WO2015063269A1 - Procédé de conversion des composés oxygénés en oléfines - Google Patents
Procédé de conversion des composés oxygénés en oléfines Download PDFInfo
- Publication number
- WO2015063269A1 WO2015063269A1 PCT/EP2014/073456 EP2014073456W WO2015063269A1 WO 2015063269 A1 WO2015063269 A1 WO 2015063269A1 EP 2014073456 W EP2014073456 W EP 2014073456W WO 2015063269 A1 WO2015063269 A1 WO 2015063269A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- olefins
- gas
- effluent
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/0055—Separating solid material from the gas/liquid stream using cyclones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1845—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
- B01J8/1863—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement outside the reactor and subsequently re-entering it
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C5/00—Apparatus in which the axial direction of the vortex is reversed
- B04C5/08—Vortex chamber constructions
- B04C5/085—Vortex chamber constructions with wear-resisting arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00327—Controlling the temperature by direct heat exchange
- B01J2208/00336—Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
- B01J2208/00353—Non-cryogenic fluids
- B01J2208/00362—Liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7038—MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7042—TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7046—MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/28—Phosphorising
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/82—Phosphates
- C07C2529/84—Aluminophosphates containing other elements, e.g. metals, boron
- C07C2529/85—Silicoaluminophosphates (SAPO compounds)
Definitions
- the invention relates to a method for the conversion of oxygenates to olefins.
- the invention further relates to the use of refractory on the outer surface of the gas outlet pipe in the gas/solid separator.
- Oxygenate-to -olefin (“OTO") processes are well described in the art. Typically, oxygenate-to -olefin processes are used to produce predominantly ethylene and propylene. An example of such an oxygenate-to -olefin process is described in US Patent Application Publication No. 2011/112344, which is herein incorporated by reference.
- the publication describes a process for the preparation of an olefin product comprising ethylene and/or propylene, comprising a step of converting an oxygenate feedstock in an oxygenate-to- olefins conversion system, comprising a reaction zone in which an oxygenate feedstock is contacted with an oxygenate conversion catalyst under oxygenate conversion conditions, to obtain a conversion effluent comprising ethylene and/or propylene.
- the conversion effluent obtained in this process is typically passed to a gas/solid separation device to recover entrained catalyst from the effluent stream. Because the effluent stream is still at a relatively high temperature, side reactions may continue to occur and can cause coke formation in the gas/solid separation device. During thermal cycles in the gas/solid separation device, the coke and metal surfaces expand and contract which can cause spalling of the coke and subsequent blockages in the gas/solid separation device by large pieces of coke. This can result in a unit shutdown and/or inefficient operation of the gas/solid separation device. It is important to address this issue to prevent the negative impacts to the process.
- the invention provides a system for converting oxygenates to olefins comprising: a reactor that has inlets for catalyst and one or more feedstocks and an outlet for the effluent and entrained catalyst; a gas/solid separation device for separating the effluent from the entrained catalyst having an inlet for the effluent and entrained catalyst, an outlet at the bottom for catalyst, and a gas outlet pipe at the top for the effluent wherein the gas outlet pipe has an inner surface that creates a flow path for the effluent and an outer surface wherein the outer surface is coated with ceramics, fire brick, high temperature calcium silicate, alumina, silica-alumina ceramics, diatomaceous silica brick, carbide, cement or refractory.
- the invention further provides a method of converting an oxygenate comprising feedstock to olefins comprising: contacting an olefin containing stream with a molecular sieve catalyst at oxygenate to olefins conversion conditions in a reactor to produce an effluent comprising olefins and catalyst; removing the effluent from the reactor; separating the catalyst from the effluent in a gas/solid separation device comprising an inlet, an outlet for catalyst and an outlet pipe for gas; and passing the catalyst through the catalyst outlet and the olefins through the gas outlet pipe wherein the outer surface of the gas outlet pipe is coated with ceramics, fire brick, high temperature calcium silicate, alumina, silica- alumina ceramics, diatomaceous silica brick, carbide, cement or refractory.
- the method for converting oxygenates to olefins and specifically the use of refractory or another component on the outer surface of the gas/solid separator gas outlet pipe described herein provides an improved method for the conversion of oxygenates to olefins.
- the use of this feature is effective in any known oxygenate to olefin process, including processes known as methanol to olefins (MTO) and methanol to propylene (MTP).
- the oxygenate to olefins process can, in certain embodiments, be as described in any of the following references: US 2005/0038304, WO 2006/020083, WO 2007/135052, WO 2009/065848, WO 2009/065877, WO 2009/065875, WO 2009/065870, WO
- the use of refractory or another component on the outer surface of the gas outlet pipe provides a surface that "bonds" with coke formed on the surface to, in effect, hold the coke in place. This prevents the spalling of coke during thermal cycles.
- the coke tends to form on the outer surface of the gas outlet pipe because that surface is not being continuously impacted by a substantial flow of catalyst particles at high velocity that removes by abrasion any coke deposited - as is the case for the inner surface of the cyclone body.
- the oxygenate to olefins process receives as a feedstock a stream comprising one or more oxygenates.
- An oxygenate is an organic compound that contains at least one oxygen atom.
- the oxygenate is preferably one or more alcohols, preferably aliphatic alcohols where the aliphatic moiety has from 1 to 20 carbon atoms, preferably from 1 to 10 carbon atoms, more preferably from 1 to 5 carbon atoms and most preferably from 1 to 4 carbon atoms.
- the alcohols that can be used as a feed to this process include lower straight and branched chain aliphatic alcohols.
- ethers and other oxygen containing organic molecules can be used. Suitable examples of oxygenates include methanol, ethanol, n-propanol, isopropanol, methyl ethyl ether, dimethyl ether, diethyl ether, di- isopropyl ether, formaldehyde, dimethyl carbonate, dimethyl ketone, acetic acid and mixtures thereof.
- the feedstock comprises one or more of methanol, ethanol, dimethyl ether, diethyl ether or a combination thereof, more preferably methanol or dimethyl ether and most preferably methanol.
- the oxygenate is obtained as a reaction product of synthesis gas.
- Synthesis gas can, for example, be generated from fossil fuels, such as from natural gas or oil, or from the gasification of coal.
- the oxygenate is obtained from biomaterials, such as through fermentation.
- the oxygenate feedstock can be obtained from a pre-reactor, which converts methanol at least partially into dimethylether and water. Water may be removed, by e.g., distillation. In this way, less water is present in the process of converting oxygenates to olefins, which has advantages for the process design and lowers the severity of
- the oxygenate to olefins process may in certain embodiments, also receive an olefin co-feed.
- This co-feed may comprise olefins having carbon numbers of from 1 to 8, preferably from 3 to 6 and more preferably 4 or 5.
- suitable olefin co-feeds include butene, pentene and hexene.
- the oxygenate feed comprises one or more oxygenates and olefins, more preferably oxygenates and olefins in an oxygenate:olefm molar ratio in the range of from 1000: 1 to 1 : 1, preferably 100: 1 to 1 : 1. More preferably, in a oxygenate:olefm molar ratio in the range of from 20 : 1 to 1 : 1, more preferably in the range of l8:l to 1 : 1, still more preferably in the range of l5:l to 1 : 1, even still more preferably in the range of l4: l to 1 : 1.
- the olefin co-feed may also comprise paraffins. These paraffins may serve as diluents or in some cases they may participate in one or more of the reactions taking place in the presence of the catalyst.
- the paraffins may include alkanes having carbon numbers from 1 to 10, preferably from 3 to 6 and more preferably 4 or 5.
- the paraffins may be recycled from separation steps occurring downstream of the oxygenate to olefins conversion step.
- the oxygenate to olefins process may in certain embodiments, also receive a diluent co-feed to reduce the concentration of the oxygenates in the feed and suppress side reactions that lead primarily to high molecular weight products.
- the diluent should generally be non-reactive to the oxygenate feedstock or to the catalyst. Possible diluents include helium, argon, nitrogen, carbon monoxide, carbon dioxide, methane, water and mixtures thereof. The more preferred diluents are water and nitrogen with the most preferred being water.
- the diluent may be used in either liquid or vapor form.
- the diluent may be added to the feedstock before or at the time of entering the reactor or added separately to the reactor or added with the catalyst.
- the diluent is added in an amount in the range of from 1 to 90 mole percent, more preferably from 1 to 80 mole percent, more preferably from 5 to 50 mole percent, most preferably from 5 to 40 mole percent.
- steam is produced as a by-product, which serves as an in-situ produced diluent.
- additional steam is added as diluent.
- the amount of additional diluent that needs to be added depends on the in-situ water make, which in turn depends on the composition of the oxygenate feed. Where the diluent provided to the reactor is water or steam, the molar ratio of oxygenate to diluent is between 10: 1 and 1 :20.
- the oxygenate feed is contacted with the catalyst at a temperature in the range of from 200 to 1000 °C, preferably of from 300 to 800 °C, more preferably of from 350 to 700 °C, even more preferably of from 450 to 650°C.
- the feed may be contacted with the catalyst at a temperature in the range of from 530 to 620 °C, or preferably of from 580 to 610 °C.
- the feed may be contacted with the catalyst at a pressure in the range of from 0.1 kPa (1 mbar) to 5 MPa (50 bar), preferably of from 100 kPa (1 bar) to 1.5 MPa (15 bar), more preferably of from 100 kPa (1 bar) to 300 kPa (3 bar).
- Reference herein to pressures is to absolute pressures.
- WHSV is defined as the mass of the feed (excluding diluents) per hour per mass of catalyst.
- the WHSV should preferably be in the range of from 1 hr -1 to 5000 hr 1 .
- the process takes place in a reactor and the catalyst may be present in the form of a fixed bed, a moving bed, a fiuidized bed, a dense fiuidized bed, a fast or turbulent fiuidized bed, or a circulating fiuidized bed.
- riser reactors, hybrid reactors or other reactor types known to those skilled in the art may be used.
- more than one of these reactor types may be used in series.
- the reactor is a riser reactor.
- the advantage of a riser reactor is that it allows for very accurate control of the contact time of the feed with the catalyst, as riser reactors exhibit a flow of catalyst and reactants through the reactor that approaches plug flow.
- Catalysts suitable for use in the conversion of oxygenates to olefins may be made from practically any small or medium pore molecular sieve.
- a suitable type of molecular sieve is a zeolite.
- Suitable zeolites include, but are not limited to AEI, AEL, AFT, AFO, APC, ATN, ATT, ATV, AWW, BIK, CAS, CHA, CHI, DAC, DDR, EDI, ERI, EUO, FER, GOO, HEU, KFI, LEV, LOV, LTA, MFI, MEL, MON, MTT, MTW, PAU, PHI, RHO, ROG, THO, TON and substituted forms of these types.
- Suitable catalysts include those containing a zeolite of the ZSM group, in particular of the MFI type, such as ZSM-5, the MTT type, such as ZSM-23, the TON type, such as ZSM-22, the MEL type, such as ZSM-11, and the FER type.
- Other suitable zeolites are for example zeolites of the STF-type, such as SSZ-35, the SFF type, such as SSZ-44 and the EU-2 type, such as ZSM-48.
- Preferred zeolites for this process include ZSM-5, ZSM-22 and ZSM-23.
- a preferred MFI-type zeolite for the oxygenate to olefins conversion catalyst has a silica-to-alumina ratio, SAR, of at least 60, preferably at least 80. More preferred MFI- type zeolite has a silica-to-alumina ratio, SAR, in the range of 60 to 150, preferably in the range of 80 to 100.
- the zeolite-comprising catalyst may comprise more than one zeolite.
- the catalyst comprises at least a more-dimensional zeolite, in particular of the MFI type, more in particular ZSM-5, or of the MEL type, such as zeolite ZSM-11, and a one-dimensional zeolite having 10-membered ring channels, such as of the MTT and/or TON type.
- zeolites in the hydrogen form are used in the zeolite-comprising catalyst, e.g., HZSM-5, HZSM-11, and HZSM-22, HZSM-23.
- At least 50wt%, more preferably at least 90wt%, still more preferably at least 95wt% and most preferably 100wt% of the total amount of zeolite used is in the hydrogen form. It is well known in the art how to produce such zeolites in the hydrogen form.
- SAPOs siliocoaluminophosphates
- SAPOs have a three dimensional microporous crystal framework of P02+, A102-, and Si02 tetrahedral units.
- Suitable SAPOs include SAPO-17, -18, 34, -35, -44, but also SAPO-5, -8, -11, -20, -31, -36, 37, -40, -41, -42, -47 and -56; aluminophosphates (A1PO) and metal substituted (silico)aluminophosphates (MeAlPO), wherein the Me in MeAlPO refers to a substituted metal atom, including metal selected from one of Group IA, IIA, IB, IIIB, IVB, VB, VIB, VIIB, VIIIB and lanthanides of the Periodic Table of Elements.
- Preferred SAPOs for this process include SAPO-34, SAPO-17 and SAPO-18.
- Preferred substituent metals for the MeAlPO include Co, Cr, Cu, Fe, Ga, Ge, Mg, Mn, Ni, Sn, Ti, Zn and Zr.
- the molecular sieves described above are formulated into molecular sieve catalyst compositions for use in the oxygenates to olefins conversion reaction.
- the molecular sieves are formulated into catalysts by combining the molecular sieve with a binder and/or matrix material and/or filler and forming the composition into particles by techniques such as spray-drying, pelletizing, or extrusion.
- the molecular sieve may be further processed before being combined with the binder and/or matrix. For example, the molecular sieve may be milled and/or calcined.
- Suitable binders for use in these molecular sieve catalyst compositions include various types of hydrated aluminas, silicas and/or other inorganic oxide sol.
- the binder acts like glue binding the molecular sieves and other materials together, particularly after thermal treatment.
- Various compounds may be added to stabilize the binder to allow processing.
- Matrix materials are usually effective at among other benefits, increasing the density of the catalyst composition and increasing catalyst strength (crush strength and/or attrition resistance).
- Suitable matrix materials include one or more of the following: rare earth metals, metal oxides including titania, zirconia, magnesia, thoria, beryllia, quartz, silica or sols, and mixtures thereof, for example, silica-magnesia, silica-zirconia, silica- titania, and silica-alumina.
- matrix materials are natural clays, for example, kaolin.
- a preferred matrix material is kaolin.
- the molecular sieve, binder and matrix material are combined in the presence of a liquid to form a molecular sieve catalyst slurry.
- the amount of binder is in the range of from 2 to 40 wt%, preferably in the range of from 10 to 35 wt%, more preferably in the range of from 15 to 30 wt%, based on the total weight of the molecular sieve, binder and matrix material, excluding liquid (after calcination).
- the slurry may be mixed, preferably with rigorous mixing to form a substantially homogeneous mixture.
- suitable liquids include one or more of water, alcohols, ketones, aldehydes and/or esters. Water is the preferred liquid.
- the mixture is colloid-milled for a period of time sufficient to produce the desired texture, particle size or particle size distribution.
- the molecular sieve, matrix and optional binder can be in the same or different liquids and are combined in any order together, simultaneously, sequentially or a combination thereof.
- water is the only liquid used.
- the slurry is mixed or milled to achieve a uniform slurry of sub-particles that is then fed to a forming unit.
- the forming unit is a spray dryer.
- the forming unit is typically operated at a temperature high enough to remove most of the liquid from the slurry and from the resulting molecular sieve catalyst composition.
- the particles are then exposed to ion-exchange using an ammonium nitrate or other appropriate solution.
- the ion exchange is carried out before the phosphorous impregnation.
- the ammonium nitrate is used to ion exchange the zeolite to remove alkali ions.
- the zeolite can be impregnated with
- the ion exchange is carried out after the phosphorous impregnation.
- alkali phosphates may be used to impregnate the zeolite with phosphorous, and then the ammonium nitrate and heat treatment are used to ion exchange and convert the zeolite to the H+ form.
- the catalyst may be formed into spheres, tablets, rings, extrudates or any other shape known to one of ordinary skill in the art.
- the catalyst may be extruded into various shapes, including cylinders and trilobes.
- the average particle size is in the range of from 1-200 ⁇ , preferably from 50-100 ⁇ . If extrudates are formed, then the average size is in the range of from 1 mm to 10 mm, preferably from 2 mm to 7 mm.
- the catalyst may further comprise phosphorus as such or in a compound, i.e.
- a MEL or MFI-type zeolite comprising catalyst additionally comprises phosphorus.
- the molecular sieve catalyst is prepared by first forming a molecular sieve catalyst precursor as described above, optionally impregnating the catalyst with a phosphorous containing compound and then calcining the catalyst precursor to form the catalyst.
- the phosphorous impregnation may be carried out by any method known to one of skill in the art.
- phosphorus can be deposited on the catalyst by impregnation using acidic solutions containing phosphoric acid (H 3 PO 4 ). The concentration of the solution can be adjusted to impregnate the desired amount of phosphorus on the precursor.
- the catalyst precursor may then be dried.
- the catalyst precursor containing phosphorous (either in the framework or impregnated) is calcined to form the catalyst.
- the calcination of the catalyst is important to determining the performance of the catalyst in the oxygenate to olefins process.
- the calcination may be carried out in any type of calciner known to one of ordinary skill in the art.
- the calcination may be carried out in a tray calciner, a rotary calciner, or a batch oven.
- a conventional calcination environment is air that typically includes a small amount of water vapor.
- the calcination may be carried out at a temperature in the range of from 400 °C to 1000 °C, preferably in a range of from 450 °C to 800 °C, more preferably in a range of from 500 °C to 700 0 C.
- Calcination time is typically dependent on the degree of hardening of the molecular sieve catalyst composition and the temperature and ranges from about 15 minutes to about 2 hours.
- the calcination is carried out in air at a temperature of from 500 °C to 600 °C.
- the calcination is carried out for a period of time from 30 minutes to 15 hours, preferably from 1 hour to 10 hours, more preferably from 1 hour to 5 hours.
- the calcination is carried out on a bed of catalyst.
- a bed of catalyst For example, if the calcination is carried out in a tray calciner, then the catalyst precursor added to the tray forms a bed which is typically kept stationary during the calcination. If the calcination is carried out in a rotary calciner, then the catalyst added to the rotary drum forms a bed that although not stationary does maintain some form and shape as it passes through the calciner.
- the feedstocks described above are converted primarily into olefins.
- the olefins produced from the feedstock typically have from 2 to 30 carbon atoms, preferably from 2 to 8 carbon atoms, more preferably from 2 to 6 carbon atoms, most preferably ethylene and/or propylene.
- diolefms having from 4 to 18 carbon atoms, conjugated or nonconjugated dienes, polyenes, vinyl monomers and cyclic olefins may be produced in the reaction.
- the feedstock preferably one or more oxygenates
- the oxygenate is methanol
- the olefins are ethylene and/or propylene.
- the products from the reactor are typically separated and/or purified to prepare separate product streams in a recovery system.
- Such systems typically comprise one or more separation, fractionation or distillation towers, columns, and splitters and other associated equipment, for example, various condensers, heat exchangers, refrigeration systems or chill trains, compressors, knock-out drums or pots, pumps and the like.
- the recovery system may include a demethanizer, a deethanizer, a depropanizer, a wash tower often referred to as a caustic wash tower and/or quench tower, absorbers, adsorbers, membranes, an ethylene-ethane splitter, a propylene-propane splitter, a butene- butane splitter and the like.
- additional products, by-products and/or contaminants may be formed along with the preferred olefin products.
- the preferred products, ethylene and propylene are preferably separated and purified for use in derivative processes such as polymerization processes.
- the products may comprise C4+ olefins, paraffins and aromatics that may be further reacted, recycled or otherwise further treated to increase the yield of the desired products and/or other valuable products.
- C4+ olefins may be recycled to the oxygenate to olefins conversion reaction or fed to a separate reactor for cracking.
- the paraffins may also be cracked in a separate reactor, and/or removed from the system to be used elsewhere or possibly as fuel.
- the product will typically comprise some aromatic compounds such as benzene, toluene and xylenes.
- xylenes can be seen as a valuable product.
- Xylenes may be formed in the OTO process by the alkylation of benzene and, in particular, toluene with oxygenates such as methanol. Therefore, in a preferred embodiment, a separate fraction comprising aromatics, in particular benzene, toluene and xylenes is separated from the gaseous product and at least in part recycled to the oxygenate to olefins conversion reactor as part of the oxygenate feed.
- part or all of the xylenes in the fraction comprising aromatics are withdrawn from the process as a product prior to recycling the fraction comprising aromatics to the oxygenate to olefins conversion reactor.
- the C4+ olefins and paraffins formed in the oxygenate to olefins conversion reactor may be further reacted in an additional reactor containing the same or a different molecular sieve catalyst.
- the C4+ feed is converted over the molecular sieve catalyst at a temperature in the range of from 500 to 700 °C.
- the additional reactor is also referred to as an OCP reactor and the process that takes place in this reactor is referred to as an olefin cracking process.
- a product which includes at least ethylene and/or propylene and preferably both.
- the gaseous product may comprise higher olefins, i.e. C4+ olefins, and paraffins.
- the gaseous product is retrieved from the second reactor as part of a second reactor effluent stream.
- the olefin feed is contacted with the catalyst at a temperature in the range of from
- 500 to 700 °C preferably of from 550 to 650°C, more preferably of from 550 to 620°C, even more preferably of from 580 to 610°C; and a pressure in the range of from 0.1 kPa (1 mbara) to 5 MPa (50 bara), preferably of from 100 kPa (1 bara) to 1.5 MPa (15 bara), more preferably of from 100 kPa ( 1 bara) to 300 kPa (3 bara).
- Reference herein to pressures is to absolute pressures.
- the C4+ olefins are separated into at least two fractions: a C4 olefin fraction and a C5+ olefin fraction.
- the C4 olefins are recycled to the oxygenate to olefins conversion reactor and the C5+ olefins are fed to the OCP reactor.
- the cracking behavior of C4 olefins and C5 olefins is believed to be different when contacted with a molecular sieve catalyst, in particular above 500 °C.
- the cracking of C4 olefins is an indirect process which involves a primary oligomerisation process to a C8, C12 or higher olefin followed by cracking of the oligomers to lower molecular weight hydrocarbons including ethylene and propylene, but also, amongst other things, to C5 to C7 olefins, and by-products such as C2 to C6 paraffins, cyclic hydrocarbons and aromatics.
- the cracking of C4 olefins is prone to coke formation, which places a restriction on the obtainable conversion of the C4 olefins.
- paraffins, cyclics and aromatics are not formed by cracking.
- the conversion of the C4 olefins is typically a function of the temperature and space time (often expressed as the weight hourly space velocity).
- WHSV weight hourly space velocity
- C5 olefin cracking is ideally a relatively straight forward- process whereby the C5 olefin cracks into a C2 and a C3 olefin, in particular above 500°C.
- This cracking reaction can be run at high conversions, up to 100%, while maintaining, at least compared to C4 olefins, high ethylene and propylene yields with a significantly lower by-product and coke make.
- C5+ olefins can also oligomerise, this process competes with the more beneficial cracking to ethylene and propylene.
- the C4 olefins are recycled to the oxygenate to olefins conversion reactor.
- the C4 olefins are alkylated with, for instance, methanol to C5 and/or C6 olefins.
- These C5 and/or C6 olefins may subsequently be converted into at least ethylene and/or propylene.
- the main by-products from this oxygenate to olefins conversion reaction are again C4 and C5 olefins, which can be recycled to the oxygenate to olefins conversion reactor and olefin cracking reactor, respectively.
- the gaseous products further include C4 olefins
- at least part of the C4 olefins are provided to (i) the oxygenate to olefins conversion reactor together with or as part of the oxygenate feed, and/or (ii) the olefin cracking reactor as part of the olefin feed, more preferably at least part of the C4 olefins is provided to the oxygenate to olefins conversion reactor together with or as part of the oxygenate feed.
- the gaseous products further include C5 olefins
- at least part of the C5 olefins are provided to the olefin cracking reactor as part of the olefin feed.
- the olefin feed to the olefin cracking reactor comprises C4+ olefins, preferably C5+ olefins, more preferably C5 olefins.
- the oxygenate to olefins conversion reactor and the optional OCP reactor are operated as riser reactors where the catalyst and feedstock are fed at the base of the riser and an effluent stream with entrained catalyst exits the top of the riser.
- gas/solid separators are necessary to separate the entrained catalyst from the reactor effluent.
- the gas/solid separator may be any separator suitable for separating gases from solids.
- the gas/solid separator comprises one or more centrifugal separation units, preferably cyclone units, optionally combined with a stripper section.
- the reactor effluent is preferably cooled in, or immediately after the gas/solid separator to terminate the conversion process and prevent the formation of by-products outside the reactors.
- the cooling may be achieved by use of a water quench.
- the catalyst may be returned to the reaction zone from which it came, to another reaction zone, a stripping zone or to a regeneration zone. Further, the catalyst that has been separated in the gas/solid separator may be combined with catalyst from other gas/solid separators before it is sent to a reaction zone, a stripping zone or to the regeneration zone.
- the gas/solid separation may comprise multiple gas/solid separators in series which will be referred to as primary and secondary separators.
- the gas/solid separator has an inlet for the reactor effluent or the effluent from an upstream gas/solid separator, an outlet for catalyst, and an outlet for the clean gas. If the gas/solid separator is the primary separator, then the reactor effluent will be passed into the separator at the inlet.
- the catalyst will pass through the catalyst outlet and the clean gas will be passed through the outlet either to downstream separation and processing steps or to a secondary gas/solid separator.
- the inlet to the gas/solid separator may be tangential, axial, helical or spiral.
- the clean gas referred to herein is defined as gas which contains less catalyst than the effluent entering the separator.
- the amount of catalyst removed in each separator will be determined by the efficiency of the separator as well as other factors.
- the gas/solid separator is preferably a cyclone.
- the outlet for the catalyst may pass the catalyst into a dipleg or other catalyst holdup section before it is passed back to the reactor, to a regenerator or to another part of the process.
- the effluent from the reactor has a high concentration of olefins which can oligomerize and form coke.
- coke may be formed in the reaction zone and be entrained with the product gas.
- Coke that is formed in the cyclone can fall during a thermal cycle (heating or cooling of the cyclone that typically occurs during startup and shutdown) and plug the dipleg that is located at the bottom of the cyclone.
- coke that detaches from the surfaces of the cyclone could also be entrained in the gas and be carried into downstream equipment where it could cause plugging or other issues.
- the gas outlet is preferably a pipe that extends down into the cyclone and receives the clean gas that is rising out of the cyclone.
- the gas outlet pipe extends down to prevent the effluent being fed into the separator from going straight up the outlet pipe.
- the invention provides for a layer of refractory to be installed on the outside surface of the gas outlet pipe.
- the inner surface of the gas outlet pipe, where the gas passes through to exit the cyclone, and the other surfaces in the cyclone come into frequent contact with catalyst that acts to scrape most of the coke that may have formed off the walls.
- the outer surface of the gas outlet pipe does not come into contact with as much catalyst because the effluent entering the cyclone is directed towards the walls and away from the gas outlet pipe.
- the refractory has a rougher surface and is more porous than bare metal surfaces. Because of this, coke forms a stronger bond with the refractory than it would with bare metal surfaces. During a thermal cycle, the coke on the refractory is more likely to stay attached and thus not plug the dipleg or any other equipment in or downstream of the cyclone.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
L'invention concerne un procédé de conversion d'un composé oxygéné comportant une matière première en oléfines, ledit procédé comprend les étapes consistant : à mettre en contact un courant contenant des oléfines avec un catalyseur à tamis moléculaire, dans des conditions de conversion de composés oxygénés en oléfines, dans un réacteur pour obtenir un effluent comportant des oléfines et un catalyseur ; à retirer l'effluent du réacteur ; à séparer le catalyseur de l'effluent dans un dispositif de séparation gaz/solide comprenant une entrée, une sortie pour le catalyseur et un tuyau de sortie pour un gaz ; à faire passer le catalyseur à travers la sortie de catalyseur et les oléfines à travers le tuyau de sortie de gaz, la surface extérieure du tuyau de sortie de gaz étant revêtue par une céramique, une brique réfractaire, du silicate de calcium haute température, de l'alumine, une céramique de silice-alumine, une brique de silice à diatomées, du carbure, du ciment ou un réfractaire.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13191179.4 | 2013-10-31 | ||
| EP13191179 | 2013-10-31 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015063269A1 true WO2015063269A1 (fr) | 2015-05-07 |
Family
ID=49488520
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2014/073456 Ceased WO2015063269A1 (fr) | 2013-10-31 | 2014-10-31 | Procédé de conversion des composés oxygénés en oléfines |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2015063269A1 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116459744A (zh) * | 2023-05-31 | 2023-07-21 | 大庆中蓝石化有限公司 | 一种在线延长以硅胶为载体的固体磷酸催化剂寿命的装置及方法 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110112344A1 (en) * | 2009-11-10 | 2011-05-12 | Leslie Andrew Chewter | Process and integrated system for the preparation of a lower olefin product |
-
2014
- 2014-10-31 WO PCT/EP2014/073456 patent/WO2015063269A1/fr not_active Ceased
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110112344A1 (en) * | 2009-11-10 | 2011-05-12 | Leslie Andrew Chewter | Process and integrated system for the preparation of a lower olefin product |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116459744A (zh) * | 2023-05-31 | 2023-07-21 | 大庆中蓝石化有限公司 | 一种在线延长以硅胶为载体的固体磷酸催化剂寿命的装置及方法 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3040324A1 (fr) | Procédé pour la conversion de composés oxygénés en produits aromatiques | |
| WO2016109370A1 (fr) | Procédé de conversion de composés oxygénés | |
| US20150119617A1 (en) | Process for Converting Oxygenates to Olefins | |
| EP3040399A1 (fr) | Système de réacteur pour la conversion de composés oxygénés en oléfines | |
| WO2016109379A1 (fr) | Système de réacteur de conversion de composés oxygénés en oléfines et procédé pour la conversion de composés oxygénés en oléfines | |
| US20160257625A1 (en) | Process for converting oxygenates to olefins | |
| AU2014343715B2 (en) | Process for converting oxygenates to olefins | |
| WO2015063269A1 (fr) | Procédé de conversion des composés oxygénés en oléfines | |
| WO2015063251A1 (fr) | Procédé pour la conversion de composés oxygénés en oléfines | |
| WO2015063250A1 (fr) | Procédé de conversion d'oxygénats en oléfines | |
| WO2016109374A1 (fr) | Système de réaction pour convertir des composés oxygénés en oléfines et procédé de conversion de composes oxygénés en oléfines | |
| WO2015000939A1 (fr) | Procédé de conversion de composés oxygénés en oléfines | |
| WO2014206972A1 (fr) | Procédé de conversion d'oxygénats en oléfines | |
| WO2015063212A1 (fr) | Procédé pour la conversion de composés oxygénés en oléfines | |
| EP3040401A1 (fr) | Système de réacteur pour la conversion de composés oxygénés en oléfines | |
| EP3040125A1 (fr) | Procédé pour la conversion de composés oxygénés en oléfines | |
| WO2014207134A1 (fr) | Catalyseur de craquage d'oléfines | |
| WO2016109367A1 (fr) | Système de réacteur de conversion de composés oxygénés en oléfines et processus de conversion des composés oxygénés en oléfines | |
| WO2016109369A1 (fr) | Système réacteur de conversion de composés oxygénés en oléfines et procédé de conversion de composés oxygénés en oléfines | |
| US20150018591A1 (en) | Method of Converting Oxygenates to Olefins | |
| EP3040400A1 (fr) | Procédé de démarrage d'un système de réaction de conversion de composés oxygénés en oléfines | |
| WO2015063270A1 (fr) | Procédé de conversion d'oxygénats en oléfines | |
| WO2015000938A1 (fr) | Procédé de conversion de composés oxygénés en oléfines | |
| WO2015063265A1 (fr) | Procédé pour convertir des composés oxygénés en oléfines | |
| US20150114434A1 (en) | Process for removing contaminants in a compressor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14792516 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14792516 Country of ref document: EP Kind code of ref document: A1 |