 (es) Composiciones farmacéuticas que comprenden alisporivir
WO2015142307A1 (fr) Système vecteur de médicament auto-micro/nanoémulsifiant destiné à l'administration par voie orale de rosuvastatine
BRPI0609023A2 (pt) microemulsões de compostos de ligação a receptor canabinóide
Kazi et al. Nutraceutically-enhanced oral delivery of vitamin D3 via Bio-SNEDDS: Demonstrating in vivo superiority over pediatric formulations
Garg et al. Application of self-emulsifying delivery systems for effective delivery of nutraceuticals
WO2000009085A2 (fr) Formulation orale
Kumar et al. International research journal of pharmacy
Raesudin Formulation and Evaluation of Self Emulsifying Drug Delivery System of Simvastatin
HK1165701B (en) Self micro-emulsifying oral pharmaceutical composition of hydrophilic drug and preparation method thereof
KR20070018003A (ko) 특정 물질 p 길항제를 포함하는 마이크로에멀젼 제제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15720228

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015720228

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015720228

Country of ref document: EP