WO2015091860A1 - Utilisation d'au moins un dérivé d'hydroxypropyltrialkylammonium en tant qu'agent déodorant - Google Patents
Utilisation d'au moins un dérivé d'hydroxypropyltrialkylammonium en tant qu'agent déodorant Download PDFInfo
- Publication number
- WO2015091860A1 WO2015091860A1 PCT/EP2014/078565 EP2014078565W WO2015091860A1 WO 2015091860 A1 WO2015091860 A1 WO 2015091860A1 EP 2014078565 W EP2014078565 W EP 2014078565W WO 2015091860 A1 WO2015091860 A1 WO 2015091860A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- compounds
- radical
- anion
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 C[N+](C)(C)CC(COC(C*)=O)O Chemical compound C[N+](C)(C)CC(COC(C*)=O)O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C219/00—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C219/02—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C219/04—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C219/06—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having the hydroxy groups esterified by carboxylic acids having the esterifying carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms of an acyclic saturated carbon skeleton
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/41—Amines
- A61K8/416—Quaternary ammonium compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q15/00—Anti-perspirants or body deodorants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C219/00—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C219/02—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C219/04—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C219/08—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton
Definitions
- the present invention relates to the use o f one or more hydroxypropyltrialkylammonium derivatives o f formula (I) as defined below for treating body odour, in particular underarm odour.
- the invention also relates to a process for treating body odour using a composition comprising such compounds .
- the invention similarly relates to a composition
- a composition comprising, in a physio lo gically acceptable medium, one or more hydroxypropyltrialkylammonium derivatives o f formula (I) and one or more antiperspirant active agents and/or one or more additional deodorant active agents .
- the present invention also relates to one or more particular hydroxypropyltrialkylammonium-based compounds and also to compositions containing them, especially compositions in a physio logically acceptable medium.
- deodorant products containing active substances o f antiperspirant type or of deodorant type for reducing or even preventing body odour, especially underarm odour, which is generally unp leasant.
- Eccrine or apocrine sweat generally has little odour when it is secreted. It is its degradation by bacteria via enzymatic reactions that produces malodorous compounds . Deodorant active agents thus have the function o f reducing or preventing the formation o f unpleasant odours.
- Deodorant substances generally destroy the resident bacterial flora.
- the ones mo st commonly used are triclo san (2,4,4'-trichloro-2'-hydroxydiphenyl ether) and farneso l, which generally have the drawback o f substantially modifying the eco logy o f the cutaneous flora.
- triclosan has the disadvantage of being inhibited by the presence of certain compounds, for instance nonionic surfactants, commonly used in the formulation of cosmetic compositions.
- the inso luble nature of triclosan in water does not allow its incorporation into essentially aqueous formulations either.
- Deodorant substances may also reduce bacterial growth.
- these substances mention may be made o f transition-metal chelating agents such as EDTA or DPTA. These materials have the drawback o f depriving the medium o f metals necessary for bacterial growth.
- the compound(s) of formula (I) according to the invention have effective deodorant activity towards body odour, especially as early as two hours after their application to the surface of the skin.
- the compound(s) o f formula (I) according to the invention still have satisfactory deodorant activity after 24 hours .
- One subj ect of the present invention is thus especially the use for treating body odour, especially underarm odour, of one or more compounds o f formula (I) below, optical isomers thereof and/or geometrical isomers thereof:
- Ri , R 2 and R3 represent, independently o f each other, a linear C i -C 6 alkyl radical
- the electrical neutrality o f the compounds of formula (I) is ensured by an external anion X " ; X " denoting an organic or mineral anion or mixture of anions.
- the anion X " is chosen such that the compound of formula (I) is physio logically acceptable.
- physio logically acceptable compound of formula (I) means any compound o f formula (I) that is suitable for the topical administration of a composition containing the same.
- a physio logically acceptable compound of formula (I) is preferentially a cosmetically or dermatologically acceptable compound of formula (I), that is to say one that has no unpleasant odour or appearance and that is entirely compatible with the topical administration route.
- a cosmetically or dermatologically acceptable compound of formula (I) that is to say one that has no unpleasant odour or appearance and that is entirely compatible with the topical administration route.
- such a compound is in particular considered as physio logically acceptable when it does not cause stinging, tautness or redness unacceptable to the user.
- the compound(s) of formula (I) thus defined may be used, alone or mixed, as deodorant agents, in a composition comprising a physio logically acceptable medium.
- the invention relates to the use o f one or more compounds o f formula (I), as defined previously, as deodorant agents, alone or as a mixture especially in a composition comprising a physio logically acceptable medium.
- the invention also relates to a composition
- a composition comprising, in a physio logically acceptable medium, one or more compounds o f formula (I) as defined previously and one or more antiperspirant active agents and/or one or more additional deodorant active agents other than the compounds of formula (I) .
- the invention relates to the use o f the said composition for treating body odour and/or human perspiration.
- Another subj ect of the present invention relates to a cosmetic process for treating body odour, in particular underarm odour, which consists in applying to the surface o f a human keratin material, preferably human skin and preferably the armpits, a composition comprising one or more compounds of formula (I) as defined previously.
- the invention also relates to particular compounds of formula (IA), (IB), (IC), (ID), (IE), (IF), ( 10) or ( 1 1 ) as defined below.
- a subj ect of the invention is also a composition, especially in a physio logically acceptable medium, comprising one or more compounds o f formula (IA), (IB), (IC), (ID), (IE), (IF), ( 10) or ( 1 1 ) as defined below.
- physio logically acceptable medium means a medium that is suitable for the topical administration o f a composition.
- a physio logically acceptable medium is preferentially a cosmetically or dermatologically acceptable medium, i.e . a medium that has no unpleasant odour or appearance, and that is entirely compatible with the topical administration route.
- such a medium is considered in particular to be physio logically acceptable when it does not cause stinging, tautness or redness that is unacceptable to the user.
- deodorant active agent means any active agent which, by itself, has the effect of masking, absorbing, improving and/or reducing the unpleasant odour resulting from the decomposition o f human sweat.
- deodorant active agent and “ deodorant agent” are equivalent in meaning according to the present invention.
- antiperspirant active agent means any substance which, by itself, has the effect of reducing the flow o f sweat, of reducing the sensation on the skin o f moisture associated with human sweat and of masking human sweat.
- antiperspirant active agent and “antiperspirant agent” are equivalent in meaning according to the present invention.
- human keratin material means the skin (body, face, contour of the eyes), human keratin fibres such as the hair, body hairs, the eyelashes and the eyebrows, and the nails. /. Compounds of formula (I)
- the compounds according to the present invention are salified hydroxypropyltrialkylammonium derivatives of formula (I) since they comprise in their structure a hydroxypropyltrialkylammonium part.
- these compounds are salts of hydroxypropyltrialkylammonium esters.
- X " denotes an organic or mineral anion or mixture of anions.
- X " is an anion chosen from halides, in particular chloride, bromide and iodide, sulfates, phosphates; carbonate; hydrogen carbonate; methanesulfonate; para-toluenesulfonate; camphorsulfonate; tartrate; citrate; lactate; acetate.
- the compounds of formula (I) are preferentially those for which X " denotes a mineral anion.
- X denotes a halide anion, especially chloride.
- Ri, R 2 and R 3 represent a methyl radical.
- R 2 and R 3 represent a methyl radical, X " denoting a cosmetically acceptable organic or mineral anion or mixture of anions.
- R, Ri, R 2 , R 3 and X " taken together, correspond to the meaning given previously. More preferably, in formula (I) of the compounds according to the present invention:
- ⁇ Ri, R 2 and R3 represent a methyl radical, X " denoting an organic or mineral anion or mixture of anions as defined previously.
- R represents a linear or branched, saturated or unsaturated C5-C17 alkyl radical
- Ri, R 2 and R3 represent a methyl radical
- X " denotes a halide anion, especially chloride.
- the compounds of formula (I) according to the invention are chosen from the following compounds, and also the geometrical and/or optical isomer forms thereof, especially stereoisomers and diastereoisomers, X " having the same meaning as previously:
- the compounds of formula (I) according to the present invention are chosen from compounds (1) to (18) for which X " corresponds to a halide anion, and more particularly a chloride anion
- the compounds of formula (I) according to the present invention are chosen from compounds 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18, and even more preferentially from compounds 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 for which X " corresponds to a halide anion and more particularly a chloride anion CI " .
- Step 1 The intermediate of 2,3-epoxypropyltrialkylammonium type is obtained by substitution of the epihalohydrin with the corresponding tertiary amine R1R2R3N.
- a polar solvent such as water or methanol
- Step 2 The compounds forming the subject of the present invention may be obtained by reaction between the 2,3- epoxypropyltrialkylammonium derivative and the corresponding carboxylic acid, in basic medium.
- the carboxylic acid RCOOH (1 equivalent) is dissolved in a polar solvent such as an isopropanol/acetone mixture.
- a catalytic amount of base such as NaHC0 3 (0.05 equivalent) and the 2,3 - epoxypropyltrialkylammonium ( 1 equivalent) are then added at room temperature and the reaction mixture is maintained at a temperature which may range from 0 to 100°C for 1 to 48 hours, until the reaction is complete.
- the expected ester is then isolated according to methods that are well known to those skilled in the art.
- the invention also relates to the use of one or more compounds o f formula (I), as defined previously, as deodorant agents, alone or as a mixture especially in a composition comprising a physiologically acceptable medium.
- compositions may also be obtained according to the process described in EP 847 985. II. Compositions
- the invention also relates to a composition
- a composition comprising, in a physio lo gically acceptable medium, one or more compounds o f formula (I) as defined previously and one or more antiperspirant active agents and/or one or more additional deodorant active agents other than the compounds of formula (I) .
- the invention also relates to a composition, especially in a physio logically acceptable medium, characterized in that it comprises one or more compounds o f formula (IA), (IB), (IC), (ID), (IE), (IF), ( 10) or ( 1 1 ) as defined below.
- the compounds o f formula (I) used in the said compositions are mineral salts o f the said compounds, especially those for which X " corresponds to a halide anion, and preferably a chloride anion CI " .
- the compound(s) of formula (I) are preferably present in amounts ranging from 0.01 % to 10% by weight, more preferentially from 0.02% to 5 % and even more preferentially from 0. 1 % to 5 % by weight relative to the total weight of the composition.
- the antiperspirant active agents are preferably chosen from aluminium and/or zirconium salts ; complexes of zirconium hydroxychloride and o f aluminium hydroxychloride with an amino acid, such as those described in patent US-3 792 068. Such complexes are generally known under the name ZAG (when the amino acid is glycine) .
- ZAG complexes ordinarily have an Al/Zr quotient ranging from about 1 .67 to 12.5 and a metal/Cl quotient ranging from about 0.73 to 1 .93.
- Al/Zr quotient ranging from about 1 .67 to 12.5
- metal/Cl quotient ranging from about 0.73 to 1 .93.
- aluminium salts that may be mentioned are aluminium chlorohydrate, aluminium chlorohydrex, aluminium chlorohydrex PEG, aluminium chlorohydrex PG, aluminium dichlorohydrate, aluminium dichlorohydrex PEG, aluminium dichlorohydrex PG, aluminium sesquichlorohydrate, aluminium sesquichlorohydrex PEG, aluminium sesquichlorohydrex PG, alum salts, aluminium sulfate, aluminium zirconium octachlorohydrate, aluminium zirconium pentachlorohydrate, aluminium zirconium tetrachlorohydrate, aluminium zirconium trichlorohydrate and more particularly the aluminium hydroxychloride so ld by the company Reheis under the name Reach 30 1 ® or by the company Guilini Chemie under the name Aloxico ll PF 40® . Aluminium zirconium salts are, for example, the salt so ld by the company Reheis under the name Reach AZP-9
- Aluminium chlorohydrate in activated or inactivated form will be used more particularly.
- the antiperspirant active agents may be present in the composition according to the invention in a proportion of from 0.00 1 % to 30% by weight and preferably in a proportion o f from 0.5 % to 25 % by weight relative to the total weight of the composition.
- composition according to the invention may contain one or more additional deodorant active agents other than the compounds o f the invention, for instance : - bacteriostatic agents or other bactericidal agents such as 2,4,4'-trichloro-2'-hydroxydiphenyl ether (triclosan), 2,4-dichloro-2'- hydroxydiphenyl ether, 3',4',5'-trichlorosalicylanilide, l-(-3',4'- dichlorophenyl)-3-(4'-chlorophenyl)urea (triclocarban) or 3,7,11- trimethyldodeca-2,5,10-trienol (Farnesol); quaternary ammonium salts, for instance cetyltrimethylammonium salts, cetylpyridinium salts; chlorhexidine and salts; diglyceryl monocaprate, diglyceryl monolaurate or glyceryl monolaurate; polyhexamethylene biguanide
- zinc salts such as zinc salicylate, zinc phenolsulfonate, zinc pyrrolidonecarboxylate (more commonly known as zinc pidolate), zinc sulfate, zinc chloride, zinc lactate, zinc gluconate, zinc ricinoleate, zinc glycinate, zinc carbonate, zinc citrate, zinc chloride, zinc laurate, zinc oleate, zinc orthophosphate, zinc stearate, zinc tartrate, zinc acetate or mixtures thereof;
- - odour absorbers such as zeolites, cyclodextrins, metal oxide silicates such as those described in patent application US 2005/063928; metal oxide particles modified with a transition metal, as described in patent applications US 2005/084464 and US 2005/084474, aluminosilicates such as those described in patent application EP 1 658 863, chitosan-based particles such as those described in patent US 6916465;
- arylsulfatase inhibitors such as arylsulfatase inhibitors; and mixtures thereof.
- the additional deodorant active agents may be present in the composition according to the invention in a proportion of from 0.01% to 20% by weight and preferably in a proportion of from 0.1% to 15% by weight relative to the total weight of the composition.
- compositions according to the invention may be in any galenical form conventionally used for topical application and especially in the form of aqueous gels, or aqueous or aqueous- alcoholic solutions.
- a fatty or oily phase By adding a fatty or oily phase, they may also be provided in the form of dispersions of lotion type, of emulsions of liquid or semi-liquid consistency o f milk type, obtained by dispersing a fatty phase in an aqueous phase (O/W) or conversely (W/O), or of suspensions or emulsions o f so ft, semi-solid or so lid consistency o f the cream or gel type, or alternatively o f multiple emulsions (W/O/W or 0/W/O), of microemulsions, of vesicular dispersions of ionic and/or nonionic type, or o f wax/aqueous phase dispersions .
- These compositions are prepared according to the
- compositions may especially be packaged in pressurized form in an aerosol device or in a pump-action bottle; packaged in a device equipped with a perforated wall, especially a grille; packaged in a device equipped with a ball applicator ("roll-on"); packaged in the form o f wands (sticks) or in the form o f loose or compacted powder.
- roll-on a ball applicator
- they contain the ingredients generally used in products of this type, which are well known to those skilled in the art.
- compositions according to the invention can be anhydrous .
- anhydrous composition is intended to mean a composition containing less than 2% by weight of water, indeed less than 0.5 % o f water, and especially free of water, the water not being added during the preparation o f the composition but corresponding to the residual water contributed by the mixed ingredients .
- compositions according to the invention may be so lid, in particular in wand or stick form.
- so lid composition means that the measurement o f the maximum force measured by texturometry during the penetration of a probe into the sample o f formulation must be at least equal to 0.25 newtons, in particular at least equal to 0.30 newtons and especially at least equal to 0.35 newtons, assessed under precise measurement conditions as fo llows.
- the formulations are poured hot into jars 4 cm in diameter and 3 cm deep . Cooling is performed at room temperature. The hardness of the formulations produced is measured after an interval o f 24 hours.
- the j ars containing the samp les are characterized by texturometry using a texture analyser such as the machine so ld by the company Rheo TA-XT2, according to the fo llowing protocol: a stainless-steel ball probe 5 mm in diameter is brought into contact with the sample at a speed of 1 mm/s .
- the measurement system detects the interface with the sample, with a detection threshold equal to 0.005 newtons.
- the probe penetrates 0.3 mm into the sample, at a speed of 0. 1 mm/s .
- the measuring machine records the change in force measured in compression over time, during the penetration phase .
- the hardness of the samp le corresponds to the average of the maximum force values detected during penetration, over at least three measurements .
- compositions according to the invention intended for cosmetic use may comprise at least one aqueous phase. They are in particular formulated as aqueous lotions or as water-in-oil or oil-in- water emulsions or as multiple emulsions (oil-in-water-in-oil or water- in-oil-in-water triple emulsions (such emulsions are known and described, for example, by C . Fox in "Cosmetics and Toiletries” - November 1986 - Vol. 1 01 - pages 101 - 1 12)) .
- the aqueous phase of the said compositions contains water and generally other water-so luble or water-miscible so lvents .
- the water- so luble or water-miscible so lvents comprise short-chain monoalcoho ls, for examp le o f C 1 - C 4 , for instance ethano l or isopropanol; diols or polyo ls.
- compositions according to the invention preferably have a pH ranging from 3 to 9, depending on the chosen support.
- composition(s) When the composition(s) are in emulsion form, they generally contain, depending on the nature o f the emulsion, one or more emulsifying surfactants .
- the total amount of emulsifiers will preferably be, in the composition(s) according to the invention, in active material contents ranging from 1 % to 8% by weight and more particularly from 2% to 6% by weight relative to the total weight of the composition.
- compositions according to the invention may contain at least one water-immiscible organic liquid phase, known as a fatty phase.
- This phase generally comprises one or more hydrophobic compounds which render the said phase water-immiscible .
- the said phase is liquid (in the absence o f structuring agent) at room temperature (20-25 °C).
- the water-immiscible organic liquid phase in accordance with the invention generally comprises at least one volatile oil and/or one non-vo latile oil and optionally at least one structuring agent.
- oil means a fatty substance that is liquid at room temperature (25 °C) and atmospheric pressure (760 mmHg, i. e . 1 .05x l 0 5 Pa) .
- the oil may be volatile or non-vo latile.
- vo latile oil means an oil that is capable o f evaporating on contact with the skin or the keratin fibre in less than one hour, at room temperature and atmospheric pressure.
- the vo latile oils of the invention are vo latile cosmetic oils which are liquid at room temperature and which have a non-zero vapour pressure, at room temperature and atmospheric pressure, ranging in particular from 0. 13 Pa to 40 000 Pa ( 10 ⁇ 3 to 300 mmHg), in particular ranging from 1 .3 Pa to 13 000 Pa (0.01 to 100 mmHg) and more particularly ranging from 1 .3 Pa to 1300 Pa (0.0 1 to 10 mmHg) .
- non- vo latile oil means an oil that remains on the skin or the keratin fibre at room temperature and atmospheric pressure for at least several hours, and that especially has a vapour pressure o f less than 10 "3 mmHg (0. 13 Pa) .
- the oil may be chosen from any physio lo gically acceptable oil and in particular cosmetically acceptable oil, especially mineral, animal, plant or synthetic oils; in particular vo latile or non-vo latile hydrocarbon-based oils and/or silicone oils and/or fluoro oils, and mixtures thereof. More precisely, the term "hydrocarbon-based oil” means an oil mainly comprising carbon and hydrogen atoms and optionally one or more functions chosen from hydroxyl, ester, ether and carboxylic functions. Generally, the oil has a viscosity o f from 0.5 to 100 000 mPa. s, preferably from 50 to 50 000 mPa. s and more preferably from 100 to 300 000 mPa.s .
- hydrocarbon-based oils chosen from hydrocarbon- based oils containing from 8 to 1 6 carbon atoms, and especially Cs- C i 6 isoalkanes of petroleum origin (also known as isoparaffins) .
- hydrocarbon-based plant oils such as liquid triglycerides o f fatty acids o f 4 to 24 carbon atoms, for instance caprylic/capric acid triglycerides such as those sold by the company Stearineries Dubois or those so ld under the names Miglyo l 8 10, 8 12 and 8 1 8 by the company Dynamit Nobel, and jojoba oil,
- esters such as isononyl isononanoate, isopropyl myristate, isopropyl palmitate or C 1 2 to C 1 5 alkyl benzoates;
- silicone oils such as linear (dimethicone) or cyclic (cyclomethicone) non-vo latile po lydimethylsiloxanes (PDMSs) .
- compositions according to the invention may also comprise one or more cosmetic adjuvants chosen from emollients, antioxidants, opacifiers, stabilizers, moisturizers, vitamins, bactericides, preserving agents, polymers, fragrances, a structuring agent for a fatty phase, in particular chosen from waxes, pasty compounds, gelling agents; organic or mineral fillers; thickeners or suspending agents, propellants or any other ingredient normally used in cosmetics for this type of application.
- cosmetic adjuvants chosen from emollients, antioxidants, opacifiers, stabilizers, moisturizers, vitamins, bactericides, preserving agents, polymers, fragrances, a structuring agent for a fatty phase, in particular chosen from waxes, pasty compounds, gelling agents; organic or mineral fillers; thickeners or suspending agents, propellants or any other ingredient normally used in cosmetics for this type of application.
- compositions according to the invention may be pressurized and may be packaged in an aerosol device formed by:
- the propellants generally used in products of this type and that are well known to those skilled in the art are, for instance, dimethyl ether (DME); vo latile hydrocarbons such as n-butane, propane, isobutane and mixtures thereof, optionally with at least one chlorohydrocarbon and/or fluorohydrocarbon; among these propellants, mention may be made o f the compounds so ld by the company DuPont de Nemours under the names Freon® and Dymel® , and in particular mono fluorotrichloromethane, difluorodichloromethane, tetrafluorodichloroethane and 1 , 1 - difluoroethane so ld especially under the trade name Dymel 152 A® by the company DuPont. Use may also be made, as propellant, of carbon dioxide gas, nitrous oxide, nitrogen or compressed air.
- DME dimethyl ether
- vo latile hydrocarbons such as n-butane, propane, iso
- compositions containing one or more compounds o f formula (I) as defined previously and one or more antiperspirant active agents and/or one or more additional deodorant active agents other than the compounds o f formula (I) and/or the compositions especially in a physio logically acceptable medium characterized in that they comprise one or more compounds of formula (IA), (IB), (IC), (ID), (IE), (IF), ( 10) or ( 1 1 ) as defined previously and the propellant(s) may be in the same compartment or in different compartments in the aerosol container.
- the concentration o f propellant generally ranges from 5 % to 95 % by pressurized weight and more preferentially from 50% to 85 % by weight relative to the total weight of the pressurized composition.
- the dispensing means which forms a part of the aerosol device, generally consists o f a dispensing valve controlled by a dispensing head, which itself comprises a nozzle via which the aerosol composition is vaporized.
- the container containing the pressurized composition may be opaque or transparent. It may be made o f glass, a polymer or a metal, optionally coated with a protective varnish coat.
- the invention also relates to a cosmetic process for treating body odour, in particular underarm odour, which consists in applying to the surface o f a human keratin material, in particular the skin and more particularly the armpits, a composition comprising one or more compounds o f formula (I) as defined previously.
- the cosmetic treatment process according to the present invention may be used on the surface o f the skin, preferably on the armpits.
- composition is applied to the surface of the keratin material, especially the skin and in particular the armpits, at room temperature.
- the composition is not rinsed off after it has been applied to the surface of the keratin material.
- the invention also relates to compounds o f formula (IA), (IB), (IC), (ID), (IE) or (IF) as defined below, and also compound ( 1 0) or ( 1 1 ) as defined previously.
- the compounds according to the invention correspond to formula (IA) below, and the optical isomers and/or geometrical isomers thereof:
- R 4 denotes a saturated or unsaturated branched C 3 - C 6 alkyl radical and X " has the same meaning as in formula (I) .
- the compound o f formula (IA) denotes the compound o f formula (8) :
- the compounds according to the invention may correspond to formula (IB) below, and the optical isomers and/or geometrical isomers thereof:
- R5 represents an aryl radical optionally substituted with a hydroxyl radical (OH) and X " has the same meaning as in formula (I) .
- R 5 denotes a phenyl radical optionally substituted with a hydroxyl radical.
- the compounds of formula (IB) are chosen from the compounds ( 16) and ( 17) below:
- X " represents a halide anion and in particular a chloride anion.
- the compounds according to the invention may also correspond to formula (IC) below, and the optical isomers and/or geometrical isomers thereof:
- R 6 represents a linear or branched, saturated or unsaturated C 1 - C29 aralkyl radical, the aryl part being optionally substituted with a hydroxyl radical and X " having the same meaning as in formula (I) .
- R 6 denotes an aralkyl radical Ph-L-, in which L represents a linear or branched, saturated or unsaturated, preferably saturated, divalent C 1 -C 10 hydrocarbon-based radical, and X " has the same meaning as in formula (I) .
- the compound o f formula (IC) is compound ( 1 8) below :
- the compounds according to the invention may also correspond to formula (ID) below, and the optical isomers and/or geometrical isomers thereof:
- R 7 represents a saturated linear C 1 - C29 alkyl radical and Z " represents an anion or a mixture o f anions chosen from iodide, sulfate, phosphate, carbonate, hydrogen carbonate, para- toluenesulfonate, camphorsulfonate, tartrate, citrate and lactate.
- the compounds according to the invention may also correspond to formula (IE) below, and the optical isomers and/or geometrical isomers thereof:
- x denotes 1 , 3 , 4, 5 , 12 and W " represents an anion chosen from chloride, methane sulfate and acetate, preferably chloride.
- the compounds (IE) are chosen from compounds (2) and (6) below for which X " represents an anion chosen from chloride, methane sulfate and acetate :
- the compounds according to the invention may also correspond to formula (IF) below, and the optical isomers and/or geometrical isomers thereof:
- R9 represents a linear unsaturated (ethylenic double bond) C2 - C24 alkyl radical and X " has the same definition as previously, X " preferably denoting a halide anion and more particularly a chloride anion, with the exception o f the compounds (9) of structure :
- the compounds according to the invention may also denote compound (10) or (11) of structures:
- the invention also relates to a composition, especially in a physiologically acceptable medium, characterized in that it comprises one or more compounds of formula (IA), (IB), (IC), (ID), (IE), (IF),
- Hexanoic acid (2.32 g, 20 mmol, 1 eq.) is dissolved in an isopropanol (10 mL)/acetone (80 mL) mixture.
- a catalytic amount of NaHCOs (87 mg, 0.5 mmol, 0.05 eq.) and 2,3- epoxypropyltrimethylammonium chloride (3.0 g, 20 mmol, 1 eq.) are then added at room temperature, and the reaction mixture is heated at 60°C for 16 hours.
- the reaction mixture is concentrated under reduced pressure and the residue is purified by chromatography on silica gel (CEhCh/MeOH: 10/1) to isolate the expected ester in the form of a white solid (1.15 g, 25% yield).
- Oleic acid (2.8 g, 10 mmol, 1 eq.) is dissolved in an isopropanol (22 mL)/acetone (33 mL) mixture.
- a catalytic amount of NaHCOs 42 mg, 0.5 mmol, 0.05 eq.
- 2,3- epoxypropyltrimethylammonium chloride (1.51 g, 10 mmol, 1 eq.) are then added at room temperature, and the reaction mixture is heated at 80°C for 16 hours.
- the reaction mixture is concentrated under reduced pressure and the residue is purified by chromatography on silica gel (CIHhCh/MeOH: 10/1) to isolate the expected ester in the form of a pale yellow oil (3.0 g, 79% yield).
- Geranic acid (3.2 g, 20 mmol, 1 eq.) is dissolved in an isopropanol (22 mL)/acetone (33 mL) mixture.
- a catalytic amount of NaHCOs (84 mg, 1 mmol, 0.05 eq.) and 2,3- epoxypropyltrimethylammonium chloride (3.0 g, 20 mmol, 1 eq.) are then added at room temperature, and the reaction mixture is heated at 80°C for 16 hours.
- the reaction mixture is concentrated under reduced pressure and the residue is purified by chromatography on silica gel (CIHhCh/MeOH: 10/1) to isolate the expected ester in the form of a pale yellow oil (5 g, 79% yield).
- the product is obtained by catalytic hydrogenation o f compound 10 described above.
- the catalyst 10% Pd/C ( 1 .5 g) is suspended in a so lution o f compound 10 (3 g, 9.4 mmo l) in a methano l (50 mL)/acetic acid (5 mL) mixture.
- the reaction mixture is heated at 60°C for 16 h under an atmosphere o f dihydrogen. After filtering off the catalyst, the filtrate is concentrated under reduced pressure to give the expected product in the form of a white solid (3 g, 1 00% yield) .
- Benzoic acid (3.66 g, 30 mmol, 1 eq.) is dissolved in an isopropanol (15 mL)/acetone (100 mL) mixture.
- a catalytic amount of NaHCOs (0.13 g, 1.5 mmol, 0.05 eq.) and 2,3- epoxypropyltrimethylammonium chloride (6.8 g, 45 mmol, 1.5 eq.) are then added at room temperature, and the reaction mixture is heated at 60°C for 16 hours.
- the reaction mixture is concentrated under reduced pressure and the residue is purified by chromatography on silica gel (CEhCh/MeOH: 10/1) to isolate the expected ester in the form of a white solid (2.1 g, 26% yield).
- O-Benzylsalicylic acid (2.2 g, 10 mmol, 1 eq.) is dissolved in an isopropanol (22 mL)/acetone (33 mL) mixture.
- a catalytic amount of NaHCOs 42 mg, 0.5 mmol, 0.05 eq.
- 2,3- epoxypropyltrimethylammonium chloride (1.51 g, 10 mmol, 1 eq.) are then added at room temperature, and the reaction mixture is heated at 80°C for 16 hours.
- the reaction mixture is concentrated under reduced pressure and the residue is purified by chromatography on silica gel (ClHhCh/MeOH: 10/1) to isolate the benzyl intermediate A in the form of a white solid (2.5 g, 73% yield).
- the catalyst 10%> Pd/C (0.46 g) is suspended in a solution of compound A obtained previously (2.3 g, 6 mmol) in a methanol (50 mL)/acetic acid (5 mL) mixture.
- the reaction mixture is heated at 60°C for 16 h under an atmosphere of dihydrogen. After filtering off the catalyst, the filtrate is concentrated under reduced pressure to give the expected product 17 in the form of a pale pink solid (1.8 g, 100%) yield).
- 3-Phenylpropanoic acid (1.5 g, 10 mmol, 1 eq.) is dissolved in an isopropanol (22 mL)/acetone (33 mL) mixture.
- a catalytic amount of NaHCOs 42 mg, 0.5 mmol, 0.05 eq.
- 2,3- epoxypropyltrimethylammonium chloride (1.51 g, 10 mmol, 1.5 eq.) are then added at room temperature, and the reaction mixture is heated at 80°C for 16 hours.
- the reaction medium is concentrated under reduced pressure and the residue is purified by chromatography on silica gel (ClHhCh/MeOH: 10/1) to isolate the expected ester in the form of a white solid (2 g, 76%> yield).
- phase (A) The water of phase (A) is introduced cold into a beaker.
- the acrylate polymer is added to the surface of the water and left to hydrate, and the mixture is then homogenized by mechanical stirring.
- the mo del strain used is : Cory neb acterium xerosis CIP 52 1 6 This strain is placed in contact with the test formulation in a suitab le liquid culture medium in the following ratios :
- liquid culture medium tryptocasein soya broth
- a growth control in which the test formulation is replaced with diluent, is prepared for the microorganism under the same conditions .
- the samples are placed in a water bath at 35 ° C and stirred throughout the duration o f the test. After 2, 6 and 24 hours of contact, the number o f revivable microorganisms remaining in the mixture is evaluated. The results are expressed as a logarithm o f the number of microorganisms per millilitre o f mixture. The results obtained on the sample containing the test formulation are compared with those for the growth control and the difference is expressed as a Log number of difference at T 24 hours.
- the antibacterial activity may also be evaluated on the microorganism C. xerosis by measuring the smallest concentration o f test compound that significantly limits growth relative to a control (inhibitory concentration, MIC) .
- o f test compound that significantly limits growth relative to a control (inhibitory concentration, MIC) .
- MIC inhibitory concentration
- the model strain used is: Cory 'neb acterium xerosis CIP 5216
- the product is placed in contact on a microplate, at a concentration that is double the test concentration, with a double- concentrated nutrient broth containing a titre of approximately between 2 and 6xl0 5 CFU/ml.
- the first concentration (MIC) of test product that makes it possible to obtain a growth percentage of less than or equal to 20% is considered as inhibitory, given that the chosen concentration range was: 0.01%-0.05%-0.1%-0.25%-0.5%-l%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Cosmetics (AREA)
Abstract
La présente invention porte sur l'utilisation d'un ou plusieurs dérivés d'hydroxypropyltrialkylammonium de formule (I) telle que définie dans la description pour le traitement d'odeurs corporelles, en particulier d'odeurs aux aisselles. L'invention porte également sur un procédé pour le traitement d'odeurs corporelles utilisant une composition comprenant de tels composés. L'invention de façon similaire porte sur une composition comprenant, dans un milieu physiologiquement acceptable, un ou plusieurs dérivés d'hydroxypropyltrialkylammonium de formule (I) et un ou plusieurs principes actifs antiperspirants et/ou un ou plusieurs principes actifs déodorants supplémentaires. La présente invention porte également sur un ou plusieurs composés à base d'hydroxypropyltrialkylammonium particuliers.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR1363216A FR3015239B1 (fr) | 2013-12-20 | 2013-12-20 | Utilisation d'au moins un derive hydroxypropyl trialkylammonium comme agent deodorant |
| FR1363216 | 2013-12-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015091860A1 true WO2015091860A1 (fr) | 2015-06-25 |
Family
ID=50290010
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2014/078565 Ceased WO2015091860A1 (fr) | 2013-12-20 | 2014-12-18 | Utilisation d'au moins un dérivé d'hydroxypropyltrialkylammonium en tant qu'agent déodorant |
Country Status (2)
| Country | Link |
|---|---|
| FR (1) | FR3015239B1 (fr) |
| WO (1) | WO2015091860A1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20210145540A (ko) * | 2020-05-25 | 2021-12-02 | 전남대학교산학협력단 | 알킬 4가 암모늄의 제조방법, 유기화 나노 클레이의 제조방법 및 가스배리어성 고분자-점토 하이브리드 나노복합체의 제조방법 |
| KR20230050036A (ko) * | 2021-10-07 | 2023-04-14 | 전남대학교산학협력단 | 유기화 나노클레이, 그 제조방법, 상기 유기화 나노클레이를 포함하는 가스배리어성 고분자-점토 하이브리드 나노복합체 및 그 제조방법 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0847985A1 (fr) * | 1996-12-11 | 1998-06-17 | L'oreal | Procédé de préparation de dérivés ammoniums quaternaires hydroxypropyles à fonction ester d'acide gras |
| WO1999039684A1 (fr) * | 1998-02-10 | 1999-08-12 | Johnson & Johnson Consumer Companies, Inc. | Compositions revitalisantes pour les cheveux |
| US20060088496A1 (en) * | 2004-10-25 | 2006-04-27 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Personal care compositions with salts of hydroxypropyl trialkylammonium substituted mono-saccharide |
| US20070053853A1 (en) * | 2004-10-25 | 2007-03-08 | Conopco, Inc., D/B/A Unilever | Personal care compositions with silicones and dihydroxypropyl trialkyl ammonium salts |
| JP2013203697A (ja) * | 2012-03-28 | 2013-10-07 | Nicca Chemical Co Ltd | 抗菌抗かび剤及び抗菌抗かび性製品 |
-
2013
- 2013-12-20 FR FR1363216A patent/FR3015239B1/fr not_active Expired - Fee Related
-
2014
- 2014-12-18 WO PCT/EP2014/078565 patent/WO2015091860A1/fr not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0847985A1 (fr) * | 1996-12-11 | 1998-06-17 | L'oreal | Procédé de préparation de dérivés ammoniums quaternaires hydroxypropyles à fonction ester d'acide gras |
| WO1999039684A1 (fr) * | 1998-02-10 | 1999-08-12 | Johnson & Johnson Consumer Companies, Inc. | Compositions revitalisantes pour les cheveux |
| US20060088496A1 (en) * | 2004-10-25 | 2006-04-27 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Personal care compositions with salts of hydroxypropyl trialkylammonium substituted mono-saccharide |
| US20070053853A1 (en) * | 2004-10-25 | 2007-03-08 | Conopco, Inc., D/B/A Unilever | Personal care compositions with silicones and dihydroxypropyl trialkyl ammonium salts |
| JP2013203697A (ja) * | 2012-03-28 | 2013-10-07 | Nicca Chemical Co Ltd | 抗菌抗かび剤及び抗菌抗かび性製品 |
Non-Patent Citations (1)
| Title |
|---|
| DATABASE CAPLUS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 7 October 2013 (2013-10-07), TANAKA, TAKASHI ET AL: "Cationic polymer antimicrobial antifungal agent and antibacterial funginert products", XP002727049, retrieved from STN Database accession no. 2013:1565714 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20210145540A (ko) * | 2020-05-25 | 2021-12-02 | 전남대학교산학협력단 | 알킬 4가 암모늄의 제조방법, 유기화 나노 클레이의 제조방법 및 가스배리어성 고분자-점토 하이브리드 나노복합체의 제조방법 |
| KR102361664B1 (ko) * | 2020-05-25 | 2022-02-10 | 전남대학교산학협력단 | 알킬 4가 암모늄의 제조방법, 유기화 나노 클레이의 제조방법 및 가스배리어성 고분자-점토 하이브리드 나노복합체의 제조방법 |
| KR20230050036A (ko) * | 2021-10-07 | 2023-04-14 | 전남대학교산학협력단 | 유기화 나노클레이, 그 제조방법, 상기 유기화 나노클레이를 포함하는 가스배리어성 고분자-점토 하이브리드 나노복합체 및 그 제조방법 |
| KR102700367B1 (ko) | 2021-10-07 | 2024-08-28 | 전남대학교산학협력단 | 유기화 나노클레이, 그 제조방법, 상기 유기화 나노클레이를 포함하는 가스배리어성 고분자-점토 하이브리드 나노복합체 및 그 제조방법 |
Also Published As
| Publication number | Publication date |
|---|---|
| FR3015239B1 (fr) | 2016-12-23 |
| FR3015239A1 (fr) | 2015-06-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3013314B1 (fr) | Utilisation cosmétique comme agent actif déodorant d'un matériau silicié obtenue par hydrolyse et condensation d'un tétraalcoxysilane et d'un alkyl en c7-c20-trialcoxysilane | |
| JP6001051B2 (ja) | 4−(3−エトキシ−4−ヒドロキシフェニル)アルキルケトン化合物または2−エトキシ−4−ヒドロキシアルキルフェノール化合物を使用するヒトの体臭を処置する美容方法 | |
| EP3068366B1 (fr) | Utilisation comme agent déodorant d'un dérivé salifié d'acide salicylique, seul ou en mélange | |
| EP3233798B1 (fr) | Utilisation d'un dérivé d'ester de tryptophane en tant que désodorisant et/ou parfum de toilette | |
| WO2015003968A1 (fr) | Dérivés esters et amides de glycine-bétaine comme actifs déodorants, compositions cosmétiques qui les comprennent | |
| AU2015202609B2 (en) | Aerosol deodorant antiperspirant compositions | |
| WO2015091860A1 (fr) | Utilisation d'au moins un dérivé d'hydroxypropyltrialkylammonium en tant qu'agent déodorant | |
| EP2854747A2 (fr) | Composition cosmétique comprenant la combinaison d'un dérivé lipophile d'acide salicylique, d'un sel ou d'un complexe d'aluminium antitranspirant et d'un sel d'acide (acide aminé)-n,n-diacétique | |
| EP3003262B1 (fr) | Utilisation cosmétique comme agent actif déodorant d'un matériau silicié obtenue par hydrolyse et condensation d'un tétraalcoxysilane et d'un aminoalkyl trialcoxysilane | |
| EP2988827B1 (fr) | Utilisation cosmétique d'une huile essentielle de satureja montana riche en géraniol comme principe actif d'un déodorant | |
| JP2005187468A (ja) | グルコン酸亜鉛と制汗アルミニウム塩の組合せを含有する脱臭化粧品用組成物 | |
| AU2013361865A1 (en) | Improved protection against body odor | |
| WO2014187739A1 (fr) | Utilisation cosmétique de particules de silice hydrophobe en tant que principe actif déodorant | |
| JP2005187469A (ja) | 亜鉛ピドラートと制汗アルミニウム塩の組合せを含有する脱臭化粧品用組成物 | |
| US20160296428A1 (en) | Aerosol deodorant antiperspirant compositions | |
| BR112015008353B1 (pt) | Uso cosmético, e método cosmético | |
| WO2019129823A1 (fr) | Utilisation de dérivés de fucose comme déodorants | |
| EP4626389A1 (fr) | Procédé de traitement de la transpiration humaine et composition associée | |
| EP2642974B1 (fr) | Procédé de traitement de la transpiration utilisant un composé de carbonyle capable de réagir via la réaction de maillard |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14815360 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14815360 Country of ref document: EP Kind code of ref document: A1 |