WO2015015945A1 - Defect candidate specification device, defect candidate specification method, defect determination device, defect inspection device, defect candidate specification program, and recording medium - Google Patents
Defect candidate specification device, defect candidate specification method, defect determination device, defect inspection device, defect candidate specification program, and recording medium Download PDFInfo
- Publication number
- WO2015015945A1 WO2015015945A1 PCT/JP2014/066438 JP2014066438W WO2015015945A1 WO 2015015945 A1 WO2015015945 A1 WO 2015015945A1 JP 2014066438 W JP2014066438 W JP 2014066438W WO 2015015945 A1 WO2015015945 A1 WO 2015015945A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- defect candidate
- defect
- image data
- closed
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Definitions
- the present invention relates to a defect candidate identification device, a defect determination device, and a defect inspection device related to inspection of defects present in a flat plate such as a sheet, a glass plate, or a panel, or a plate having a gentle curvature.
- Patent Document 1 As an inspection method using a captured image, as disclosed in Patent Document 1, the image is divided into small areas, luminance values are averaged for each small area, and a difference from the original image is obtained. A technique for extracting a pixel having a certain brightness or more as a defective portion is known.
- a range of gradation values of a normal part of the captured image is set using a threshold value, and the gradation value of the captured image is binary with the threshold value.
- Patent No. 4893788 (issued March 7, 2012)
- the defect determination method using a simple binarization process has the following problems.
- each defect candidate is determined from the binarized image, the size of each defect is apparently determined to be one size larger. In addition, the shape is not correctly determined. In particular, when a plurality of defect candidates exist adjacent to each other, each defect is determined to be one size larger, so that the adjacent defect candidates are merged, and each of the defect candidates is small in size. Even if it is a simple defect candidate, the entire group of a plurality of adjacent defect candidates is determined as a single defect candidate having a very large size.
- the defect candidate size information is used for defect determination, when a defect candidate of a certain size or smaller is determined to be normal and a defect candidate of a certain size or larger is determined to be a defect, the defect candidate size is increased due to the above problem. Therefore, a defect candidate having a small size that should be determined as normal is determined as a defect.
- process management such as useless load in the correction process.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a defect candidate specifying device and a defect candidate specifying method capable of reducing the processing load in defect determination and accurately performing defect determination. It is to provide.
- a defect candidate specifying device performs first binarization using a first threshold value on image data, using a first binarization process. Based on the binarization processing means and the image data after binarization processing generated by executing the first binarization processing, the first closed region that is the region surrounded by the closed curve in the image data is identified First closed area identifying means, defect candidate information creating means for creating defect candidate information including information for specifying the defect candidate in image data, with the first closed area as a defect candidate, Defect candidate specifying means for specifying defect candidates in image data based on defect candidate information, target area setting means for setting an area including at least one of the first closed areas in the image data as a target area, and the image data Then, for each target region, at least one second binarized image after executing the second binarization process based on the second threshold value different from the first threshold value at least once.
- a closed curve in the image data On the basis of the second binarization processing means for generating data and the image data after the second binarization processing generated by the execution of the second binarization processing, a closed curve in the image data
- a defect candidate information updating unit that, the defect candidate specifying means, a defect candidate information updated by the defect candidate information updating means is characterized by identifying the defect candidate in the image data.
- a defect candidate specifying method is a defect candidate specifying method for specifying a defect candidate from image data.
- a closed curve in the image data based on the first binarization processing step for executing one binarization processing and the image data after the binarization processing generated by the execution of the first binarization processing Including a first closed region identifying step for identifying a first closed region that is an area surrounded by, and information for specifying the defect candidate in the image data with the first closed region as a defect candidate
- a second binarization process based on a second threshold value different from the first threshold value is executed at least once for each target region for the target region setting step set as an elephant region and the image data
- a second binarization processing step for generating at least one image data after the second binarization processing, and the second binarization generated by executing the second binarization processing.
- a second closed region identifying step for identifying a second closed region that is a region surrounded by a closed curve in the image data, and for each target region, the first closed region
- the number of the second closed areas in the image data after the second binarization processing is larger than the number of the second closed areas, the number of the second closed areas is larger As a new defect candidate and the defect candidate information as the new defect candidate.
- a defect candidate information update step for updating to defect candidate information including information for specifying a complement, and the defect candidate specification step is based on the defect candidate information updated by the defect candidate information update step, A defect candidate in the image data is specified.
- FIG. 1 It is a schematic block diagram of the external appearance inspection apparatus which concerns on Embodiment 1 of this invention. It is a schematic block diagram of the image processing part with which the appearance inspection apparatus shown in FIG. 1 is provided. It is a flowchart which shows the flow of the defect determination process in the image process part shown in FIG. (A)-(e) is the figure which showed typically the flow of the defect determination process by the image process part shown in FIG. It is a figure which shows the number transition of the closed area at the time of changing the 2nd threshold value in the image processing part shown in FIG. It is the figure which showed the other example which shows the number transition of the closed area at the time of changing the 2nd threshold value in the image process part shown in FIG.
- Embodiment 1 An embodiment of the present invention will be described as follows.
- FIG. 1 is a schematic diagram showing a configuration of an appearance inspection apparatus 1 according to the present embodiment.
- the appearance inspection apparatus 1 may be an apparatus that inspects other things than the liquid crystal display, such as an apparatus that inspects a silicon substrate.
- the appearance inspection apparatus 1 can be applied to, for example, an apparatus that inspects graphics, characters, and the like formed on a printed material, in addition to the above inspection.
- the appearance inspection apparatus 1 includes a camera 101, an illuminator 201, a stage 301, an image processing unit 100, a controller 200, and an apparatus control unit 300. On the stage 301, a work 302 as an inspection object is placed.
- the camera 101 that is the imaging unit and the image processing unit 100 that is a defect determination device that determines defects from image data generated by the camera 101 constitute a defect inspection apparatus.
- the camera 101 is an imaging unit that images the workpiece 302 to be inspected placed on the stage 301, and is a CCD (Charge Coupled Device) camera or a line sensor camera, for example.
- the illuminator 201 is an illuminator using, for example, an LED light source.
- the controller 200 is a control unit that sends control signals to the camera 101, the illuminator 201, and the stage 301 to perform desired control.
- the controller 200 controls the position of the stage 301 by transmitting a control signal to the stage 301. Thereby, the stage 301 is driven according to the control signal from the controller 200.
- the controller 200 executes control to transmit light for irradiating the stage 301 to the illuminator 201.
- the illuminator 201 adjusts the irradiation direction and the amount of light based on the signal from the controller.
- the controller 200 controls the imaging of the workpiece 302 to be inspected by transmitting a control signal to the camera 101.
- the camera 101 captures the entire workpiece 302 or a predetermined range based on the control signal from the controller 200, and outputs the image data to the image processing unit 100.
- a line sensor camera is used as the camera 101, LED bar illumination in which a plurality of LEDs are arranged in a line is used as the illuminator 201, and a stage that is driven in one axial direction is used as the stage 301.
- the device control unit 300 transmits a predetermined control signal to the controller 200 based on an instruction input from the outside or when a predetermined condition is satisfied, and causes the controller 200 to control the operation of each unit described above. .
- the apparatus control unit 300 generates a predetermined control signal different from the control signal transmitted to the controller 200 based on an instruction input from the outside or when a predetermined condition is satisfied. Also send to 100.
- the image processing unit 100 executes predetermined image processing on the image data output from the camera 101 based on a control signal (command) from the device control unit 300, and sends the result to the device control unit 300. Output.
- the image processing unit 100 will be described in detail below.
- FIG. 2 is a block diagram illustrating a schematic configuration of the image processing unit 100.
- the image processing unit 100 includes an input unit 11, a data recording unit 12, an output unit 13, and a control unit (defect determination device) 14.
- the input unit 11 accepts data input from the outside.
- This data includes the image data output by the camera 101 and the control data output by the apparatus control unit 300.
- the data recording unit 12 stores data for executing predetermined image processing, image data input by the camera 101, and other data necessary for image processing.
- the output unit 13 outputs the result of the image processing executed by the control unit 14 to the device control unit 300.
- the control unit 14 selects defect candidates specified by the defect candidate specifying unit (defect candidate specifying device) 21 and the defect candidate specifying unit 21 for performing processing for specifying defect candidates in the image data input from the input unit 11.
- a defect determination unit 22 that performs processing for determining a true defect based on a predetermined standard is included.
- the defect candidate specifying unit 21 includes a binarization processing unit 41, an identification unit 42, a target area setting unit 43, a threshold value calculation unit 44, a defect candidate information creation unit (defect candidate information creation unit) 45, a threshold value determination unit 46, and a defect candidate.
- An information updating unit 47 and a specifying unit (defect candidate specifying means) 48 are included.
- a binarization processing unit (first binarization processing unit, second binarization processing unit) 41 binarizes image data from the input unit 11 or the data recording unit 12 using a threshold value.
- the threshold value may be either the first threshold value or the second and third threshold values calculated by a calculation process described later.
- the first threshold may be a predetermined value or a value calculated by a dynamically determined threshold determination method.
- the binarization processing unit 41 When the binarization processing unit 41 functions as a first binarization processing unit, the first binarization processing using the first threshold value is performed on the image data input from the input unit 11. .
- each target region set by executing the first binarization processing is different from the first threshold value.
- the second binarization process using the two threshold values is executed at least once to generate image data after at least one second binarization process.
- the binarization processing unit 41 functions as a second binarization processing unit
- the second threshold value is changed in a stepwise manner for each target region set by the target region setting unit 43.
- the binarization process may be executed a plurality of times. Details of setting of the target area by the target area setting unit 43 will be described later.
- the identification unit (first closed region identification unit, second closed region identification unit) 42 is based on data (binarization data) generated by the binarization processing unit 41 by executing the binarization process. Then, at least one or more closed regions (regions surrounded by a closed curve) listed as defect candidates are identified from the background in the image based on the image data.
- the identification unit 42 When the identification unit 42 functions as a first closed region identification unit, the binarization data obtained by executing the first binarization processing in the binarization processing unit 41 is surrounded by a closed curve in the image data. Identified closed region.
- the identification unit 42 When the identification unit 42 functions as a second closed region identification unit, the closed curve in the image data is obtained from the binarized data obtained by executing the second binarization process in the binarization processing unit 41. Identifies the closed region surrounded by.
- the target area setting unit (target area setting means) 43 sets a target area including at least one closed area identified by the identification unit 42. That is, the target area setting unit 43 sets a target area including at least one of the identified closed areas in the image data.
- the target area including at least one closed area Is supposed to be set.
- the threshold calculation unit 44 calculates the threshold and the threshold range for the target area determined by the target area setting unit 43 based on the input image data.
- the calculated threshold value is a second threshold value that is different from the first threshold value.
- the second threshold value is a threshold value for the binarization processing unit 41 to binarize a closed region listed as a defect candidate.
- the defect candidate information creating unit 45 uses the first closed region identified by the identifying unit 42 as a defect candidate, and creates defect candidate information including information for specifying the defect candidate in the image data.
- the information for specifying the defect candidate in the image data included in the defect candidate information is specifically information including coordinate information indicating the coordinate position of the defect candidate in the image data.
- This coordinate information may be a coordinate list in which the coordinates of defect candidates are listed.
- the defect publication information includes information on the size and shape of the defect candidate. You may go out. The size and shape information of these defect candidates is preferably a list associated with the coordinate information.
- the defect candidate information created in this way is temporarily stored in the data recording unit 12, read out as necessary, used for specifying defect candidates, and read out and updated as necessary. The The update of the defect candidate information will be described later.
- the threshold value determination unit 46 determines a third threshold value corresponding to the region listed as the defect candidate based on the defect candidate information created by the defect candidate information creation unit 45.
- the third threshold is the target area determined by the target area setting unit 43 based on the binarized data obtained by the binarization processing unit 41 performing the binarization process with the second threshold. This is a threshold for binarization processing.
- the defect candidate information update unit 47 is a defect candidate information update unit that updates the defect candidate information created by the defect candidate information creation unit 45.
- the defect candidate information update unit 47 for each target region set by the target region setting unit 43 the number of first closed regions and the first image data in the image data after at least one second binarization process. If the number of second closed regions is larger than the number of second closed regions, the second closed region is set as a new defect candidate, and the defect candidate information is used to identify the new defect candidate.
- Update to defect candidate information including information for
- the identifying unit 48 identifies defect candidates in the image data based on the defect candidate information updated by the defect candidate information updating unit 47.
- the specifying unit 48 also specifies defect candidates in the image data based on defect candidate information that has not been updated by the defect candidate information updating unit 47.
- the defect candidate information update unit 47 calculates the number of first closed regions obtained by executing the first binarization process on the same target region set in the image data, and the second The defect candidate information is updated by comparing the number of second closed regions obtained by executing the binarization process.
- the defect candidate information update process by the defect candidate information update unit 47 is not limited to the above example, and after the comparison between the number of the first closed regions and the number of the second closed regions.
- the second threshold value is changed stepwise, and the second binarization process using the changed second threshold value is sequentially executed to generate a plurality of binarized image data, For each target region, the number of second closed regions obtained by using the second threshold value used for updating the defect candidate information by the defect candidate information updating unit is different from the second threshold value by at least one level.
- the number of second closed regions obtained using the second threshold is compared, and the second closed region having a large number is used as a new defect candidate, and the defect candidate information is used to identify the new defect candidate. It is also possible to update the defect candidate information including the information for doing so.
- the defect determination unit 22 determines whether or not the defect is a defect in the image data based on the information regarding the specified defect candidate.
- the defect determination unit 22 determines whether or not the specified defect candidate is a true defect based on the information regarding the specified defect candidate. For example, the defect determination unit 22 uses the defect feature amount (defects) stored in advance in the data recording unit 12 as information on the identified defect candidates (area and size of defect candidates) sent from the defect candidate identification unit 21. To determine whether or not the defect candidate is a true defect. Thereby, it is possible to determine the presence or absence of defects in the image data, that is, the presence or absence of defects in the workpiece 302 to be inspected. The defect determination unit 22 determines a defect based on the result of the target area listed as a defect candidate binarized with a third threshold described later. A specific example of this defect determination will be described later.
- the determination result by the defect determination unit 22 is output to the output unit 13 to notify the user of the presence or absence of defects in the workpiece 302 to be inspected. For example, if the output destination of the output unit 13 is a monitor, the determination result output from the defect determination unit 22 is displayed in a state that can be recognized by the user on the monitor, and the presence or absence of a defect in the workpiece 302 to be inspected is notified. . If the output destination of the output unit 13 is a printer, the determination result output from the defect determination unit 22 is printed out.
- the defect candidate information is sequentially updated for each comparison by sequentially comparing the number of closed curves between the binarized data at different thresholds by one stage, and the final defect.
- the candidate information the number, position, size, shape, etc. of defect candidates are accurately determined. Below, the flow of a defect determination process is demonstrated.
- defect determination processing by image processing unit 100 (Defect determination processing by image processing unit 100 (1)) Next, a first procedure of defect determination processing by the image processing unit 100 will be described. Here, an example in which the defect determination process is performed by performing the first binarization process once and the second binarization process at least once will be described.
- FIG. 3 is a flowchart showing the flow of the defect determination process.
- the defect candidate specifying unit 21 of the control unit 14 detects input of image data from the input unit 11 (step S11).
- the image data is image data of the workpiece 302 to be inspected placed on the stage 301 captured by the camera 101.
- the first threshold value is a preset threshold value.
- the first threshold value is preferably set in advance for each type of workpiece 302 (liquid crystal display, silicon substrate, etc.) to be inspected.
- the first threshold value may be dynamically determined from the position in the work to be inspected, the luminance value in the image, or the like.
- the entire image data to be subjected to the first binarization process using the first threshold value includes those that follow the entire image data.
- it may be the one excluding the peripheral part of the image.
- the image data is large, the data divided into several according to a predetermined number or size is regarded as the entire image data and handled. Also good.
- step S12 the identification unit 42 of the defect candidate specifying unit 21 uses the first binarization data obtained by executing the first binarization process, and the first surrounded by the closed curve in the image data.
- a closed region is identified (step S13: first closed region identifying step).
- the target region setting unit 43 of the defect candidate specifying unit 21 sets a target region including at least one first closed region identified in step S13 (step S14: target region setting step).
- the target area set here may be one or plural.
- the binarization processing unit 41 of the defect candidate specifying unit 21 functions as a second binarization processing unit, and for each target region set in step S14, a second different from the first threshold Th1.
- the second binarization process is executed at least once to generate image data after at least one second binarization process (step S15: second binarization process step) ).
- the second threshold Th2 used in the second binarization process may be set in advance or calculated from the luminance value of the input image data. For example, the maximum luminance value (MAX) of each of the target areas set in step S14 is calculated, the range of the second threshold value (Th2) (Th1 ⁇ Th2 ⁇ MAX) is determined in the corresponding area, and this You may make it set suitably within the range.
- MAX maximum luminance value
- Th2 the range of the second threshold value
- the identification unit 42 of the defect candidate specifying unit 21 determines the second closed region surrounded by the closed curve in the image data from the binarized data obtained by executing the second binarization process in step S15. (Step S16: second closed region identifying step).
- the defect candidate information creating unit 45 of the defect candidate specifying unit 21 sets the first closed region identified in step S13 as a defect candidate, and includes defect candidate information including information for specifying the defect candidate in the image data. Is created (step S17: defect candidate information creation step).
- the defect candidate information updating unit 47 of the defect candidate specifying unit 21 determines whether or not to update the defect candidate information created in step S17 (step S18).
- the number of first closed regions identified in step S13 and the second closed region identified in step S16 that is, at least one second two regions.
- the number of second closed regions in the image data after the value processing is compared. As a result of the comparison, if the number of the second closed regions is larger, it is determined that the defect candidate information needs to be updated (YES), the process proceeds to step S19 (defect candidate information update step), and the number of the first closed regions is greater. If so, it is determined that the defect candidate information update is unnecessary (NO), and the process proceeds to step S20 (defect candidate specifying step).
- step S19 the defect candidate information update unit 47 updates the defect candidate information created in step S17 to new defect candidate information using the second closed region as a defect candidate.
- step S20 the defect candidate in the image data is specified by the defect candidate information created in step S17 or the defect candidate information updated in step S19.
- the processing so far shows the processing of the defect candidate specifying method of the present invention.
- step S21 it is determined whether or not the defect candidate is a defect in the image data based on the information on the defect candidate specified in step S20 (defect candidate area and size) (step S21).
- the second binarization process is performed once in step S15 has been described.
- the second binarization process is repeated. It is preferable to carry out a plurality of times.
- the second binarization process is performed repeatedly by changing the second threshold Th2 stepwise in the above range (Th1 ⁇ Th2 ⁇ MAX). This means that the second binarization process is sequentially executed using the changed second threshold Th2.
- the second threshold Th2 is sequentially decreased from MAX to Th1 by one gradation, and the binarization process is performed. Shall be performed.
- the second threshold value Th2 may be decreased stepwise at intervals. In any case, it is assumed that the second binarization process is sequentially performed step by step in one direction in which the second threshold value Th decreases or increases.
- the threshold value is changed stepwise so that it gradually becomes less than the first second threshold value, the following two behaviors of the closed curve are obtained.
- step S18 the number of first closed regions and the number of second closed regions are compared to determine whether or not the defect candidate information is to be updated. In the case where the binarization process is repeated and executed a plurality of times, it may be determined whether or not the defect candidate information is updated according to the result of comparing the number of second closed regions. That is, in the case of (2), the defect candidate information update unit 47 determines whether or not the closed curve has increased (step S18), and when the closed curve has increased (YES in step S18), the defect candidate information is updated. (Step S19).
- the target region setting unit 43 of the defect candidate specifying unit 21 includes a plurality of at least one increased closed region for each target region every time the defect candidate information update unit 47 updates the defect candidate information. This area is reset as a new target area.
- the target region setting unit 43 of the defect candidate specifying unit 21 determines whether or not the target region (closed region) listed as the defect candidate is separated from the defect candidate information updated by the defect candidate information update unit 47. Determine whether. More specifically, the target area setting unit 43 monitors the number of closed areas in the result after the second binarization process performed repeatedly. Here, when the number of closed regions decreases from 3 to 2, and decreases from 2 to 1, a peak appears within the second threshold (Th2) range (Th1 ⁇ Th2 ⁇ MAX). It is determined that there are 3 and 2 respectively. Therefore, it can be seen that there is a threshold for separating the target areas listed as defect candidates.
- the target area setting unit 43 monitors the barycentric position of the closed area in the result after the second binarization process performed repeatedly. In this case, the centroid position of the target area listed as the defect candidate is compared with the centroid position of each closed area.
- the second threshold Th2 is a value close to the first threshold Th1
- the center of gravity position of the target region listed as the defect candidate matches the center of gravity of the closed region after the second binarization process, or in the image
- the position of the center of gravity of each peak is different from the position of the center of gravity of the target region listed as a defect candidate. Therefore, by comparing the gravity center position of the closed region and the gravity center position of the target region listed as the defect candidate, it can be seen that there is a threshold for separating the target regions listed as the defect candidates.
- the defect candidate information before being updated in the defect candidate information update unit 47 is stored in the data recording unit 12 as a determination result.
- the binarization processing unit 41 of the defect candidate specifying unit 21 performs the second binarization processing of the target area listed as the defect candidate with the third threshold Th3 set as described above.
- the defect determination unit 22 calculates a feature amount such as the number and size of the closed regions after the binarization processing based on the result of the target region listed as the defect candidate binarized with the third threshold, A closed region having a certain feature amount or more is determined as a defective defect, and the result is stored in the data recording unit 12. For example, a defect having a diameter of 180 ⁇ m or more is determined as a defective product, a size of 1 mm or more in the X direction or the Y direction is determined as a defective product, or a plurality of feature amounts are determined in combination.
- the defect inspection for accurately identifying the defect candidate and determining the true defect from the identified defect candidate is performed with high accuracy. be able to.
- each time the defect candidate information update unit 47 updates the defect candidate information the area of the closed region to be compared is updated.
- the information on the defect candidate size in the defect candidate information may be updated as the size information of the correct defect candidate.
- FIG. 4A is an input image of the workpiece 302 (panel) on the stage 301 captured by the camera 101 of the appearance inspection apparatus 1 shown in FIG. 1, and FIG. 4B is a binarization process.
- This is an image after the entire image is binarized by the first threshold Th1 by the unit 41.
- a defect candidate bright spot of 320 ⁇ m ⁇ 180 ⁇ m was obtained in a region surrounded by a dotted line in FIG.
- FIG. 4C shows the result of extracting (specifying) the target area set by the target area setting unit 43 of the appearance inspection apparatus 1 from the original image as a defect candidate.
- the control unit 14 measures the gradation with the highest luminance in the original image of the region listed as the defect candidate.
- the maximum gradation MAX was 200 gradations (of 255 gradations).
- the threshold value calculation unit 44 determines the range of the second threshold value Th2 as 100 ⁇ Th2 ⁇ 200.
- the binarization processing unit 41 repeatedly performs binarization processing of the areas listed as defect candidates within the range defined by the threshold value calculation unit 44.
- the second threshold Th2 is sequentially changed from the maximum threshold MAX to the first threshold Th1. That is, the second threshold value is changed stepwise so as to gradually decrease from the maximum threshold value MAX toward the first threshold value Th1, and the second binarization process is sequentially performed.
- FIG. 5 shows the result of iteratively performing the second binarization process.
- the vertical axis represents the second threshold value
- FIG. 4D is a graph showing the result of repeated binarization processing. From the results of FIG. 4D and FIG.
- FIG. 4 (e) shows the result of binarization processing of the regions listed as defect candidates with the third threshold Th3.
- the defect determination unit 22 measured the defect sizes of 150 ⁇ m and 110 ⁇ m in diameter.
- the defect determination unit 22 compares each feature amount with the inspection standard, determines that the defect included in the defect candidate area is a non-defective defect, and the output unit outputs the panel as a non-defective product.
- two defects included in a region listed as a defect candidate can be separated and detected, and the feature amount and the inspection standard can be collated. Since the performance of the inspection is improved and the panel that has been determined to be defective can be saved, as a result, the yield is improved.
- FIG. 6 is a schematic diagram for explaining the technique.
- FIG. 6 is a diagram illustrating the barycentric position of the closed region after processing with the second threshold on the vertical axis and the second threshold on the horizontal axis.
- the barycentric coordinates are obtained by the defect candidate information creation unit 45.
- the position of the center of gravity is different from the position of the center of gravity of the target area listed as the defect candidate. Therefore, by comparing the gravity center position of the closed region with the gravity center position of the target region listed as the defect candidate, it can be seen that there is a threshold value for separating the target region listed as the defect candidate.
- the second binarization process is executed with the threshold value obtained in this way as the third threshold value, and the defect included in the area listed as the defect candidate by the defect determination unit 22 based on the obtained result. Judge the quality of the.
- the first threshold (Th2-1) at the second threshold Th2 is performed at the middle point (Th2-1) of the threshold upper limit (MAX) and the threshold lower limit (Th1).
- the middle point (Th2) of the threshold lower limit (Th1) and the first threshold (Th2-1) -2-2 A change in the number of closed regions and a change in position obtained by performing binarization processing at each threshold value are monitored.
- the search for the luminance peak and valley positions that constitute the target region listed as a defect candidate is accelerated. be able to. That is, in FIG. 7, since the threshold value (Th2-2-1) in step 2 and the threshold value (Th2-3-1) in step 3 are the same in the number of closed regions and the position of the center of gravity, the second threshold value is set. Skip from Th2-2-1 to Th2-3-1.
- the threshold values (Th2-2-1) and (Th2-2-2) one time before defining the respective threshold values are used. Since there is a difference in the number of closed regions and the position of the center of gravity from the binarization processing result, the search for the region including the threshold value is continued.
- the second threshold value used in the second binarization process is repeated in a binary search, thereby searching for a threshold value that is narrowed down to a range in which the number of closed regions and position change occur.
- the results of measuring the number, position, area, and the like of the closed regions when the second threshold Th2 is changed within the specified range (100 ⁇ Th2 ⁇ 220) are as shown in FIG. Even in such a case, it is possible to define the thresholds (third threshold Th3) for separating the closed regions as Th3-1 and Th3-2 by the method described in the first embodiment. , It is possible to determine the defects separated by the respective threshold values.
- a bright spot of 430 ⁇ m ⁇ 180 ⁇ m is generated in the region listed as the defect candidate at the first threshold Th1, but as shown in FIG. 9, this method allows 150 ⁇ m ⁇ 140 ⁇ m, 130 ⁇ m. It was found that three defects of ⁇ 110 ⁇ m and 100 ⁇ m ⁇ 90 ⁇ m are close to each other. Therefore, one defect (smallest, 100 ⁇ m ⁇ 90 ⁇ m) included in the region listed as a defect candidate was determined as a non-defective product, and the remaining two regions were determined as true defects. In this example, there are two true defects included in the defect candidates, but a plurality of true defects may exist.
- the defect determination method it is possible to determine a true defect by excluding a defect treated as a non-defective product from the defect candidates, thereby improving the accuracy of the defect determination. it can.
- the results of measuring the number, position, area, and the like of the closed regions when the second threshold Th2 is changed within the specified range (100 ⁇ Th2 ⁇ 220) are as shown in FIG. From FIG. 11, even when the second binarization process is repeatedly performed while changing the second threshold Th2, the number of areas remains one, and the center of gravity position is also a defect candidate. There was no difference.
- the third threshold value is set to be the same as the first threshold value Th1, 450 ⁇ m ⁇ 200 ⁇ m exists in the region listed as the defect candidate, and it is determined as a defective panel as compared with the determination criterion. .
- the defect determination method it is not necessary to perform the processing until the third threshold value is set, so that the time from the defect candidate until the true defect is determined is greatly increased. It can be shortened.
- the control block (particularly the image processing unit 100) of the appearance inspection apparatus 1 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or using a CPU (Central Processing Unit). It may be realized by software.
- the image processing unit 100 includes a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU).
- a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
- the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
- a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
- the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
- a transmission medium such as a communication network or a broadcast wave
- the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
- the defect candidate specifying device provides a first binarization processing unit (binarization processing unit) that executes a first binarization process using a first threshold on image data. 41) and the image data after the binarization process generated by the execution of the first binarization process, the first closed area that is the area surrounded by the closed curve in the image data is identified.
- first binarization processing unit binarization processing unit
- First closed region identification means identification unit 42
- defect candidate information creation that uses the first closed region as a defect candidate and creates defect candidate information including information for specifying the defect candidate in image data Means (defect candidate information creating unit 45), defect candidate specifying means (defect candidate specifying unit 48) for specifying a defect candidate in image data based on the defect candidate information, and at least one first closed region in the image data.
- Target area And a second binarization process based on a second threshold value that is different from the first threshold value for each target region with respect to the image data.
- a second binarization processing unit (binarization processing unit 41) for generating at least one second binarized image data executed at least once, and the second binarization processing Based on the image data after the second binarization process generated by the execution of the second closed region identifying means for identifying the second closed region that is the region surrounded by the closed curve in the image data (
- the identification unit 42) compares the number of first closed regions with the number of second closed regions in the image data after at least one second binarization process for each target region, If the number of second closed areas is larger, the second closed area Defect candidate information updating means (defect candidate information updating unit 47) for updating the defect candidate information to defect candidate information including information for specifying the new defect candidate as a defect candidate,
- the specifying means (defect candidate information updating unit 47) is characterized by specifying defect candidates in the image data from the defect candidate information updated by the defect candidate information updating means.
- the 1st enclosed by the closed curve identified from the binarization data obtained by performing the 1st binarization process using a 1st threshold value with respect to image data Using the closed region as a defect candidate, defect candidate information including information for specifying the defect candidate in the image data is created.
- an area including at least one of the first closed areas in the image data is set as a target area, and the second threshold different from the first threshold is set for each target area for the image data.
- the second binarization process is executed at least once to generate image data after at least one second binarization process.
- the number of first closed regions is compared with the number of second closed regions in the image data after at least one second binarization process. When the number is larger than the number of the first closed regions, the defect candidate information is updated. And the defect candidate in image data is specified from the updated defect candidate information.
- the defect candidates are roughly identified in the first binarization process (first binarization process), and the next binarization process (second binarization process) Since the defect candidates can be specified in detail in the binarization process), in order to realize the same accuracy of defect candidate identification, at least as compared with the case where the binarization process is executed with one threshold value.
- the processing load can be reduced when the binarization processing is executed with two threshold values.
- the second binarization processing unit changes the second threshold value step by step, and For each target region set by the target region setting means (target region setting unit 43), the second binarization process is sequentially executed using the changed second threshold value, and a plurality of binarization processes are performed.
- Image data is generated, and the defect candidate information updating unit (defect candidate information updating unit 47) uses, for each target area, the second threshold value used for updating the defect candidate information by the defect candidate information updating unit.
- the number of second closed regions obtained is compared with the number of second closed regions obtained using a second threshold that is at least one step different from the second threshold.
- the closed region is set as a new defect candidate, and the defect candidate information is specified as the new defect candidate. It may be updated to include it defect candidate information the information to.
- defect candidate information is created for each changed second threshold value. The Then, with respect to the number of closed regions in the image data after the second binarization process used for the creation of the latest defect candidate information, the second two performed next with a threshold different from that of the image data.
- the number of closed regions in the image data after the binarization processing is compared as a comparison target, and when the number of closed regions is larger in the comparison target, the portion of the comparison target closed region is determined as a new defect candidate,
- the defect candidate information is updated. Based on the updated defect candidate information, a defect candidate in the image data is specified.
- the defect candidate information is sequentially updated for each comparison, and the defect candidates in the image data are identified in the final defect candidate information, thereby accurately determining the number, position, size, shape, etc. of the defect candidates. It becomes possible to do.
- the target area setting unit (target area setting unit 43) is the defect candidate information updating unit (defect candidate information updating unit 47).
- the defect candidate information updating unit (defect candidate information updating unit 47).
- each time the defect candidate information update unit updates the defect candidate information a plurality of target areas including at least one increased closed area are re-created as new target areas for each target area.
- the defect candidate information includes defect candidate size information indicating a size of the defect candidate, and the defect candidate information
- the update means updates the defect candidate size information in the defect candidate information with the area of the closed region to be compared as the new defect candidate size. May be.
- the defect candidate information includes defect candidate size information indicating the size of the defect candidate, and the defect candidate information update unit performs the closed region to be compared each time the defect candidate information is updated.
- a defect determination apparatus includes the defect candidate specifying apparatus (defect candidate specifying unit 21) described in any one of aspects 1 to 4, and the defect candidate specified by the defect candidate specifying apparatus. It is characterized in that it is determined whether or not the defect candidate is a defect in the image data based on the information relating to the above.
- the processing load required for defect determination can be reduced, and a true defect can be appropriately determined from the defect candidates specified in the image data.
- the defect inspection apparatus determines the defect from the imaging unit (camera 101) that generates image data obtained by imaging the inspection target (work 302) and the image data generated by the imaging unit.
- a defect determination device (image processing unit 100), and the defect determination device (image processing unit 100) may be the defect determination device according to any one of the first to fourth aspects.
- a defect candidate specifying method is a defect candidate specifying method for specifying a defect candidate from image data, and executes a first binarization process using a first threshold value on the image data.
- a defect candidate specifying method for specifying a defect candidate from image data, and executes a first binarization process using a first threshold value on the image data.
- an area surrounded by a closed curve in the image data A first closed region identifying step (step S13) for identifying the first closed region, and a defect including information for specifying the defect candidate in the image data with the first closed region as a defect candidate
- a defect candidate information creating step (step S17) for creating candidate information, a defect candidate identifying step (step S20) for identifying a defect candidate in the image data based on the defect candidate information, and the image data
- a target region setting step for setting a region including at least one first closed region as a target region, and a second different from the first threshold for each target region with respect to the image data
- a second binarization process step
- Second closed region identification step (step S16), and for each target region, the number of first closed regions and the second closed region in the image data after the second binarization process. Compare the number to the second closed region When the number is larger, the second closed region is set as a new defect candidate, and the defect candidate information is updated to update the defect candidate information to defect candidate information including information for specifying the new defect candidate.
- the steps (steps S18 and S19), and the defect candidate specifying step (step S20) specifies defect candidates in the image data based on the defect candidate information updated by the defect candidate information update step. It is characterized by.
- the defect candidate specifying device (defect candidate specifying unit 21) according to each aspect of the present invention may be realized by a computer.
- the image is operated by operating the computer as each unit included in the defect determining device.
- a defect candidate identification program of a defect candidate identification device that realizes the processing unit by a computer and a computer-readable recording medium that records the defect candidate identification program also fall within the scope of the present invention.
- the present invention can be used for an image processing apparatus, for example, an inspection apparatus for inspecting the appearance.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本発明は、シートやガラス板やパネル等の平板状、または、緩やかな曲率を有する板状体に存在する欠陥の検査に関わる欠陥候補特定装置、欠陥判定装置及び欠陥検査装置に関する。 The present invention relates to a defect candidate identification device, a defect determination device, and a defect inspection device related to inspection of defects present in a flat plate such as a sheet, a glass plate, or a panel, or a plate having a gentle curvature.
一般に、液晶パネル等の様々な工業製品の製造工程において、一部の製品に表面傷等の様々な欠陥が発生することがあるため、製品の欠陥を製造工程内で検出するために撮像画像を用いた検査が広く行われている。 In general, in the manufacturing process of various industrial products such as liquid crystal panels, various defects such as surface scratches may occur in some products, so captured images are used to detect product defects within the manufacturing process. The tests used are widely performed.
例えば撮像画像を用いた検査方法として、特許文献1に開示されているように、画像を小領域に分割して少領域ごとに輝度値の平均化処理を行い、原画像との差分を取り、ある明るさ以上の画素を欠陥部として抽出する技術が知られている。
For example, as an inspection method using a captured image, as disclosed in
また、撮像画像を用いた欠陥検出の単純な欠陥判定方法としては、撮像画像のうち正常部位の階調値の範囲を、閾値を用いて設定し、撮像画像の階調値を閾値で二値化することにより、閾値から外れた部位を欠陥候補として判定する、二値化処理を用いた方法がある。 In addition, as a simple defect determination method for defect detection using a captured image, a range of gradation values of a normal part of the captured image is set using a threshold value, and the gradation value of the captured image is binary with the threshold value. There is a method using binarization processing in which a part that deviates from a threshold value is determined as a defect candidate.
しかしながら、単純な二値化処理を用いた欠陥判定方法には下記のような問題がある。 However, the defect determination method using a simple binarization process has the following problems.
二値化処理を用いた欠陥判定方法において、欠陥の見落としを防止するためには二値化処理を行うための閾値を正常な輝度値側に設定する必要がある。しかし、このように閾値を正常階調値側に設定した場合、二値化後の画像から個々の欠陥候補のサイズや形状を判定しようとすると、見かけ上個々の欠陥のサイズが一回り大きく判定されてしまい、さらに形状についても正しく判定されない。また、特に複数の欠陥候補が隣接して存在する場合は、個々の欠陥が一回り大きく判定されることにより、隣接する欠陥候補どうしが合体してしまい、前記欠陥候補の各々がサイズが小さい微小な欠陥候補であったとしても、隣接する複数の欠陥候補の群全体をサイズが非常に大きな単一の欠陥候補として判定してしまう。 In the defect determination method using the binarization process, it is necessary to set a threshold value for performing the binarization process on the normal luminance value side in order to prevent a defect from being overlooked. However, when the threshold is set to the normal gradation value side in this way, if the size or shape of each defect candidate is determined from the binarized image, the size of each defect is apparently determined to be one size larger. In addition, the shape is not correctly determined. In particular, when a plurality of defect candidates exist adjacent to each other, each defect is determined to be one size larger, so that the adjacent defect candidates are merged, and each of the defect candidates is small in size. Even if it is a simple defect candidate, the entire group of a plurality of adjacent defect candidates is determined as a single defect candidate having a very large size.
このような問題は、欠陥候補のサイズ、形状、個数などを欠陥判定に用いる場合は特に顕著となる。たとえば、欠陥候補のサイズ情報を欠陥判定に用いる場合であって、一定サイズ以下の欠陥候補を正常、一定サイズ以上の欠陥候補を欠陥、と判定する場合、上記の問題によって欠陥候補のサイズを大きく判定してしまうため、本来であれば正常と判定すべき小さいサイズの欠陥候補を欠陥と判定してしまう。さらに、検査工程で検出した欠陥を検査工程での欠陥検出情報に基づいて下流の修正工程で修正を行う場合は、修正工程に無駄な負荷が発生しまうなど、工程管理上大きな問題となる。 Such a problem becomes particularly noticeable when the size, shape, number, etc. of defect candidates are used for defect determination. For example, when the defect candidate size information is used for defect determination, when a defect candidate of a certain size or smaller is determined to be normal and a defect candidate of a certain size or larger is determined to be a defect, the defect candidate size is increased due to the above problem. Therefore, a defect candidate having a small size that should be determined as normal is determined as a defect. Furthermore, when the defect detected in the inspection process is corrected in the downstream correction process based on the defect detection information in the inspection process, there is a big problem in process management such as useless load in the correction process.
本発明は、上記の問題点に鑑みなされたものであって、その目的は、欠陥の判定における処理負荷を軽減し、欠陥判定を精度よく行うことのできる欠陥候補特定装置及び欠陥候補特定方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a defect candidate specifying device and a defect candidate specifying method capable of reducing the processing load in defect determination and accurately performing defect determination. It is to provide.
上記の課題を解決するために、本発明の一態様に係る欠陥候補特定装置は、画像データに対して、第一の閾値を用いた第一の二値化処理を実行する第一の二値化処理手段と、上記第一の二値化処理の実行により生成された二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第一の閉領域を識別する第一の閉領域識別手段と、上記第一の閉領域を欠陥候補とし、画像データにおいて上記欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する欠陥候補情報作成手段と、上記欠陥候補情報によって画像データにおける欠陥候補を特定する欠陥候補特定手段と、上記画像データにおける上記第一の閉領域を少なくとも一つ含む領域を対象領域として設定する対象領域設定手段と、上記画像データに対して、上記対象領域毎に、上記第一の閾値と異なる第二の閾値に基づく第二の二値化処理を少なくとも1回以上実行して少なくとも1つの第二の二値化処理後の画像データを生成する第二の二値化処理手段と、上記第二の二値化処理の実行により生成された上記第二の二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第二の閉領域を識別する第二の閉領域識別手段と、上記対象領域毎に、第一の閉領域の個数と、少なくとも1つの上記第二の第二の二値化処理後の該画像データにおける第二の閉領域の個数とを比較し、第二の閉領域の個数のほうが多い場合に、当該第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新する欠陥候補情報更新手段とを備え、上記欠陥候補特定手段は、上記欠陥候補情報更新手段によって更新された欠陥候補情報から、画像データにおける欠陥候補を特定することを特徴としている。 In order to solve the above-described problem, a defect candidate specifying device according to an aspect of the present invention performs first binarization using a first threshold value on image data, using a first binarization process. Based on the binarization processing means and the image data after binarization processing generated by executing the first binarization processing, the first closed region that is the region surrounded by the closed curve in the image data is identified First closed area identifying means, defect candidate information creating means for creating defect candidate information including information for specifying the defect candidate in image data, with the first closed area as a defect candidate, Defect candidate specifying means for specifying defect candidates in image data based on defect candidate information, target area setting means for setting an area including at least one of the first closed areas in the image data as a target area, and the image data Then, for each target region, at least one second binarized image after executing the second binarization process based on the second threshold value different from the first threshold value at least once. On the basis of the second binarization processing means for generating data and the image data after the second binarization processing generated by the execution of the second binarization processing, a closed curve in the image data A second closed region identifying means for identifying a second closed region that is an enclosed region, the number of first closed regions for each of the target regions, and at least one second second binary value The number of second closed regions in the image data after the image processing is compared, and when the number of second closed regions is larger, the second closed region is set as a new defect candidate, and the defect candidate information Is updated to defect candidate information that includes information for identifying the new defect candidate. A defect candidate information updating unit that, the defect candidate specifying means, a defect candidate information updated by the defect candidate information updating means is characterized by identifying the defect candidate in the image data.
上記の課題を解決するために、本発明の一態様に係る欠陥候補特定方法は、画像データから欠陥候補を特定する欠陥候補特定方法において、画像データに対して、第一の閾値を用いた第一の二値化処理を実行する第一の二値化処理工程と、上記第一の二値化処理の実行により生成された二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第一の閉領域を識別する第一の閉領域識別工程と、上記第一の閉領域を欠陥候補とし、画像データにおいて上記欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する欠陥候補情報作成工程と、上記欠陥候補情報によって画像データにおける欠陥候補を特定する欠陥候補特定工程と、上記画像データにおける上記第一の閉領域を少なくとも一つ含む領域を対象領域として設定する対象領域設定工程と、上記画像データに対して、上記対象領域毎に、上記第一の閾値と異なる第二の閾値に基づく第二の二値化処理を少なくとも1回以上実行して少なくとも1つの第二の二値化処理後の画像データを生成する第二の二値化処理工程と、上記第二の二値化処理の実行により生成された上記第二の二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第二の閉領域を識別する第二の閉領域識別工程と、上記対象領域毎に、第一の閉領域の個数と、少なくとも1つの上記第二の二値化処理後の画像データにおける第二の閉領域の個数とを比較し、第二の閉領域の個数のほうが多い場合に、当該第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新する欠陥候補情報更新工程とを含み、上記欠陥候補特定工程は、上記欠陥候補情報更新工程によって更新されたた欠陥候補情報に基づいて、上記画像データにおける欠陥候補を特定することを特徴としている。 In order to solve the above-described problem, a defect candidate specifying method according to an aspect of the present invention is a defect candidate specifying method for specifying a defect candidate from image data. A closed curve in the image data based on the first binarization processing step for executing one binarization processing and the image data after the binarization processing generated by the execution of the first binarization processing Including a first closed region identifying step for identifying a first closed region that is an area surrounded by, and information for specifying the defect candidate in the image data with the first closed region as a defect candidate A defect candidate information creating step for creating defect candidate information; a defect candidate identifying step for identifying a defect candidate in image data based on the defect candidate information; and a region including at least one of the first closed regions in the image data. A second binarization process based on a second threshold value different from the first threshold value is executed at least once for each target region for the target region setting step set as an elephant region and the image data A second binarization processing step for generating at least one image data after the second binarization processing, and the second binarization generated by executing the second binarization processing. Based on the processed image data, a second closed region identifying step for identifying a second closed region that is a region surrounded by a closed curve in the image data, and for each target region, the first closed region When the number of the second closed areas in the image data after the second binarization processing is larger than the number of the second closed areas, the number of the second closed areas is larger As a new defect candidate and the defect candidate information as the new defect candidate. A defect candidate information update step for updating to defect candidate information including information for specifying a complement, and the defect candidate specification step is based on the defect candidate information updated by the defect candidate information update step, A defect candidate in the image data is specified.
本発明の一態様によれば、欠陥の判定における処理負荷を軽減し、欠陥判定を精度よく行うことのできるという効果を奏する。 According to one aspect of the present invention, it is possible to reduce the processing load in determining a defect and perform the defect determination with high accuracy.
〔実施形態1〕
本発明の一実施の形態について説明すれば以下の通りである。
An embodiment of the present invention will be described as follows.
図1は、本実施形態に係る外観検査装置1の構成を表わす模式図である。本実施形態では、外観検査装置1を、液晶ディスプレイの製造工程におけるパネルの外観を検査するための装置として使用する例について説明する。なお、外観検査装置1は、液晶ディスプレイ以外の他の物を検査する装置、たとえば、シリコン基板を検査する装置等であってもよい。あるいは、当該外観検査装置1は、上記のような検査のため以外に、たとえば、印刷物に形成された図形、文字等を検査する装置にも適用可能である。
FIG. 1 is a schematic diagram showing a configuration of an
(外観検査装置1の概要説明)
外観検査装置1は、図1に示すように、カメラ101、照明器201、ステージ301、画像処理部100、コントローラ200、装置制御部300を含んでいる。ステージ301上には、検査対象物であるワーク302が載置されている。
(Overview of the appearance inspection apparatus 1)
As shown in FIG. 1, the
上記撮像部であるカメラ101と、上記カメラ101が生成した画像データから欠陥を判定する欠陥判定装置である画像処理部100とによって欠陥検査装置を構成している。
The camera 101 that is the imaging unit and the
カメラ101は、ステージ301上に載置された検査対象のワーク302を撮像する撮像手段であり、たとえばCCD(Charge Coupled Device)カメラやラインセンサカメラである。照明器201は、照明器は、たとえばLED光源を用いた照明器である。
The camera 101 is an imaging unit that images the workpiece 302 to be inspected placed on the
コントローラ200は、カメラ101、照明器201、ステージ301に対してそれぞれ制御信号を送り、所望の制御を行う制御手段である。
The
具体的には、コントローラ200は、ステージ301に制御信号を送信することにより、当該ステージ301の位置を制御する。これにより、ステージ301は、コントローラ200からの制御信号に応じて駆動する。
Specifically, the
コントローラ200は、照明器201に、ステージ301を照射するための光を発信する制御を実行する。これにより、照明器201は、コントローラからの信号に基づいて光の照射方向および光量を調節する。
The
コントローラ200は、カメラ101に制御信号を送信することにより、検査対象のワーク302の撮影を制御する。これにより、カメラ101は、コントローラ200からの制御信号に基づいて検査対象のワーク302の全体もしくは予め定められた範囲を撮影し、画像データを画像処理部100に出力する。
The
本実施例においては、カメラ101としてはラインセンサカメラを用い、照明器201として複数のLEDが列状に並んだLEDバー照明を用い、ステージ301は1軸方向に駆動するステージを用いた。
In this embodiment, a line sensor camera is used as the camera 101, LED bar illumination in which a plurality of LEDs are arranged in a line is used as the illuminator 201, and a stage that is driven in one axial direction is used as the
装置制御部300は、外部から入力される指示に基づいて、あるいは予め定められた条件が成立する場合に、所定の制御信号をコントローラ200に送信し、前述した各部の動作をコントローラ200に制御させる。
The
また、装置制御部300は、外部から入力される指示に基づいて、あるいは予め定められた条件が成立する場合に、上記コントローラ200に送信する制御信号とは別の所定の制御信号を画像処理部100にも送信する。
Further, the
画像処理部100は、装置制御部300からの制御信号(指令)に基づいて、カメラ101により出力される画像データに対した予め定められた画像処理を実行し、その結果を装置制御部300に出力する。
The
(画像処理部100の詳細)
以下に、上記画像処理部100について詳細に説明する。
(Details of the image processing unit 100)
The
図2は、画像処理部100の概略構成を表すブロック図である。
FIG. 2 is a block diagram illustrating a schematic configuration of the
画像処理部100は、入力部11、データ記録部12、出力部13、制御部(欠陥判定装置)14を含んでいる。
The
入力部11は、外部からデータの入力を受付ける。このデータには、上述したカメラ101により出力される画像データと装置制御部300により出力される制御データとが含まれる。
The
データ記録部12は、予め定められた画像処理を実行するためのデータ、カメラ101により入力された画像データ、その他画像処理に必要なデータを格納する。
The
出力部13は、装置制御部300に対して、制御部14にて実行された画像処理の結果を出力する。
The output unit 13 outputs the result of the image processing executed by the
制御部14は、入力部11から入力された画像データにおける欠陥の候補を特定するための処理を行う欠陥候補特定部(欠陥候補特定装置)21、欠陥候補特定部21によって特定された欠陥候補を所定の基準により真の欠陥であると判定するための処理を行う欠陥判定部22を含んでいる。
The
欠陥候補特定部21は、二値化処理部41、識別部42、対象領域設定部43、閾値算出部44、欠陥候補情報作成部(欠陥候補情報作成手段)45、閾値決定部46、欠陥候補情報更新部47、特定部(欠陥候補特定手段)48を含む。
The defect
二値化処理部(第一の二値化処理手段、第二の二値化処理手段)41は、閾値を用いて、入力部11またはデータ記録部12からの画像データに対して二値化処理を実行する処理部である。当該閾値は、第一の閾値と、後述する算出処理により算出された第二、第三の閾値のいずれであってもよい。なお、第一の閾値は予め定められた値でも、動的に定められた閾値決定方法で算出された値でも構わない。
A binarization processing unit (first binarization processing unit, second binarization processing unit) 41 binarizes image data from the
二値化処理部41が第一の二値化処理手段として機能する場合、入力部11から入力された画像データに対して、第一の閾値を用いた第一の二値化処理を実行する。また、二値化処理部41が第二の二値化処理手段として機能する場合、第一の二値化処理を実行することによって設定された対象領域毎に、上記第一の閾値と異なる第二の閾値を用いた第二の二値化処理を少なくとも1回実行して、少なくとも1つの第二の二値化処理後の画像データを生成する。
When the
また、二値化処理部41が第二の二値化処理手段として機能する場合、第二の閾値を段階的に変化させて、対象領域設定部43によって設定された対象領域毎に、第二の二値化処理を複数回実行するようにしてもよい。対象領域設定部43による対象領域の設定についての詳細は後述する。
Further, when the
識別部(第一の閉領域識別手段、第二の閉領域識別手段)42は、二値化処理部41において上記二値化処理の実行により生成されたデータ(二値化データ)に基づいて、画像データに基づく画像における背景から欠陥候補に挙げられる少なくとも1つ以上の閉領域(閉曲線で囲まれた領域)を識別する。
The identification unit (first closed region identification unit, second closed region identification unit) 42 is based on data (binarization data) generated by the
識別部42が第一の閉領域識別手段として機能する場合、上記二値化処理部41において第一の二値化処理を実行して得られる二値化データから、上記画像データにおける閉曲線で囲まれた閉領域を識別する。また、識別部42が第二の閉領域識別手段として機能する場合、上記二値化処理部41において第二の二値化処理を実行して得られる二値化データから、上記画像データにおける閉曲線で囲まれた閉領域を識別する。
When the
対象領域設定部(対象領域設定手段)43は、識別部42で識別された少なくとも1つ以上の閉領域を含む対象領域を設定する。つまり、対象領域設定部43は、画像データにおける識別された上記閉領域を少なくとも一つ以上含む対象領域を設定する。
The target area setting unit (target area setting means) 43 sets a target area including at least one closed area identified by the
上記対象領域は、原則として閉領域1個に対して対象領域が1個が対応するように、閉領域の数だけ設定することが望ましい。ただし、閉領域があまりに近接しすぎている場合などは一つの対象領域中に複数の閉領域が含まれることが避けられないことがあるため、ここでは、閉領域を少なくとも一つ以上含む対象領域を設定するとしている。 As a general rule, it is desirable to set as many target areas as the number of closed areas so that one target area corresponds to one closed area. However, since it may be unavoidable that multiple closed areas are included in one target area, such as when the closed areas are too close together, here the target area including at least one closed area Is supposed to be set.
閾値算出部44は、入力された画像データに基づいて対象領域設定部43により決定された対象領域に対する閾値および閾値の範囲を算出する。ここで、算出した閾値は、第一の閾値とは異なる閾値である第二の閾値である。
The
上記第二の閾値は、二値化処理部41において、欠陥候補に挙げられた閉領域を二値化処理するための閾値である。
The second threshold value is a threshold value for the
欠陥候補情報作成部45は、識別部42において識別された上記第一の閉領域を欠陥候補とし、画像データにおいて上記欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する。
The defect candidate information creating unit 45 uses the first closed region identified by the identifying
ここで、欠陥候補情報に含まれる、画像データにおいて欠陥候補を特定するための情報は、具体的には、画像データにおける欠陥候補の座標位置を示す座標情報を含んだ情報である。この座標情報は、欠陥候補の座標を一覧にした座標リストであってもよい。このように画像データに存在する欠陥候補を特定するためには、上述の欠陥候補の座標情報は必須であるが、この他に、欠陥公報情報には、欠陥候補のサイズや形状の情報を含んでいてもよい。これら欠陥候補のサイズや形状の情報は、上記座標情報と対応付けたリストとするのが好ましい。このようにして作成された欠陥候補情報は、データ記録部12に一時的に格納され、必要に応じて読み出され欠陥候補の特定に用いられ、また、必要に応じて読み出されて更新される。欠陥候補情報の更新については後述する。
Here, the information for specifying the defect candidate in the image data included in the defect candidate information is specifically information including coordinate information indicating the coordinate position of the defect candidate in the image data. This coordinate information may be a coordinate list in which the coordinates of defect candidates are listed. Thus, in order to specify the defect candidate existing in the image data, the coordinate information of the defect candidate described above is indispensable. In addition, the defect publication information includes information on the size and shape of the defect candidate. You may go out. The size and shape information of these defect candidates is preferably a list associated with the coordinate information. The defect candidate information created in this way is temporarily stored in the
閾値決定部46は、欠陥候補情報作成部45において作成された欠陥候補情報に基づいて、欠陥候補に挙げられた領域に対応する第三の閾値を決定する。
The threshold
上記第三の閾値は、二値化処理部41において、第二の閾値によって二値化処理が実行されて得られた二値化データに基づいて対象領域設定部43により決定された対象領域を二値化処理するための閾値である。
The third threshold is the target area determined by the target
欠陥候補情報更新部47は、上記欠陥候補情報作成部45によって作成された欠陥候補情報を更新する欠陥候補情報更新手段である。 The defect candidate information update unit 47 is a defect candidate information update unit that updates the defect candidate information created by the defect candidate information creation unit 45.
例えば、欠陥候補情報更新部47は、対象領域設定部43によって設定された対象領域毎に、第一の閉領域の個数と、少なくとも1つの第二の二値化処理後の該画像データにおける第二の閉領域の個数とを比較し、第二の閉領域の個数のほうが多い場合に、当該第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新する。
For example, the defect candidate information update unit 47 for each target region set by the target
特定部48は、欠陥候補情報更新部47で更新された欠陥候補情報によって画像データにおける欠陥候補を特定する。なお、特定部48は、欠陥候補情報更新部47で更新されなかった欠陥候補情報によっても画像データにおける欠陥候補を特定する。
The identifying
上記例では、欠陥候補情報更新部47は、画像データにおいて設定された同じ対象領域に対して、第一の二値化処理を実行して得られた第一の閉領域の個数と、第二の二値化処理を実行して得られた第二の閉領域の個数とを比較して、欠陥候補情報を更新している。しかしながら、欠陥候補情報更新部47による欠陥候補情報の更新処理は、上記の例に限定されるものではなく、上記第一の閉領域の個数と、第二の閉領域の個数との比較の後、第二の閾値を段階的に変化させて、変化させた第二の閾値を用いた第二の二値化処理を順次実行して複数の二値化処理後の画像データを生成し、上記対象領域毎に、上記欠陥候補情報更新手段による欠陥候補情報の更新に用いた第二の閾値を用いて得られた第二の閉領域の個数と、上記第二の閾値と少なくとも1段違う第二の閾値を用いて得られた第二の閉領域の個数とを比較して、個数の多い第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新するようにしてもよい。 In the above example, the defect candidate information update unit 47 calculates the number of first closed regions obtained by executing the first binarization process on the same target region set in the image data, and the second The defect candidate information is updated by comparing the number of second closed regions obtained by executing the binarization process. However, the defect candidate information update process by the defect candidate information update unit 47 is not limited to the above example, and after the comparison between the number of the first closed regions and the number of the second closed regions. The second threshold value is changed stepwise, and the second binarization process using the changed second threshold value is sequentially executed to generate a plurality of binarized image data, For each target region, the number of second closed regions obtained by using the second threshold value used for updating the defect candidate information by the defect candidate information updating unit is different from the second threshold value by at least one level. The number of second closed regions obtained using the second threshold is compared, and the second closed region having a large number is used as a new defect candidate, and the defect candidate information is used to identify the new defect candidate. It is also possible to update the defect candidate information including the information for doing so.
このようにして、上記欠陥候補特定部21において特定された欠陥候補に関する情報が、後段の欠陥判定部22に送られる。
In this way, information on the defect candidate specified by the defect
上記欠陥判定部22は、特定された欠陥候補に関する情報に基づいて、当該欠陥が画像データにおける欠陥であるか否かを判定する。
The
ここで、特定された欠陥候補に関する情報とは、欠陥の面積、サイズ等の欠陥として特定するための特徴量を示す情報である。従って、欠陥判定部22は、特定された欠陥候補に関する情報に基づいて、特定された欠陥候補が真の欠陥か否かを判定する。例えば、欠陥判定部22は、欠陥候補特定部21から送られた特定された欠陥候補に関する情報(欠陥候補の面積、サイズ)を、データ記録部12に予め格納されている欠陥の特徴量(欠陥の面積、サイズ)と比較することにより、欠陥候補が真の欠陥であるか否かを判定する。これにより、画像データにおける欠陥の有無、すなわち検査対象のワーク302における欠陥の有無を判定することが可能となる。欠陥判定部22は、後述する第三の閾値で二値化処理された欠陥候補に挙げられた対象領域の結果に基づき、欠陥の判定を行う。この欠陥の判定の具体的な例については後述する。
Here, the information on the identified defect candidate is information indicating a feature amount for identifying the defect such as the defect area and size. Therefore, the
欠陥判定部22による判定結果は、出力部13に出力され、ユーザに対して、検査対象のワーク302における欠陥の有無を知らせるようになっている。例えば、出力部13の出力先がモニタであれば、欠陥判定部22から出力された判定結果を、当該モニタ上でユーザが認識できる状態で表示させ、検査対象のワーク302における欠陥の有無を知らせる。また、出力部13の出力先がプリンタであれば、欠陥判定部22から出力された判定結果をプリントアウトする。
The determination result by the
ここで重要なのが、1段階異なる閾値での2値化データどうしの閉曲線の数を段階ごとに順次比較していくことにより、欠陥候補情報を比較毎に順次更新していき、最終的な欠陥候補情報において欠陥候補の個数、位置、サイズ、形状などを正確に判定する点にある。以下に、欠陥判定処理の流れについて説明する。 What is important here is that the defect candidate information is sequentially updated for each comparison by sequentially comparing the number of closed curves between the binarized data at different thresholds by one stage, and the final defect. In the candidate information, the number, position, size, shape, etc. of defect candidates are accurately determined. Below, the flow of a defect determination process is demonstrated.
(画像処理部100による欠陥判定処理(1))
次に、画像処理部100による欠陥判定処理の第一の手順について説明する。ここでは、第一の二値化処理を1回、第二の二値化処理を少なくとも1回行って、欠陥判定処理を行う例について説明する。
(Defect determination processing by image processing unit 100 (1))
Next, a first procedure of defect determination processing by the
図3は、欠陥判定処理の流れを示すフローチャートである。 FIG. 3 is a flowchart showing the flow of the defect determination process.
まず、制御部14の欠陥候補特定部21は、入力部11からの画像データの入力を検知する(ステップS11)。ここで、画像データは、カメラ101が撮像したステージ301上に載置された検査対象のワーク302の画像データである。
First, the defect
次に、欠陥候補特定部21の二値化処理部41は、第一の閾値(Th=Th1)で画像全体を二値化する(ステップS12:第一の二値化処理工程)。つまり、二値化処理部41は、入力された画像データに対して、第一の閾値を用いた第一の二値化処理を実行する。具体的には、欠陥候補特定部21の二値化処理部41が、入力を検知した画像データ全体に対して、データ記録部12から読み出した第一の閾値Th1を用いて第一の二値化処理を実行している。この時点での二値化処理は、データ記録部12に格納されている第一の閾値Th1での第一の二値化処理であり、画像中に欠陥候補として挙げられる領域を篩にかけるスクリーニングの役割を果たしている。ここで、第一の閾値は、予め設定された閾値とする。また、第一の閾値は、検査対象のワーク302の種類(液晶ディスプレイ、シリコン基板など)毎に予め設定されるのが好ましい。或いは、検査対象ワーク内の位置や、画像中の輝度値などから動的に第一の閾値を決定してもよい。
Next, the
なお、第一の閾値による第一の二値化処理の対象の画像データ全体は、画像データ全体に順ずるものも含むものとする。例えば、画像の周辺部を除いたものであってもよいし、例えば、画像データが大きい場合は、所定数やサイズに応じて幾つかに分割したデータを、当該画像データ全体としてみなして扱ってもよい。 It should be noted that the entire image data to be subjected to the first binarization process using the first threshold value includes those that follow the entire image data. For example, it may be the one excluding the peripheral part of the image. For example, when the image data is large, the data divided into several according to a predetermined number or size is regarded as the entire image data and handled. Also good.
次に、欠陥候補特定部21の識別部42は、ステップS12において、上記第一の二値化処理を実行して得られる二値化データから、上記画像データにおける閉曲線で囲まれた第一の閉領域を識別する(ステップS13:第一の閉領域識別工程)。
Next, in step S12, the
続いて、欠陥候補特定部21の対象領域設定部43は、ステップS13において識別された第一の閉領域を少なくとも一つ以上含む対象領域を設定する(ステップS14:対象領域設定工程)。なお、ここで設定される対象領域は、1つであってもよいし複数であってもよい。
Subsequently, the target
次に、欠陥候補特定部21の二値化処理部41が第二の二値化処理手段として機能として、ステップS14において設定された対象領域毎に、上記第一の閾値Th1と異なる第二の閾値Th2を用いて、第二の二値化処理を少なくとも1回以上実行して少なくとも1つの第二の二値化処理後の画像データを生成する(ステップS15:第二の二値化処理工程)。
Next, the
ここで、上記第二の二値化処理で用いる第二の閾値Th2は、予め設定していてもよいし、入力された画像データの輝度値から算出するようにしてもよい。例えば、上記ステップS14において設定された対象領域の各々の最大輝度値(MAX)を算出し、対応する領域内で第二の閾値(Th2)の範囲(Th1<Th2<MAX)を決定し、この範囲内で適宜設定するようにしてもよい。 Here, the second threshold Th2 used in the second binarization process may be set in advance or calculated from the luminance value of the input image data. For example, the maximum luminance value (MAX) of each of the target areas set in step S14 is calculated, the range of the second threshold value (Th2) (Th1 <Th2 <MAX) is determined in the corresponding area, and this You may make it set suitably within the range.
さらに、欠陥候補特定部21の識別部42は、ステップS15において、第二の二値化処理を実行して得られる二値化データから、上記画像データにおける閉曲線で囲まれた第二の閉領域を識別する(ステップS16:第二の閉領域識別工程)。
Further, the
続いて、欠陥候補特定部21の欠陥候補情報作成部45は、ステップS13で識別された第一の閉領域を欠陥候補とし、画像データにおいて欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する(ステップS17:欠陥候補情報作成工程)。
Subsequently, the defect candidate information creating unit 45 of the defect
次に、欠陥候補特定部21の欠陥候補情報更新部47は、ステップS17において作成された欠陥候補情報を更新するか否かを判定する(ステップS18)。ここでは、ステップS14において設定された対象領域毎に、ステップS13において識別された第一の閉領域の個数と、ステップS16において識別された第二の閉領域、すなわち、少なくとも1つの第二の二値化処理後の該画像データにおける第二の閉領域の個数とを比較する。比較した結果、第二の閉領域の個数のほうが多い場合、欠陥候補情報更新要(YES)と判断し、ステップS19(欠陥候補情報更新工程)に移行し、第一の閉領域の個数のほうが多い場合、欠陥候補情報更新は不要(NO)と判断し、ステップS20(欠陥候補特定工程)に移行する。
Next, the defect candidate information updating unit 47 of the defect
ステップS19では、欠陥候補情報更新部47は、ステップS17において作成した欠陥候補情報を、第二の閉領域を欠陥候補とした新しい欠陥候補情報に更新する。 In step S19, the defect candidate information update unit 47 updates the defect candidate information created in step S17 to new defect candidate information using the second closed region as a defect candidate.
ステップS20では、ステップS17において作成された欠陥候補情報またはステップS19において更新された欠陥候補情報によって画像データにおける欠陥候補を特定する。ここまでの処理が本発明の欠陥候補特定方法の処理を示す。 In step S20, the defect candidate in the image data is specified by the defect candidate information created in step S17 or the defect candidate information updated in step S19. The processing so far shows the processing of the defect candidate specifying method of the present invention.
最後に、ステップS20において特定された欠陥候補に関する情報(欠陥候補の面積、サイズ)に基づいて、当該欠陥候補が画像データにおける欠陥であるか否かを判定する(ステップS21)。 Finally, it is determined whether or not the defect candidate is a defect in the image data based on the information on the defect candidate specified in step S20 (defect candidate area and size) (step S21).
上記の欠陥判定処理では、ステップS15において、第二の二値化処理は1回行う例について説明したが、欠陥判定の精度を向上させるためには、第二の二値化処理を反復して複数回行うのが好ましい。 In the above defect determination process, the example in which the second binarization process is performed once in step S15 has been described. However, in order to improve the accuracy of defect determination, the second binarization process is repeated. It is preferable to carry out a plurality of times.
ここで、上記二値化処理部41において、第二の二値化処理を反復して行うとは、第二の閾値Th2を上記の範囲(Th1<Th2<MAX)で段階的に変化させて、変化させた第二の閾値Th2を用いて第二の二値化処理を順次実行することを意味している。なお、本実施形態では、第一の二値化処理を実行することで設定された対象領域毎に、第二の閾値Th2はMAXからTh1まで逐次的に1階調ずつ減少させ二値化処理を行うものとする。また、第二の二値化処理の回数を低減させるため、間隔を開けてステップ状に第二の閾値Th2を減少させても構わない。いずれの場合であっても、第二の二値化処理は、第二の閾値Thが減少する方向、あるいは増加する方向の一方向に段階的に順次行われるものとする。
Here, in the
第二の二値化処理を複数回実行する場合、最初の第二の閾値から少しずつ緩くなるように閾値を段階的に変化させれば、得られる閉曲線の振る舞いは以下の2通りある。 When executing the second binarization process a plurality of times, if the threshold value is changed stepwise so that it gradually becomes less than the first second threshold value, the following two behaviors of the closed curve are obtained.
(1)徐々に閉領域が小さくなりながら、ある閾値で閉曲線が消滅する。(閉曲線の減少)。 (1) The closed curve disappears at a certain threshold while the closed region gradually decreases. (Reduction of closed curve).
(2)徐々に閉領域が小さくなると同時に、ある閾値で閉領域が複数に分裂する。(閉曲線の増加)
上記のステップS18では、第一の閉領域の数と、第二の閉領域の数とを比較し、欠陥候補情報を更新するか否かを判定しているが、上記のように第二の二値化処理を反復して複数回実行する場合において、第二の閉領域の数を比較した結果に応じて、欠陥候補情報を更新するか否かの判定をしてもよい。つまり、上記(2)の場合、欠陥候補情報更新部47において、閉曲線が増加したか否かを判定(ステップS18)し、閉曲線が増加した場合(ステップS18のYES)に、欠陥候補情報を更新する(ステップS19)。
(2) The closed region gradually becomes smaller, and at the same time, the closed region is divided into a plurality at a certain threshold. (Increase in closed curve)
In step S18, the number of first closed regions and the number of second closed regions are compared to determine whether or not the defect candidate information is to be updated. In the case where the binarization process is repeated and executed a plurality of times, it may be determined whether or not the defect candidate information is updated according to the result of comparing the number of second closed regions. That is, in the case of (2), the defect candidate information update unit 47 determines whether or not the closed curve has increased (step S18), and when the closed curve has increased (YES in step S18), the defect candidate information is updated. (Step S19).
以下に、第二の二値化処理を複数回実行して、欠陥判定を行う処理について説明する。 Hereinafter, a process of performing defect determination by executing the second binarization process a plurality of times will be described.
(画像処理部100による欠陥判定処理(2))
次に、画像処理部100による欠陥判定処理の第二の手順について説明する。ここでは、第二の二値化処理を複数回反復して行い、対象領域内の閉領域を分離させ、新たな対象領域を設定して、欠陥判定処理を行う例について説明する。
(Defect determination processing by image processing unit 100 (2))
Next, a second procedure of defect determination processing by the
ここでは、欠陥候補特定部21の対象領域設定部43が、上記欠陥候補情報更新部47が欠陥候補情報の更新を行うたびに、対象領域毎に、増加した閉領域を少なくとも一つ以上含む複数の領域を新たな対象領域として再設定する。
Here, the target
具体的には、欠陥候補特定部21の対象領域設定部43は、欠陥候補情報更新部47によって更新された欠陥候補情報から、欠陥候補に挙げられた対象領域(閉領域)が分離するか否かを判定する。より具体的には、対象領域設定部43は、反復して行われた第二の二値化処理後の結果において、閉領域の個数をモニタする。ここでは、閉領域の個数が、3個から2個に減少、2個から1個に減少するような場合、第二の閾値(Th2)の範囲内(Th1<Th2<MAX)において、ピークがそれぞれ3個、2個存在すると判断される。従って、欠陥候補に挙げられた対象領域を分離する閾値が存在することが分かる。
Specifically, the target
或いは、対象領域設定部43は、反復して行われた第二の二値化処理後の結果において、閉領域の重心位置をモニタする。この場合、欠陥候補に挙げられた対象領域の重心位置と、各々の閉領域の重心位置を比較する。第二の閾値Th2が第一の閾値Th1に近しい値の場合は、欠陥候補に挙げられた対象領域の重心位置と第二の二値化処理後の閉領域で重心位置が一致、或いは画像中の数画素単位で近しい距離になるが、ピークが複数個ある場合、それぞれの重心位置は欠陥候補に挙げられた対象領域の重心位置とは異なる位置になる。従って、閉領域の重心位置と欠陥候補に挙げられた対象領域の重心位置とを比較することによって、欠陥候補に挙げられた対象領域を分離する閾値が存在することが分かる。
Alternatively, the target
つまり、閾値決定部46は、対象領域設定部43が閉領域を分離すると判定した場合、判明した閾値を第三の閾値(Th=Th3)として設定する。
That is, when the target
一方、対象領域設定部43が閉領域を分離しないと判定した場合、欠陥候補情報更新部47において更新される前の欠陥候補情報を判定結果として、データ記録部12に格納する。
On the other hand, when the target
続いて、欠陥候補特定部21の二値化処理部41は、上記で設定された第三の閾値Th3で欠陥候補に挙げられた対象領域の第二の二値化処理を行う。
Subsequently, the
欠陥判定部22は、第三の閾値で二値化処理された欠陥候補に挙げられた対象領域の結果に基づき、二値化処理後の閉領域の個数、サイズ等の特徴量を算出し、一定以上の特徴量をもつ閉領域を不良欠陥と判断し結果をデータ記録部12に格納する。例えば、直径180μm以上の欠陥は不良品と判断する、X方向もしくはY方向のサイズが1mm以上は不良品と判断する、或いは、複数の特徴量を複合させて判断するなどである。
The
このようにして求められた欠陥候補に挙げられた対象領域毎に閾値を決定することで、欠陥候補の特定と、特定された欠陥候補からの真の欠陥の判定を行う欠陥検査を精度良く行うことができる。 By determining the threshold value for each target region listed as the defect candidate thus obtained, the defect inspection for accurately identifying the defect candidate and determining the true defect from the identified defect candidate is performed with high accuracy. be able to.
ここで、より真の欠陥の判定を行う欠陥検査を精度良く行うためには、上記欠陥候補情報更新部47において、上記欠陥候補情報の更新を行うたびに、比較対象の閉領域の面積を新たな欠陥候補のサイズ情報として欠陥候補情報における欠陥候補サイズの情報を更新するようにすればよい。 Here, in order to accurately perform defect inspection for determining a true defect, each time the defect candidate information update unit 47 updates the defect candidate information, the area of the closed region to be compared is updated. The information on the defect candidate size in the defect candidate information may be updated as the size information of the correct defect candidate.
(パネル検査)
次に、上述した欠陥判定処理を用いたパネル検査について、図4から図6を参照しながら以下に説明する。尚、このパネルの検査基準においては、直径180μm以上の欠陥を不良欠陥と判断し、180μm以下の欠陥に関しては、近接距離に関わらず良品扱いの欠陥とする。
(Panel inspection)
Next, panel inspection using the above-described defect determination processing will be described below with reference to FIGS. In this panel inspection standard, a defect having a diameter of 180 μm or more is determined as a defective defect, and a defect having a diameter of 180 μm or less is regarded as a non-defective product regardless of the proximity distance.
図4の(a)は、図1に示す外観検査装置1のカメラ101によって撮像されたステージ301上のワーク302(パネル)の入力画像であり、図4の(b)は、二値化処理部41によって、第一の閾値Th1で画像全体を二値化処理された後の画像である。ここでは第一の閾値Th1=100(255階調中)として二値化処理を行った。二値化処理の結果、図4の(b)の点線で囲まれる領域に320μm×180μmの欠陥候補の輝点が得られた。図4の(c)は、外観検査装置1の対象領域設定部43によって設定された対象領域を欠陥候補として原画像から抽出(特定)した結果を示している。
4A is an input image of the workpiece 302 (panel) on the
次に、欠陥候補に挙げられた領域の原画像中で、最も輝度が高い階調を制御部14によって測定する。この検査対象のパネルにおいては、最大階調MAXは200階調(255階調中)であった。その結果、閾値算出部44は、第二の閾値Th2の範囲を100<Th2<200と決定した。
Next, the
次に、二値化処理部41は、閾値算出部44によって定義された範囲において、欠陥候補に挙げられた領域の二値化処理を反復して行う。本発明においては、最大の閾値MAXから第一の閾値Th1まで逐次的に第二の閾値Th2を変化させて行った。つまり、第二の閾値は、最大の閾値MAXから第一の閾値Th1に向かって徐々に小さくなるように段階的に変化させて、第二の二値化処理を順次行った。
Next, the
図5は、反復して第二の二値化処理を行った結果であり、縦軸は第二の閾値の値であり、横軸は領域内の位置を示す。また、図5の図形はそれぞれの閾値で二値化処理を行った後、欠陥候補情報更新部47によって更新された欠陥候補情報から得られた、閉領域の個数と、形状、面積を表したものである。第二の閾値Th2が最大値MAXに近い状態では、閉領域の数が1個であるが、第二の閾値Th2が170を下回ると、新たな閉領域が観測された。さらに閾値を下げていくと第二の閾値Th2が120を下回ると閉領域が繋がり1個になった。図4の(d)は反復して二値化処理を行った結果を示すグラフである。図4の(d)及び図5の結果から、閾値決定部46は第三の閾値Th3をTh3=120と決定した。図4の(e)は第三の閾値Th3で欠陥候補として挙げられた領域を二値化処理した結果であり、欠陥判定部22は、それぞれの欠陥サイズを直径150μmと直径110μmと測定した。欠陥判定部22はそれぞれの特徴量と検査基準を比較し、欠陥候補に挙げられた領域の中に含まれる欠陥は良品扱いの欠陥と判断し、出力部は該パネルを良品と出力する。本手法を用いることで、欠陥候補に挙げられた領域内に含まれる2個の欠陥が分離されて検出でき、その特徴量と検査基準を照合することができる。検査の性能が向上し不良と判定されていたパネルを救い上げることができるため、結果として、歩留まりが改善するという効果を奏する。
FIG. 5 shows the result of iteratively performing the second binarization process. The vertical axis represents the second threshold value, and the horizontal axis represents the position in the region. 5 represents the number, shape, and area of closed regions obtained from the defect candidate information updated by the defect candidate information update unit 47 after performing binarization processing with respective threshold values. Is. In the state where the second threshold Th2 is close to the maximum value MAX, the number of closed regions is one, but when the second threshold Th2 is less than 170, a new closed region is observed. When the threshold value was further lowered, when the second threshold value Th2 was less than 120, the closed region was connected to become one. FIG. 4D is a graph showing the result of repeated binarization processing. From the results of FIG. 4D and FIG. 5, the threshold
本実施形態においては、図5に示したように閉領域の個数で対象となる領域の欠陥の推移を測定したが、各閉領域の重心位置と、欠陥候補として挙げられた領域の重心位置を比較しても構わない。図6は該手法を説明する模式図である。図6は縦軸に第二の閾値、横軸に第二の閾値で処理された後の閉領域の重心位置を示した図である。重心座標は欠陥候補情報作成部45により得られる。第二の閾値Th2が第一の閾値Th1に近しい場合、第二の閾値Th2での二値化処理を行った閉領域の重心と欠陥候補を含む領域の重心位置はほぼ一致する。しかしながら、欠陥候補を含む領域に複数個の欠陥が含まれる場合、それぞれの重心位置は欠陥候補に挙げられた対象領域の重心位置とは異なる位置になる。従って、閉領域の重心位置と欠陥候補に挙げられた対象領域の重心位置とを比較することによって、欠陥候補に挙げられた対象領域を分離する閾値が存在することがわかる。 In the present embodiment, as shown in FIG. 5, the transition of defects in the target area is measured by the number of closed areas, but the centroid position of each closed area and the centroid position of the areas listed as defect candidates are determined. You may compare. FIG. 6 is a schematic diagram for explaining the technique. FIG. 6 is a diagram illustrating the barycentric position of the closed region after processing with the second threshold on the vertical axis and the second threshold on the horizontal axis. The barycentric coordinates are obtained by the defect candidate information creation unit 45. When the second threshold value Th2 is close to the first threshold value Th1, the centroid position of the closed region subjected to the binarization process with the second threshold value Th2 and the centroid position of the region including the defect candidate substantially coincide. However, when a plurality of defects are included in the area including the defect candidate, the position of the center of gravity is different from the position of the center of gravity of the target area listed as the defect candidate. Therefore, by comparing the gravity center position of the closed region with the gravity center position of the target region listed as the defect candidate, it can be seen that there is a threshold value for separating the target region listed as the defect candidate.
このようにして得られた閾値を第三の閾値として第二の二値化処理を実行し、得られた結果から、欠陥判定部22によって、欠陥候補に挙げられた領域の中に含まれる欠陥の良否を判定する。
The second binarization process is executed with the threshold value obtained in this way as the third threshold value, and the defect included in the area listed as the defect candidate by the
〔実施形態2〕
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
本実施形態では、前記実施形態1において行った第二の二値化処理で用いる第二の閾値を2分探索で反復した例について説明する。 In the present embodiment, an example will be described in which the second threshold used in the second binarization process performed in the first embodiment is repeated in a binary search.
図7に示すように、第二の閾値Th2での1回目の閾値(Th2-1)を、閾値上限(MAX)と閾値下限(Th1)の中点(Th2-1)で行う。次に、閾値上限(MAX)と1回目の閾値(Th2-1)の中点(Th2-2-1)、及び閾値下限(Th1)と1回目の閾値(Th2-1)の中点(Th2-2-2)で行う。それぞれの閾値で二値化処理を行い得られる閉領域の個数の変化、位置の変化をモニタする。 As shown in FIG. 7, the first threshold (Th2-1) at the second threshold Th2 is performed at the middle point (Th2-1) of the threshold upper limit (MAX) and the threshold lower limit (Th1). Next, the middle point (Th2-2-1) of the threshold upper limit (MAX) and the first threshold (Th2-1), and the middle point (Th2) of the threshold lower limit (Th1) and the first threshold (Th2-1) -2-2). A change in the number of closed regions and a change in position obtained by performing binarization processing at each threshold value are monitored.
このように、閉領域の個数や位置の変化が生じる範囲に絞っての閾値を探索することによって、欠陥候補に挙げられた対象領域を構成する、輝度の山、谷位置の探索を高速化することができる。即ち、図7ではステップ2の閾値(Th2-2-1)とステップ3の閾値(Th2-3-1)では、得られる閉領域の個数、重心位置が同一であるため、第二の閾値をTh2-2-1からTh2-3-1まではスキップして行う。 In this way, by searching for threshold values that are limited to the range in which the number and position of closed regions change, the search for the luminance peak and valley positions that constitute the target region listed as a defect candidate is accelerated. be able to. That is, in FIG. 7, since the threshold value (Th2-2-1) in step 2 and the threshold value (Th2-3-1) in step 3 are the same in the number of closed regions and the position of the center of gravity, the second threshold value is set. Skip from Th2-2-1 to Th2-3-1.
ステップ3の閾値(Th2-3-2)や閾値(Th2-3-3)では、それぞれの閾値を規定する1回前の閾値(Th2-2-1)や(Th2-2-2)での二値化処理結果から、閉領域の個数、重心位置に差が生じていることから、該閾値を含む領域の探索を継続する。 In the threshold value (Th2-3-2) and threshold value (Th2-3-3) of step 3, the threshold values (Th2-2-1) and (Th2-2-2) one time before defining the respective threshold values are used. Since there is a difference in the number of closed regions and the position of the center of gravity from the binarization processing result, the search for the region including the threshold value is continued.
以上のように、第二の二値化処理で用いる第二の閾値を2分探索で反復することで、閉領域の個数や位置の変化が生じる範囲に絞っての閾値を探索することになり、この結果、欠陥候補に挙げられた対象領域を構成する、輝度の山、谷位置の探索を高速化することができる。従って、欠陥候補の特定から、最終的な欠陥の判定結果が得られまでの処理時間を短縮させることができる。 As described above, the second threshold value used in the second binarization process is repeated in a binary search, thereby searching for a threshold value that is narrowed down to a range in which the number of closed regions and position change occur. As a result, it is possible to speed up the search for the luminance peak and valley positions constituting the target region listed as the defect candidate. Therefore, it is possible to shorten the processing time from the identification of the defect candidate until the final defect determination result is obtained.
〔実施形態3〕
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe another embodiment of the present invention. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
本実施形態では、前記実施形態1の図4の(d)に示す欠陥の判定結果が得られたパネルではなく、図8に示す欠陥の判定結果となった別のパネルを用いた例について説明する。上記パネルにおいては、対象領域設定部43によって設定された対象領域、すなわち第一の閾値で欠陥候補に挙げられた領域に430μm×180μmの輝点が発生していた。閾値算出部44において、第二の閾値Th2の範囲を設定すれば、以下のようになった。第一の閾値Th1が100、対象領域内で測定した最大輝度MAXが220であったことから、第二の閾値Th2の範囲は、100<Th2<220となる。二値化処理部41では、この範囲内で第二の二値化処理を反復して行った。その結果が図8に示すグラフである。
In the present embodiment, an example will be described in which another panel having the defect determination result shown in FIG. 8 is used instead of the panel in which the defect determination result shown in FIG. To do. In the panel, a bright spot of 430 μm × 180 μm is generated in the target region set by the target
また、第二の閾値Th2を規定範囲(100<Th2<220)内で変化させた際の閉領域の個数、位置、面積等を測定した結果が、図9に示すようになる。このような場合であっても、前記実施形態1で示した手法により、それぞれの閉領域を分離する閾値(第三の閾値Th3)をTh3-1、Th3-2と規定することが可能であり、それぞれの閾値で分離された欠陥を判定することが可能である。 Further, the results of measuring the number, position, area, and the like of the closed regions when the second threshold Th2 is changed within the specified range (100 <Th2 <220) are as shown in FIG. Even in such a case, it is possible to define the thresholds (third threshold Th3) for separating the closed regions as Th3-1 and Th3-2 by the method described in the first embodiment. , It is possible to determine the defects separated by the respective threshold values.
なお、本実施形態においては、第一の閾値Th1で欠陥候補に挙げられた領域に430μm×180μmの輝点が発生していたが、図9に示すように、本手法により150μm×140μm、130μm×110μm、100μm×90μmの欠陥が3個近接していることが分かった。従って、欠陥候補として挙げられた領域に含まれる一つの欠陥(一番小さい、100μm×90μm)は良品扱いの欠陥として判定され、残りの二つの領域が真の欠陥として判定された。この例では、欠陥候補に含まれる真の欠陥が2個であったが、複数個存在していても構わない。 In the present embodiment, a bright spot of 430 μm × 180 μm is generated in the region listed as the defect candidate at the first threshold Th1, but as shown in FIG. 9, this method allows 150 μm × 140 μm, 130 μm. It was found that three defects of × 110 μm and 100 μm × 90 μm are close to each other. Therefore, one defect (smallest, 100 μm × 90 μm) included in the region listed as a defect candidate was determined as a non-defective product, and the remaining two regions were determined as true defects. In this example, there are two true defects included in the defect candidates, but a plurality of true defects may exist.
以上にように、本実施形態に係る欠陥判定方法によれば、欠陥候補から、良品扱いの欠陥を除外して、真の欠陥を判定することができるため、欠陥判定の精度を向上させることができる。 As described above, according to the defect determination method according to the present embodiment, it is possible to determine a true defect by excluding a defect treated as a non-defective product from the defect candidates, thereby improving the accuracy of the defect determination. it can.
〔実施形態4〕
本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
The following will describe another embodiment of the present invention. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
本実施形態では、前記実施形態1の図4の(d)に示す欠陥の判定結果が得られたパネルではなく、図10に示す欠陥の判定結果となった別のパネルを用いた例について説明する。上記パネルにおいては、対象領域設定部43によって設定された対象領域、すなわち第一の閾値で欠陥候補に挙げられた領域に450μm×200μmの輝点が発生していた。閾値算出部44において、第二の閾値Th2の範囲を設定すれば、以下のようになった。第一の閾値Th1が100、対象領域内の最大輝度MAXが220であったことから、第二の閾値Th2の範囲は、100<Th2<220となる、二値化処理部41は、この範囲内で二値化処理を反復して行った。その結果が図10に示すグラフである。
In the present embodiment, an example will be described in which another panel having the defect determination result shown in FIG. 10 is used instead of the panel in which the defect determination result shown in FIG. To do. In the panel, a bright spot of 450 μm × 200 μm is generated in the target region set by the target
また、第二の閾値Th2を規定範囲(100<Th2<220)内で変化させた際の閉領域の個数、位置、面積等を測定した結果が、図11に示すようになる。図11から、第二の閾値Th2を変化させつつ第二の二値化処理を反復して行っても、領域の個数は1個のままであり、また重心位置も欠陥候補に挙げられた領域と差が生じていなかった。このような欠陥の場合、第三の閾値は第一の閾値Th1と同一に設定され、欠陥候補に挙げられた領域に450μm×200μmが存在し、判定基準と比較して不良パネルと判定された。 Also, the results of measuring the number, position, area, and the like of the closed regions when the second threshold Th2 is changed within the specified range (100 <Th2 <220) are as shown in FIG. From FIG. 11, even when the second binarization process is repeatedly performed while changing the second threshold Th2, the number of areas remains one, and the center of gravity position is also a defect candidate. There was no difference. In the case of such a defect, the third threshold value is set to be the same as the first threshold value Th1, 450 μm × 200 μm exists in the region listed as the defect candidate, and it is determined as a defective panel as compared with the determination criterion. .
以上にように、本実施形態に係る欠陥判定方法によれば、第三の閾値を設定するまでの処理を行わずに済むため、欠陥候補から、真の欠陥を判定するまでの時間を大幅に短縮することができる。 As described above, according to the defect determination method according to the present embodiment, it is not necessary to perform the processing until the third threshold value is set, so that the time from the defect candidate until the true defect is determined is greatly increased. It can be shortened.
〔ソフトウェアによる実現例〕
外観検査装置1の制御ブロック(特に画像処理部100)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control block (particularly the image processing unit 100) of the
後者の場合、画像処理部100は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
In the latter case, the
〔まとめ〕
本発明の態様1に係る欠陥候補特定装置は、画像データに対して、第一の閾値を用いた第一の二値化処理を実行する第一の二値化処理手段(二値化処理部41)と、上記第一の二値化処理の実行により生成された二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第一の閉領域を識別する第一の閉領域識別手段(識別部42)と、上記第一の閉領域を欠陥候補とし、画像データにおいて上記欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する欠陥候補情報作成手段(欠陥候補情報作成部45)と、上記欠陥候補情報によって画像データにおける欠陥候補を特定する欠陥候補特定手段(欠陥候補特定部48)と、上記画像データにおける上記第一の閉領域を少なくとも一つ含む領域を対象領域として設定する対象領域設定手段(対象領域設定部43)と、上記画像データに対して、上記対象領域毎に、上記第一の閾値と異なる第二の閾値に基づく第二の二値化処理を少なくとも1回以上実行して少なくとも1つの第二の二値化処理後の画像データを生成する第二の二値化処理手段(二値化処理部41)と、上記第二の二値化処理の実行により生成された上記第二の二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第二の閉領域を識別する第二の閉領域識別手段(識別部42)と、上記対象領域毎に、第一の閉領域の個数と、少なくとも1つの上記第二の二値化処理後の画像データにおける第二の閉領域の個数とを比較し、第二の閉領域の個数のほうが多い場合に、当該第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新する欠陥候補情報更新手段(欠陥候補情報更新部47)とを備え、上記欠陥候補特定手段(欠陥候補情報更新部47)は、上記欠陥候補情報更新手段によって更新された欠陥候補情報から、画像データにおける欠陥候補を特定することを特徴としている。
[Summary]
The defect candidate specifying device according to the first aspect of the present invention provides a first binarization processing unit (binarization processing unit) that executes a first binarization process using a first threshold on image data. 41) and the image data after the binarization process generated by the execution of the first binarization process, the first closed area that is the area surrounded by the closed curve in the image data is identified. First closed region identification means (identification unit 42), and defect candidate information creation that uses the first closed region as a defect candidate and creates defect candidate information including information for specifying the defect candidate in image data Means (defect candidate information creating unit 45), defect candidate specifying means (defect candidate specifying unit 48) for specifying a defect candidate in image data based on the defect candidate information, and at least one first closed region in the image data. Target area And a second binarization process based on a second threshold value that is different from the first threshold value for each target region with respect to the image data. A second binarization processing unit (binarization processing unit 41) for generating at least one second binarized image data executed at least once, and the second binarization processing Based on the image data after the second binarization process generated by the execution of the second closed region identifying means for identifying the second closed region that is the region surrounded by the closed curve in the image data ( The identification unit 42) compares the number of first closed regions with the number of second closed regions in the image data after at least one second binarization process for each target region, If the number of second closed areas is larger, the second closed area Defect candidate information updating means (defect candidate information updating unit 47) for updating the defect candidate information to defect candidate information including information for specifying the new defect candidate as a defect candidate, The specifying means (defect candidate information updating unit 47) is characterized by specifying defect candidates in the image data from the defect candidate information updated by the defect candidate information updating means.
上記の構成によれば、画像データに対して、第一の閾値を用いた第一の二値化処理を実行して得られた、二値化データから識別された閉曲線で囲まれた第一閉領域を欠陥候補とし、画像データにおいて上記欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する。また、画像データにおける上記第一の閉領域を少なくとも一つ含む領域を対象領域として設定して、当該画像データに対して、上記対象領域毎に、上記第一の閾値と異なる第二の閾値に基づく第二の二値化処理を少なくとも1回以上実行して少なくとも1つの第二の二値化処理後の画像データを生成する。そして、対象領域毎に、第一の閉領域の個数と、少なくとも1つの第二の二値化処理後の該画像データにおける第二の閉領域の個数とを比較し、第二の閉領域の数が、第一の閉領域の数よりも多い場合に、上記欠陥候補情報を更新する。そして、更新された欠陥候補情報から、画像データにおける欠陥候補を特定する。 According to said structure, the 1st enclosed by the closed curve identified from the binarization data obtained by performing the 1st binarization process using a 1st threshold value with respect to image data. Using the closed region as a defect candidate, defect candidate information including information for specifying the defect candidate in the image data is created. In addition, an area including at least one of the first closed areas in the image data is set as a target area, and the second threshold different from the first threshold is set for each target area for the image data. The second binarization process is executed at least once to generate image data after at least one second binarization process. Then, for each target region, the number of first closed regions is compared with the number of second closed regions in the image data after at least one second binarization process. When the number is larger than the number of the first closed regions, the defect candidate information is updated. And the defect candidate in image data is specified from the updated defect candidate information.
このように二値化処理を少なくとも2段階で行うことで、最初の二値化処理(第一の二値化処理)でおおざっぱに欠陥候補を特定し、次の二値化処理(第二の二値化処理)で詳細に欠陥候補を特定することができるので、同程度の欠陥候補の特定の精度を実現するために、一つの閾値で二値化処理を実行した場合に比べて、少なくとも2つの閾値で二値化処理を実行した場合のほうが処理負荷を軽減できる。 By performing the binarization process in at least two stages in this way, the defect candidates are roughly identified in the first binarization process (first binarization process), and the next binarization process (second binarization process) Since the defect candidates can be specified in detail in the binarization process), in order to realize the same accuracy of defect candidate identification, at least as compared with the case where the binarization process is executed with one threshold value. The processing load can be reduced when the binarization processing is executed with two threshold values.
従って、欠陥候補の特定から、最終的に欠陥の判定を行うまでの処理負荷を軽減し、欠陥判定を精度よく行うことができるという効果を奏する。 Therefore, it is possible to reduce the processing load from the defect candidate identification to the final defect determination, and to perform the defect determination with high accuracy.
本発明の態様2に係る欠陥候補特定装置は、上記態様1において、上記第二の二値化処理手段(二値化処理部41)は、第二の閾値を段階的に変化させて、上記対象領域設定手段(対象領域設定部43)によって設定された対象領域毎に、変化させた第二の閾値を用いて第二の二値化処理を順次実行して複数の二値化処理後の画像データを生成し、上記欠陥候補情報更新手段(欠陥候補情報更新部47)は、上記対象領域毎に、上記欠陥候補情報更新手段による欠陥候補情報の更新に用いた第二の閾値を用いて得られた第二の閉領域の個数と、上記第二の閾値と少なくとも1段違う第二の閾値を用いて得られた第二の閉領域の個数を比較して、個数の多い第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新するようにしてもよい。
In the defect candidate specifying device according to aspect 2 of the present invention, in the
上記の構成によれば、第二の二値化処理が、第二の閾値を段階的に変化させて、反復して行われるので、変化した第二の閾値毎に、欠陥候補情報が作成される。そして、最新の欠陥候補情報の作成に用いた第二の二値化処理後の画像データにおける閉領域の個数に対して、該画像データとは1段階異なる閾値で次に行った第二の二値化処理後の画像データにおける閉領域の個数を比較対象として比較し、閉領域の数が比較対象のほうが多い場合に、該比較対象の閉領域の部分を新たな欠陥候補と判定し、上記欠陥候補情報が更新される。この更新された欠陥候補情報に基づいて画像データにおける欠陥候補を特定する。 According to the above configuration, since the second binarization process is repeatedly performed by changing the second threshold value stepwise, defect candidate information is created for each changed second threshold value. The Then, with respect to the number of closed regions in the image data after the second binarization process used for the creation of the latest defect candidate information, the second two performed next with a threshold different from that of the image data. The number of closed regions in the image data after the binarization processing is compared as a comparison target, and when the number of closed regions is larger in the comparison target, the portion of the comparison target closed region is determined as a new defect candidate, The defect candidate information is updated. Based on the updated defect candidate information, a defect candidate in the image data is specified.
このように、欠陥候補情報を比較毎に順次更新していき、最終的な欠陥候補情報において画像データにおける欠陥候補を特定することで、欠陥候補の個数、位置、サイズ、形状などを正確に判定することが可能となる。 In this way, the defect candidate information is sequentially updated for each comparison, and the defect candidates in the image data are identified in the final defect candidate information, thereby accurately determining the number, position, size, shape, etc. of the defect candidates. It becomes possible to do.
本発明の態様3に係る欠陥候補特定装置は、上記態様2において、上記対象領域設定手段(対象領域設定部43)は、上記欠陥候補情報更新手段(欠陥候補情報更新部47)が上記欠陥候補情報の更新を行うたびに、対象領域毎に、増加した閉領域を少なくとも一つ以上含む複数の対象領域を新たな対象領域として再設定してもよい。 In the defect candidate specifying device according to aspect 3 of the present invention, in the aspect 2, the target area setting unit (target area setting unit 43) is the defect candidate information updating unit (defect candidate information updating unit 47). Each time the information is updated, a plurality of target areas including at least one increased closed area may be reset as new target areas for each target area.
上記の構成によれば、欠陥候補情報更新手段が上記欠陥候補情報の更新を行うたびに、対象領域毎に、増加した閉領域を少なくとも一つ以上含む複数の対象領域を新たな対象領域として再設定することで、対象領域内で閉領域の個数が増えた場合であっても、できるだけ対象領域に一つの閉領域が含まれるようにすることが可能となる。 According to the above configuration, each time the defect candidate information update unit updates the defect candidate information, a plurality of target areas including at least one increased closed area are re-created as new target areas for each target area. By setting, even if the number of closed areas in the target area increases, it is possible to include one closed area in the target area as much as possible.
本発明の態様4に係る欠陥候補特定装置は、上記態様1~3のいずれか1態様において、上記欠陥候補情報には欠陥候補のサイズを示す欠陥候補サイズの情報が含まれ、上記欠陥候補情報更新手段(欠陥候補情報更新部47)は、上記欠陥候補情報の更新を行うたびに、比較対象の閉領域の面積を新たな欠陥候補のサイズとして欠陥候補情報における欠陥候補サイズの情報を更新してもよい。
In the defect candidate specifying device according to aspect 4 of the present invention, in any one of the
上記の構成によれば、欠陥候補情報には欠陥候補のサイズを示す欠陥候補サイズの情報が含まれ、欠陥候補情報更新手段は、上記欠陥候補情報の更新を行うたびに、比較対象の閉領域の面積を新たな欠陥候補のサイズとして欠陥候補情報における欠陥候補サイズの情報を更新することで、欠陥サイズに基づいて欠陥判定を行うことが可能となる。 According to the above configuration, the defect candidate information includes defect candidate size information indicating the size of the defect candidate, and the defect candidate information update unit performs the closed region to be compared each time the defect candidate information is updated. By updating the defect candidate size information in the defect candidate information with the area of the defect size as a new defect candidate size, it becomes possible to perform defect determination based on the defect size.
本発明の態様5に係る欠陥判定装置は、上記態様1~4のいずれか1項に記載の欠陥候補特定装置(欠陥候補特定部21)を備え、上記欠陥候補特定装置によって特定された欠陥候補に関する情報に基づいて、当該欠陥候補が画像データにおける欠陥であるか否かを判定することを特徴としている。
A defect determination apparatus according to aspect 5 of the present invention includes the defect candidate specifying apparatus (defect candidate specifying unit 21) described in any one of
上記の構成によれば、欠陥判定に要する処理負荷を低減させ、画像データにおいて特定された欠陥候補から適切に真の欠陥を判定することができる。 According to the above configuration, the processing load required for defect determination can be reduced, and a true defect can be appropriately determined from the defect candidates specified in the image data.
本発明の態様6に係る欠陥検査装置は、検査対象物(ワーク302)を撮像しての画像データを生成する撮像部(カメラ101)と、上記撮像部が生成した画像データから欠陥を判定する欠陥判定装置(画像処理部100)とを備え、上記欠陥判定装置(画像処理部100)は、上記態様1~4のいずれか1態様に記載の欠陥判定装置であってもよい。 The defect inspection apparatus according to the aspect 6 of the present invention determines the defect from the imaging unit (camera 101) that generates image data obtained by imaging the inspection target (work 302) and the image data generated by the imaging unit. A defect determination device (image processing unit 100), and the defect determination device (image processing unit 100) may be the defect determination device according to any one of the first to fourth aspects.
上記の構成によれば、欠陥の判定における処理負荷を軽減し、欠陥判定を精度よく行うことのできる欠陥検査装置を実現できる。 According to the above configuration, it is possible to realize a defect inspection apparatus capable of reducing the processing load in defect determination and performing defect determination with high accuracy.
本発明の態様7に係る欠陥候補特定方法は、画像データから欠陥候補を特定する欠陥候補特定方法において、画像データに対して、第一の閾値を用いた第一の二値化処理を実行する第一の二値化処理工程(ステップS12)と、上記第一の二値化処理の実行により生成された二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第一の閉領域を識別する第一の閉領域識別工程(ステップS13)と、上記第一の閉領域を欠陥候補とし、画像データにおいて上記欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する欠陥候補情報作成工程(ステップS17)と、上記欠陥候補情報によって画像データにおける欠陥候補を特定する欠陥候補特定工程(ステップS20)と、上記画像データにおける上記第一の閉領域を少なくとも一つ含む領域を対象領域として設定する対象領域設定工程(ステップS14)と、上記画像データに対して、上記対象領域毎に、上記第一の閾値と異なる第二の閾値に基づく第二の二値化処理を少なくとも1回以上実行して少なくとも一つの第二の二値化処理後の画像データを生成する第二の二値化処理工程(ステップS15)と、上記第二の二値化処理の実行により生成された上記第二の二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第二の閉領域を識別する第二の閉領域識別工程(ステップS16)と、上記対象領域毎に、第一の閉領域の個数と、少なくとも1つの上記第二の二値化処理後の画像データにおける第二の閉領域の個数とを比較し、第二の閉領域の個数のほうが多い場合に、当該第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新する欠陥候補情報更新工程(ステップS18,S19)とを含み、上記欠陥候補特定工程(ステップS20)は、上記欠陥候補情報更新工程によって更新されたた欠陥候補情報に基づいて、上記画像データにおける欠陥候補を特定することを特徴としている。 A defect candidate specifying method according to aspect 7 of the present invention is a defect candidate specifying method for specifying a defect candidate from image data, and executes a first binarization process using a first threshold value on the image data. Based on the first binarization processing step (step S12) and the image data after binarization processing generated by the execution of the first binarization processing, an area surrounded by a closed curve in the image data A first closed region identifying step (step S13) for identifying the first closed region, and a defect including information for specifying the defect candidate in the image data with the first closed region as a defect candidate A defect candidate information creating step (step S17) for creating candidate information, a defect candidate identifying step (step S20) for identifying a defect candidate in the image data based on the defect candidate information, and the image data A target region setting step (step S14) for setting a region including at least one first closed region as a target region, and a second different from the first threshold for each target region with respect to the image data A second binarization process step (step S15) for executing at least one second binarization process based on the threshold value to generate image data after at least one second binarization process; Based on the image data after the second binarization process generated by the execution of the second binarization process, a second closed area that is an area surrounded by a closed curve in the image data is identified. Second closed region identification step (step S16), and for each target region, the number of first closed regions and the second closed region in the image data after the second binarization process. Compare the number to the second closed region When the number is larger, the second closed region is set as a new defect candidate, and the defect candidate information is updated to update the defect candidate information to defect candidate information including information for specifying the new defect candidate. Including the steps (steps S18 and S19), and the defect candidate specifying step (step S20) specifies defect candidates in the image data based on the defect candidate information updated by the defect candidate information update step. It is characterized by.
上記の構成によれば、本発明の態様1にかかる欠陥候補特定装置における効果と同様の効果を奏する。
According to said structure, there exists an effect similar to the effect in the defect candidate specific device concerning the
本発明の各態様に係る欠陥候補特定装置(欠陥候補特定部21)は、コンピュータによって実現してもよく、この場合には、コンピュータを上記欠陥判定装置が備える各手段として動作させることにより上記画像処理部をコンピュータにて実現させる欠陥候補特定装置の欠陥候補特定プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The defect candidate specifying device (defect candidate specifying unit 21) according to each aspect of the present invention may be realized by a computer. In this case, the image is operated by operating the computer as each unit included in the defect determining device. A defect candidate identification program of a defect candidate identification device that realizes the processing unit by a computer and a computer-readable recording medium that records the defect candidate identification program also fall within the scope of the present invention.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
本発明は、画像処理装置、たとえば外観を検査するための検査装置に利用することができる。 The present invention can be used for an image processing apparatus, for example, an inspection apparatus for inspecting the appearance.
1 外観検査装置
11 入力部
12 データ記録部
13 出力部
14 制御部
21 欠陥候補特定部(欠陥候補特定装置)
22 欠陥判定部(欠陥判定手段)
41 二値化処理部(第一の二値化処理手段、第二の二値化処理手段)
42 識別部(第一の閉領域認識手段、第二の閉領域認識手段)
43 対象領域設定部(対象領域設定手段)
44 閾値算出部
45 欠陥候補情報作成部(欠陥候補情報作成手段)
46 閾値決定部
47 欠陥候補情報更新部(欠陥候補情報更新手段)
48 特定部(欠陥候補特定手段)
100 画像処理部(欠陥判定装置)
101 カメラ(撮像部)
200 コントローラ
201 照明器
300 装置制御部
301 ステージ
302 ワーク(検査対象物)
Th1 第一の閾値
Th2 第二の閾値
Th3 第三の閾値
DESCRIPTION OF
22 Defect determination unit (defect determination means)
41 Binarization processing unit (first binarization processing means, second binarization processing means)
42 identification unit (first closed area recognition means, second closed area recognition means)
43 Target area setting unit (target area setting means)
44 threshold calculation unit 45 defect candidate information creation unit (defect candidate information creation means)
46 threshold determination unit 47 defect candidate information update unit (defect candidate information update means)
48 identification part (defect candidate identification means)
100 Image processing unit (defect determination device)
101 Camera (imaging unit)
200 Controller 201
Th1 First threshold Th2 Second threshold Th3 Third threshold
Claims (9)
上記第一の二値化処理の実行により生成された二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第一の閉領域を識別する第一の閉領域識別手段と、
上記第一の閉領域を欠陥候補とし、画像データにおいて上記欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する欠陥候補情報作成手段と、
上記欠陥候補情報によって画像データにおける欠陥候補を特定する欠陥候補特定手段と、
上記画像データにおける上記第一の閉領域を少なくとも一つ含む領域を対象領域として設定する対象領域設定手段と、
上記画像データに対して、上記対象領域毎に、上記第一の閾値と異なる第二の閾値に基づく第二の二値化処理を少なくとも1回以上実行して少なくとも1つの第二の二値化処理後の画像データを生成する第二の二値化処理手段と、
上記第二の二値化処理の実行により生成された上記第二の二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第二の閉領域を識別する第二の閉領域識別手段と、
上記対象領域毎に、第一の閉領域の個数と、少なくとも1つの上記第二の二値化処理後の画像データにおける第二の閉領域の個数とを比較し、第二の閉領域の個数のほうが多い場合に、当該第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新する欠陥候補情報更新手段とを備え、
上記欠陥候補特定手段は、上記欠陥候補情報更新手段によって更新された欠陥候補情報から、画像データにおける欠陥候補を特定することを特徴とする欠陥候補特定装置。 A first binarization processing means for executing a first binarization process using a first threshold on the image data;
Based on the image data after binarization processing generated by executing the first binarization processing, a first closed region for identifying a first closed region that is a region surrounded by a closed curve in the image data. Region identification means;
Defect candidate information creating means for creating defect candidate information including information for specifying the defect candidate in the image data with the first closed region as a defect candidate;
Defect candidate specifying means for specifying defect candidates in image data by the defect candidate information;
Target region setting means for setting a region including at least one of the first closed regions in the image data as a target region;
At least one second binarization is performed on the image data by executing at least one second binarization process based on a second threshold different from the first threshold for each target region. Second binarization processing means for generating image data after processing;
Based on the image data after the second binarization process generated by the execution of the second binarization process, a second closed area that is an area surrounded by a closed curve in the image data is identified. A second closed region identification means;
For each target area, the number of first closed areas is compared with the number of second closed areas in the image data after at least one second binarization process. If there are more defect candidates, the second closed region is set as a new defect candidate, and the defect candidate information updating unit updates the defect candidate information to defect candidate information including information for specifying the new defect candidate. And
The defect candidate specifying device, wherein the defect candidate specifying means specifies defect candidates in image data from the defect candidate information updated by the defect candidate information updating means.
第二の閾値を段階的に変化させて、上記対象領域設定手段によって設定された対象領域毎に、変化させた第二の閾値を用いて第二の二値化処理を順次実行して複数の二値化処理後の画像データを生成し、
上記欠陥候補情報更新手段は、
上記対象領域毎に、上記欠陥候補情報更新手段による欠陥候補情報の更新に用いた第二の閾値を用いて得られた第二の閉領域の個数と、上記第二の閾値と少なくとも1段違う第二の閾値を用いて得られたそれぞれの第二の閉領域の個数とを比較して、個数の多い第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新することを特徴とする請求項1記載の欠陥候補特定装置。 The second binarization processing means is:
A second threshold value is changed in a stepwise manner, and a second binarization process is sequentially executed using the changed second threshold value for each target region set by the target region setting means. Generate binarized image data,
The defect candidate information update means includes
For each target region, the number of second closed regions obtained by using the second threshold value used for updating the defect candidate information by the defect candidate information updating unit is different from the second threshold value by at least one level. The number of the respective second closed regions obtained by using the second threshold is compared, and the second closed region having a large number is set as a new defect candidate, and the defect candidate information is used as the new defect. The defect candidate specifying device according to claim 1, wherein the defect candidate information is updated to defect candidate information including information for specifying a candidate.
上記欠陥候補情報更新手段が上記欠陥候補情報の更新を行うたびに、対象領域毎に、増加した閉領域を少なくとも一つ以上含む複数の対象領域を新たな対象領域として再設定することを特徴とする請求項2記載の欠陥候補特定装置。 The target area setting means includes:
Each time the defect candidate information update unit updates the defect candidate information, a plurality of target areas including at least one increased closed area are reset as new target areas for each target area. The defect candidate specifying device according to claim 2.
上記欠陥候補情報更新手段は、
上記欠陥候補情報の更新を行うたびに、比較対象の閉領域の面積を新たな欠陥候補のサイズとして欠陥候補情報におけるサイズ情報を更新することを特徴とする請求項1~3のいずれか1項に記載の欠陥候補特定装置。 The defect candidate information includes size information indicating the size of the defect candidate,
The defect candidate information update means includes
4. The size information in the defect candidate information is updated each time the defect candidate information is updated, with the area of the closed region to be compared as a new defect candidate size. The defect candidate identification device described in 1.
上記欠陥候補特定装置によって特定された欠陥候補に関する情報に基づいて、当該欠陥候補が画像データにおける欠陥であるか否かを判定することを特徴とする欠陥判定装置。 A defect candidate specifying device according to any one of claims 1 to 4,
A defect determination device that determines whether or not the defect candidate is a defect in image data based on information on the defect candidate specified by the defect candidate specification device.
上記撮像部が生成した画像データから欠陥を判定する欠陥判定装置とを備え、
上記欠陥判定装置は、請求項5に記載の欠陥判定装置であることを特徴とする欠陥検査装置。 An imaging unit that generates image data obtained by imaging an inspection object;
A defect determination device that determines a defect from the image data generated by the imaging unit,
The defect inspection apparatus according to claim 5, wherein the defect determination apparatus is the defect determination apparatus according to claim 5.
画像データに対して、第一の閾値を用いた第一の二値化処理を実行する第一の二値化処理工程と、
上記第一の二値化処理の実行により生成された二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第一の閉領域を識別する第一の閉領域識別工程と、
上記第一の閉領域を欠陥候補とし、画像データにおいて上記欠陥候補を特定するための情報を含んだ欠陥候補情報を作成する欠陥候補情報作成工程と、
上記欠陥候補情報によって画像データにおける欠陥候補を特定する欠陥候補特定工程と、
上記画像データにおける上記第一の閉領域を少なくとも一つ含む領域を対象領域として設定する対象領域設定工程と、
上記画像データに対して、上記対象領域毎に、上記第一の閾値と異なる第二の閾値に基づく第二の二値化処理を少なくとも1回以上実行して少なくとも1つの第二の二値化処理後の画像データを生成する第二の二値化処理工程と、
上記第二の二値化処理の実行により生成された上記第二の二値化処理後の画像データに基づいて、該画像データにおける閉曲線で囲まれた領域である第二の閉領域を識別する第二の閉領域識別工程と、
上記対象領域毎に、第一の閉領域の個数と、少なくとも1つの上記第二の二値化処理後の画像データにおける第二の閉領域の個数とを比較し、第二の閉領域の個数のほうが多い場合に、当該第二の閉領域を新たな欠陥候補とし、上記欠陥候補情報を、上記新たな欠陥候補を特定するための情報を含んだ欠陥候補情報に更新する欠陥候補情報更新工程とを含み、
上記欠陥候補特定工程は、
上記欠陥候補情報更新工程によって更新されたた欠陥候補情報に基づいて、上記画像データにおける欠陥候補を特定することを特徴とする欠陥候補特定方法。 In a defect candidate identification method for identifying defect candidates from image data,
A first binarization process for executing a first binarization process using a first threshold on the image data;
Based on the image data after binarization processing generated by executing the first binarization processing, a first closed region for identifying a first closed region that is a region surrounded by a closed curve in the image data. Region identification process;
A defect candidate information creating step for creating defect candidate information including information for specifying the defect candidate in the image data, with the first closed region as a defect candidate,
A defect candidate specifying step for specifying a defect candidate in the image data by the defect candidate information,
A target region setting step for setting a region including at least one of the first closed regions in the image data as a target region;
At least one second binarization is performed on the image data by executing at least one second binarization process based on a second threshold different from the first threshold for each target region. A second binarization processing step for generating processed image data;
Based on the image data after the second binarization process generated by the execution of the second binarization process, a second closed area that is an area surrounded by a closed curve in the image data is identified. A second closed region identification step;
For each target area, the number of first closed areas is compared with the number of second closed areas in the image data after at least one second binarization process. If there are more defect candidates, the second closed region is set as a new defect candidate, and the defect candidate information update step is performed to update the defect candidate information to defect candidate information including information for specifying the new defect candidate. Including
The defect candidate specifying step is:
A defect candidate specifying method, wherein a defect candidate in the image data is specified based on the defect candidate information updated by the defect candidate information update step.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013157640A JP2015028438A (en) | 2013-07-30 | 2013-07-30 | Defect candidate specification device, defect candidate specification method, defect determination device, defect inspection device, defect candidate specification program, and recording medium |
| JP2013-157640 | 2013-07-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015015945A1 true WO2015015945A1 (en) | 2015-02-05 |
Family
ID=52431487
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2014/066438 Ceased WO2015015945A1 (en) | 2013-07-30 | 2014-06-20 | Defect candidate specification device, defect candidate specification method, defect determination device, defect inspection device, defect candidate specification program, and recording medium |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2015028438A (en) |
| WO (1) | WO2015015945A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105280512A (en) * | 2015-09-17 | 2016-01-27 | 上海华力微电子有限公司 | Scanning program threshold correction wafer detection method |
| US20180350060A1 (en) * | 2017-05-31 | 2018-12-06 | Keyence Corporation | Image Inspection Apparatus |
| CN117577550A (en) * | 2023-11-15 | 2024-02-20 | 深圳市昇维旭技术有限公司 | Defect analysis methods, devices, readable media and electronic equipment for semiconductor devices |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7507125B2 (en) * | 2021-06-07 | 2024-06-27 | 株式会社 日立産業制御ソリューションズ | INFORMATION PROCESSING APPARATUS FOR INSPECTION APPARATUS, INFORMATION PROCESSING METHOD FOR INSPECTION APPARATUS, AND INSPECTION APPARATUS SYSTEM |
| JP2024080264A (en) * | 2022-12-02 | 2024-06-13 | 株式会社日本製鋼所 | Detection system and method |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0210207A (en) * | 1988-06-29 | 1990-01-16 | Ibiden Co Ltd | Testing apparatus of printed circuit board |
| JPH04106460A (en) * | 1990-08-28 | 1992-04-08 | Toshiba Corp | Detecting method of defect |
| JPH04169807A (en) * | 1990-11-01 | 1992-06-17 | Fuji Xerox Co Ltd | Inspecting apparatus of surface flaw |
| JPH05280959A (en) * | 1992-03-30 | 1993-10-29 | Fuji Photo Film Co Ltd | Defect inspecton device |
| JP2002175520A (en) * | 2000-12-06 | 2002-06-21 | Sharp Corp | Defect detection device, defect detection method, and recording medium for recording defect detection program on substrate surface |
| JP2013134666A (en) * | 2011-12-27 | 2013-07-08 | Dainippon Screen Mfg Co Ltd | Binary image generation device, classification device, binary image generation method, and classification method |
-
2013
- 2013-07-30 JP JP2013157640A patent/JP2015028438A/en active Pending
-
2014
- 2014-06-20 WO PCT/JP2014/066438 patent/WO2015015945A1/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0210207A (en) * | 1988-06-29 | 1990-01-16 | Ibiden Co Ltd | Testing apparatus of printed circuit board |
| JPH04106460A (en) * | 1990-08-28 | 1992-04-08 | Toshiba Corp | Detecting method of defect |
| JPH04169807A (en) * | 1990-11-01 | 1992-06-17 | Fuji Xerox Co Ltd | Inspecting apparatus of surface flaw |
| JPH05280959A (en) * | 1992-03-30 | 1993-10-29 | Fuji Photo Film Co Ltd | Defect inspecton device |
| JP2002175520A (en) * | 2000-12-06 | 2002-06-21 | Sharp Corp | Defect detection device, defect detection method, and recording medium for recording defect detection program on substrate surface |
| JP2013134666A (en) * | 2011-12-27 | 2013-07-08 | Dainippon Screen Mfg Co Ltd | Binary image generation device, classification device, binary image generation method, and classification method |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105280512A (en) * | 2015-09-17 | 2016-01-27 | 上海华力微电子有限公司 | Scanning program threshold correction wafer detection method |
| US20180350060A1 (en) * | 2017-05-31 | 2018-12-06 | Keyence Corporation | Image Inspection Apparatus |
| CN117577550A (en) * | 2023-11-15 | 2024-02-20 | 深圳市昇维旭技术有限公司 | Defect analysis methods, devices, readable media and electronic equipment for semiconductor devices |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2015028438A (en) | 2015-02-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11017259B2 (en) | Defect inspection method, defect inspection device and defect inspection system | |
| CN103185730B (en) | Establishment method of defect classification rule, defect classification and fatal defect judgment method | |
| KR102770815B1 (en) | Detection method and detection system | |
| JP5260183B2 (en) | Defect inspection method and apparatus | |
| US7409081B2 (en) | Apparatus and computer-readable medium for assisting image classification | |
| TWI557650B (en) | System and method for identifying defects in a material | |
| US20140119638A1 (en) | System, method and computer program product to evaluate a semiconductor wafer fabrication process | |
| JP5460023B2 (en) | Wafer pattern inspection method and apparatus | |
| WO2015015945A1 (en) | Defect candidate specification device, defect candidate specification method, defect determination device, defect inspection device, defect candidate specification program, and recording medium | |
| JP2018096908A (en) | Inspection device and inspection method | |
| JP2014119363A (en) | Automatic unevenness detecting device and automatic unevenness detecting method for flat-panel display | |
| WO2014103617A1 (en) | Alignment device, defect inspection device, alignment method, and control program | |
| JP2020085774A (en) | Method for inspecting tube glass, method for learning, and tube glass inspection device | |
| KR102107362B1 (en) | Method for inspecting defects of substrates | |
| JP2013205320A (en) | Inspection condition determination method, inspection method, and inspection device | |
| JP6168834B2 (en) | Optical film defect determination method | |
| JP2004296592A (en) | Defect classification equipment, defect classification method, and program | |
| JP2005164565A (en) | Defect detection method for flat panel light- related plate element in low and high resolution images | |
| JP2006284471A (en) | Pattern inspection method, pattern inspection apparatus, and program for pattern inspection | |
| KR101461418B1 (en) | Method and System for detecting failure in circuit using image information | |
| JP2018091771A (en) | Method for inspection, preliminary image selection device, and inspection system | |
| JP2002267619A (en) | Defect inspection method and device | |
| JP2006145228A (en) | Nonuniformity defect detection method and apparatus | |
| KR101053779B1 (en) | Metal mask inspection method of display means | |
| JP2006189294A (en) | Method and apparatus for inspecting mura defect |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14831276 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14831276 Country of ref document: EP Kind code of ref document: A1 |