WO2015093231A1 - Image processing device - Google Patents
Image processing device Download PDFInfo
- Publication number
- WO2015093231A1 WO2015093231A1 PCT/JP2014/081004 JP2014081004W WO2015093231A1 WO 2015093231 A1 WO2015093231 A1 WO 2015093231A1 JP 2014081004 W JP2014081004 W JP 2014081004W WO 2015093231 A1 WO2015093231 A1 WO 2015093231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foreground
- shadow
- region
- reflection
- feature
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
Definitions
- the present invention relates to an image processing apparatus.
- the present invention particularly relates to a gesture input technique related to an IT apparatus using a general camera.
- Kinect In the video monitoring and gesture input system, it becomes an obstacle if a part that does not have an entity such as a shadow appears as a moving picture.
- Microsoft has already made Kinect, which uses an infrared camera as its gesture input system for its game consoles, famous. This extracts the person by sensing the temperature of the object by the infrared camera. Since the shadow area is projected on the background area, it is lower than the body temperature. For this reason, the shadow area does not react to the infrared camera.
- Kinect cannot be used outdoors.
- a technique for distinguishing and extracting a moving part by a video image from a general monocular camera from a non-moving part is called foreground separation and is used for a surveillance camera or the like.
- foreground separation A technique for distinguishing and extracting a moving part by a video image from a general monocular camera from a non-moving part is called foreground separation and is used for a surveillance camera or the like.
- the foreground object with the foreground to be detected originally or the reflected light from outside the camera view enters the camera view and the reflected light is in the middle If it is sometimes interrupted and fluctuated, it is detected as the foreground. In particular, reflection is remarkable in an environment where a desk lamp is attached. For this reason, in order to perform accurate gesture input, it is necessary to exclude shadows and reflection areas from foreground separation.
- Non-Patent Document 1 uses the intermediate result used for foreground separation for shadow removal.
- the foreground separation used here divides the frame image from the camera into small areas, and determines whether each divided small area is foreground or background. Subsequently, the foreground area including shadows and reflections is excluded.
- an area that does not include the influence of shadows and reflections is referred to as a true foreground area, and normal foreground separation including shadows and reflection areas is distinguished as an intermediate foreground area.
- the method of excluding shadow regions from the intermediate foreground of Non-Patent Document 1 performs intermediate foreground separation based on a spectrum obtained by Walsh orthogonal transform for each small region of an image.
- the variation of the combined amount of the spectrum is expressed using a plurality of Gaussian distributions.
- Such a model for foreground detection using a plurality of Gaussian distributions is called a mixed Gaussian model, and a feature quantity to be input to the model is composed of a plurality of feature quantity elements created by combining spectra.
- the average and variance of each Gaussian distribution, and the weighting factor (hereinafter referred to as the Gaussian distribution coefficient) indicating how often each Gaussian distribution contributes is a small region feature quantity element for each frame.
- a Gaussian distribution with a large weight coefficient is a background Gaussian distribution because there is no movement.
- the foreground Gaussian distribution is a foreground Gaussian distribution with a small weight because the foreground object immediately leaves the area.
- a feature element at the position of the same small area of a new frame is input. If the feature element is included in the background Gaussian distribution updated one frame before, the background is used. If the feature element is included in the foreground Gaussian distribution, the foreground is used.
- the foreground Gaussian distribution and the background Gaussian distribution are determined by arranging the weighting factors in descending order. Of course, there may be cases where the feature elements are not included in the existing Gaussian distribution.
- an initial Gaussian distribution with the average input feature quantity is generated, and a Gaussian distribution with the smallest weight coefficient among the existing Gaussian distributions is modeled.
- this small area is the foreground.
- the expression of being included in the Gaussian distribution means that when the Gaussian distribution has mean ⁇ and variance ⁇ ⁇ 2, the probability of an event following this Gaussian distribution occurring within ⁇ 3 ⁇ around the mean ⁇ is 99.8%. It is coming.
- the symbol ⁇ ⁇ 2 used in the variance represents the square of the standard deviation ⁇ . In general, a section of 2.5 ⁇ around the average is often set as a section included in the Gaussian distribution.
- the feature amount is composed of three elements.
- the luminance signal of the small area is converted into a two-dimensional Walsh spectrum coefficient by a two-dimensional Walsh function.
- the lowest spectral coefficient f (DC) in the vertical and horizontal directions, which is the average brightness of the small area, f (ACV) obtained by weighting and adding multiple low frequency spectral coefficients in the horizontal direction with the lowest order in the horizontal direction, and the lowest in the vertical direction F (ACH) obtained by weighting and adding the low frequency spectrum coefficient in the horizontal direction with the order is used as the feature quantity element.
- a mixed Gaussian model is constructed to perform foreground separation work. If even one feature element becomes the foreground, the small area is set as the foreground small area.
- Walsh conversion is performed because outdoor images and the like enter the field of view of the camera up to a distant view, and contain many high spatial frequencies due to forests and buildings.
- Non-Patent Document 1 uses multi-resolution processing in which the vertical and horizontal sizes of the divided small areas are sequentially doubled and foreground separation is performed again.
- the intermediate foreground separation using the mixed Gaussian model independent processing is performed for each small area, so that the situation where the adjacent small area performs foreground determination with little noise regardless of the adjacent area is prevented.
- the middle foreground separation in the multi-resolution division even if the smallest divided small area is the foreground determination, the intermediate foreground area portion is used only when all the large divided small areas including the small area become the foreground. Stability can be ensured.
- Non-Patent Document 2 A circuit for performing the intermediate foreground separation by quantity is detailed in Non-Patent Document 2. There, both circuits are built into a single FPGA (Field Programmable Gate Array), and even when HDTV video is handled, power consumption is 30mW. A low power consumption indicates a foreground separation method with a small amount of calculation.
- FPGA Field Programmable Gate Array
- WPP Wood transform based Parameter processor
- GTP Gaussian mixture model Thread Processor
- Non-Patent Document 1 The principle of the shadow removal method of Non-Patent Document 1 is to use the background Gaussian distribution used for intermediate foreground separation for shadow removal, and succeeds in reducing the computational complexity by one digit or less compared to the shadow removal of the conventional method. .
- the background region becomes the foreground due to the shadow is considered to be a result of the feature amount element deviating from the inclusion interval of the background Gaussian distribution.
- each element of the feature quantity is obtained by a linear operation, the value of each feature quantity element is uniformly reduced by the shadow.
- the multiplied feature amount element returns to the original inclusion range of the background Gaussian distribution by multiplying the other feature element by the inverse number. If the small area can be determined to be a shadow by this method, true foreground separation is realized by removing the small area from the intermediate foreground area.
- f (DC) represents the average brightness of the region, it always has a large value, and is therefore used as a reference feature amount element from the viewpoint of calculation accuracy.
- FIG. 4 includes sub graphs of an f (DC) element graph 401 in the foreground, another feature element graph 402, and a shadow verification graph 403.
- the horizontal axis indicates the size within the dynamic range of the feature quantity element, and the value increases toward the right.
- the vertical axis indicates the probability of occurrence.
- the mark raised above the curve is the background Gaussian distribution that should contain f (DC).
- a downward solid line arrow written in the subgraph indicates the value of the feature quantity element along the horizontal axis.
- f (AC) described in the graph 402 and the graph 403 is applicable to both f (ACH) and f (ACV), and thus is represented by f (AC) as a representative of both.
- the f (DC) feature quantity element graph 401 in the foreground shows a case where the foreground is caused by a shadow, and shows a background Gaussian distribution that should include the feature quantity f (DC) element and f (DC) originally.
- f (DC) deviates from this background Gaussian distribution due to the influence of shadows. For this reason, it becomes a foreground in intermediate foreground separation.
- the average ⁇ DC of the Gaussian distribution divided by f (DC) is the reciprocal of the attenuation, and this is called the correction coefficient A.
- the feature element f (DC) is smaller than the inclusion area of the background Gaussian distribution.
- a graph 402 is an example in which a feature element f (AC) different from f (DC) is attenuated by the influence of a shadow and becomes a foreground. If this small area is a shadow, f (AC) should be attenuated at the same rate as f (DC).
- the shadow verification graph 403 is a principle diagram for verifying whether it is a shadow area. f (AC) is indicated by a downward dotted arrow.
- This shadow removal method can use the feature element and the background Gaussian distribution already calculated by the intermediate foreground separation. In other words, if only the background distribution whose feature quantity element f (DC) is smaller than the average of the background Gaussian distribution is checked, the shadow is verified in the order of graphs 402 and 403 for this shadow area candidate. Good.
- Non-Patent Document 1 in order to perform foreground separation in the corridor, processing with a heavy calculation amount called Retinex image enhancement is introduced as preprocessing to enhance high spectral components. However, the amount of calculation more than foreground separation is required only by this image enhancement. The effect of Non-Patent Document 1 that can greatly reduce the amount of calculation by shadow removal is halved by the introduction of this Retinex image processing.
- FIG. 5 shows an example of a photograph in which the method of Non-Patent Document 1 is performed by transform region foreground separation without Retinex image enhancement.
- FIG. 5 is composed of three identical frame photographs, namely, an original image photograph 501, a conversion area intermediate foreground separation photograph 502, and a conversion area shadow removal photograph 503.
- the original image 501 since one cut of the fingertip video is binarized, the fingertip cannot be seen but the background can be seen.
- the transformation region intermediate foreground separation photograph 502 is a photograph obtained by performing intermediate foreground separation using a mixed Gaussian model in the transformation region
- the transformation region shadow removal photograph 503 is an output photograph obtained by removing Retinex image enhancement in Non-Patent Document 1.
- the white part is the intermediate foreground separation area or the true foreground separation area from which the shadow is removed
- the black part is the background. Even if the foreground separation has been performed correctly as in the folded-angle conversion area intermediate foreground separation photograph 502, only the outline portion remains as in the conversion area shadow removal photograph 503 when shadow removal is performed. In other words, another measure is required to omit Retinex image enhancement.
- the rooms of ordinary houses are not very large. Such places have highly reflective furniture such as TVs and cupboards.
- a lighting device such as a room light
- the reflected light from the glass of the cupboard enters the camera field of view.
- a camera is worn.
- the user's body dynamically blocks the reflected light, a sudden change in the reflection area occurs and becomes the foreground.
- reflections are difficult to see with human eyesight, and can only be seen after intermediate foreground separation.
- the present invention provides an apparatus for performing true foreground separation in an indoor / outdoor environment from which shadows and reflection areas are removed by simple post-processing.
- the present invention provides the following inventions in order to solve the above problems.
- the input frame from the camera is divided into small areas, and the color average component signal obtained by calculating the average of the color components in the small area is used as a feature quantity element, and it is matched to the probabilistic variation of each feature quantity element.
- Extracting an intermediate foreground small region by comparing it with a feature value while modeling the small region with one or more typical probability distributions, and an intermediate value extracted by the mean and variance of the feature value element and the background probability distribution An image processing apparatus characterized by extracting a true foreground area that does not include a foreground part due to a shadow or reflection, and comprises a step of obtaining a true foreground area by identifying and eliminating a shadow or reflection area in the foreground area .
- the foreground separation by the mixed Gaussian model becomes prominent when using features such as pixel units or 2x2 pixels in high-definition video, but this method uses color in units of small areas of 4x4 pixels or more. Run using the average value of the signal. For this reason, although it depends on the size of the region, the influence of noise or the like is reduced and the stability is increased. A typical probability distribution may be a Laplace distribution. The reason why the amount of calculation is reduced is that the calculation of the image enhancement processing performed as the pre-processing by the method of Non-Patent Document 1 is completely eliminated, and the calculation of the transform domain spectrum is unnecessary.
- the probability distribution of the variation is approximated by multiple typical probability distributions, and distinguished from the typical probability distribution modeling the foreground and the typical probability distribution modeling the background.
- Non-Patent Document 1 an efficient outdoor shadow removal method dealt with in Non-Patent Document 1 is extended so that the feature amount element of the small region is the color average of the small region, and shadow removal and reflection removal can be executed. is there.
- This principle is based on the principle explanatory diagram 6 for detecting shadows and reflections shown below when a typical probability distribution is a Gaussian distribution.
- FIG. 6 shows a shadow area graph 601 of a reference feature element, another feature element graph 602 of a shadow area, a shadow verification graph 603, a reflection area graph 604 of a reference feature element, It consists of six sub-graphs, that is, another feature element graph 605 and a reflection verification graph 606.
- the horizontal axis, the vertical axis, the raised curve, and the arrow have the same meaning as in the principle diagram 4 of shadow area detection. Explanation of the principle of detecting shadows and reflections
- the other feature quantity element chart 602 of the shadow area, and the shadow verification time chart 603 are the color average of the feature quantity elements, and the principle of shadow area detection
- the shadow area graph 401, the other feature amount element graph 402, and the shadow verification graph 403 of the f (DC) element in FIG. 4 are changed to color average feature amount elements.
- the principle f of the shadow region detection FIG. 4 plays an important role in the feature value f (DC)
- the principle diagram 6 for detecting shadows and reflections shows f (( N) plays the role of f (DC).
- a feature quantity element having a certain large value may be used as the reference element.
- the average of the typical background Gaussian distribution is changed to ⁇ DC to obtain the average ⁇ N of the background Gaussian distribution of the reference feature quantity element. That is, the correction coefficient A, which is the reciprocal of the amount of attenuation in the principle of the shadow area in FIG. 4, was a value obtained by dividing ⁇ DC by f (DC), but when using a color average feature element, ⁇ N is expressed by f (N). Instead of the divided value, the rest of the operation is the same as the principle 4 of the shadow region, and thus the description regarding the shadow removal is omitted.
- the correction coefficient A in the amplification of the reference feature quantity element is a correction coefficient obtained by dividing ⁇ N by f (N) as in the case of the shadow, and the calculation itself is the same as in the case of the shadow removal.
- f (N) the correction coefficient obtained by dividing ⁇ N by f (N) as in the case of the shadow
- the calculation itself is the same as in the case of the shadow removal.
- the intermediate foreground region due to reflection is originally included in the background Gaussian distribution in the graph 604, but f (N) is included in the background Gaussian distribution due to the influence of reflected light. This is because it becomes brighter.
- the reflection verification graph 606 shows a case where the feature amount element of the other feature amount element graph 605 in the reflection region is multiplied by the correction coefficient A to return to the inclusion region of the background distribution. In this case, it is determined as the reflection region.
- A was used as the correction factor
- another calculation method that follows mathematically equivalent processing finds the amount of attenuation by dividing the reference feature element by the average of the back Gaussian distribution. In the case of, the amount of amplification is obtained, in the case of shadow, the average of the background Gaussian distribution is multiplied by the amount of attenuation and compared with the feature element, and in the case of reflection, the average of the background Gaussian distribution is multiplied by the amount of amplification and compared with the feature quantity.
- the frame image into small areas that do not overlap first, then double the size and width of the small areas arranged in a mesh, and then cover the screen with an enlarged small area that contains four previously divided small areas.
- Performing multiple division by repeating the division for creating the enlarged small region a plurality of times, performing intermediate foreground separation on each of the multiple divided small regions, and shadow / reflection from the intermediate foreground separation of the small region dividing unit
- a step of removing the region to make a foreground region without shadow / reflection, and a minimum foreground region without shadow / reflection, and all the enlarged regions including the minimum foreground region without shadow / reflection are all foreground regions without shadow / reflection
- the final true foreground separation is performed by setting an intermediate foreground small area as a true foreground small area.
- the apparatus based on this method uses the feature amount as an average base of colors, it is necessary to increase the stability in consideration of the use up to outdoor use.
- a phenomenon that is likely to occur in high-precision image processing such as high-definition images if the foreground is separated only in a small foreground area, an intermediate foreground is likely to occur due to erroneous determination due to noise. Suppressing such a result is the determination of the intermediate foreground of the enlarged region divided by the multi-resolution.
- This modifies the multi-resolution processing that uses the intermediate foreground result of the enlarged region to suppress even if the small region is the authentic foreground result when the enlarged region is not the intermediate foreground.
- Shadows and reflections are verified under the condition that uniform attenuation and amplification are performed in a subdivided region. For this reason, it is easier to keep the assumption that each of the feature elements changes uniformly when shadows and reflections are removed only when the divided region is small. For this reason, shadows and reflection removal are performed only in small divided areas. When a small divided area becomes a true background by verification of shadows and reflections, it is sufficient to perform intermediate foreground determination with a larger division.
- the reference feature amount element obtained by the method of obtaining the reference feature amount element in the above 3 is larger than the average of the background probability distributions. Only a means for obtaining a correction coefficient, means for multiplying a feature quantity element other than the reference feature quantity by a correction coefficient, and eliminating the intermediate foreground small area in which the multiplied feature quantity element is included in the background probability distribution of the feature quantity element.
- This method corresponds to the case where the typical probability distribution is a Gaussian distribution and the reflection area is to be extracted more stably than the shadow area, and the shadow removal is not performed in a certain small area section but the reflection removal is executed. If reflection is dominant, shadow removal may not be used.
- processing is performed using only the background Gaussian distribution in which the value of the reference feature quantity element is higher than the average of the background Gaussian distribution. The principle of the processing using the color feature amount is explained. Since only the reflection removal process shown by the reflection region graph 604 of the reference element, the other feature amount element graph 605 of the reflection region, and the reflection verification graph 606 in FIG. Can be halved.
- This method corresponds to the case where the typical probability distribution is a Gaussian distribution and the shadow area is to be extracted more stably than the reflection area.
- the shadow removal is not performed in a certain small area processing, but only the shadow removal is to be executed. Or, if shadows are dominant, reflection removal may not be used.
- processing is performed using only the background Gaussian distribution in which the value of the reference feature quantity element is lower than the average of the background Gaussian distribution.
- the processing method is the principle explanation using color feature amount. Since only the shadow removal process shown in the shadow region graph 601 of the reference element, the other feature amount component graph 602 of the shadow region, and the shadow verification graph 603 in FIG. Can be halved.
- the image processing apparatus obtains a true foreground area by verifying an intermediate foreground area caused by a shadow or background using only typical background probability distributions of the same rank.
- the typical probability distribution is a Gaussian distribution
- the background Gaussian distribution is deviated from. There is no information. For this reason, verification of shadows and reflections is generally omnipresent between all the background Gaussian distributions of the reference feature element and the non-reference feature element.
- each feature amount element is determined in the order of the weighting coefficient of the Gaussian distribution. The weighting coefficient becomes larger as the Gaussian distribution is used more often.
- the background gauss of the reference feature quantity element and the other feature quantity elements are arranged in the order of weighting coefficients, the corresponding Gaussian distributions are often background Gaussian distributions without shadows.
- shadows and reflections are detected only when the order of the weighting factors of the background Gaussian of the reference feature elements used for verification and the order of the weighting coefficients of the background Gaussian distribution of the non-reference feature elements are matched. Simplify the process using Fig. 6.
- genuine foreground separation that does not include a shadow and a reflection area can be realized as post-processing of intermediate foreground separation using an intermediate result of intermediate foreground separation.
- FIG. 1 shows an example of a moving image system according to an embodiment.
- the moving image system of the present invention includes a camera 10, a multiple division feature amount generation unit 20, a mixed Gaussian intermediate foreground processing unit 30, a shadow / reflection area removal unit 40, and a genuine foreground image generation unit 50.
- a signal from the camera 10 is input to the multiple division feature generation unit 20 for each of the R, G, and B color components, and the frame image for each color component is divided into 4 ⁇ 4 pixel small regions that do not overlap and R for each region.
- G, B The color component average is obtained as f (R), f (G), f (B), and these are output as feature quantity elements.
- the multiple division feature amount generation unit 20 integrates the odd and even sub-regions of the rows and columns formed by the processed sub-region of 4 ⁇ 4 pixels into an enlarged sub-region of 8 ⁇ 8 pixels. The operation is performed to output the average color as a feature quantity element.
- the divided area is enlarged and, for example, color feature amount elements of each small area divided from 4 ⁇ 4 pixels to 64 ⁇ 64 pixel areas are generated and output.
- the three feature quantity elements obtained for each region are sequentially sent to the mixed Gaussian foreground processing unit 30. Details of the specific configuration of the multi-resolution division feature quantity generation unit 20 can be easily configured using the Walsh Parameter Processor that discusses the LSI processor architecture of the multi-resolution feature quantity based on the mixed Gaussian model of Non-Patent Document 2. It will be described later.
- the feature quantity from the multiple division feature quantity generation unit 20 is subjected to intermediate foreground separation by a mixed Gaussian model for each feature quantity element in the intermediate foreground processing unit 30.
- the intermediate foreground processing unit 30 uses the Gaussian distribution coefficient of the mixed Gaussian model prepared in the previous frame for this small region processing. Perform foreground separation and adaptively update each Gaussian distribution coefficient for the next frame.
- Gauss Thread Processor (GTP) of Non-Patent Document 2 can be used as it is.
- the shadow / reflection area removing unit 40 removes the intermediate foreground area due to shadows and reflections using the feature quantity for each small area, the intermediate foreground flag, and the Gaussian distribution coefficient of the background Gaussian distribution input from the intermediate foreground processing unit 30. Prior to removal, the contents of the intermediate foreground flag are first transferred to the authentic foreground flag. If the small area is caused by shadow or reflection, the authentic foreground flag is lowered by the operation described below. This eliminates it from the intermediate foreground area.
- the largest feature quantity element among the feature quantities of the small area composed of color average elements is used as a reference element. This is to prevent the accuracy of division for calculating the correction coefficient A from deteriorating.
- the principle according to FIG. 6 for detecting shadows and reflections using this reference element is performed. However, if a small region becomes the foreground in the middle foreground separation, it is clear that the reference element has deviated from the background Gaussian distribution region, but it is clear from which background Gaussian distribution in the mixed Gaussian model for the reference element it has moved. Absent. For this reason, a check of shadows and reflections is performed with respect to a plurality of background Gaussian distributions.
- the correction coefficient A is determined by the average of the first background Gaussian distribution of the reference element and the current reference element.
- feature amount elements other than the reference element are selected one by one, and it is examined whether or not the result of multiplying it by the correction coefficient A is included in the background Gaussian distribution corresponding to the element. If it is included in the background Gauss, the true foreground flag is lowered and the process proceeds to the true foreground image generation unit 50 because the small area is included in the shadow or reflection part. That is, since the true foreground flag is reset, the small area has been part of the intermediate foreground until then, but is returned to the background.
- the correction factor A is selected again by selecting the next Gaussian distribution for the reference feature amount and checked again.
- the number of Gaussian distributions corresponding to each element is typically about 3, so it is not so heavy processing.
- the three feature elements should be attenuated or amplified uniformly.
- Non-Patent Document 1 since the average of the background Gaussian distribution is used to obtain the value of the correction coefficient A, it is difficult to obtain an accurate correction value for the correction coefficient A due to actual shadows and reflections. For this reason, it is assumed that one of the two feature quantity elements other than the reference element only needs to satisfy the shadow / reflection condition. This method is also adopted in the present invention. Details of the shadow / reflection area removing unit 40 will be described later in detail using an operation flowchart.
- the genuine foreground image generation unit 50 receives one genuine foreground flag for each of the small regions divided and divided from the shadow / reflection region removal unit 40.
- the received authentic foreground flag indicates whether or not the corresponding small area is an authentic foreground. Further, it is known which position in the frame image this small region corresponds to.
- the process proceeds to the 8 ⁇ 8 pixel small region processing, and then proceeds to the maximum pixel region sequentially.
- 8 ⁇ 8 1s or 0s are prepared as data according to the true foreground flag. Since the true foreground image frame synthesized from all the results of 4x4 pixels has already been created on the image memory, the prepared 8x8 data is reflected in the corresponding position of this frame image in the following manner.
- 8x8 1s are prepared, and when it is not set, 8x8 0s are prepared, and each 4x4 pixel data at the corresponding small region of 8x8 pixels in the image frame memory and each Take the logical product (AND) and store it in the same location.
- 8 ⁇ 8 data are all 0, the four 4 ⁇ 4 pixel regions at the corresponding positions are zero.
- 8x8 data is 1, the 1/0 state of four 4x4 areas remains as it is.
- 0 or 1 corresponding to the small area corresponding to the true foreground flag is sequentially prepared at the position of the true foreground image frame corresponding to the true foreground flag received from the shadow / reflection area removing unit 40, and the true foreground is obtained by logical product.
- the operation of changing and returning the value of the image frame area is repeated.
- a complete true foreground image is completed. In other words, the location of the 4x4 region where 1 appears in this frame survives only when all the pixels from the 8x8 pixel region including the location to the maximum pixel region are all 1s. Therefore, a highly stable authentic foreground image frame is completed.
- FIG. 2 shows an embodiment of the multiple division feature value generation unit 20.
- the multiple division feature value generation unit 20 includes an input terminal set 200 and a WPP sequence 210 from the camera 10.
- the input terminal set 200 includes an R component signal input terminal 201, a G component signal input terminal 202, and a B component signal input terminal 203
- the WPP column 210 includes three WPPs 211, 21WPP212, and WPP213.
- WPP211, WPP212, and WPP213 are multi-resolution foreground separation LSI-based processors WPP (Walsh Parameter Processor) by the mixed Gaussian model of Non-Patent Document 2.
- R component signal, G component signal, B component signal from camera 10 are input to R component signal input terminal 201, G component signal input terminal 202, B component signal input terminal 203, and WPP211, WPP212 and Supplied to WPP213.
- the lowest spectral coefficient by Walsh transform is output to the f (DC) output terminal of each WPP for each of the multiple divided small regions from the 4 ⁇ 4 pixel region to the maximum pixel region. That is, average component signals of R color component, G color component, and B color component are output.
- f (DC) of WPP 211 is f (R)
- f (DC) of WPP 212 is f (G)
- f (DC) of WPP 213 is f (B). Therefore, the outputs from WPP 211, WPP 212, and WPP 213 sequentially output feature quantity elements for each of the small areas divided by the multi-resolution, and sequentially convey these as feature quantities to the intermediate foreground processing unit 30.
- FIG. 3 is an operation flowchart of the shadow / reflection area removing unit 40.
- the operation flowchart of FIG. 3 includes an input data arrangement block 301, a true foreground flag inspection block 302, a shadow / reflection removal execution inspection block 303, a reference feature element determination block 304, a shadow / reflection verification element setting block 305, and a shadow / reflection verification standard.
- Element exclusion block 306 reference Gaussian distribution start block 307, reference correction coefficient block 308, non-reference element Gaussian distribution verification start block 309, shadow / reflection candidate verification block 310, shadow / reflection determination block 311, non-reference element Gaussian distribution verification An end inspection block 312, a reference Gaussian distribution inspection end inspection block 313, a feature element change block 314, and a foreground separation element processing end inspection block 315 are included. It is assumed that a mixed Gaussian model consisting of M Gaussian distributions is used for each feature element. Among them, the background Gaussian distribution has PM reference feature elements and non-reference feature elements. Assumes QM. This flowchart operates in accordance with the principle shown in FIG. 6 for detecting shadows and reflections described above as described below.
- data collection from the mixed Gaussian foreground processing unit 30 is performed in the input data reduction block 301.
- the collected data is the background Gaussian distribution coefficient before correction for each small area, three feature elements, and an intermediate foreground flag. Further, the contents of the intermediate foreground flag are moved to the genuine foreground flag. This is to prevent the processing with the shadow / reflection area removing unit 40 from interfering in the subsequent processing.
- the genuine foreground flag check block 302 checks whether the true foreground flag is set. If it is not set, it is a background and is not subject to shadow / reflection removal. Therefore, in this case, the process directly goes to the end of this flowchart. If the true foreground flag is set, the process proceeds to the shadow / reflection removal execution inspection block 303 in order to detect shadow / reflection.
- shadow / reflection removal execution inspection block 303 shadow / reflection removal is not performed when the small area division is other than a small area of 4 ⁇ 4 pixels to 8 ⁇ 8 pixels.
- the symbol written in the block means that the size of the small area is a, and that a is included in SES (Selected Evaluation Sizeblock: 4 ⁇ 4 pixels or 8 ⁇ 8 pixels). For this reason, in a divided area larger than 8 ⁇ 8 pixels, the operation flow of the shadow / reflection area removing unit described below is bypassed and the process ends. Therefore, the process proceeds to the reference feature quantity element determination block 304 only when the small area size belongs to SES.
- a foreground separation feature amount element that is a reference in determining shadow / reflection removal is determined. For this reason, the foreground separation feature quantity element having the maximum value is selected.
- f (R), f (G), f (B) are numbered in this order to be f (1), f (2), f (3). Will be shown.
- the value of the maximum feature amount element is detected by the maximum value detection function Max and is set to f (N). That is, the element number to which the maximum element belongs is described as N.
- the subsequent shadow / reflection verification element setting block 305 feature elements to be combined with the reference element for inspecting the shadow / reflection area are sequentially determined, and the following processing is performed by loop processing. Three loops are sequentially examined for the feature quantity elements. The process proceeds with the feature quantity element set here as the kth element.
- the process proceeds to the shadow / reflection verification reference element exclusion block 306.
- the shadow / reflection process is performed using one of the reference elements and the other foreground separation feature elements. Therefore, it is necessary to select a feature element different from the reference element determined in the shadow / reflection verification element setting block 305. Therefore, it is checked whether or not the feature quantity element set in the shadow / reflection verification element setting block 305 is a reference element. If the same feature quantity element as the reference element is set, the process proceeds to the feature quantity element change block 314. Prepare the (k + 1) th feature element.
- the process proceeds to the reference Gaussian distribution investigation start block 307.
- a loop setting is performed so that the background Gaussian distribution belonging to the reference element is sequentially called to obtain a correction coefficient by a loop process.
- the reference element is assumed to have PM background Gaussian distributions, and an operation for deciding the background Gaussian distribution that should originally include the reference feature quantity element is examined by loop processing. In the following, it is assumed that an inspection is performed using the current p-th Gaussian distribution.
- next non-reference element Gaussian distribution verification start block 309 QM elements are not included in the feature elements that are not the reference elements determined by the shadow / reflection verification element setting block 305 using the correction coefficient obtained in the reference correction coefficient block 308.
- the background Gaussian distribution number q is set for executing verification for each of the background Gaussian distributions by loop processing.
- this element is obtained by multiplying the non-reference feature quantity element selected in the shadow / reflection verification element setting block 305 by the correction coefficient A (p) obtained in the reference correction coefficient block 308. It is determined whether it is included in the qth background Gaussian distribution to which it belongs.
- the process proceeds to the shadow / reflection determination block 311 and the true foreground flag is set. Since this operation is sufficient to determine that one of the verification processes using two feature elements other than the reference element to be inspected by the shadow / reflection test is a shadow / reflection, the shadow / reflection decision block As soon as the processing of 311 is completed, the process proceeds to the end of this flowchart.
- the process proceeds to the non-standard Gaussian distribution verification end inspection block 312. If there is a remaining background Gaussian distribution, the (q + 1) th The non-reference element Gaussian distribution verification end check block 312 returns to the non-reference element Gaussian distribution verification start block 309, and the shadow / reflection area check loop processing starts again.
- the process proceeds to the reference Gaussian distribution survey end inspection block 313.
- the reference gaussian distribution end inspection block 313 can determine that there is a next alternative to the background gaussian distribution of the reference element, that is, if the background gaussian distribution of the pth reference element is less than or equal to PM, the reference gaussian distribution Returning to the investigation start block 307, the (p + 1) th background Gaussian distribution is set, and the shadow / reflection area check loop processing is started. On the other hand, if all the background Gaussian distributions of the reference element have been checked in the reference Gaussian distribution end inspection block 313, the shadow / reflection area could not be checked in the Gaussian distribution of this reference element. The process proceeds to a foreground separation feature quantity element change block 314 for changing the process, advances k to select another feature quantity element, and proceeds to the foreground separation element processing end check block 315.
- the process returns to the shadow / verification element setting block 305 to perform an operation for finding a shadow / reflection area in the same manner as before for the new foreground separation feature quantity element.
- the foreground separation element processing end check block 315 is passed and the operation according to the operation flowchart is ended. That is, in this case, the genuine foreground flag remains standing, meaning that it was not a shadow or reflection. Thus, the operation flowchart of the shadow / reflection area removing unit 40 is completed.
- a true foreground area from which shadows and reflection areas are removed indoors can be extracted, and retinex image enhancement, which has been conventionally required, can be omitted.
- the amount of operations such as fingertip gesture input is drastically reduced, and an input system for a wearable terminal with low power consumption can be realized.
- the flowchart of FIG. 3 detects the reflection area and the shadow area at the same time, and deletes such an area from the intermediate foreground area. However, if only the reflection area is to be detected, the reference Gaussian distribution survey start block 307 is used. When the average of the reference Gaussian distribution selected in step (b) is larger than the value of the reference element, a condition for proceeding immediately to the reference Gaussian distribution survey end inspection block 313 may be set. By doing so, it is possible to remove only the reflection region, so that the calculation amount can be reduced to about 1 ⁇ 2.
- the condition to proceed immediately to the reference Gaussian distribution check end inspection block 313 is set. What is necessary is just to provide. In this way, only the shadow area is removed, so that the amount of calculation can be reduced to about 1/2.
- the corresponding background Gaussian distribution may be considered. However, it is only when the weighting factors of all the background Gaussian distributions are sufficiently large. If this condition is satisfied, the brute force method can be avoided.
- the specific correction of the flowchart of FIG. 3 in this case eliminates the loop processing composed of the non-standard element Gaussian distribution verification block 309 and the non-standard element Gaussian distribution verification end block 312, This can be realized by using the p-th non-standard element Gaussian distribution determined by the standard feature quantity element determination block 304 instead of the q-th non-standard element Gaussian distribution given by The method implemented in this way is also part of the present invention.
- FIG. 3 An example of processing according to the flowchart of FIG. 3 is shown in FIG.
- This photo book is composed of a photograph 701 obtained by binarizing one cut of the input color video, an intermediate foreground separation result photograph 702 using a multi-resolution color average block feature, a shadow area photograph 703, and a genuine foreground separation photograph 704.
- shadow processing and reflection processing are performed only in 4x4 pixel blocks.
- Photo 701 which is a binarized video picture, shows shadows but not reflections.
- shadows and reflections are also separated as an intermediate foreground area under the fingertip and arm.
- the result of extracting only the shadow area using the color average feature amount is the photograph 703, and the shadow area that is visible and the linear shadow area are found at the lower edge of the arm.
- the triangular reflection area does not disappear.
- the intermediate foreground separation result is processed using the operation flowchart of the shadow / reflection area removal unit shown in FIG. 3, a photograph 704 is obtained as the genuine intermediate foreground separation result. That is, the triangular reflection region can be removed. By the way, this triangular reflection was from a smartphone placed on a desk.
- a true foreground separation result that does not include shadows and reflections is obtained with a calculation amount far below 10% of the calculation amount of Retinex image enhancement required for shadow removal of Non-Patent Document 1.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
[Problem] There are motion video processing devices whereby action input of a wearable ITC terminal is carried out using an ordinary camera. Use of foreground segmentation which extracts moving objects from a video results in misidentification of gesture inputs from shadows or light reflections. No simple method exists for avoiding the shadows or reflections which frequently occur with indoor use. [Solution] To carry out foreground segmentation excluding shadows or reflections indoors or outdoors, foreground segmentation is carried out using a method having a plurality of typical probability distributions, and using average color feature values of each region of a subdivided image as feature values used in foreground/background determinations. Provided is a simple method for removal of the shadows or reflections by elimination based on the type of the typical probability distributions and the elements of the feature values.
Description
本発明は画像処理装置に関する。本発明は特に、一般のカメラを用いたIT装置に関するジェスチャー入力技術に属する。
The present invention relates to an image processing apparatus. The present invention particularly relates to a gesture input technique related to an IT apparatus using a general camera.
映像による監視やジェスチャー入力システムでは影などの実体がない部分が動きのある映像として現れると障害になる。この分野では、すでにマイクロソフト社は自社のゲーム機のジェスチャー入力システムとして赤外線カメラを用いたKinectを発売しており、有名になっている。これは赤外線カメラによる対象物の温度を感じて人物を抽出する。影領域などは背景領域に投射されるため、体温より低い。このため、影領域は赤外線カメラには反応しない。ただし、熱源や赤外線の多い場所での使用は考慮されていない。このため、Kinectは屋外では使用できない。さらに、屋内でも、熱源がある台所やペット動物が室内にいる場合は使いづらい。
In the video monitoring and gesture input system, it becomes an obstacle if a part that does not have an entity such as a shadow appears as a moving picture. In this field, Microsoft has already made Kinect, which uses an infrared camera as its gesture input system for its game consoles, famous. This extracts the person by sensing the temperature of the object by the infrared camera. Since the shadow area is projected on the background area, it is lower than the body temperature. For this reason, the shadow area does not react to the infrared camera. However, use in places with a lot of heat sources or infrared rays is not considered. For this reason, Kinect cannot be used outdoors. In addition, it is difficult to use indoors if there is a kitchen or pet animal with a heat source indoors. *
一般の単眼カメラからの映像による動きのある部分を動かない部分から区別して抽出する技術は前景分離と言われ、監視カメラなどに使われている。しかし、映像中に動きのあるものは本来検出したい前景とともに、前景物体により背景に投影された影領域がある場合や、カメラ視野外からの反射光がカメラ視野に入り、かつ、反射光が途中で時々遮られて変動すると、前景として検出される。特に反射に関しては、電気スタンドをつけるような環境で顕著になる。このため、正確なジェスチャー入力を行うには前景分離から影や反射の領域を排除する必要がある。このような影や反射の影響を除去する方法は、前景分離と独立した画像処理技術として扱うことが多い。ただし、前景分離も影除去および反射除去も多大な演算量が必要になるのが一般的である。このため、多大な演算量に起因して装置の発熱量も大きく、ウェアラブル端末などに活用するには困難が伴う。
A technique for distinguishing and extracting a moving part by a video image from a general monocular camera from a non-moving part is called foreground separation and is used for a surveillance camera or the like. However, if there is a motion in the image, there is a shadow area projected on the background by the foreground object with the foreground to be detected originally, or the reflected light from outside the camera view enters the camera view and the reflected light is in the middle If it is sometimes interrupted and fluctuated, it is detected as the foreground. In particular, reflection is remarkable in an environment where a desk lamp is attached. For this reason, in order to perform accurate gesture input, it is necessary to exclude shadows and reflection areas from foreground separation. Such a method for removing the influence of shadows and reflections is often handled as an image processing technique independent of foreground separation. However, foreground separation, shadow removal, and reflection removal generally require a large amount of computation. For this reason, the calorific value of the apparatus is large due to a large amount of calculation, and it is difficult to utilize it for a wearable terminal or the like.
しかし、前景分離に用いるパラメータを有効活用することで影除去の演算量を大幅に軽減する方法が近年登場している。この方法の詳細は非特許文献1に詳しい。この方法は前景分離に用いる途中結果を影除去に活用する。ここで用いる前景分離はカメラからのフレーム画像を小さな領域に分割し、この分割した小領域毎に前景か背景かを判断する。続いて、影や反射を含んだ前景領域を除外する。以下、影や反射の影響を含まない領域を真正前景領域と呼び、影や反射の領域を含んだ通常の前景分離を中間前景領域として区別する。
However, in recent years, a method has appeared that significantly reduces the amount of calculation for shadow removal by effectively using parameters used for foreground separation. Details of this method are described in Non-Patent Document 1. This method uses the intermediate result used for foreground separation for shadow removal. The foreground separation used here divides the frame image from the camera into small areas, and determines whether each divided small area is foreground or background. Subsequently, the foreground area including shadows and reflections is excluded. Hereinafter, an area that does not include the influence of shadows and reflections is referred to as a true foreground area, and normal foreground separation including shadows and reflection areas is distinguished as an intermediate foreground area.
非特許文献1の中間前景から影領域を排除する方法は画像の小領域毎にWalsh直交変換して得られるスペクトルをベースとした中間前景分離を行う。このスペクトルを組み合わせた量の変動を複数のガウス分布を用いて表わす。このような複数のガウス分布を用いた前景検出のためのモデルを混合ガウスモデルと呼び、モデルへの入力とする特徴量はスペクトルの組み合わせによって作る複数個の特徴量要素から構成する。また、個々のガウス分布の平均と分散、および、どの程度の頻度で各々のガウス分布が貢献しているかを示す重み係数(以下これらをガウス分布係数と呼ぶ)をフレーム毎の小領域特徴量要素の値に応じて適応的に修正する。大きな重み係数を持つガウス分布は動きがないため背景ガウス分布となる。一方、前景となるガウス分布は前景物体がすぐにその領域から離れるため、小さい重みを持ち前景ガウス分布となる。新しいフレームの同じ小領域の位置における特徴量要素が入力され、その特徴量要素が1フレーム前に更新された背景ガウス分布に包含されたら背景、前景ガウス分布に包含されたら前景とする。また、前景ガウス分布と背景ガウス分布の決定は重み係数を大きいもの順に並べて決定する。当然、特徴量要素が既存ガウス分布に含まれない場合もあり、この場合は入力特徴量を平均とした初期ガウス分布を生成し、既存ガウス分布の中で最も小さい重み係数を持つガウス分布をモデルから除外する。この場合はこの小領域は前景である。ここでガウス分布に包含されるという表現は、ガウス分布が平均μと分散σ^2を持つ時、このガウス分布に従う事象は平均μの周りの±3σ以内に起こる確率が99.8%となることから来ている。分散で用いた記号σ^2とは標準偏差σの2乗を表す。一般には平均の周りの2.5σの区間をガウス分布に含まれる区間とすることが多い。
The method of excluding shadow regions from the intermediate foreground of Non-Patent Document 1 performs intermediate foreground separation based on a spectrum obtained by Walsh orthogonal transform for each small region of an image. The variation of the combined amount of the spectrum is expressed using a plurality of Gaussian distributions. Such a model for foreground detection using a plurality of Gaussian distributions is called a mixed Gaussian model, and a feature quantity to be input to the model is composed of a plurality of feature quantity elements created by combining spectra. In addition, the average and variance of each Gaussian distribution, and the weighting factor (hereinafter referred to as the Gaussian distribution coefficient) indicating how often each Gaussian distribution contributes, is a small region feature quantity element for each frame. It is corrected adaptively according to the value of. A Gaussian distribution with a large weight coefficient is a background Gaussian distribution because there is no movement. On the other hand, the foreground Gaussian distribution is a foreground Gaussian distribution with a small weight because the foreground object immediately leaves the area. A feature element at the position of the same small area of a new frame is input. If the feature element is included in the background Gaussian distribution updated one frame before, the background is used. If the feature element is included in the foreground Gaussian distribution, the foreground is used. The foreground Gaussian distribution and the background Gaussian distribution are determined by arranging the weighting factors in descending order. Of course, there may be cases where the feature elements are not included in the existing Gaussian distribution. In this case, an initial Gaussian distribution with the average input feature quantity is generated, and a Gaussian distribution with the smallest weight coefficient among the existing Gaussian distributions is modeled. Exclude from In this case, this small area is the foreground. Here, the expression of being included in the Gaussian distribution means that when the Gaussian distribution has mean μ and variance σ ^ 2, the probability of an event following this Gaussian distribution occurring within ± 3σ around the mean μ is 99.8%. It is coming. The symbol σ ^ 2 used in the variance represents the square of the standard deviation σ. In general, a section of 2.5σ around the average is often set as a section included in the Gaussian distribution.
非特許文献1の方法では特徴量は3個の要素から構成される。小領域の輝度信号をまず2次元Walsh関数により、2次元Walshスペクトル係数に変換する。小領域の平均の明るさとなる縦横方向の最低スペクトル係数f(DC)と、横方向は最低次数で縦方向の複数の低域スペクトル係数を重みづけ加算したf(ACV)、および縦方向は最低次数で横方向の低域スペクトル係数を重みづけ加算したf(ACH)を特徴量要素として用いる。この各々に対して混合ガウスモデルを構築して前景分離作業を行う。特徴量要素が1個でも前景となるとその小領域は前景小領域とする。Walsh変換するのは屋外映像などは遥かな遠景までカメラ視野に入るため、林やビル群などに起因する高い空間周波数を多く含むためである。
In the method of Non-Patent Document 1, the feature amount is composed of three elements. First, the luminance signal of the small area is converted into a two-dimensional Walsh spectrum coefficient by a two-dimensional Walsh function. The lowest spectral coefficient f (DC) in the vertical and horizontal directions, which is the average brightness of the small area, f (ACV) obtained by weighting and adding multiple low frequency spectral coefficients in the horizontal direction with the lowest order in the horizontal direction, and the lowest in the vertical direction F (ACH) obtained by weighting and adding the low frequency spectrum coefficient in the horizontal direction with the order is used as the feature quantity element. For each of these, a mixed Gaussian model is constructed to perform foreground separation work. If even one feature element becomes the foreground, the small area is set as the foreground small area. Walsh conversion is performed because outdoor images and the like enter the field of view of the camera up to a distant view, and contain many high spatial frequencies due to forests and buildings.
また、非特許文献1では分割小領域の縦横サイズを順次2倍に拡大して再び前景分離を行う多重解像度処理を用いている。これは混合ガウスモデルによる中間前景分離では小領域ごとに独立した処理を行うため、隣接小領域が少しのノイズで隣接領域と無関係に前景判定を行う状況を防ぐものである。多重解像度分割における中間前景分離は最小の分割小領域が前景判定であっても、その小領域を含む全ての大きな分割小領域が前景となる場合のみ中間前景領域部とするので、隣接する小領域間の安定性を確保できる。
Non-Patent Document 1 uses multi-resolution processing in which the vertical and horizontal sizes of the divided small areas are sequentially doubled and foreground separation is performed again. In the intermediate foreground separation using the mixed Gaussian model, independent processing is performed for each small area, so that the situation where the adjacent small area performs foreground determination with little noise regardless of the adjacent area is prevented. In the middle foreground separation in the multi-resolution division, even if the smallest divided small area is the foreground determination, the intermediate foreground area portion is used only when all the large divided small areas including the small area become the foreground. Stability can be ensured.
以上の、1フレーム画像を多重解像度分割し、領域ごとに上記の特徴量要素f(DC), f(ACH), f(ACV)を生成するまでの具体的な回路と、全ての領域の特徴量による中間前景分離までを行う回路は非特許文献2に詳しい。そこでは双方の回路をFPGA(フィールドプログラマブルゲートアレー)1個の中に組み込み、HDTVビデオを扱う場合でも30mWの消費電力で実現している。消費電力が小さいということは演算量の軽い前景分離法であることを示す。この非特許文献2では入力ビデオフレームからフレーム画像を覆う4x4画素から64x64画素の領域サイズの特徴量計算を順次計算する機能プロセッサをWPP(Walsh transform based Parameter processor)、また、WPPで生成された特徴量から中間前景分離までを行う機能プロセッサをGTP(Gaussian mixture model Thread Processor) として論じている。
The above-described specific circuit until one frame image is divided into multiple resolutions and the above-described feature quantity elements f (DC), f (ACH), f (ACV) are generated for each region, and the features of all regions A circuit for performing the intermediate foreground separation by quantity is detailed in Non-Patent Document 2. There, both circuits are built into a single FPGA (Field Programmable Gate Array), and even when HDTV video is handled, power consumption is 30mW. A low power consumption indicates a foreground separation method with a small amount of calculation. In this Non-Patent Document 2, WPP (Walsh transform based Parameter processor), which is a feature processor that sequentially calculates feature amount calculation of the region size from 4x4 pixels to 64x64 pixels covering the frame image from the input video frame, and features generated by WPP The functional processor that performs the process from quantity to intermediate foreground separation is discussed as GTP (Gaussian mixture model Thread Processor).
非特許文献1の影除去法の原理は、中間前景分離に用いた背景ガウス分布を影除去に活用することにあり、従来法の影除去に比べ1桁以下の低演算量化に成功している。この方法は、影によって背景領域が前景となるのは特徴量要素が本来あるべき背景ガウス分布の包含区間から逸脱した結果と考える。また、特徴量の各要素は線形演算により求めるため、影により各特徴量要素の値も一様に小さくなる。このため、ある特徴量要素の影による減衰量が推定できると、その逆数を他の特徴要素に乗じることで、乗じられた特徴量要素は本来あるべき背景ガウス分布の包含範囲に戻る。この方法で小領域が影と判断できると、この小領域を中間前景領域から除くことで真正前景分離を実現する。
The principle of the shadow removal method of Non-Patent Document 1 is to use the background Gaussian distribution used for intermediate foreground separation for shadow removal, and succeeds in reducing the computational complexity by one digit or less compared to the shadow removal of the conventional method. . In this method, the background region becomes the foreground due to the shadow is considered to be a result of the feature amount element deviating from the inclusion interval of the background Gaussian distribution. In addition, since each element of the feature quantity is obtained by a linear operation, the value of each feature quantity element is uniformly reduced by the shadow. For this reason, when the attenuation amount due to the shadow of a certain feature amount element can be estimated, the multiplied feature amount element returns to the original inclusion range of the background Gaussian distribution by multiplying the other feature element by the inverse number. If the small area can be determined to be a shadow by this method, true foreground separation is realized by removing the small area from the intermediate foreground area.
減衰量を推定するには特徴量要素として最低変換スペクトルであるf(DC)とその要素の背景ガウス分布の平均から求める。f(DC)はその領域の平均の明るさを表すので常にある程度大きな値を持つため、演算精度の観点から基準特徴量要素としている。複数の背景ガウス分布がある場合は、それ等全ての可能性を考えて繰り返し処理することになる。
In order to estimate the attenuation, it is obtained from the average of the background Gaussian distribution of f (DC), which is the lowest conversion spectrum, as the feature quantity element. Since f (DC) represents the average brightness of the region, it always has a large value, and is therefore used as a reference feature amount element from the viewpoint of calculation accuracy. When there are a plurality of background Gaussian distributions, the processing is repeated considering all such possibilities.
減衰量が求まった後、影領域を見つける方法は非特許文献1を基にして描いた影領域検出の原理図4で説明できる。図4は、前景時のf(DC)要素グラフ401、他の特徴量要素グラフ402、影検証グラフ403のサブグラフから構成されている。これ等3個のサブグラフはともに、横軸に特徴量要素のダイナミックレンジ内の大きさを示し、右に行くほど大きい値となる。また、縦軸は発生確率を示している。曲線で上に盛り上がった印は本来f(DC)を含むべき背景ガウス分布である。また、サブグラフに書かれた下向き実線矢印は特徴量要素の値を横軸に合わせて示している。また、グラフ402、グラフ403で記述したf(AC)とはf(ACH)にもf(ACV)にも当てはまるので、双方の代表としてf(AC)でまとめている。
The method for finding the shadow area after the attenuation amount is obtained can be explained with reference to FIG. 4 showing the principle of shadow area detection drawn based on Non-Patent Document 1. FIG. 4 includes sub graphs of an f (DC) element graph 401 in the foreground, another feature element graph 402, and a shadow verification graph 403. In these three subgraphs, the horizontal axis indicates the size within the dynamic range of the feature quantity element, and the value increases toward the right. The vertical axis indicates the probability of occurrence. The mark raised above the curve is the background Gaussian distribution that should contain f (DC). Also, a downward solid line arrow written in the subgraph indicates the value of the feature quantity element along the horizontal axis. Further, f (AC) described in the graph 402 and the graph 403 is applicable to both f (ACH) and f (ACV), and thus is represented by f (AC) as a representative of both.
前景時のf(DC)特徴量要素グラフ401は影により前景となる場合を示しており、特徴量f(DC)の要素と本来f(DC)を含むべき背景ガウス分布を示している。f(DC)は影の影響でこの背景ガウス分布から逸脱している。このため、中間前景分離では前景となる。グラフ401からも理解できようが、ガウス分布の平均μDCをf(DC)で割ったものは減衰量の逆数となり、これを修正係数Aと呼ぶ。影領域グラフ401に示すように、特徴量要素f(DC)が背景ガウス分布の包含領域より小さい。このような小領域があると中間前景領域になり、影候補になる。ついで、この影候補の小領域における他の特徴量要素グラフ402、影検証グラフ403を用いて影領域であることを検証する。グラフ402はf(DC)とは異なる特徴量要素f(AC)でも影の影響で減衰して前景となる例である。この小領域が影であればf(AC)はf(DC)と同じ比率で減衰しているはずである。影検証グラフ403 は影領域かどうかの検証を行う原理図である。f(AC)は下向き点線矢印で示す。f(AC)に先に求めた修正係数Aを乗じた結果を下向き実践矢印で示している。つまり、この小領域が真の影領域であれば修正されたf(AC)は本来包含されている背景ガウス分布内に戻る。よって、このような場合はf(DC)とf(AC)は一様に減衰していると考えられ、影領域であるとする。
The f (DC) feature quantity element graph 401 in the foreground shows a case where the foreground is caused by a shadow, and shows a background Gaussian distribution that should include the feature quantity f (DC) element and f (DC) originally. f (DC) deviates from this background Gaussian distribution due to the influence of shadows. For this reason, it becomes a foreground in intermediate foreground separation. As can be understood from the graph 401, the average μDC of the Gaussian distribution divided by f (DC) is the reciprocal of the attenuation, and this is called the correction coefficient A. As shown in the shadow area graph 401, the feature element f (DC) is smaller than the inclusion area of the background Gaussian distribution. If there is such a small area, it becomes an intermediate foreground area and becomes a shadow candidate. Next, it is verified that the region is a shadow region using another feature amount element graph 402 and a shadow verification graph 403 in the small region of the shadow candidate. A graph 402 is an example in which a feature element f (AC) different from f (DC) is attenuated by the influence of a shadow and becomes a foreground. If this small area is a shadow, f (AC) should be attenuated at the same rate as f (DC). The shadow verification graph 403 is a principle diagram for verifying whether it is a shadow area. f (AC) is indicated by a downward dotted arrow. The result of multiplying f (AC) by the correction factor A previously obtained is indicated by a downward-facing practice arrow. That is, if this small area is a true shadow area, the modified f (AC) returns to the originally included background Gaussian distribution. Therefore, in such a case, f (DC) and f (AC) are considered to be uniformly attenuated, and are assumed to be shadow regions.
この影除去法ではすでに中間前景分離で算出した特徴量要素と背景ガウス分布が使える。つまり、チェックに当たって特徴量要素であるf(DC)が背景ガウス分布の平均より小さくなる背景分布だけを対象に、この影領域候補に対してグラフ402、および403の順序で影の検証をすればよい。
This shadow removal method can use the feature element and the background Gaussian distribution already calculated by the intermediate foreground separation. In other words, if only the background distribution whose feature quantity element f (DC) is smaller than the average of the background Gaussian distribution is checked, the shadow is verified in the order of graphs 402 and 403 for this shadow area candidate. Good.
以上は屋外の監視用のシナリオである。しかし、屋内の廊下などで壁が背景に来ると、屋外監視と比べ近い背景範囲となるため問題を発生する。この状態で廊下の壁などの背景画像領域を小領域に分割してWalsh変換すると、ほとんど高周スペクトル成分は観測できない。このため、影領域検出の原理図4のグラフ402, 403で用いた他の特徴量要素が有意な値を持たない。よって、非特許文献1では廊下での前景分離を行うには、レティネックス画像強調という演算量の重い処理を前処理として導入し、高スペクトル成分を強化している。ただし、この画像強調だけで前景分離以上の演算量を必要とする。影除去で大幅な演算量削減ができる非特許文献1の効果はこのレティネックス画像処理の導入で半減することになる。
The above is an outdoor monitoring scenario. However, when the wall comes to the background in an indoor corridor, etc., the background range is close to that of outdoor surveillance, which causes a problem. In this state, if the background image area such as the wall of the corridor is divided into small areas and Walsh transformed, almost no high-frequency spectral components can be observed. Therefore, the principle of shadow area detection The other feature quantity elements used in the graphs 402 and 原理 403 in FIG. 4 do not have significant values. Therefore, in Non-Patent Document 1, in order to perform foreground separation in the corridor, processing with a heavy calculation amount called Retinex image enhancement is introduced as preprocessing to enhance high spectral components. However, the amount of calculation more than foreground separation is required only by this image enhancement. The effect of Non-Patent Document 1 that can greatly reduce the amount of calculation by shadow removal is halved by the introduction of this Retinex image processing.
動作入力の一つである指先ジェスチャー入力システムも屋内では同様の問題が起こる。通常の住宅の部屋では壁や家具があり、やはり廊下と同じように高次のスペクトル成分がゼロになる。非特許文献1の方法をレティネックス画像強調なしの変換領域前景分離で行った写真例を図5に示す。図5は原画像写真501、変換領域中間前景分離写真502、変換領域影除去写真503の3個の同一フレームの写真からなる。原画像写真501は指先ビデオの1カットを2値化したため、指先は見えないが背景は見える。変換領域中間前景分離写真502は変換領域における混合ガウスモデルによる中間前景分離を行った写真であり、変換領域影除去写真503は非特許文献1でレティネックス画像強調を抜いた出力写真である。変換領域中間前景分離写真502と変換領域影除去写真503の各々で白い部分が中間前景分離領域もしくは影を引き去った真正前景分離領域であり、黒い部分は背景である。折角変換領域中間前景分離写真502のように正しく前景分離ができていても、影除去を行うと変換領域影除去写真503のように輪郭部分だけしか残らない。つまり、レティネックス画像強調を省くためには他の方策を必要とする。
A similar problem occurs indoors with the fingertip gesture input system, which is one of the motion inputs. In ordinary residential rooms, there are walls and furniture, and the higher-order spectral components are zero as in the corridor. FIG. 5 shows an example of a photograph in which the method of Non-Patent Document 1 is performed by transform region foreground separation without Retinex image enhancement. FIG. 5 is composed of three identical frame photographs, namely, an original image photograph 501, a conversion area intermediate foreground separation photograph 502, and a conversion area shadow removal photograph 503. In the original image 501, since one cut of the fingertip video is binarized, the fingertip cannot be seen but the background can be seen. The transformation region intermediate foreground separation photograph 502 is a photograph obtained by performing intermediate foreground separation using a mixed Gaussian model in the transformation region, and the transformation region shadow removal photograph 503 is an output photograph obtained by removing Retinex image enhancement in Non-Patent Document 1. In each of the conversion area intermediate foreground separation photograph 502 and the conversion area shadow removal photograph 503, the white part is the intermediate foreground separation area or the true foreground separation area from which the shadow is removed, and the black part is the background. Even if the foreground separation has been performed correctly as in the folded-angle conversion area intermediate foreground separation photograph 502, only the outline portion remains as in the conversion area shadow removal photograph 503 when shadow removal is performed. In other words, another measure is required to omit Retinex image enhancement.
さらに、一般住宅の部屋はあまり広くない。このような場所にテレビや食器棚のような反射性の強い家具がある。この状況で室内ライトなどの照明器具を用いると、食器棚のガラス等からの反射光がカメラ視野に入る。さらに、カメラを身に着けた場合を考える。ユーザの体がこの反射光を動的に遮ると、反射領域の急激な変化が起こり前景になる。ただし、反射の写り込みは人の視力では見えにくく、中間前景分離を行って初めてわかるものである。
Furthermore, the rooms of ordinary houses are not very large. Such places have highly reflective furniture such as TVs and cupboards. In this situation, when a lighting device such as a room light is used, the reflected light from the glass of the cupboard enters the camera field of view. Furthermore, consider the case where a camera is worn. When the user's body dynamically blocks the reflected light, a sudden change in the reflection area occurs and becomes the foreground. However, reflections are difficult to see with human eyesight, and can only be seen after intermediate foreground separation.
本発明は、影および反射領域を除去した屋内外環境での真正前景分離を簡単な後処理で行う装置を提供する。
The present invention provides an apparatus for performing true foreground separation in an indoor / outdoor environment from which shadows and reflection areas are removed by simple post-processing.
本発明は、以上の課題を解決するために以下の各発明を提供する。
The present invention provides the following inventions in order to solve the above problems.
1.カメラからの入力フレームを小領域に分割し、小領域内での色成分の平均を求めた色平均成分信号を特徴量の要素とするステップと、特徴量の各要素の確率的な変動に合わせて1個ないし複数の典型的な確率分布で小領域をモデル化しながら特徴量との比較により中間前景小領域を抽出するステップと、特徴量要素と背景確率分布の平均と分散により抽出された中間前景領域が影もしくは反射になった領域を特定して排除し真正前景領域を得るステップからなり、影もしくは反射による前景部分を含まない真正前景領域を抽出することを特徴とする画像処理装置である。
1. The input frame from the camera is divided into small areas, and the color average component signal obtained by calculating the average of the color components in the small area is used as a feature quantity element, and it is matched to the probabilistic variation of each feature quantity element. Extracting an intermediate foreground small region by comparing it with a feature value while modeling the small region with one or more typical probability distributions, and an intermediate value extracted by the mean and variance of the feature value element and the background probability distribution An image processing apparatus characterized by extracting a true foreground area that does not include a foreground part due to a shadow or reflection, and comprises a step of obtaining a true foreground area by identifying and eliminating a shadow or reflection area in the foreground area .
上記の方法では、典型的確率分布としてガウス分布を考えると、混合ガウスモデルを用いた中間前景分離から影と反射を取り除いた真正前景分離を得る方法であり、従来例のような複雑な画像強調に代わり中間前景分離の途中結果を用いて真正前景分離結果を抽出する。画面を小領域に分割して高次の空間スペクトルが全て得られない状況でも、これまでの変換領域の特徴量を小領域毎の平均色成分に変更することで解決する。3原色の少なくとも2色の要素が有意な値を持つ可能性が高いことを用いる。また、混合ガウスモデルによる前景分離が不安定になるのは高精細ビデオで画素単位や2x2画素等の特徴量を用いた場合に顕著になるが、この方法は4x4画素以上の小領域単位でカラー信号の平均値を用いて実行する。このため、領域の大きさにも依存するものの、ノイズ等の影響は軽減され、安定性は増す。また、典型的な確率分布としてはラプラス分布などでも良い。演算量削減になる理由は非特許文献1の方法で前処理として行う画像強調処理の演算がそっくりなくなることと、変換領域スペクトルの演算が不要になる。
In the above method, considering Gaussian distribution as a typical probability distribution, it is a method to obtain true foreground separation by removing shadow and reflection from intermediate foreground separation using mixed Gaussian model. Instead, the authentic foreground separation result is extracted by using the intermediate foreground separation result. Even when the screen is divided into small areas and all the high-order spatial spectra cannot be obtained, the problem can be solved by changing the feature value of the conversion area so far to the average color component for each small area. The fact that at least two elements of the three primary colors are likely to have significant values is used. In addition, the foreground separation by the mixed Gaussian model becomes prominent when using features such as pixel units or 2x2 pixels in high-definition video, but this method uses color in units of small areas of 4x4 pixels or more. Run using the average value of the signal. For this reason, although it depends on the size of the region, the influence of noise or the like is reduced and the stability is increased. A typical probability distribution may be a Laplace distribution. The reason why the amount of calculation is reduced is that the calculation of the image enhancement processing performed as the pre-processing by the method of Non-Patent Document 1 is completely eliminated, and the calculation of the transform domain spectrum is unnecessary.
2.特徴量の要素毎にその変動の確率分布を複数の典型的な確率分布で近似し、前景をモデル化している典型的確率分布と背景をモデル化している典型的確率分布に区別して用い、特徴量の要素が1個でも前景をモデル化している典型的確率分布に包含される場合を中間前景小領域とする上記1記載の中間前景分離を抽出するステップと中間小領域になった前景分離特徴量の要素の最大のものを基準要素として選択するステップと、基準要素に割り当てられた各々の背景を表す典型的確率分布の平均を基準要素の値で割った修正係数を求めるステップと、それぞれの修正係数を基準要素でない特徴量要素の値に乗じた値がその特徴量要素の背景を表す確率分布のいずれかに包含される場合を影または反射による中間前景小領域とみなして中間前景領域からから排除することで真正前景領域を作るステップからなる上記1記載の影/反射領域を排除した真正中間領域を抽出する画像処理装置。
2. For each element of the feature quantity, the probability distribution of the variation is approximated by multiple typical probability distributions, and distinguished from the typical probability distribution modeling the foreground and the typical probability distribution modeling the background. The step of extracting the intermediate foreground separation as described in 1 above, wherein the foreground small area is defined as a case where at least one element of the quantity is included in a typical probability distribution modeling the foreground, and the foreground separation feature as an intermediate small area Selecting the largest of the quantity elements as a reference element, determining a correction factor by dividing the average of a typical probability distribution representing each background assigned to the reference element by the value of the reference element, An intermediate foreground area, where a value obtained by multiplying the value of a feature element that is not a reference element by a correction factor is included in one of the probability distributions representing the background of the feature element, and is regarded as an intermediate foreground small area due to shadow or reflection 2. An image processing apparatus for extracting a genuine intermediate region excluding the shadow / reflection region according to 1 above, comprising the step of creating a true foreground region by excluding it from the region.
この方法に基づく装置では非特許文献1で扱った屋外における効率的な影除去法を小領域の特徴量要素を小領域の色平均とし、影除去と反射除去を実行できるように拡張したものである。この原理は典型的確率分布をガウス分布とした場合、以下に示す影と反射を検出する原理説明図6に基づく。
In the apparatus based on this method, an efficient outdoor shadow removal method dealt with in Non-Patent Document 1 is extended so that the feature amount element of the small region is the color average of the small region, and shadow removal and reflection removal can be executed. is there. This principle is based on the principle explanatory diagram 6 for detecting shadows and reflections shown below when a typical probability distribution is a Gaussian distribution.
影と反射を検出する原理説明図6は基準特徴量要素の影領域グラフ601、影領域の他の特徴量要素グラフ602、影検証グラフ603、基準特徴量要素の反射領域グラフ604、反射領域の他特徴量要素グラフ605、反射検証グラフ606 の6個のサブグラフからなっている。横軸、縦軸、盛り上がったカーブ、矢印は影領域検出の原理図4と同じ意味である。影と反射を検出する原理説明図6の基準特徴量要素の影領域グラフ601、影領域の他特徴量要素グラフ602、影検証時グラフ603は特徴量要素が色平均となり、影領域検出の原理図4のf(DC)要素の影領域グラフ401、他の特徴量要素グラフ402、影検証グラフ403を色平均特徴量要素に変えたものである。ただし、影領域検出の原理図4では特徴量f(DC)が重要な役割をしているのに対し、影と反射を検出する原理図6は特徴量要素の中で最大値をとるf(N)がf(DC)の役割を担っている。特徴量要素の最大値の代わりにある程度大きな値を持つ特徴量要素を基準要素にしても良い。 また、影と反射を検出する原理図6では、典型的な背景ガウス分布の平均をμDCに換えて基準特徴量要素の背景ガウス分布の平均μNとしている。つまり、影領域の原理図4の減衰量の逆数である修正係数AはμDCをf(DC)で割った値であったが、色平均特徴量要素を用いる場合はμNをf(N)で割った値に代え、それ以外は影領域の原理図4と同じであるため、影除去に関する説明を省く。
Principle of detecting shadow and reflection FIG. 6 shows a shadow area graph 601 of a reference feature element, another feature element graph 602 of a shadow area, a shadow verification graph 603, a reflection area graph 604 of a reference feature element, It consists of six sub-graphs, that is, another feature element graph 605 and a reflection verification graph 606. The horizontal axis, the vertical axis, the raised curve, and the arrow have the same meaning as in the principle diagram 4 of shadow area detection. Explanation of the principle of detecting shadows and reflections The shadow area graph 601 of the reference feature quantity element in FIG. 6, the other feature quantity element chart 602 of the shadow area, and the shadow verification time chart 603 are the color average of the feature quantity elements, and the principle of shadow area detection The shadow area graph 401, the other feature amount element graph 402, and the shadow verification graph 403 of the f (DC) element in FIG. 4 are changed to color average feature amount elements. However, the principle f of the shadow region detection FIG. 4 plays an important role in the feature value f (DC), whereas the principle diagram 6 for detecting shadows and reflections shows f (( N) plays the role of f (DC). Instead of the maximum value of the feature quantity element, a feature quantity element having a certain large value may be used as the reference element. In FIG. 6, the average of the typical background Gaussian distribution is changed to μDC to obtain the average μN of the background Gaussian distribution of the reference feature quantity element. That is, the correction coefficient A, which is the reciprocal of the amount of attenuation in the principle of the shadow area in FIG. 4, was a value obtained by dividing μDC by f (DC), but when using a color average feature element, μN is expressed by f (N). Instead of the divided value, the rest of the operation is the same as the principle 4 of the shadow region, and thus the description regarding the shadow removal is omitted.
一方、反射除去は基準特徴量要素の反射領域グラフ604、反射領域の他特徴量要素グラフ605、反射検証グラフ606に描いている。基準特徴量要素の増幅における修正係数Aは影の場合と同様μNをf(N)で割った修正係数となり、演算自体は影除去の場合と同じになる。ここで、カメラ視野外からの反射光による影響は、反射領域特徴量の各要素を一様に増幅すると考える。基準特徴量要素の反射領域グラフ604では、反射による中間前景領域は、本来、グラフ604中の背景ガウス分布に含まれていたf(N)が、反射光の影響でこの背景ガウス分布の包含領域より明るくなってしまうことに起因する。反射領域の他特徴量要素グラフ605も同様である。反射検証グラフ606は反射領域の他特徴量要素グラフ605の特徴量要素に修正係数Aを乗じることで背景分布の包含領域に戻る場合を示しており、この場合は反射領域と判断する。
On the other hand, the reflection removal is depicted in the reflection area graph 604 of the reference feature quantity element, the other feature quantity element graph 605 of the reflection area, and the reflection verification graph 606. The correction coefficient A in the amplification of the reference feature quantity element is a correction coefficient obtained by dividing μN by f (N) as in the case of the shadow, and the calculation itself is the same as in the case of the shadow removal. Here, it is considered that the influence of the reflected light from outside the camera field of view uniformly amplifies each element of the reflection area feature amount. In the reflection region graph 604 of the reference feature quantity element, the intermediate foreground region due to reflection is originally included in the background Gaussian distribution in the graph 604, but f (N) is included in the background Gaussian distribution due to the influence of reflected light. This is because it becomes brighter. The same applies to the other feature amount element graph 605 in the reflection region. The reflection verification graph 606 shows a case where the feature amount element of the other feature amount element graph 605 in the reflection region is multiplied by the correction coefficient A to return to the inclusion region of the background distribution. In this case, it is determined as the reflection region.
なお、修正係数としてAを用いたが、数学的に等価な処理に従う別の計算法、例えば影の場合は基準特徴量要素を背系ガウス分布の平均で割った減衰量を求め、また、反射の場合は増幅量を求め、影の場合は背景ガウス分布の平均に減衰量を乗じて特徴量要素と比較し、反射の場合は背景ガウス分布の平均に増幅量を乗じて特徴量と比較するなどの方法も本発明の一部である。
Although A was used as the correction factor, another calculation method that follows mathematically equivalent processing, for example, in the case of shadows, finds the amount of attenuation by dividing the reference feature element by the average of the back Gaussian distribution. In the case of, the amount of amplification is obtained, in the case of shadow, the average of the background Gaussian distribution is multiplied by the amount of attenuation and compared with the feature element, and in the case of reflection, the average of the background Gaussian distribution is multiplied by the amount of amplification and compared with the feature quantity. These methods are also part of the present invention.
3.フレーム画像をオーバラップしない小領域にまず分割し、次いでメッシュ状に並んだ小領域の縦横ともに2倍に拡大して先に分割した小領域を4個含む拡大小領域で画面を覆う分割操作を行い、この拡大小領域を作成する分割を複数回繰り返すことで多重分割するステップと、多重分割された各小領域で中間前景分離を行うステップと、小領域分割部の中間前景分離から影/反射領域除去を行なって影/反射なし前景領域とするステップと、影/反射なし最小前景領域であって、この影/反射なし最小前景小領域を包含する全ての拡大領域が影/反射なし前景領域または中間前景小領域であるものを真正前景小領域とすることで最終的な真正前景分離を行う上記1の画像処理装置である。
3. Divide the frame image into small areas that do not overlap first, then double the size and width of the small areas arranged in a mesh, and then cover the screen with an enlarged small area that contains four previously divided small areas. Performing multiple division by repeating the division for creating the enlarged small region a plurality of times, performing intermediate foreground separation on each of the multiple divided small regions, and shadow / reflection from the intermediate foreground separation of the small region dividing unit A step of removing the region to make a foreground region without shadow / reflection, and a minimum foreground region without shadow / reflection, and all the enlarged regions including the minimum foreground region without shadow / reflection are all foreground regions without shadow / reflection Alternatively, in the image processing apparatus according to the first aspect, the final true foreground separation is performed by setting an intermediate foreground small area as a true foreground small area.
この方法に基づく装置は特徴量をカラーの平均ベースにしたため、屋外での利用までを考慮すると安定性を増加させる必要がある。高精細画像など精度が高い映像の処理で起こりやすい現象として、小さい前景領域だけで前景分離するとノイズによる誤判定で中間前景になりやすい。このような結果を抑制するのが多重解像度分割した拡大領域の中間前景の判定である。これは、拡大領域の中間前景結果を用いて拡大領域が中間前景でない場合は小さい領域が真正前景結果であっても抑圧する多重解像度処理を次のように改める。
Since the apparatus based on this method uses the feature amount as an average base of colors, it is necessary to increase the stability in consideration of the use up to outdoor use. As a phenomenon that is likely to occur in high-precision image processing such as high-definition images, if the foreground is separated only in a small foreground area, an intermediate foreground is likely to occur due to erroneous determination due to noise. Suppressing such a result is the determination of the intermediate foreground of the enlarged region divided by the multi-resolution. This modifies the multi-resolution processing that uses the intermediate foreground result of the enlarged region to suppress even if the small region is the authentic foreground result when the enlarged region is not the intermediate foreground.
影や反射は小分割した領域内では一様な減衰や増幅が行われるという条件で影や反射の検証を行っている。このため、影や反射除去は分割領域が小さい場合に限る方が特徴量要素の各々が一様な変化が起こるという仮定を守りやすい。このため、影や反射除去は小さい分割領域だけで行う。小さい分割領域が影や反射の検証により真正背景になると、それ以上大きな分割で中間前景判定であれば良いとする。
Shadows and reflections are verified under the condition that uniform attenuation and amplification are performed in a subdivided region. For this reason, it is easier to keep the assumption that each of the feature elements changes uniformly when shadows and reflections are removed only when the divided region is small. For this reason, shadows and reflection removal are performed only in small divided areas. When a small divided area becomes a true background by verification of shadows and reflections, it is sufficient to perform intermediate foreground determination with a larger division.
4.上記3において中間前景領域から反射による中間前景部のみを排除する場合は、上記3の基準特徴量要素の求め方により求めた基準特徴量要素が背景確率分布の平均より大きい典型的背景確率分布からのみ修正係数を求める手段と、基準特徴量以外の特徴量要素に修正係数を乗じる手段と、乗じられた特徴量要素がその特徴量要素の背景確率分布に包含される中間前景小領域を排除して真正前景分離を行う画像処理装置。
4). When only the intermediate foreground part due to reflection is excluded from the intermediate foreground region in the above 3, the reference feature amount element obtained by the method of obtaining the reference feature amount element in the above 3 is larger than the average of the background probability distributions. Only a means for obtaining a correction coefficient, means for multiplying a feature quantity element other than the reference feature quantity by a correction coefficient, and eliminating the intermediate foreground small area in which the multiplied feature quantity element is included in the background probability distribution of the feature quantity element. An image processing device that performs genuine foreground separation.
この方法は、典型的確率分布をガウス分布としたとき、反射領域を影領域よりも安定して抽出したい場合に対応し、ある小領域区間で影除去を行わないが反射除去を実行した場合や、反射が支配的な場合は影除去を使わない場合もある。このような反射領域だけを排除する場合に基準特徴量要素の値が背景ガウス分布の平均より高い背景ガウス分布のみを用いて処理する。処理の方法は色特徴量を用いた原理説明図6の基準要素の反射領域グラフ604、反射領域の他特徴量要素グラフ605、反射検証グラフ606で示した反射除去プロセスだけを実行するので演算量をほぼ半分にできる。
This method corresponds to the case where the typical probability distribution is a Gaussian distribution and the reflection area is to be extracted more stably than the shadow area, and the shadow removal is not performed in a certain small area section but the reflection removal is executed. If reflection is dominant, shadow removal may not be used. When only such a reflection region is excluded, processing is performed using only the background Gaussian distribution in which the value of the reference feature quantity element is higher than the average of the background Gaussian distribution. The principle of the processing using the color feature amount is explained. Since only the reflection removal process shown by the reflection region graph 604 of the reference element, the other feature amount element graph 605 of the reflection region, and the reflection verification graph 606 in FIG. Can be halved.
5.上記3において中間前景領域から影による中間前景部のみを排除する場合は、上記3の基準特徴量要素の求め方により求めた基準特徴量要素が背景確率分布の平均より小さい典型的背景確率分布からのみ修正係数を求める手段と、基準特徴量以外の特徴量要素に修正係数を乗じる手段と、乗じられた特徴量要素がその特徴量要素の背景確率分布に包含される中間前景小領域を排除して真正前景分離を行う画像処理装置。
5. When only the intermediate foreground portion due to the shadow is excluded from the intermediate foreground area in 3 above, from the typical background probability distribution in which the reference feature value element obtained by the method of obtaining the reference feature value element in 3 is smaller than the average of the background probability distributions. Only a means for obtaining a correction coefficient, means for multiplying a feature quantity element other than the reference feature quantity by a correction coefficient, and eliminating the intermediate foreground small area in which the multiplied feature quantity element is included in the background probability distribution of the feature quantity element. An image processing device that performs genuine foreground separation.
この方法は、典型的確率分布をガウス分布としたとき、影領域を反射領域よりも安定して抽出したい場合に対応し、ある小領域処理で反射除去を行わないが影除去だけは実行したい場合や、影が支配的な場合は反射除去を使わない場合もある。このような影領域だけを排除する場合に基準特徴量要素の値が背景ガウス分布の平均より低い背景ガウス分布のみを用いて処理する。処理の方法は色特徴量を用いた原理説明図6の基準要素の影領域グラフ601、影領域の他特徴量要素グラフ602、影検証グラフ603で示した影除去プロセスだけを実行するので演算量をほぼ半分にできる。
This method corresponds to the case where the typical probability distribution is a Gaussian distribution and the shadow area is to be extracted more stably than the reflection area. When the shadow removal is not performed in a certain small area processing, but only the shadow removal is to be executed. Or, if shadows are dominant, reflection removal may not be used. When only such a shadow region is excluded, processing is performed using only the background Gaussian distribution in which the value of the reference feature quantity element is lower than the average of the background Gaussian distribution. The processing method is the principle explanation using color feature amount. Since only the shadow removal process shown in the shadow region graph 601 of the reference element, the other feature amount component graph 602 of the shadow region, and the shadow verification graph 603 in FIG. Can be halved.
6.上記1より5において、基準要素の属する典型的確率分布の重み係数の大きいもの順に並べた典型的背景確率分布と基準外特徴量の重み係数の大きいもの順に並べた典型的背景確率分布との間で、同一順位の典型的背景確率分布のみを用いて影ないし背景に起因する中間前景領域の検証を行って真正前景領域を得る画像処理装置である。
6). 1 to 5 above, between the typical background probability distribution arranged in descending order of the weighting coefficient of the typical probability distribution to which the reference element belongs and the typical background probability distribution arranged in descending order of the weighting coefficient of the non-reference feature quantity. Thus, the image processing apparatus obtains a true foreground area by verifying an intermediate foreground area caused by a shadow or background using only typical background probability distributions of the same rank.
この方法は、典型的確率分布をガウス分布としたとき、影や反射により基準特徴量要素がある背景ガウス分布領域から逸脱して中間前景と判定されても、どの背景ガウス分布から逸脱したかという情報はない。このため、影や反射であることの検証は基準特徴量要素と非基準特徴量要素の全ての背景ガウス分布間で総当たりになるのが普通である。しかし、従来例で詳述したように、混合ガウスモデルにおける背景ガウスと前景ガウスの区分けでは各特徴量要素ともガウス分布の重み係数順に並べて判断する。重み係数はよく利用されるガウス分布ほど大きな値となる。このため、基準特徴量要素と他の特徴量要素の背景ガウスを重み付け係数順に並べると対応するガウス分布同志が影のない場合の背景ガウス分布である場合が多い。このことを利用して検証のために用いる基準特徴量要素の背景ガウスの重み係数の順番と基準外特徴量要素の背景ガウス分布の重み係数の順番を対応させたものだけに影と反射を検出する原理図6を用いて処理を簡単化する。
In this method, when the typical probability distribution is a Gaussian distribution, even if it is determined that it is an intermediate foreground by deviating from the background Gaussian distribution region where the reference feature element is present due to shadows or reflections, the background Gaussian distribution is deviated from. There is no information. For this reason, verification of shadows and reflections is generally omnipresent between all the background Gaussian distributions of the reference feature element and the non-reference feature element. However, as described in detail in the conventional example, in the classification of the background Gaussian and the foreground Gaussian in the mixed Gaussian model, each feature amount element is determined in the order of the weighting coefficient of the Gaussian distribution. The weighting coefficient becomes larger as the Gaussian distribution is used more often. For this reason, when the background gauss of the reference feature quantity element and the other feature quantity elements are arranged in the order of weighting coefficients, the corresponding Gaussian distributions are often background Gaussian distributions without shadows. Using this fact, shadows and reflections are detected only when the order of the weighting factors of the background Gaussian of the reference feature elements used for verification and the order of the weighting coefficients of the background Gaussian distribution of the non-reference feature elements are matched. Simplify the process using Fig. 6.
上記の課題解決手段に従えば、影と反射領域を含まない真正前前景分離を中間前景分離の途中結果を用いて中間前景分離の後処理として実現できる。このため、屋内での真正前景分離を重い処理である画像強調や画像上での反射処理を不要にでき、大幅な演算量削減が可能である。このため、消費電力低減を重要課題とするジェスチャー認識を入力手段とするウェアラブル端末等に活用できる。
According to the above problem solving means, genuine foreground separation that does not include a shadow and a reflection area can be realized as post-processing of intermediate foreground separation using an intermediate result of intermediate foreground separation. This eliminates the need for image enhancement and reflection processing on the image, which are heavy processing for authentic foreground separation indoors, and can greatly reduce the amount of calculation. For this reason, it can utilize for the wearable terminal etc. which use the gesture recognition which makes power consumption reduction an important subject as an input means.
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲の全てが発明の解決手段に必須であるとは限らない。また、以下の実施形態は特許請求の範囲にかかわる発明を限定するものではない。さらに、典型的な分布としてガウス分布を用いて説明するが、これも本発明をガウス分布に限定するものではない。また、図面を簡単化する目的で特徴量要素f(R),f(G),f(B),f(N)など、括弧内に書いたパラメータは図面上では添え字として記述し、それぞれfR, fG, fB, fNのように記述している。
Hereinafter, the present invention will be described through embodiments of the invention. However, in the following embodiments, not all claims are necessarily essential to the means for solving the invention. The following embodiments do not limit the invention according to the claims. Further, although a Gaussian distribution will be described as a typical distribution, the present invention is not limited to the Gaussian distribution. In addition, parameters written in parentheses such as feature elements f (R), f (G), f (B), f (N) are described as subscripts on the drawing for the purpose of simplifying the drawing. It is described as fR, fG, fB, fN.
図1は一実施形態にかかわる動画システムの一例を示すものである。本発明の動画システムは、カメラ10、多重分割特徴量生成部20、混合ガウス中間前景処理部30、影/反射領域除去部40、真正前景画像生成部50、からなっている。
FIG. 1 shows an example of a moving image system according to an embodiment. The moving image system of the present invention includes a camera 10, a multiple division feature amount generation unit 20, a mixed Gaussian intermediate foreground processing unit 30, a shadow / reflection area removal unit 40, and a genuine foreground image generation unit 50.
カメラ10からの信号はR,G,Bカラー成分ごとに多重分割特徴量生成部20に入力され、カラー成分ごとのフレーム画像をオーバラップしない4x4画素の小領域毎に分割して領域毎にR, G, Bカラー成分の平均をf(R),f(G),f(B)として求め、これ等を特徴量要素として出力する。引き続き、多重分割特徴量生成部20では処理済みの4x4画素の小領域が構成する行と列各々の奇数番目と偶数番目の小領域を統合して8x8画素の拡大小領域とし、この拡大小領域の平均カラーを特徴量要素として出力する操作を行なう。同様に分割領域を拡大して、例えば4x4画素から64x64画素領域までに分割した各小領域のカラー特徴量要素を生成して出力する。この領域毎に求めた3個の特徴量要素は順次混合ガウス中間前景処理部30に送る。この多重解像度分割特徴量生成部20の具体的な構成の詳細は、非特許文献2の混合ガウスモデルによる多重解像度特徴量のLSI化プロセッサアーキテクチャを論じたWalsh Parameter Processorを用いて容易に構成でき、後述する。
A signal from the camera 10 is input to the multiple division feature generation unit 20 for each of the R, G, and B color components, and the frame image for each color component is divided into 4 × 4 pixel small regions that do not overlap and R for each region. , G, B The color component average is obtained as f (R), f (G), f (B), and these are output as feature quantity elements. Subsequently, the multiple division feature amount generation unit 20 integrates the odd and even sub-regions of the rows and columns formed by the processed sub-region of 4 × 4 pixels into an enlarged sub-region of 8 × 8 pixels. The operation is performed to output the average color as a feature quantity element. Similarly, the divided area is enlarged and, for example, color feature amount elements of each small area divided from 4 × 4 pixels to 64 × 64 pixel areas are generated and output. The three feature quantity elements obtained for each region are sequentially sent to the mixed Gaussian foreground processing unit 30. Details of the specific configuration of the multi-resolution division feature quantity generation unit 20 can be easily configured using the Walsh Parameter Processor that discusses the LSI processor architecture of the multi-resolution feature quantity based on the mixed Gaussian model of Non-Patent Document 2. It will be described later.
多重分割特徴量生成部20からの特徴量は中間前景処理部30で特徴量の要素毎に混合ガウスモデルによる中間前景分離を行う。多重分割特徴量生成部20から新しい小領域の特徴量が入力されると、中間前景処理部30では、この小領域処理のために前フレームで用意した混合ガウスモデルのガウス分布係数を用いて中間前景分離を行ない、各ガウス分布係数を次フレームのために適応的に更新する。この処理は非特許文献2のGauss Thread Processor (GTP) がそのまま使える。ただし、影反射除去のためにこの小領域の現在の特徴量と、更新する前の全ての背景ガウス係数と、中間前景分離の結果が中間前景である場合には中間前景フラグをオン、背景であればオフにして影/反射除去部40に送る。
The feature quantity from the multiple division feature quantity generation unit 20 is subjected to intermediate foreground separation by a mixed Gaussian model for each feature quantity element in the intermediate foreground processing unit 30. When a feature value of a new small region is input from the multi-division feature amount generation unit 20, the intermediate foreground processing unit 30 uses the Gaussian distribution coefficient of the mixed Gaussian model prepared in the previous frame for this small region processing. Perform foreground separation and adaptively update each Gaussian distribution coefficient for the next frame. For this processing, Gauss Thread Processor (GTP) of Non-Patent Document 2 can be used as it is. However, the current feature value of this small area for shadow reflection removal, all background Gaussian coefficients before updating, and the intermediate foreground flag on if the result of intermediate foreground separation is the intermediate foreground, If there is, turn it off and send it to the shadow / reflection removal unit 40.
影/反射領域除去部40では中間前景処理部30より入力された小領域毎の特徴量、中間前景フラグ、背景ガウス分布のガウス分布係数を用いて影や反射による中間前景領域を除去する。除去する前に中間前景フラグの内容を真正前景フラグにまず移す。その小領域が影や反射に起因するものであれば、以下に説明する操作で真正前景フラグを下ろすためである。これにより、中間前景領域から排除する。
The shadow / reflection area removing unit 40 removes the intermediate foreground area due to shadows and reflections using the feature quantity for each small area, the intermediate foreground flag, and the Gaussian distribution coefficient of the background Gaussian distribution input from the intermediate foreground processing unit 30. Prior to removal, the contents of the intermediate foreground flag are first transferred to the authentic foreground flag. If the small area is caused by shadow or reflection, the authentic foreground flag is lowered by the operation described below. This eliminates it from the intermediate foreground area.
影/反射領域除去部40の処理では、まず、カラー平均要素からなる小領域の特徴量のうち、最大の特徴量要素を基準要素にする。これは、修正係数A算出のための割り算の精度が悪くなることを防ぐためである。この基準要素を用いて影と反射を検出する原理図6に従った処理を行う。ただし、小領域が中間前景分離で前景となった場合、その基準要素は背景ガウス分布の領域から逸脱したことは明確でも、基準要素に対する混合ガウスモデル内のどの背景ガウス分布から移動してきたのか解らない。このため、複数個ある背景ガウス分布に対して総当たりで影および反射のチェックを行う。まず、基準要素の最初の背景ガウス分布の平均と現状の基準要素により修正係数Aを定める。次いで、基準要素以外の特徴量要素を一個ずつ選び、それに修正係数Aを乗じた結果がその要素に対応する背景ガウス分布に包含されるかどうかを調べる。背景ガウスに包含されればその小領域は影もしくは反射部に含まれるとして真正前景フラグを下げて、真正前景画像生成部50へ進む。つまり、真正前景フラグがリセットされるので、その小領域はそれまで中間前景の一部であったが背景に戻すことになる。また、修正係数Aを乗じても背景ガウス分布に包含されない場合は基準特徴量用の次のガウス分布を選んで修正係数Aを求め直し、再度チェックすることになる。総当たり方式であるので重い計算ではあるが、各要素に対応するガウス分布の数は典型的には3個ほどであるのでそれほど重い処理にはならない。また、本来は3つの特徴量要素が一様に減衰ないし増幅される筈である。しかし、非特許文献1によると、修正係数Aの値を求めるのに背景ガウス分布の平均を用いるため、修正係数Aは実際の影や反射による正確な修正値が求まりにくい。このため、基準要素以外の2つの特徴量要素のうちどちらか一方が影/反射の条件を満たせばよいとする。本発明でもこの方式を取る。影/反射領域除去部40の詳細は動作フローチャートを用いて後程詳述する。
In the processing of the shadow / reflection area removing unit 40, first, the largest feature quantity element among the feature quantities of the small area composed of color average elements is used as a reference element. This is to prevent the accuracy of division for calculating the correction coefficient A from deteriorating. The principle according to FIG. 6 for detecting shadows and reflections using this reference element is performed. However, if a small region becomes the foreground in the middle foreground separation, it is clear that the reference element has deviated from the background Gaussian distribution region, but it is clear from which background Gaussian distribution in the mixed Gaussian model for the reference element it has moved. Absent. For this reason, a check of shadows and reflections is performed with respect to a plurality of background Gaussian distributions. First, the correction coefficient A is determined by the average of the first background Gaussian distribution of the reference element and the current reference element. Next, feature amount elements other than the reference element are selected one by one, and it is examined whether or not the result of multiplying it by the correction coefficient A is included in the background Gaussian distribution corresponding to the element. If it is included in the background Gauss, the true foreground flag is lowered and the process proceeds to the true foreground image generation unit 50 because the small area is included in the shadow or reflection part. That is, since the true foreground flag is reset, the small area has been part of the intermediate foreground until then, but is returned to the background. If the correction factor A is not included in the background Gaussian distribution, the correction factor A is selected again by selecting the next Gaussian distribution for the reference feature amount and checked again. Although it is a heavy calculation because it is a brute force method, the number of Gaussian distributions corresponding to each element is typically about 3, so it is not so heavy processing. In addition, the three feature elements should be attenuated or amplified uniformly. However, according to Non-Patent Document 1, since the average of the background Gaussian distribution is used to obtain the value of the correction coefficient A, it is difficult to obtain an accurate correction value for the correction coefficient A due to actual shadows and reflections. For this reason, it is assumed that one of the two feature quantity elements other than the reference element only needs to satisfy the shadow / reflection condition. This method is also adopted in the present invention. Details of the shadow / reflection area removing unit 40 will be described later in detail using an operation flowchart.
真正前景画像生成部50は影/反射領域除去部40より多重分割された小領域毎に真正前景フラグ1個を受け取る。受け取った真正前景フラグは対応する小領域が真正の前景か否かを示す。また、この小領域がフレーム画像のどの位置に該当するかわかっている。まず、真正前景画像となる1フレーム分の画像メモリを用意し、影/反射領域除去部40から4x4画素の小領域よりの真正前景フラグを受け取ると、この画像メモリ上で対応する4x4画素の位置ごとに真正前景フラグの内容をコピーする。つまり、真正前景フラグがオンの場合は4x4個の1を対応する多重解像度真正前景を作る画像メモリの場所に移し、真正前景フラグがオフの場合は4x4個の0を移す。これで4x4画素の小領域の処理が全て終わると、画像メモリには4x4領域毎に0もしくは1となる2値で真正前景画像ができあがる。
The genuine foreground image generation unit 50 receives one genuine foreground flag for each of the small regions divided and divided from the shadow / reflection region removal unit 40. The received authentic foreground flag indicates whether or not the corresponding small area is an authentic foreground. Further, it is known which position in the frame image this small region corresponds to. First, prepare an image memory for one frame to be a true foreground image, and when the true foreground flag from a small area of 4x4 pixels is received from the shadow / reflection area removal unit 40, the position of the corresponding 4x4 pixel on this image memory Each time the authentic foreground flag is copied. That is, if the true foreground flag is on, 4x4 1s are moved to the location of the image memory that creates the corresponding multi-resolution true foreground, and if the true foreground flag is off, 4x4 0s are moved. When all the processing of a small area of 4 × 4 pixels is completed, a true foreground image is created in the image memory with a binary value that is 0 or 1 for each 4 × 4 area.
4x4 画素の小領域処理が終わると、8x8画素小領域の処理へ移り、順次最大画素領域へと進む。以下では8x8画素領域からの真正前景フラグを受け取った時の処理を説明する。この場合は真正前景フラグに応じて8x8個の1もしくは0をデータとして準備する。すでに画像メモリ上には4x4画素の全ての結果から合成した真正前景画像フレームができあがっているので、準備した8x8個のデータをこのフレーム画像の対応する位置に以下の要領で反映させる。真正前景フラグが立っている場合は8x8個の1、立っていない場合は8x8個の0データを用意し、画像フレームメモリの対応する8x8画素の小領域位置にある4個の4x4画素データと各々論理積(AND)を取って同じ位置へ格納する。この結果、8x8個のデータが全て0である場合は対応する位置の4個の4x4画素領域はゼロとなる。逆に8x8個のデータが1の場合は4個ある4x4領域の1/0の状態がそのまま残る。
When the 4 × 4 pixel small region processing is completed, the process proceeds to the 8 × 8 pixel small region processing, and then proceeds to the maximum pixel region sequentially. In the following, processing when a genuine foreground flag from the 8 × 8 pixel area is received will be described. In this case, 8 × 8 1s or 0s are prepared as data according to the true foreground flag. Since the true foreground image frame synthesized from all the results of 4x4 pixels has already been created on the image memory, the prepared 8x8 data is reflected in the corresponding position of this frame image in the following manner. When the true foreground flag is set, 8x8 1s are prepared, and when it is not set, 8x8 0s are prepared, and each 4x4 pixel data at the corresponding small region of 8x8 pixels in the image frame memory and each Take the logical product (AND) and store it in the same location. As a result, when the 8 × 8 data are all 0, the four 4 × 4 pixel regions at the corresponding positions are zero. On the other hand, when 8x8 data is 1, the 1/0 state of four 4x4 areas remains as it is.
その後も順次影/反射領域除去部40から受け取った真正前景フラグに対応する真正前景画像フレームの位置に、真正前景フラグに応じて0または1を対応する小領域分用意し、論理積により真正前景画像フレーム領域の値を変更して戻す操作を繰り返す。全ての最大画素領域までの論理積による画像フレーム内の処理が完了すると完全な真正前景画像ができあがる。つまり、このフレーム内で1の現れる4x4領域の場所は、その場所を含む8x8画素領域より順次最大画素領域までが全て1である場合のみ生き残る。よって、安定性の高い真正前景画像フレームができあがる。
Subsequently, 0 or 1 corresponding to the small area corresponding to the true foreground flag is sequentially prepared at the position of the true foreground image frame corresponding to the true foreground flag received from the shadow / reflection area removing unit 40, and the true foreground is obtained by logical product. The operation of changing and returning the value of the image frame area is repeated. When the processing in the image frame by the logical product up to all the maximum pixel areas is completed, a complete true foreground image is completed. In other words, the location of the 4x4 region where 1 appears in this frame survives only when all the pixels from the 8x8 pixel region including the location to the maximum pixel region are all 1s. Therefore, a highly stable authentic foreground image frame is completed.
図2は多重分割特徴量生成部20の実施例である。多重分割特徴量生成部20はカメラ10からの入力端子セット200とWPP列210から構成される。また、入力端子セット200はR成分信号入力端子201、G成分信号入力端子202、B成分信号入力端子203より構成されており、WPP列210は3個のWPP211, WPP212, WPP213より構成される。ここで、WPP211,WPP212,WPP213はすでに述べたように、非特許文献2の混合ガウスモデルによる多重解像度前景分離LSI化プロセッサWPP (Walsh Parameter Processor) のことである。WPPは本来は輝度信号を入力するとフレーム画像を多重領域分割して個々の領域の輝度信号をWalsh変換し、領域毎の輝度平均となる最低スペクトル係数f(DC)、および縦、横方向のスペクトル成分を重み加算したf(ACV)とf(ACH)を順次出力するものである。しかし、今回の目的には領域の平均出力であるf(DC)だけを用い、f(ACV)やf(ACH)は利用しない。
FIG. 2 shows an embodiment of the multiple division feature value generation unit 20. The multiple division feature value generation unit 20 includes an input terminal set 200 and a WPP sequence 210 from the camera 10. The input terminal set 200 includes an R component signal input terminal 201, a G component signal input terminal 202, and a B component signal input terminal 203, and the WPP column 210 includes three WPPs 211, 21WPP212, and WPP213. Here, as described above, WPP211, WPP212, and WPP213 are multi-resolution foreground separation LSI-based processors WPP (Walsh Parameter Processor) by the mixed Gaussian model of Non-Patent Document 2. In WPP, when a luminance signal is input, the frame image is divided into multiple regions and the luminance signal of each region is Walsh converted, and the lowest spectral coefficient f (DC), which is the average luminance of each region, and the spectrum in the vertical and horizontal directions F (ACV) and f (ACH) obtained by weighting the components are sequentially output. However, only f (DC), which is the average output of the region, is used for this purpose, and f (ACV) and f (ACH) are not used.
カメラ10からのR成分信号、G成分信号、B成分信号は、R成分信号入力端子201, G成分信号入力端子202, B成分信号入力端子203に入力され、それぞれに直結されたWPP211, WPP212およびWPP213に供給される。各WPPでは4x4画素領域から最大画素領域までの多重分割した小領域ごとにWalsh変換による最低スペクトル係数を各WPPのf(DC)出力端子に出力する。つまり、それぞれR色成分、G色成分、B色成分の平均成分信号を出力する。具体的には、WPP211のf(DC)がf(R)となり、WPP212のf(DC)がf(G)となり、WPP213のf(DC)がf(B)となる。よって、WPP211,WPP212,およびWPP213からの出力は多重解像度分割した小領域ごとの特徴量要素を順次出力こととなり、これらを順次中間前景処理部30へ特徴量として伝える。
R component signal, G component signal, B component signal from camera 10 are input to R component signal input terminal 201, G component signal input terminal 202, B component signal input terminal 203, and WPP211, WPP212 and Supplied to WPP213. In each WPP, the lowest spectral coefficient by Walsh transform is output to the f (DC) output terminal of each WPP for each of the multiple divided small regions from the 4 × 4 pixel region to the maximum pixel region. That is, average component signals of R color component, G color component, and B color component are output. Specifically, f (DC) of WPP 211 is f (R), f (DC) of WPP 212 is f (G), and f (DC) of WPP 213 is f (B). Therefore, the outputs from WPP 211, WPP 212, and WPP 213 sequentially output feature quantity elements for each of the small areas divided by the multi-resolution, and sequentially convey these as feature quantities to the intermediate foreground processing unit 30.
図3は影/反射領域除去部40の動作フローチャートである。図3の動作フローチャートは入力データ整理ブロック301、真正前景フラグ検査ブロック302、影/反射除去実行検査ブロック303、基準特徴量要素決定ブロック304、影/反射検証要素設定ブロック305、影/反射検証基準要素排除ブロック306、基準ガウス分布調査開始ブロック307、基準修正係数ブロック308、基準外要素ガウス分布検証開始ブロック309、影/反射候補検証ブロック310、影/反射決定ブロック311、基準外要素ガウス分布検証終了検査ブロック312 、基準ガウス分布調査終了検査ブロック313、特徴量要素変更ブロック314、前景分離要素処理処終了検査ブロック315からなる。各々の特徴量要素に対してM個のガウス分布からなる混合ガウスモデルを用いた場合を想定しており、その中に背景ガウス分布は基準特徴量要素にはPM個、基準でない特徴量要素にはQM個ある場合を想定している。このフローチャートは、以下に述べるように先に述べた影と反射を検出する原理図6に従った動きをする。
FIG. 3 is an operation flowchart of the shadow / reflection area removing unit 40. The operation flowchart of FIG. 3 includes an input data arrangement block 301, a true foreground flag inspection block 302, a shadow / reflection removal execution inspection block 303, a reference feature element determination block 304, a shadow / reflection verification element setting block 305, and a shadow / reflection verification standard. Element exclusion block 306, reference Gaussian distribution start block 307, reference correction coefficient block 308, non-reference element Gaussian distribution verification start block 309, shadow / reflection candidate verification block 310, shadow / reflection determination block 311, non-reference element Gaussian distribution verification An end inspection block 312, a reference Gaussian distribution inspection end inspection block 313, a feature element change block 314, and a foreground separation element processing end inspection block 315 are included. It is assumed that a mixed Gaussian model consisting of M Gaussian distributions is used for each feature element. Among them, the background Gaussian distribution has PM reference feature elements and non-reference feature elements. Assumes QM. This flowchart operates in accordance with the principle shown in FIG. 6 for detecting shadows and reflections described above as described below.
まず、図3のフローチャートでは、入力データ整理ブロック301で混合ガウス中間前景処理部30からのデータ収集整理を行う。収集するデータは小領域毎の修正する前の背景ガウス分布係数と3個の特徴量要素および中間前景フラグである。また、中間前景フラグの内容を真正前景フラグに移す。これは以降の処理で影/反射領域除去部40との処理を干渉させないためである。
First, in the flowchart of FIG. 3, data collection from the mixed Gaussian foreground processing unit 30 is performed in the input data reduction block 301. The collected data is the background Gaussian distribution coefficient before correction for each small area, three feature elements, and an intermediate foreground flag. Further, the contents of the intermediate foreground flag are moved to the genuine foreground flag. This is to prevent the processing with the shadow / reflection area removing unit 40 from interfering in the subsequent processing.
ついで、真正前景フラグ検査ブロック302では真正前景フラグがセットされているかどうかを検査する。セットされていない場合は背景であるため影/反射除去の対象にはならない。よって、この場合はそのままこのフローチャートの終了(Exit)へ直行する。また、真正前景フラグがセットされている場合は影/反射を検出するために影/反射除去実行検査ブロック303に進む。
Next, the genuine foreground flag check block 302 checks whether the true foreground flag is set. If it is not set, it is a background and is not subject to shadow / reflection removal. Therefore, in this case, the process directly goes to the end of this flowchart. If the true foreground flag is set, the process proceeds to the shadow / reflection removal execution inspection block 303 in order to detect shadow / reflection.
影/反射除去実行検査ブロック303では小領域分割が4x4画素ないし8x8画素までの小領域以外の場合は影/反射除去を行わないとしている。ブロック内に書かれた記号は小領域のサイズをaとし、このaがSES(Selected Evaluation Sizeblock:4x4画素か8x8画素)に含まれるという意味である。このため、8x8画素以上大きな分割領域では以下の影/反射領域除去部の動作フローをバイパスして終了する。よって、小領域サイズがSESに属する場合のみ基準特徴量要素決定ブロック304に進む。
In the shadow / reflection removal execution inspection block 303, shadow / reflection removal is not performed when the small area division is other than a small area of 4 × 4 pixels to 8 × 8 pixels. The symbol written in the block means that the size of the small area is a, and that a is included in SES (Selected Evaluation Sizeblock: 4 × 4 pixels or 8 × 8 pixels). For this reason, in a divided area larger than 8 × 8 pixels, the operation flow of the shadow / reflection area removing unit described below is bypassed and the process ends. Therefore, the process proceeds to the reference feature quantity element determination block 304 only when the small area size belongs to SES.
基準特徴量要素決定ブロック304では影/反射除去判定をするにあたり基準となる前景分離特徴量要素を決定する。このため、前景分離特徴量要素の中から最大の値を持つものを選択する。以下の説明の都合上f(R),f(G),f(B)をこの順で番号付けしてf(1),f(2),f(3)とし、この番号で特徴量要素を示すことにする。最大の特徴量要素の値を最大値検出関数Maxで検出し、f(N)とする。つまり、この最大要素の所属する要素番号をNとして説明する。
In a reference feature amount element determination block 304, a foreground separation feature amount element that is a reference in determining shadow / reflection removal is determined. For this reason, the foreground separation feature quantity element having the maximum value is selected. For convenience of the following explanation, f (R), f (G), f (B) are numbered in this order to be f (1), f (2), f (3). Will be shown. The value of the maximum feature amount element is detected by the maximum value detection function Max and is set to f (N). That is, the element number to which the maximum element belongs is described as N.
続く影/反射検証要素設定ブロック305では影/反射領域を検査するための基準要素と組み合わせる特徴量要素を順次決定し以下の処理をループ処理で進めるためのものである。3つある特徴量要素に対して順次ループ処理で検討を行う。ここで設定した特徴量要素をk番目のものとして処理を進める。
In the subsequent shadow / reflection verification element setting block 305, feature elements to be combined with the reference element for inspecting the shadow / reflection area are sequentially determined, and the following processing is performed by loop processing. Three loops are sequentially examined for the feature quantity elements. The process proceeds with the feature quantity element set here as the kth element.
次いで、影/反射検証基準要素排除ブロック306に移る。影/反射処理は基準要素とそれ以外の前景分離特徴量要素の1つを用いて行う。そのため、影/反射検証要素設定ブロック305で決定した基準要素と異なる特徴量要素を選ぶ必要がある。よって、影/反射検証要素設定ブロック305で設定した特徴量要素が基準要素でないかどうかを検査し、基準要素と同じ特徴量要素が設定されている場合は、特徴量要素変更ブロック314に進み、(k+1)番目の特徴量要素の準備をする。次いで、前景分離要素処理処終了検査ブロック315で(k+1)番目が4番目以下のガウス分布を指定する場合は、影/反射検証要素設定ブロック305に戻る。特徴量要素変更ブロック314でk=4の場合は特徴量要素が3個であるため、ここで動作フローチャートの終了部に進む。
Next, the process proceeds to the shadow / reflection verification reference element exclusion block 306. The shadow / reflection process is performed using one of the reference elements and the other foreground separation feature elements. Therefore, it is necessary to select a feature element different from the reference element determined in the shadow / reflection verification element setting block 305. Therefore, it is checked whether or not the feature quantity element set in the shadow / reflection verification element setting block 305 is a reference element. If the same feature quantity element as the reference element is set, the process proceeds to the feature quantity element change block 314. Prepare the (k + 1) th feature element. Next, in the foreground separation element processing end check block 315, when the Gaussian distribution whose (k + 1) -th is the fourth or less is designated, the process returns to the shadow / reflection verification element setting block 305. If k = 4 in the feature quantity element change block 314, there are three feature quantity elements, so the process proceeds to the end of the operation flowchart.
影/反射検証基準要素排除ブロック306で基準要素と他の特徴量要素が見つかると、基準ガウス分布調査開始ブロック307に進む。ここでは基準要素を本来包含していたガウス分布が解らないので、基準要素に属する背景ガウス分布を順次呼び出して修正係数を求める処理をループ処理で実行するためのループ設定を行う。基準要素には背景ガウス分布がPM個あるとしており、基準特徴量要素が本来含まれるべき背景ガウス分布を総当たりで決める操作をループ処理で調べる。以下では現在p番目のガウス分布を用いて検査する場合を想定する。
When the reference element and other feature quantity elements are found in the shadow / reflection verification reference element exclusion block 306, the process proceeds to the reference Gaussian distribution investigation start block 307. Here, since the Gaussian distribution that originally included the reference element cannot be understood, a loop setting is performed so that the background Gaussian distribution belonging to the reference element is sequentially called to obtain a correction coefficient by a loop process. The reference element is assumed to have PM background Gaussian distributions, and an operation for deciding the background Gaussian distribution that should originally include the reference feature quantity element is examined by loop processing. In the following, it is assumed that an inspection is performed using the current p-th Gaussian distribution.
続く基準修正係数ブロック308では影/反射で共通に使われる第p番目の修正係数A(p)を計算する。この修正係数はp番目の背景ガウスの平均μN(p)を基準要素の値f(N)で割ったもので、A(p)=μN(p)/f(N)と記述している。
In the subsequent reference correction coefficient block 308, the p-th correction coefficient A (p) commonly used for shadow / reflection is calculated. This correction coefficient is obtained by dividing the mean μN (p) of the p-th background Gauss by the value f (N) of the reference element, and is described as A (p) = μN (p) / f (N).
次の、基準外要素ガウス分布検証開始ブロック309では、基準修正係数ブロック308 で得られた修正係数を用いて影/反射検証要素設定ブロック305により定まった基準要素ではない特徴量要素にはQM個の背景ガウス分布があるとしており、その各々に対する検証をループ処理で実行するための背景ガウス分布の番号qを設定する。
In the next non-reference element Gaussian distribution verification start block 309, QM elements are not included in the feature elements that are not the reference elements determined by the shadow / reflection verification element setting block 305 using the correction coefficient obtained in the reference correction coefficient block 308. The background Gaussian distribution number q is set for executing verification for each of the background Gaussian distributions by loop processing.
続いて影/反射候補検証ブロック310では影/反射検証要素設定ブロック305で選択された基準外特徴量要素に基準修正係数ブロック308で求めた修正係数A(p)を乗じた値がこの要素に属するq番目の背景ガウス分布に含まれるかどうかを判断する。
Subsequently, in the shadow / reflection candidate verification block 310, this element is obtained by multiplying the non-reference feature quantity element selected in the shadow / reflection verification element setting block 305 by the correction coefficient A (p) obtained in the reference correction coefficient block 308. It is determined whether it is included in the qth background Gaussian distribution to which it belongs.
影/反射候補検証ブロック310で影/反射であると判断されれば影/反射決定ブロック311に進み、真正前景フラグを下す。この操作は、影/反射検定で検査する基準要素以外の2つの特徴量要素での検証処理のうち1つでも影/反射であると判断すれば充分であるとしているため、影/反射決定ブロック311の処理が終われば直ちにこのフローチャートの終了に進む。
If the shadow / reflection candidate verification block 310 determines that it is a shadow / reflection, the process proceeds to the shadow / reflection determination block 311 and the true foreground flag is set. Since this operation is sufficient to determine that one of the verification processes using two feature elements other than the reference element to be inspected by the shadow / reflection test is a shadow / reflection, the shadow / reflection decision block As soon as the processing of 311 is completed, the process proceeds to the end of this flowchart.
逆に影/反射候補検証ブロック310で現在処理中の背景ガウスには含まれない場合は、基準外ガウス分布検証終了検査ブロック312に進み、残りの背景ガウス分布がある場合は、(q+1)番目の背景ガウスに設定して基準外要素ガウス分布検証終了検査ブロック312を介して基準外要素ガウス分布検証開始ブロック309に戻り、影/反射領域チェックのループ処理を再度始める。
Conversely, if it is not included in the background Gauss currently being processed in the shadow / reflection candidate verification block 310, the process proceeds to the non-standard Gaussian distribution verification end inspection block 312. If there is a remaining background Gaussian distribution, the (q + 1) th The non-reference element Gaussian distribution verification end check block 312 returns to the non-reference element Gaussian distribution verification start block 309, and the shadow / reflection area check loop processing starts again.
しかし、基準外要素ガウス分布検証終了検査ブロック312で修正特徴量要素を包含できる残りの背景分布がもうない場合は基準修正係数ブロック308で定める修正係数では該当する背景ガウス分布が見あたらない。このため、基準ガウス分布調査終了検査ブロック313に進む。
However, if there is no remaining background distribution that can include the corrected feature quantity element in the non-reference element Gaussian distribution verification end inspection block 312, the corresponding background Gaussian distribution cannot be found with the correction coefficient determined in the reference correction coefficient block 308. For this reason, the process proceeds to the reference Gaussian distribution survey end inspection block 313.
基準ガウス分布調査終了検査ブロック313は基準要素の背景ガウス分布を次に代えるものがあると判断できれば、つまり換言すればp番目の基準要素の背景ガウス分布がPM以下であった場合、基準ガウス分布調査開始ブロック307に戻り(p+1)番目の背景ガウス分布を設定して影/反射領域のチェックループ処理を開始する。一方、基準ガウス分布調査終了検査ブロック313で基準要素の背景ガウス分布をすべてチェックし終わっている場合は、この基準要素のガウス分布では影/反射領域がチェックできなかったので、非基準特徴量要素を変えるための前景分離特徴量要素変更ブロック314に進んで他の特徴量要素を選択するためkを歩進し、前景分離要素処理処終了検査ブロック315に進む。
If the reference gaussian distribution end inspection block 313 can determine that there is a next alternative to the background gaussian distribution of the reference element, that is, if the background gaussian distribution of the pth reference element is less than or equal to PM, the reference gaussian distribution Returning to the investigation start block 307, the (p + 1) th background Gaussian distribution is set, and the shadow / reflection area check loop processing is started. On the other hand, if all the background Gaussian distributions of the reference element have been checked in the reference Gaussian distribution end inspection block 313, the shadow / reflection area could not be checked in the Gaussian distribution of this reference element. The process proceeds to a foreground separation feature quantity element change block 314 for changing the process, advances k to select another feature quantity element, and proceeds to the foreground separation element processing end check block 315.
前景分離要素処理処終了検査ブロック315では、特徴量要素は3個しかないので、kを歩進した結果が4になるかどうかを検査する。4以下の場合は影/検証要素設定ブロック305に戻り新しい前景分離特徴量要素に対してこれまでと同じ要領で影/反射領域を見つける操作を行う。
In the foreground separation element processing end check block 315, since there are only three feature elements, it is checked whether or not the result of stepping k is 4. In the case of 4 or less, the process returns to the shadow / verification element setting block 305 to perform an operation for finding a shadow / reflection area in the same manner as before for the new foreground separation feature quantity element.
しかし、前景分離要素処理処終了検査ブロック315でkが4であった場合は前景分離要素処理処終了検査ブロック315を通過して動作フローチャートに沿った動作を終了する。つまり、この場合には真正前景フラグは立ったままであり、影や反射ではなかったことを意味する。以上で影/反射領域除去部40の動作フローチャートは完了する。
However, if k is 4 in the foreground separation element processing end check block 315, the foreground separation element processing end check block 315 is passed and the operation according to the operation flowchart is ended. That is, in this case, the genuine foreground flag remains standing, meaning that it was not a shadow or reflection. Thus, the operation flowchart of the shadow / reflection area removing unit 40 is completed.
以上のように上記の実施例に従えば、屋内における影や反射領域を取り除いた真正前景領域を抽出でき、また従来必要とされてきたレティネックス画像強調等を行なわなくともよくなる。この結果指先ジェスチャー入力などの演算量が飛躍的に減少し、消費電力の少ないウェアラブル端末用の入力システムが実現できる。
As described above, according to the above-described embodiment, a true foreground area from which shadows and reflection areas are removed indoors can be extracted, and retinex image enhancement, which has been conventionally required, can be omitted. As a result, the amount of operations such as fingertip gesture input is drastically reduced, and an input system for a wearable terminal with low power consumption can be realized.
また図3のフローチャートは反射領域と影領域を同時に検出して中間前景領域からそのような領域を消去するものになっているが、反射領域だけを検出したい場合には基準ガウス分布調査開始ブロック307で選ばれた基準ガウス分布の平均が基準要素の値より大きい時は直ちに基準ガウス分布調査終了検査ブロック313まで進む条件を設ければよい。この様にすることで反射領域のみの除去を実現できるため、演算量を約1/2に減らすことができる。
The flowchart of FIG. 3 detects the reflection area and the shadow area at the same time, and deletes such an area from the intermediate foreground area. However, if only the reflection area is to be detected, the reference Gaussian distribution survey start block 307 is used. When the average of the reference Gaussian distribution selected in step (b) is larger than the value of the reference element, a condition for proceeding immediately to the reference Gaussian distribution survey end inspection block 313 may be set. By doing so, it is possible to remove only the reflection region, so that the calculation amount can be reduced to about ½.
同様に影領域だけを検出したい場合には、基準ガウス分布調査開始ブロック307で選ばれた基準ガウス分布の平均が基準要素の値より小さい時は直ちに基準ガウス分布調査終了検査ブロック313まで進む条件を設ければよい。この様にすることで影領域のみの除去になるため、演算量を約1/2に減らすことができる。
Similarly, when only the shadow area is to be detected, if the average of the reference Gaussian distribution selected in the reference Gaussian distribution search start block 307 is smaller than the value of the reference element, the condition to proceed immediately to the reference Gaussian distribution check end inspection block 313 is set. What is necessary is just to provide. In this way, only the shadow area is removed, so that the amount of calculation can be reduced to about 1/2.
また、図3の影/反射領域除去部のフローチャートでは中間前景領域で影もしくは反射の候補を検証するにあたり、ある特徴量要素が複数個の背景ガウス分布中のどの背景ガウス分布の包含領域から逸脱して前景になったか判定できないため、背景ガウス分布を総当たり方式で調べた。しかし、すでに述べたように、各特徴量要素のガウス分布に対して背景および前景ガウス分布を決定する過程で全てのガウス分布は重み係数の大きいもの順に並べ替えているため、異なる特徴量要素用のガウス分布の重み付け係数の大きいものからの順位が同じであれば、対応する背景ガウス分布と考えてよい。ただし、全ての背景ガウス分布の重み係数は十分に大きい場合だけである。この条件を満たせば、総当たり方式を回避できる。この場合の具体的な図3のフローチャートの修正は、基準外要素ガウス分布検証ブロック309と基準外要素ガウス分布検証終了ブロック312で構成されるループ処理を排除し、基準外要素ガウス分布検証ブロック309で与えられるq番目の基準外要素ガウス分布に変わり、基準特徴量要素決定ブロック304で定められたp番目の基準外要素ガウス分布を用いることで実現できる。このようにして実現する方法も本発明の一部である。
In addition, in the flowchart of the shadow / reflection area removal unit in FIG. 3, when verifying a shadow or reflection candidate in the intermediate foreground area, a certain feature element deviates from the inclusion area of any background Gaussian distribution among a plurality of background Gaussian distributions. Since it is impossible to determine whether the foreground has been obtained, the background Gaussian distribution was examined using a brute force method. However, as already mentioned, in the process of determining the background and foreground Gaussian distribution for the Gaussian distribution of each feature element, all the Gaussian distributions are rearranged in descending order of weighting factors, so that different feature elements are used. If the ranks from the Gaussian distribution with the largest weighting coefficient are the same, the corresponding background Gaussian distribution may be considered. However, it is only when the weighting factors of all the background Gaussian distributions are sufficiently large. If this condition is satisfied, the brute force method can be avoided. The specific correction of the flowchart of FIG. 3 in this case eliminates the loop processing composed of the non-standard element Gaussian distribution verification block 309 and the non-standard element Gaussian distribution verification end block 312, This can be realized by using the p-th non-standard element Gaussian distribution determined by the standard feature quantity element determination block 304 instead of the q-th non-standard element Gaussian distribution given by The method implemented in this way is also part of the present invention.
以上では修正係数を求めるのに繰り返し演算となる除算が必要となるが、非特許文献1で説明しているように、包含領域に関する領域の上限と下限に修正係数の分母となるf(N)を乗ずることで除算を排除し演算量を削減している。これも単なる式変形であるため本発明の内である。
In the above, division to be an iterative operation is required to obtain the correction coefficient. However, as described in Non-Patent Document 1, the upper and lower limits of the area related to the inclusion area are f (N) serving as the denominator of the correction coefficient. Multiplication is used to eliminate division and reduce the amount of computation. This is also a mere formula modification and is within the scope of the present invention.
参考までに図3のフローチャートに沿って処理した例で、電気スタンドをつけた環境下での影/反射除去の効果の写真集を図7にまとめた。この写真集は入力カラービデオの1カットを2値化した写真701、多重解像度色平均ブロック特徴量による中間前景分離結果写真702、影領域写真703、真正前景分離の写真704で構成されている。また、影処理と反射処理は4x4画素のブロックだけで行っている。映像写真を2値化した写真701は影はわかるものの反射は目ではわからない。しかし、中間前景分離結果写真702では影と反射も指先や腕の下に中間前景領域として分離される。これに対し、色平均特徴量を用いた影領域のみを抽出した結果が写真703で、見えている影の領域と、腕の下側エッジに線状の影領域を見つけ出している。しかし、これだけを中間前景から除去しても三角形状の反射領域が消えない。一方、図3に示す影/反射領域除去部の動作フローチャートを用いて中間前景分離結果を処理すると、真正中間前景分離結果として写真704が得られる。つまり、三角形状の反射領域も除去できる。ちなみにこの三角形状の反射は机の上に置いたスマートフォンからの反射であった。本発明では非特許文献1の影除去で必要となったレティネックス画像強調の演算量の10%をはるかに下回る演算量で影と反射を含まない真正前景分離結果が得られている。
For reference, an example of processing according to the flowchart of FIG. 3 is shown in FIG. This photo book is composed of a photograph 701 obtained by binarizing one cut of the input color video, an intermediate foreground separation result photograph 702 using a multi-resolution color average block feature, a shadow area photograph 703, and a genuine foreground separation photograph 704. In addition, shadow processing and reflection processing are performed only in 4x4 pixel blocks. Photo 701, which is a binarized video picture, shows shadows but not reflections. However, in the foreground separation result photograph 702, shadows and reflections are also separated as an intermediate foreground area under the fingertip and arm. On the other hand, the result of extracting only the shadow area using the color average feature amount is the photograph 703, and the shadow area that is visible and the linear shadow area are found at the lower edge of the arm. However, even if only this is removed from the intermediate foreground, the triangular reflection area does not disappear. On the other hand, when the intermediate foreground separation result is processed using the operation flowchart of the shadow / reflection area removal unit shown in FIG. 3, a photograph 704 is obtained as the genuine intermediate foreground separation result. That is, the triangular reflection region can be removed. By the way, this triangular reflection was from a smartphone placed on a desk. In the present invention, a true foreground separation result that does not include shadows and reflections is obtained with a calculation amount far below 10% of the calculation amount of Retinex image enhancement required for shadow removal of Non-Patent Document 1.
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることも可能であることが当業者に明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。
As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
10 : カメラ
20 : 多重分割特徴量生成部
30 : 混合ガウス中間前景処理部
40 : 影/反射領域除去部
50 : 真正前景画像生成部
200: 入力端子セット
201: R成分信号入力端子
202: G成分信号入力端子
203: B成分信号入力端子
210: WPP列
211: WPP(Walsh Parameter Processor)
212: WPP(Walsh Parameter Processor)
213: WPP(Walsh Parameter Processor)
301 : 入力データ整理ブロック
302 : 真正前景フラグ検査ブロック
303 : 影/反射除去実行検査ブロック
304 : 基準特徴量要素決定ブロック
305 : 影/反射検証要素設定ブロック
306 : 影検証基準要素排除ブロック
307 : 基準ガウス分布調査開始ブロック
308 : 基準修正係数ブロック
309 : 基準外要素ガウス分布検証開始ブロック
310 : 影/反射候補検証ブロック
311: 影/反射決定ブロック
312: 基準外要素ガウス分布検証終了検査ブロック
313: 基準ガウス分布調査終了検査ブロック
314: 前景分離特徴量要素変更ブロック
315: 前景分離要素処理処終了検査ブロック
401: 前景時のf(DC)要素の影領域グラフ
402: 他の特徴量要素グラフ
403: 影検証グラフ
501: 原画像写真
502; 変換領域中間前景分離写真
503: 変換領域影除去写真
601: 基準要素の影領域グラフ
602: 影領域の他要素グラフ
603: 影検証グラフ
604: 基準要素の反射領域グラフ
605: 反射領域の他要素グラフ
606: 反射検証グラフ
701: カラービデオの1カットを2値化した写真
702: 多重解像度色平均ブロック特徴量による中間前景分離結果写真
703: 多重解像度変換領域特徴量による影領域写真
704: 真正前景分離結果の写真 10: Camera
20: Multiple division feature generator
30: Mixed Gaussian foreground processing section
40: Shadow / reflection area removal part
50: Authentic foreground image generator
200: Input terminal set
201: R component signal input terminal
202: G component signal input terminal
203: B component signal input terminal
210: WPP column
211: WPP (Walsh Parameter Processor)
212: WPP (Walsh Parameter Processor)
213: WPP (Walsh Parameter Processor)
301: Input data reduction block
302: Authentic foreground flag check block
303: Shadow / reflection removal execution inspection block
304: Reference feature element determination block
305: Shadow / reflection verification element setting block
306: Shadow verification reference element exclusion block
307: Standard Gaussian distribution start block
308: Standard correction coefficient block
309: Non-standard element Gaussian distribution verification start block
310: Shadow / reflection candidate verification block
311: Shadow / reflection decision block
312: Non-standard element Gaussian distribution verification check block
313: Standard Gaussian distribution survey end inspection block
314: Foreground separation feature element change block
315: Foreground separation element processing end check block
401: Shadow region graph of f (DC) element in foreground
402: Other feature element graph
403: Shadow validation graph
501: Original picture photo
502; Transform area middle foreground separation photograph
503: Transform area shadow removal photo
601: Base area shadow area graph
602: Other elements graph of shadow area
603: Shadow verification graph
604: Reference element reflection area graph
605: Other elements graph of reflection area
606: Reflection verification graph
701: Photo of one cut of color video binarized
702: Photo for intermediate foreground separation by multi-resolution color average block feature
703: Shadow area photo by multi-resolution conversion area feature
704: Authentic foreground separation result photo
20 : 多重分割特徴量生成部
30 : 混合ガウス中間前景処理部
40 : 影/反射領域除去部
50 : 真正前景画像生成部
200: 入力端子セット
201: R成分信号入力端子
202: G成分信号入力端子
203: B成分信号入力端子
210: WPP列
211: WPP(Walsh Parameter Processor)
212: WPP(Walsh Parameter Processor)
213: WPP(Walsh Parameter Processor)
301 : 入力データ整理ブロック
302 : 真正前景フラグ検査ブロック
303 : 影/反射除去実行検査ブロック
304 : 基準特徴量要素決定ブロック
305 : 影/反射検証要素設定ブロック
306 : 影検証基準要素排除ブロック
307 : 基準ガウス分布調査開始ブロック
308 : 基準修正係数ブロック
309 : 基準外要素ガウス分布検証開始ブロック
310 : 影/反射候補検証ブロック
311: 影/反射決定ブロック
312: 基準外要素ガウス分布検証終了検査ブロック
313: 基準ガウス分布調査終了検査ブロック
314: 前景分離特徴量要素変更ブロック
315: 前景分離要素処理処終了検査ブロック
401: 前景時のf(DC)要素の影領域グラフ
402: 他の特徴量要素グラフ
403: 影検証グラフ
501: 原画像写真
502; 変換領域中間前景分離写真
503: 変換領域影除去写真
601: 基準要素の影領域グラフ
602: 影領域の他要素グラフ
603: 影検証グラフ
604: 基準要素の反射領域グラフ
605: 反射領域の他要素グラフ
606: 反射検証グラフ
701: カラービデオの1カットを2値化した写真
702: 多重解像度色平均ブロック特徴量による中間前景分離結果写真
703: 多重解像度変換領域特徴量による影領域写真
704: 真正前景分離結果の写真 10: Camera
20: Multiple division feature generator
30: Mixed Gaussian foreground processing section
40: Shadow / reflection area removal part
50: Authentic foreground image generator
200: Input terminal set
201: R component signal input terminal
202: G component signal input terminal
203: B component signal input terminal
210: WPP column
211: WPP (Walsh Parameter Processor)
212: WPP (Walsh Parameter Processor)
213: WPP (Walsh Parameter Processor)
301: Input data reduction block
302: Authentic foreground flag check block
303: Shadow / reflection removal execution inspection block
304: Reference feature element determination block
305: Shadow / reflection verification element setting block
306: Shadow verification reference element exclusion block
307: Standard Gaussian distribution start block
308: Standard correction coefficient block
309: Non-standard element Gaussian distribution verification start block
310: Shadow / reflection candidate verification block
311: Shadow / reflection decision block
312: Non-standard element Gaussian distribution verification check block
313: Standard Gaussian distribution survey end inspection block
314: Foreground separation feature element change block
315: Foreground separation element processing end check block
401: Shadow region graph of f (DC) element in foreground
402: Other feature element graph
403: Shadow validation graph
501: Original picture photo
502; Transform area middle foreground separation photograph
503: Transform area shadow removal photo
601: Base area shadow area graph
602: Other elements graph of shadow area
603: Shadow verification graph
604: Reference element reflection area graph
605: Other elements graph of reflection area
606: Reflection verification graph
701: Photo of one cut of color video binarized
702: Photo for intermediate foreground separation by multi-resolution color average block feature
703: Shadow area photo by multi-resolution conversion area feature
704: Authentic foreground separation result photo
Claims (6)
- カメラからの入力フレームを小領域に分割し、小領域内での色成分の平均を求めた色平均成分信号を特徴量の要素とするステップと、特徴量の各要素の確率的な変動に合わせて1個ないし複数の典型的な確率分布で小領域をモデル化しながら特徴量との比較により中間前景小領域を抽出するステップと、特徴量要素と背景確率分布の平均と分散により抽出された中間前景領域が影もしくは反射になった領域を特定して排除し真正前景領域を得るステップからなり、影もしくは反射による前景部分を含まない真正前景領域を抽出することを特徴とする画像処理装置。 The input frame from the camera is divided into small areas, and the color average component signal obtained by calculating the average of the color components in the small area is used as a feature quantity element, and it is matched to the probabilistic variation of each feature quantity element. Extracting an intermediate foreground small region by comparing it with a feature value while modeling the small region with one or more typical probability distributions, and an intermediate value extracted by the mean and variance of the feature value element and the background probability distribution An image processing apparatus comprising: a step of identifying and removing a region where a foreground region has become a shadow or reflection and obtaining a true foreground region, and extracting a true foreground region which does not include a foreground portion due to shadow or reflection.
- 特徴量の要素毎にその変動の確率分布を複数の典型的な確率分布で近似し、前景をモデル化している典型的確率分布と背景をモデル化している典型的確率分布に区別して用い、特徴量の要素が1個でも前景をモデル化している典型的確率分布に包含される場合を中間前景小領域とする上記1記載の中間前景分離を抽出するステップと中間小領域になった前景分離特徴量の要素の最大のものを基準要素として選択するステップと、基準要素に割り当てられた各々の背景を表す典型的確率分布の平均を基準要素の値で割った修正係数を求めるステップと、それぞれの修正係数を基準要素でない特徴量要素の値に乗じた値がその特徴量要素の背景を表す確率分布のいずれかに包含される場合を影または反射による中間前景小領域とみなして中間前景領域からから排除することで真正前景領域を作るステップからなる上記1記載の影/反射領域を排除した真正中間領域を抽出する画像処理装置。 For each element of the feature quantity, the probability distribution of the variation is approximated by multiple typical probability distributions, and distinguished from the typical probability distribution modeling the foreground and the typical probability distribution modeling the background. The step of extracting the intermediate foreground separation as described in 1 above, wherein the foreground small area is defined as a case where at least one element of the quantity is included in a typical probability distribution modeling the foreground, and the foreground separation feature as an intermediate small area Selecting the largest of the quantity elements as a reference element, determining a correction factor by dividing the average of a typical probability distribution representing each background assigned to the reference element by the value of the reference element, An intermediate foreground area, where a value obtained by multiplying the value of a feature element that is not a reference element by a correction factor is included in one of the probability distributions representing the background of the feature element, and is regarded as an intermediate foreground small area due to shadow or reflection 2. An image processing apparatus for extracting a genuine intermediate region excluding the shadow / reflection region according to 1 above, comprising the step of creating a true foreground region by excluding it from the region.
- フレーム画像をオーバラップしない小領域にまず分割し、次いでメッシュ状に並んだ小領域の縦横ともに2倍に拡大して先に分割した小領域を4個含む拡大小領域で画面を覆う分割操作を行い、この拡大小領域を作成する分割を複数回繰り返すことで多重分割するステップと、多重分割された各小領域で中間前景分離を行うステップと、小さい領域分割部の中間前景分離から影/反射領域除去を行なって影/反射なし前景領域とするステップと、影/反射なし最小前景領域であって、この影/反射なし最小前景小領域を包含する全ての拡大領域が影/反射なし前景領域または中間前景小領域であるものを真正前景小領域とすることで最終的な真正前景分離を行う上記1の画像処理装置。 Divide the frame image into small areas that do not overlap first, then double the size and width of the small areas arranged in a mesh, and then cover the screen with an enlarged small area that contains four previously divided small areas. And performing multiple division by repeating the division for creating the enlarged small region a plurality of times, performing the foreground separation on each of the multiple divided small regions, and shadow / reflection from the intermediate foreground separation of the small region dividing unit A step of removing the region to make a foreground region without shadow / reflection, and a minimum foreground region without shadow / reflection, and all the enlarged regions including the minimum foreground region without shadow / reflection are all foreground regions without shadow / reflection Alternatively, the image processing apparatus according to the first aspect, wherein final foreground separation is performed by setting an intermediate foreground small area as a true foreground small area.
- 上記3において中間前景領域から反射による中間前景部のみを排除する場合は、上記3の基準特徴量要素の求め方により求めた基準特徴量要素が背景確率分布の平均より大きい典型的背景確率分布からのみ修正係数を求める手段と、基準特徴量以外の特徴量要素に修正係数を乗じる手段と、乗じられた特徴量要素がその特徴量要素の背景確率分布に包含される中間前景部を排除して真正前景分離を行う画像処理装置。 When only the intermediate foreground part due to reflection is excluded from the intermediate foreground region in the above 3, the reference feature amount element obtained by the method of obtaining the reference feature amount element in the above 3 is larger than the average of the background probability distributions. Means for obtaining a correction coefficient only, means for multiplying a feature quantity element other than the reference feature quantity by a correction coefficient, and eliminating the intermediate foreground portion in which the multiplied feature quantity element is included in the background probability distribution of the feature quantity element. An image processing apparatus that performs genuine foreground separation.
- 上記3において中間前景領域から影による中間前景部のみを排除する場合は、上記3の基準特徴量要素の求め方により求めた基準特徴量要素が背景確率分布の平均より小さい典型的背景確率分布からのみ修正係数を求める手段と、基準特徴量以外の特徴量要素に修正係数を乗じる手段と、乗じられた特徴量要素がその特徴量要素の背景確率分布に包含される中間前景小領域を排除して真正前景分離を行う画像処理装置。 When only the intermediate foreground portion due to the shadow is excluded from the intermediate foreground area in 3 above, from the typical background probability distribution in which the reference feature value element obtained by the method of obtaining the reference feature value element in 3 is smaller than the average of the background probability distributions. Only a means for obtaining a correction coefficient, means for multiplying a feature quantity element other than the reference feature quantity by a correction coefficient, and eliminating the intermediate foreground small area in which the multiplied feature quantity element is included in the background probability distribution of the feature quantity element. An image processing device that performs genuine foreground separation.
- 6.上記1より5において、基準要素の属する典型的確率分布の重み係数の大きいもの順に並べた典型的背景確率分布と基準外特徴量の重み係数の大きいもの順に並べた典型的背景確率分布との間で、同一順位の典型的背景確率分布のみを用いて影ないし背景に起因する中間前景領域の検証を行って真正前景領域を得る画像処理装置。 6). 1 to 5 above, between the typical background probability distribution arranged in descending order of the weighting coefficient of the typical probability distribution to which the reference element belongs and the typical background probability distribution arranged in descending order of the weighting coefficient of the non-reference feature quantity. Thus, the image processing apparatus obtains the true foreground region by verifying the intermediate foreground region caused by the shadow or background using only the typical background probability distribution of the same rank.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015553443A JPWO2015093231A1 (en) | 2013-12-16 | 2014-11-25 | Image processing device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013258862 | 2013-12-16 | ||
| JP2013-258862 | 2013-12-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015093231A1 true WO2015093231A1 (en) | 2015-06-25 |
Family
ID=53402586
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2014/081004 WO2015093231A1 (en) | 2013-12-16 | 2014-11-25 | Image processing device |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JPWO2015093231A1 (en) |
| WO (1) | WO2015093231A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017174296A (en) * | 2016-03-25 | 2017-09-28 | 隆夫 西谷 | Image processing device and image processing method |
| CN109614854A (en) * | 2018-10-30 | 2019-04-12 | 深圳清华大学研究院 | Video data processing method and device, computer device and readable storage medium |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008192131A (en) * | 2007-01-31 | 2008-08-21 | Fuji Xerox Co Ltd | System and method for performing feature level segmentation |
| JP2012133587A (en) * | 2010-12-21 | 2012-07-12 | Canon Inc | Image analysis device, image analysis method and program |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100134632A1 (en) * | 2008-12-03 | 2010-06-03 | Electronics And Telecommunications Research Institute | Apparatus for tracking an object using a moving camera and method thereof |
-
2014
- 2014-11-25 JP JP2015553443A patent/JPWO2015093231A1/en active Pending
- 2014-11-25 WO PCT/JP2014/081004 patent/WO2015093231A1/en active Application Filing
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008192131A (en) * | 2007-01-31 | 2008-08-21 | Fuji Xerox Co Ltd | System and method for performing feature level segmentation |
| JP2012133587A (en) * | 2010-12-21 | 2012-07-12 | Canon Inc | Image analysis device, image analysis method and program |
Non-Patent Citations (1)
| Title |
|---|
| RYO YAGI ET AL.: "GMM FOREGROUND SEGMENTATION PROCESSORBASED ON ADDRESS FREE PIXEL STREAMS", ICASSP 2012, March 2012 (2012-03-01), pages 1653 - 1656 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017174296A (en) * | 2016-03-25 | 2017-09-28 | 隆夫 西谷 | Image processing device and image processing method |
| CN109614854A (en) * | 2018-10-30 | 2019-04-12 | 深圳清华大学研究院 | Video data processing method and device, computer device and readable storage medium |
| CN109614854B (en) * | 2018-10-30 | 2021-03-02 | 深圳清华大学研究院 | Video data processing method and device, computer device and readable storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2015093231A1 (en) | 2017-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10846867B2 (en) | Apparatus, method and image processing device for smoke detection in image | |
| JP7093427B2 (en) | Object tracking methods and equipment, electronic equipment and storage media | |
| CN109902715B (en) | Infrared dim target detection method based on context aggregation network | |
| US11145080B2 (en) | Method and apparatus for three-dimensional object pose estimation, device and storage medium | |
| US9639943B1 (en) | Scanning of a handheld object for 3-dimensional reconstruction | |
| US20150178568A1 (en) | Method for improving tracking using dynamic background compensation with centroid compensation | |
| EP2965262A1 (en) | Method for detecting and tracking objects in sequence of images of scene acquired by stationary camera | |
| JP2008192131A (en) | System and method for performing feature level segmentation | |
| US20160155241A1 (en) | Target Detection Method and Apparatus Based On Online Training | |
| WO2013005815A1 (en) | Object detection device, object detection method, and program | |
| US8989505B2 (en) | Distance metric for image comparison | |
| US20170263005A1 (en) | Method for moving object detection by a kalman filter-based approach | |
| CN105405116B (en) | A Stereo Matching Method Based on Graph Cuts | |
| KR101833943B1 (en) | Method and system for extracting and searching highlight image | |
| US11328176B2 (en) | Information processing apparatus, information processing method, and storage medium | |
| CN108780576B (en) | System and method for ghost removal in video clips using object bounding boxes | |
| WO2015093231A1 (en) | Image processing device | |
| KR101982258B1 (en) | Method for detecting object and object detecting apparatus | |
| CN119763009A (en) | Broiler target detection method, system, equipment and medium based on occlusion perception | |
| Truong et al. | Single object tracking using particle filter framework and saliency-based weighted color histogram | |
| CN113240611A (en) | Foreign matter detection method based on picture sequence | |
| JP2016024743A (en) | Moving image processor, moving image information processing program and moving image processing method | |
| JP2015125513A (en) | Image processing method, image processor and program | |
| CN114821138A (en) | Small target detection method in infrared night vision scene | |
| CN115205793A (en) | Electric power machine room smoke detection method and device based on deep learning secondary confirmation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14872273 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2015553443 Country of ref document: JP Kind code of ref document: A |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14872273 Country of ref document: EP Kind code of ref document: A1 |