[go: up one dir, main page]

WO2015028964A1 - Système et procédé de régulation de la température d'une batterie - Google Patents

Système et procédé de régulation de la température d'une batterie Download PDF

Info

Publication number
WO2015028964A1
WO2015028964A1 PCT/IB2014/064121 IB2014064121W WO2015028964A1 WO 2015028964 A1 WO2015028964 A1 WO 2015028964A1 IB 2014064121 W IB2014064121 W IB 2014064121W WO 2015028964 A1 WO2015028964 A1 WO 2015028964A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
low
degrees celsius
regulating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2014/064121
Other languages
English (en)
Inventor
Andries Petrus Cronje Fourie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of WO2015028964A1 publication Critical patent/WO2015028964A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5038Heating or cooling of cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to a battery temperature regulating system and method. More particularly, but not exclusively, this invention relates to a battery temperature regulating system and method which regulates the temperature of a battery to optimize its performance and/or increase its lifespan.
  • Batteries are well-known and widely used to convert stored chemical energy into electrical energy which can be used as a source of power, when required.
  • the lifespan and performance of batteries are affected by the temperature which they are exposed to. This is especially a problem for batteries being used at remote locations when they could be exposed to adverse weather conditions. For example, when batteries are exposed to adverse temperatures on a regular basis or for a prolonged period, their lifespan generally reduces. Similarly, the performance of batteries diminishes if they are exposed to adverse temperatures, especially to low temperatures. The more extreme the temperature, being either high or low, the greater impact it has on the lifespan and performance.
  • a system depends, as a source of power on a battery (or a battery bank) having a particular performance rating, the power supply to the system could become inadequate when the battery is exposed to adverse temperatures.
  • a battery having a larger performance rating than required could be used.
  • such a battery would be more expensive and the lifespan is still negatively affected by the temperature exposure.
  • a battery temperature regulating system comprising:
  • controller for controlling the temperature regulating means, wherein the controller is adapted to cause the temperature of the at least part of the battery to be maintained at a low temperature when the battery is in an inoperative condition, and to also cause the temperature of the at least part of the battery to be maintained at a high temperature when the battery is in an operative condition.
  • the controller may be further adapted to cause the temperature of the at least part of the battery to increase from the low temperature to the high temperature when, or a predetermined time before, the battery switches from its inoperative condition to its operative condition.
  • the controller may also be adapted to cause the temperature of the at least part of the battery to decrease from the high temperature to the low temperature when, or a predetermined time before, the battery switches from its operative condition to its inoperative condition.
  • the at least part of the battery may be the battery as a whole.
  • the at least part of the battery may be one or more individual components of the battery, such as an electrolyte or a plate of the battery.
  • the system may include the battery which may be in the form of a rechargeable battery such as one of lead-acid, nickel cadmium, nickel metal hydride, lithium ion, and lithium ion polymer batteries.
  • the system may include the battery which may be in the form of a disposable battery.
  • the battery temperature regulating system may further include a temperature sensor for sensing the temperature of the at least part of the battery, which temperature sensor being in communication with, and provides feedback to the controller.
  • the system may also include a housing defining a compartment for receiving the battery, or at least part of it therein.
  • the temperature regulating means may comprise a thermoelectric temperature device. Alternatively, the temperature regulating means may comprise an operating fluid.
  • the battery may be in its operative condition when it either discharges or charges and in its inoperative condition when not in use.
  • the low and high temperatures may be low and high temperature ranges.
  • the low temperature range may range from 5 degrees Celsius to 20 degrees Celsius
  • the high temperature range may range from 21 degrees Celsius to 35 degrees Celsius.
  • the low and high temperatures may include particular temperatures falling within the respective low and high temperature ranges.
  • a method of regulating the temperature of a battery including the steps of:
  • the temperature of the at least part of the battery may be increased from the low temperature to the high temperature when, or a predetermined time before, the battery switches from its inoperative condition to its operative condition.
  • the temperature of the at least part of the battery may be decreased from the high temperature to the low temperature when, or a predetermined time before, the battery switches from its operative condition to its inoperative condition.
  • the at least part of the battery may be the battery as a whole.
  • the at least part of the battery may be one or more individual components of the battery, such as an electrolyte or a plate of the battery.
  • a temperature sensor may be provided for sensing the temperature of the at least part of the battery.
  • the method may further include the step of providing a housing defining a compartment for receiving the battery, or at least part of it therein.
  • the temperature regulating means may comprise a thermoelectric temperature device.
  • the temperature regulating means may comprise an operating fluid.
  • the battery may be in its operative condition when it either discharges or charges and in its inoperative condition when not in use.
  • the low and high temperatures may be low and high temperature ranges.
  • the low temperature range may range from 5 degrees Celsius to 20 degrees Celsius
  • the high temperature range may range from 21 degrees Celsius to 35 degrees Celsius.
  • the low and high temperatures may include particular temperatures falling within the respective low and high temperature ranges.
  • a battery temperature regulating system according to the invention is generally indicated by reference numeral 10.
  • the battery temperature regulating system 10 comprises temperature regulating means 12 for regulating the temperature of at least part of a battery 14 and a controller 16 for controlling the temperature regulating means 12.
  • the controller 16 which is in communication with the temperature regulating means 12, is adapted to cause the temperature of the at least part of the battery 14 to be maintained at a low temperature when the battery 14 is in an inoperative condition, and to also cause the temperature of the at least part of the battery 14 to be maintained at a high temperature when the battery 14 is in an operative condition.
  • the at least part of the battery 14 is the battery 14 as a whole and in other embodiments of the invention the at least part of the battery 14 is one or more individual components of the batter 14, such as, for example, an electrolyte or a plate.
  • the battery 14 is a rechargeable battery such as one of lead-acid, nickel cadmium, nickel metal hydride, lithium ion, and lithium ion polymer batteries.
  • the battery 14 is in its operative condition when it either discharges or charges and in its operative condition when the battery 14 is not in use.
  • the low temperature which is an optimum battery storage temperature
  • the high temperature which is an optimum battery operating temperature
  • the low temperature includes a particular temperature falling within the aforementioned low temperature range and the high temperature could also include a particular temperature falling within the aforementioned high temperature range.
  • the controller 16 is further adapted to cause the temperature of the at least part of the battery 14 to increase from the low to the high temperature when, or a predetermined time before, the battery 14 switches from its inoperative condition to its operative condition and to cause the temperature of the at least part of the battery 14 to decrease from the high to the low temperature when, or a predetermined time before, the battery 14 switches from its operative condition to its inoperative condition.
  • the system 10 further includes a temperature sensor 18 which senses the temperature of the at least part of the battery 14.
  • the sensor 18 is in communication with the controller 16 which in turn uses the information it receives to control the operation of the temperature regulating means 12.
  • the temperature regulating means 12 regulates the temperature of the at least part of the battery 14 by heating and cooling the at least part of the battery 14.
  • the temperature regulating means 12 comprises a thermoelectric temperature device.
  • the thermoelectric temperature device is secured to the battery 14 in order to directly heat or cool the at least part of the battery 14, when it is required to do so.
  • the temperature regulating means 12 comprises an operating fluid which, through a heat exchange between the operating fluid and the battery 14 heats or cools the at least part of the battery 14. The operating fluid is either pre-cooled or pre-heated before heat exchange between the fluid and the at least part of the battery 14 takes place.
  • a housing 20 or jacket defining a compartment is provided for receiving the battery 14 in the compartment.
  • the housing 20 is made from an insulating material to limit exposure of the battery 14 to adverse ambient temperatures.
  • the battery 14 In use, the battery 14 is located in the compartment of the housing 20. When the battery 14 is in its inoperative condition, the system 10 ensures that the at least part of the battery 14 is maintained at a low temperature, even in instances when the battery 14 is exposed to adverse temperatures. When the battery 14 switches to its operative condition, or a predetermined time before this happens, the system 10 causes the temperature of the at least part of the battery 14 to increase to a high temperature to increase the performance of the battery 14. The at least part of the battery 14 is kept at this elevated temperature whilst the battery 14 is in its operative condition. When the battery 14 switches to its inoperative condition, or a predetermined time after this happens, the system 10 causes the temperature of the at least part of the battery 14 to again decrease to the low temperature to increase the lifetime of the battery 14.
  • the invention will provide a battery temperature regulating system 10 which is able to regulate the temperature of the at least part of the battery 14 between a low temperature and a high temperature and to maintain the at least part of the battery 14 at those temperatures in order to enhance the lifespan and performance of the battery 14.
  • the invention is especially useful for use with large batteries or battery banks which are exposed to adverse ambient conditions such as batteries in vehicles, mobile base stations, security systems, or the like.
  • the battery 14 could also be a disposable battery. Further, the battery 14 could form part of the system 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Automation & Control Theory (AREA)

Abstract

La présente invention concerne un système (10) et un procédé de régulation de la température d'une batterie. Le système (10) comprend des moyens de régulation de la température (12) pour réguler la température d'au moins une partie d'une batterie (14) et un contrôleur (16) pour commander les moyens de régulation de la température (12). Le contrôleur (16), qui est en communication avec les moyens de régulation de la température (12), est adapté pour maintenir la température de ladite partie de la batterie (14) à une basse température lorsque la batterie (14) est dans une condition inopérante et aussi pour maintenir la température de ladite partie de la batterie (14) à une température élevée lorsque la batterie (14) est dans une condition en service.
PCT/IB2014/064121 2013-08-29 2014-08-28 Système et procédé de régulation de la température d'une batterie Ceased WO2015028964A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA2013/06503 2013-08-29
ZA201306503 2013-08-29

Publications (1)

Publication Number Publication Date
WO2015028964A1 true WO2015028964A1 (fr) 2015-03-05

Family

ID=52585675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/064121 Ceased WO2015028964A1 (fr) 2013-08-29 2014-08-28 Système et procédé de régulation de la température d'une batterie

Country Status (1)

Country Link
WO (1) WO2015028964A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361577B2 (en) 2016-04-05 2019-07-23 Adam Gleason Battery charging and cooling apparatus
US10714956B2 (en) 2016-04-05 2020-07-14 Adam Gleason Apparatus, system, and method for battery charging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274705A1 (en) * 2004-05-26 2005-12-15 Ford Global Technologies, Llc Method and system for a vehicle battery temperature control
CN201528026U (zh) * 2009-05-07 2010-07-14 联合汽车电子有限公司 车用电池热管理系统
WO2013009759A2 (fr) * 2011-07-11 2013-01-17 Amerigon Incorporated Gestion thermique à base thermoélectrique de dispositifs électriques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274705A1 (en) * 2004-05-26 2005-12-15 Ford Global Technologies, Llc Method and system for a vehicle battery temperature control
CN201528026U (zh) * 2009-05-07 2010-07-14 联合汽车电子有限公司 车用电池热管理系统
WO2013009759A2 (fr) * 2011-07-11 2013-01-17 Amerigon Incorporated Gestion thermique à base thermoélectrique de dispositifs électriques

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361577B2 (en) 2016-04-05 2019-07-23 Adam Gleason Battery charging and cooling apparatus
US10714956B2 (en) 2016-04-05 2020-07-14 Adam Gleason Apparatus, system, and method for battery charging
US11451079B2 (en) 2016-04-05 2022-09-20 Adam Gleason Apparatus, system, and method for battery charging

Similar Documents

Publication Publication Date Title
US10230139B2 (en) Temperature control apparatus and method for energy storage system
KR102375845B1 (ko) 배터리 장치 및 배터리 온도 조절방법
CN105051968B (zh) 电池和机动车
KR101998061B1 (ko) 내부 상 변화 물질을 갖는 배터리
KR102052241B1 (ko) 밸런싱 배터리를 이용한 배터리 관리 시스템 및 방법
JP6090912B2 (ja) 蓄電システム及び蓄電装置の制御方法
KR101589437B1 (ko) 배터리셀 온도제어시스템 및 그 제어방법
CN108123184B (zh) 二次电池的容量恢复方法和容量恢复系统
US9583802B2 (en) Battery humidity control by diffusion barrier
KR20120032218A (ko) 저온 환경의 성능 개선을 위한 배터리팩 제어장치
KR101599035B1 (ko) 배터리보온장치가 포함된 고고도 전기동력 무인기용 배터리팩
US20190044202A1 (en) Battery module and use of such a battery module
JP2014116178A (ja) 電力貯蔵システムの温度調節装置および電力貯蔵システムの温度調節方法
KR102063937B1 (ko) 배터리 팩 관리 장치 및 관리 방법
EP3347941B1 (fr) Ensemble de flux de chaleur pour dispositif de stockage d'énergie
CN111092182A (zh) 一种均温加热的动力电池系统及汽车
WO2015028964A1 (fr) Système et procédé de régulation de la température d'une batterie
RU2661187C1 (ru) Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата
JP5946210B2 (ja) 電源装置
CN103730706B (zh) 避免或减少电气组件的结露状态的方法和装置
RU2543487C2 (ru) Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата
US20160049708A1 (en) Power generation system, method of controlling power generation system, and fuel cell
KR20100098931A (ko) 열전현상을 이용한 자가 온도조절 전기자동차용 배터리팩
KR101068845B1 (ko) 능동 열관리를 위한 밀폐형 전지 패키지 장치
JP2017118741A (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838977

Country of ref document: EP

Kind code of ref document: A1