WO2014133169A1 - 二次電池用電解液およびそれを用いた二次電池 - Google Patents
二次電池用電解液およびそれを用いた二次電池 Download PDFInfo
- Publication number
- WO2014133169A1 WO2014133169A1 PCT/JP2014/055179 JP2014055179W WO2014133169A1 WO 2014133169 A1 WO2014133169 A1 WO 2014133169A1 JP 2014055179 W JP2014055179 W JP 2014055179W WO 2014133169 A1 WO2014133169 A1 WO 2014133169A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- secondary battery
- lithium
- group
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to an electrolyte for a secondary battery, a secondary battery using the same, a battery for an automobile including the secondary battery, and an automobile using the same. Moreover, it is related with the manufacturing method of the electrolyte solution for secondary batteries.
- a non-aqueous electrolyte lithium ion or lithium secondary battery using a carbon material, an oxide, a lithium alloy, or a lithium metal for the negative electrode has attracted attention because it can realize a high energy density.
- lithium ion de-insertion reaction occurs at the interface between the electrode and the electrolyte solution.
- the electrolyte solution solvent and supporting salt cause a decomposition reaction, resulting in a highly resistant film.
- the lithium ion deinsertion reaction that should occur is inhibited.
- an irreversible decrease in discharge capacity is promoted, leading to deterioration of the battery, and various ideas have been made to suppress it.
- Patent Documents 1 and 2 when a cyclic disulfonic acid ester is used as an additive for an electrolytic solution, a more stable film is formed on the electrode surface than that using a cyclic monosulfonic acid ester as an additive. It is described that improvement can be achieved.
- Patent Document 3 describes that battery characteristics can be improved by using a cyclic or chain disulfonic acid ester having an unsaturated bond.
- JP 2004-281368 A Japanese Patent Laid-Open No. 2005-2222846 JP 2004-281325 A
- an object of the present invention is to provide an electrolytic solution for a secondary battery that has excellent storage characteristics, and in particular, suppresses a decrease in capacity due to self-discharge.
- This invention relates to the electrolyte solution for lithium secondary batteries characterized by including cyclic sulfonate ester represented by General formula (1).
- R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen or an amino group, provided that both R 1 and R 2 represent a hydrogen atom.
- R 3 represents methylene optionally substituted with fluorine.
- Non-aqueous electrolyte a cyclic represented by the general formula (1) as an additive.
- Contains a sulfonic acid ester compound hereinafter sometimes simply referred to as “compound of general formula (1)”.
- R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen or an amino group, provided that both R 1 and R 2 represent a hydrogen atom.
- R 3 represents methylene optionally substituted with fluorine.
- the cyclic sulfonic acid ester compound of the above general formula (1) contained in the nonaqueous electrolytic solution is decomposed by an electrochemical redox reaction during the charge / discharge reaction to form a film on the surface of the electrode active material, and the electrolytic solution and the support Salt decomposition can be suppressed. This is considered to be effective in extending the life of the lithium ion secondary battery.
- the present inventors have found that the electrolytic solution containing the compound of the general formula (1) has storage stability. It has been found that when this electrolyte is used, the capacity maintenance and storage characteristics of the lithium ion secondary battery, particularly the maintenance characteristics of the remaining capacity accompanying self-discharge, are remarkably improved.
- the present inventors have a substituent at a specific position of the disulfonic acid ester.
- at least one of R 1 and R 2 is not a hydrogen atom.
- the stability of the electrolytic solution was improved and the high-temperature storage characteristics of the battery were improved as compared with the sulfonate ester in which both R 1 and R 2 are hydrogen atoms.
- R 1 and R 2 are preferably compounds in which at least one is an alkyl group, in particular, one is preferably an alkyl group and the other is a hydrogen atom, or two are both alkyl groups, and one is an alkyl group and the other is the other.
- a compound in which is a hydrogen atom is most preferred.
- a compound in which one of R 1 and R 2 is an alkyl group and the other is a hydrogen atom is most preferable because at least one of R 1 and R 2 is not a hydrogen atom (that is, a group that is not a hydrogen atom is included). The reactivity with the decomposition product of the supporting salt is lowered.
- both R 1 and R 2 are groups other than hydrogen atoms at the same time, the ability to form a film formed on the surface of the electrode active material is reduced, and the effect of extending the life of the lithium ion secondary battery is reduced. This is thought to be due to this.
- Alkyl groups include methyl, ethyl, propyl, butyl and pentyl, which may be linear or branched. In particular, methyl, ethyl and propyl are preferred.
- R 3 is selected from methylene, monofluoromethylene and difluoromethylene.
- preferred compounds of general formula (1) are represented by general formula (2) and general formula (3).
- R represents methyl, ethyl, propyl, butyl or pentyl.
- the compounds of the general formula (1) may be used alone or in combination of two or more. Next, typical examples of the compound of the general formula (1) are illustrated in Table 1, but the present invention is not limited thereto.
- the compound of the general formula (1) is prepared by a production method described in, for example, US Pat. No. 4,950,768, JP-A 61-501089, JP-A 5-44946, JP-A 2005-336155, and the like. Can be obtained.
- the proportion of the compound of the general formula (1) in the electrolytic solution is not particularly limited, but it is preferably contained in 0.005 to 10 wt% of the entire electrolytic solution.
- concentration of the compound represented by the general formula (1) By setting the concentration of the compound represented by the general formula (1) to 0.005 wt% or more, a sufficient film effect can be obtained. More preferably, 0.01 wt% or more is added. By doing so, the battery characteristics can be further improved.
- the raise of the viscosity of electrolyte solution and the increase in resistance accompanying it can be suppressed. More preferably, 5 wt% or less is added, and by doing so, the battery characteristics can be further improved.
- the electrolyte solution of the present embodiment is not particularly limited, but generally contains a compound of the above general formula (1) as an additive in addition to a non-aqueous solvent (aprotic solvent) and a supporting salt.
- a lithium salt can be used as the supporting salt.
- the lithium salt include LiPF 6 , lithium imide salt, LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6, and the like.
- the lithium imide salt LiN (C k F 2k + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (where k and m are each independently a natural number, preferably 1 or 2). Can be mentioned. These may use only 1 type and may use 2 or more types together.
- the concentration of the lithium salt in the electrolytic solution is preferably 0.7 mol / L or more and 2.0 mol / L or less.
- concentration of the lithium salt By setting the concentration of the lithium salt to 0.7 mol / L or more, sufficient ionic conductivity can be obtained.
- concentration of lithium salt 2.0 mol / L or less a viscosity can be made low and the movement of lithium ion is not prevented.
- a solvent containing at least one selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers and chain ethers can be used.
- the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and derivatives thereof (including fluorinated products).
- the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof (including fluorinated products).
- Examples of the aliphatic carboxylic acid ester include methyl formate, methyl acetate, ethyl propionate, and derivatives thereof (including fluorinated products).
- Examples of ⁇ -lactone include ⁇ -butyrolactone and its derivatives (including fluorinated products).
- Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran and derivatives thereof (including fluorinated products).
- Examples of the chain ether include 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), ethyl ether, diethyl ether, and derivatives thereof (including fluorinated compounds).
- non-aqueous solvents include dimethyl sulfoxide, formamide, acetamide, dimethylformamide, dioxolane (eg, 1,3-dioxolane), acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane.
- Dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, 1,3-propane sultone, anisole, N-methylpyrrolidone, and derivatives thereof (fluorinated compounds) Can also be used.
- the non-aqueous solvent is particularly preferably selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers, chain ethers, and fluorine derivatives of these compounds. Containing at least one of the above. Moreover, a non-aqueous solvent may use only 1 type and may use 2 or more types together.
- the electrolyte solution of the present embodiment can further include a compound having at least one sulfonyl group.
- the compound having at least one sulfonyl group (hereinafter also referred to as a sulfonyl group-containing compound) is a compound different from the cyclic sulfonate ester represented by the general formula (1).
- sulfonyl group-containing compound there are compounds overlapping with the above non-aqueous solvent, but “sulfonyl group-containing compounds” are usually cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ - It is used with at least one non-aqueous solvent selected from the group consisting of lactones, cyclic ethers, chain ethers and fluorine derivatives of these compounds.
- the sulfonyl group-containing compound is preferably a sultone compound represented by the following general formula (4).
- n represents an integer of 0 to 2
- R 1 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or Represents an aryl group having 6 to 12 carbon atoms.
- Examples of the compound represented by the general formula (4) include cyclic sulfonic acid esters such as 1,3-propane sultone (PS), 1,4-butane sultone, and 1,3-prop-2-ene sultone.
- cyclic sulfonic acid esters such as 1,3-propane sultone (PS), 1,4-butane sultone, and 1,3-prop-2-ene sultone.
- the sulfonyl group-containing compound is used at 0.005 to 10 wt% of the entire electrolyte.
- the electrolytic solution of the present embodiment can further include vinylene carbonate or a derivative thereof.
- vinylene carbonate or derivatives thereof include vinylene carbonate (VC), 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, 4-propyl vinylene carbonate, 4, Mention may be made of vinylene carbonates such as 5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate and 4,5-diphenyl vinylene carbonate; and vinyl alkylene carbonates such as vinyl ethylene carbonate (VEC) and divinyl ethylene carbonate.
- VEC vinyl ethylene carbonate
- VEC divinyl ethylene carbonate
- Vinylene carbonate or a derivative thereof is used at 0.005 to 10 wt% of the entire electrolyte.
- the electrolyte solution can also contain other additives other than the above compounds, if necessary.
- additives include an overcharge inhibitor and a surfactant.
- the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
- the negative electrode active material used for the layer 2 containing the negative electrode active material is selected from the group consisting of, for example, lithium metal, a lithium alloy, and a material capable of inserting and extracting lithium.
- One or more substances can be used. Examples of materials that occlude and release lithium ions include carbon materials and oxides.
- the carbon material graphite that absorbs lithium, amorphous carbon, diamond-like carbon, carbon nanotubes, composite oxides thereof, and the like can be used. Of these, graphite material or amorphous carbon is preferred.
- the graphite material has high electron conductivity, excellent adhesion to a current collector made of a metal such as copper, and voltage flatness, and is formed at a high processing temperature, so it contains few impurities and has negative electrode performance. It is advantageous for improvement and is preferable.
- the oxide examples include silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphorus oxide (phosphoric acid), boric oxide (boric acid), and composites thereof.
- silicon oxide is preferably included.
- the structure is preferably in an amorphous state. This is because silicon oxide is stable and does not cause a reaction with other compounds, and the amorphous structure does not lead to deterioration due to nonuniformity such as crystal grain boundaries and defects.
- a film forming method a vapor deposition method, a CVD method, a sputtering method, or the like can be used.
- the lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium.
- the lithium alloy is, for example, a binary or ternary alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium. Consists of.
- As the lithium metal or lithium alloy an amorphous one is particularly preferable. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.
- Lithium metal or lithium alloy is formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc. can do.
- a melt cooling method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc.
- binder for the negative electrode examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used.
- the amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
- the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
- Examples of the shape include foil, flat plate, and mesh.
- Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
- examples of the positive electrode active material used for the layer 1 containing the positive electrode active material include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
- the transition metal portion of these lithium-containing composite oxides may be replaced with another element.
- a lithium-containing composite oxide having a plateau at 4.2 V or higher at the metal lithium counter electrode potential can be used.
- examples of the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium-containing composite oxide, and reverse spinel-type lithium-containing composite oxide.
- Examples of the lithium-containing composite oxide include a compound represented by the following formula (4).
- Li a (M x Mn 2-x ) O 4 (4) (In Formula (4), 0 ⁇ x ⁇ 2 and 0 ⁇ a ⁇ 1.2.
- M is at least selected from the group consisting of Ni, Co, Fe, Cr, and Cu) It is a kind.
- the same negative electrode binder can be used.
- polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
- the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of binding force and energy density which are in a trade-off relationship.
- binders other than polyvinylidene fluoride (PVdF) vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene,
- PVdF polyvinylidene fluoride
- Examples include polyethylene, polyimide, and polyamideimide.
- the positive electrode current collector aluminum, nickel, silver, and alloys thereof are preferable.
- the shape include foil, flat plate, and mesh.
- an active material is dispersed and kneaded in a conductive material such as carbon black and a binder such as polyvinylidene fluoride (PVDF) in a solvent such as N-methyl-2-pyrrolidone (NMP). It can obtain by apply
- PVDF polyvinylidene fluoride
- NMP N-methyl-2-pyrrolidone
- the secondary battery using the non-aqueous electrolyte of this embodiment has a structure as shown in FIG.
- the layer 1 containing the positive electrode active material was formed on the positive electrode current collector 3
- the layer 2 containing the negative electrode active material was formed on the negative electrode current collector 4.
- These positive electrode and negative electrode are arranged to face each other with a porous separator 5 interposed therebetween.
- the porous separator 5 is disposed substantially parallel to the layer 2 containing the negative electrode active material.
- an electrode element in which the positive electrode and the negative electrode are arranged to face each other, and an electrolytic solution are included in the exterior bodies 6 and 7.
- a positive electrode tab 9 is connected to the positive electrode current collector 3, and a negative electrode tab 8 is connected to the negative electrode current collector 4, and these tabs are drawn out of the container.
- the shape of the non-aqueous electrolyte secondary battery according to the present embodiment is not particularly limited, and examples thereof include a laminate exterior type, a cylindrical type, a square type, and a coin type.
- a method for manufacturing the secondary battery in FIG. 1 will be described.
- a negative electrode and a positive electrode are laminated via a porous separator 5 or a laminated product is wound, and then a battery can or a flexible body made of a synthetic resin and a metal foil is used. It is accommodated in an exterior body such as a conductive film and impregnated with a non-aqueous electrolyte. And a favorable membrane
- coat can be formed on a negative electrode by charging a non-aqueous-electrolyte secondary battery before sealing an exterior body or after sealing.
- porous films such as polyolefin, such as a polypropylene and polyethylene, a fluororesin
- the exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
- a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
- an aluminum laminate film from the viewpoint of suppressing volume expansion.
- Example 1 (Production of battery) The production of the battery of this example will be described.
- An aluminum foil having a thickness of 20 ⁇ m was used as the positive electrode current collector, and LiMn 2 O 4 was used as the positive electrode active material.
- a 10-micrometer-thick copper foil was used as a negative electrode collector, and graphite was used as a negative electrode active material on this copper foil.
- the negative electrode and the positive electrode were laminated
- the compound No. described in Table 1 above is used as an additive. 1 was added so that 0.1 mol / L was contained in the non-aqueous electrolyte. Using this non-aqueous electrolyte, a non-aqueous secondary battery was produced and a battery storage test was conducted. Moreover, the storage test of electrolyte solution was done using this non-aqueous electrolyte solution.
- Electrolyte storage test was conducted by placing the electrolyte in a Teflon bottle and sealing it, sealing the Teflon bottle in a laminate, and storing it in a 45 ° C. constant temperature bath for 4 weeks.
- the amount of free acid in the electrolyte after storage was measured by neutralization titration. The results are shown in Table 2.
- the Hazen value after storage was measured visually. The results are shown in Table 2.
- Example 2 compound no. A secondary battery was prepared in the same manner as in Example 1 except that the compounds shown in Table 2 were used in place of 1, and the battery characteristics, the free acid amount Hazen value of the electrolyte, and the presence or absence of turbidity were determined in the same manner as in Example 1. Examined. The results are shown in Tables 2 and 3.
- Example 1 compound no. A secondary battery was prepared in the same manner as in Example 1 except that methylenemethane disulfonate (hereinafter referred to as “Compound A1”) was used instead of 1, and the characteristics of the battery were measured in the same manner as in Example 1. The electrolyte was examined for free acid, Hazen value, and turbidity. The results are shown in Tables 2 and 3.
- Example 2 a secondary battery was produced in the same manner as in Example 1 except that no additive was added, and the characteristics of the battery were examined in the same manner as in Example 1. The results are shown in Table 2.
- the batteries shown in Examples 1 to 4 have an improved capacity remaining rate after storage test, that is, improved storage characteristics, as compared with Comparative Examples 1 and 2. Was confirmed.
- the electrolytes shown in Examples 1 to 4 suppressed the increase in free acid as compared with Comparative Example 1.
- the electrolytes shown in Examples 1 to 4 are excellent in that no problem of clogging the injection nozzle occurs even in actual production because no generation of starch occurs.
- Example 5 In Example 1, secondary carbon was used in the same manner as in Example 1 except that amorphous carbon was used instead of graphite and the main solvent of the electrolytic solution was PC / EC / DEC (volume ratio: 20/20/60). A battery was prepared, and the characteristics of the battery, the free acid amount Hazen value of the electrolyte, and the presence or absence of turbidity were examined in the same manner as in Example 1. The results are shown in Tables 4 and 5.
- Example 6 In Example 5, compound no. A secondary battery was produced in the same manner as in Example 5 except that the compounds shown in Table 4 were used in place of 1, and the characteristics of the battery, the free acid amount Hazen value and turbidity of the electrolytic solution were the same as in Example 1. The presence or absence was examined.
- Example 5 compound no. A secondary battery was prepared in the same manner as in Example 5 except that methylenemethane disulfonate (hereinafter referred to as “Compound A1”) was used in place of 1, and the battery characteristics and the free acid of the electrolyte were the same as in Example 1. The quantity Hazen value and the presence or absence of turbidity were examined.
- Compound A1 methylenemethane disulfonate
- Example 5 a secondary battery was fabricated in the same manner as in Example 5 except that no additive was added. Thereafter, the characteristics of the battery were examined in the same manner as in Example 1. The results are shown in Table 5.
- Examples of use of the present invention include driving devices such as electric vehicles, hybrid vehicles, electric motorcycles, and electric assist bicycles, tools such as electric tools, electronic devices such as portable terminals and laptop computers, household power storage systems, and solar power generation. Examples include storage batteries such as systems.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
本実施形態におけるリチウム二次電池用電解液(以下、「非水電解液」または単に「電解液」と記載することもある。)は、添加剤として、一般式(1)で表される環状スルホン酸エステル化合物(以下、単に「一般式(1)の化合物」と記載することもある。)を含有する。
負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。図1の非水電解液二次電池において、負極活物質を含有する層2に用いる負極活物質には、たとえばリチウム金属、リチウム合金、およびリチウムを吸蔵・放出できる材料からなる群から選択される一または二以上の物質を用いることができる。リチウムイオンを吸蔵・放出する材料としては、炭素材料および酸化物等を挙げることができる。
図1の二次電池において、正極活物質を含有する層1に用いる正極活物質としては、例えば、LiCoO2、LiNiO2、LiMn2O4などのリチウム含有複合酸化物があげられる。また、これらのリチウム含有複合酸化物の遷移金属部分を他元素で置き換えたものでもよい。また、金属リチウム対極電位で4.2V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。リチウム含有複合酸化物は、例えば下記の式(4)で表される化合物を挙げることができる。
(ただし、式(4)において、0<x<2であり、また、0<a<1.2である。また、Mは、Ni、Co、Fe、CrおよびCuよりなる群から選ばれる少なくとも一種である。)
本実施形態の非水電解液を用いた二次電池は、たとえば図1のような構造を有する。正極は、正極活物質を含有する層1が正極集電体3上に成膜されたものであり、負極は、負極活物質を含有する層2が負極集電体4上に成膜されたものである。これらの正極と負極は、多孔質セパレータ5を介して対向配置されている。多孔質セパレータ5は、負極活物質を含有する層2に対して略平行に配置されている。二次電池は、これら正極および負極が対向配置された電極素子と、電解液とが外装体6および7に内包されている。正極集電体3には正極タブ9が接続けられ、負極集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。本実施形態に係る非水電解液二次電池の形状としては、特に制限はないが、例えば、ラミネート外装型、円筒型、角型、コイン型などがあげられる。
(電池の作製)
本実施例の電池の作製について説明する。正極集電体として厚み20μmのアルミニウム箔を用い、正極活物質としてLiMn2O4を用いた。また、負極集電体として厚み10μmの銅箔を用い、この銅箔上に負極活物質として黒鉛を用いた。そして、負極と正極とをポリエチレンからなるセパレータを介して積層し、二次電池を作製した。
非水電解液の溶媒としてECとDECの混合溶媒(体積比:EC/DEC=30/70)を用い、支持電解質としてLiPF6を非水電解液中1Mとなるように溶解した。
まず室温において充電および放電を1回ずつ行った。この時の条件はCCCV充電レート1.0C、CC放電レート1.0C、充電終止電圧4.2V、放電終止電圧3.0Vとした。 その後、各電池をCCCV充電レート1.0C、充電終止電圧4.2Vまで2.5時間、充電し、45℃の恒温槽中で4週間放置した。放置後に室温おいてCC放電レート1.0Cにて放電を行い残存容量とした。結果を表3に示す。
実施例1において化合物No.1の代わりに表2に示す化合物を用いた以外は実施例1と同様に二次電池を作製し、実施例1と同様に電池の特性および電解液の遊離酸量ハーゼン値および濁りの有無を調べた。結果を表2、表3に示す。
実施例1において、化合物No.1の変わりにメチレンメタンジスルホン酸エステル(以下、「化合物A1」)を用いた以外は実施例1と同様に二次電池を作製し、実施例1と同様に電池の特性を測定した。また電解液の遊離酸、ハーゼン値および濁りの有無を調べた。結果を表2、3に示す。
実施例1において、添加剤を加えない以外は実施例1と同様に二次電池を作製し、実施例1と同様に電池の特性を調べた。結果を表2に示す。
実施例1において、黒鉛に代えて非晶質炭素を用い、電解液の主溶媒をPC/EC/DEC(体積比:20/20/60)とした以外は実施例1と同様にして二次電池を作製し、実施例1と同様に電池の特性および電解液の遊離酸量ハーゼン値および濁りの有無を調べた。結果を表4、表5に示す。
実施例5において、化合物No.1に代えて表4に示す化合物を用いた以外は、実施例5と同様にして二次電池を作製し、実施例1と同様に電池の特性および電解液の遊離酸量ハーゼン値および濁りの有無を調べた。
実施例5において、化合物No.1の代わりにメチレンメタンジスルホン酸エステル(以下、「化合物A1」)を用いた以外は実施例5と同様に二次電池を作製し、実施例1と同様に電池の特性および電解液の遊離酸量ハーゼン値および濁りの有無を調べた。
実施例5において、添加剤を加えない他は実施例5と同様に二次電池を作製した。以下、実施例1と同様に電池の特性を調べた。結果を表5に示す。
2 負極活物質層
3 正極集電体
4 負極集電体
5 多孔質セパレータ
6 ラミネート外装体
7 ラミネート外装体
8 負極タブ
9 正極タブ
Claims (19)
- 少なくとも1個のスルホニル基を有する化合物であって、前記一般式(1)で表される環状スルホン酸エステルとは異なる化合物をさらに含むことを特徴とする請求項1~3のいずれか1項に記載の電解液。
- 前記一般式(1)で表される環状スルホン酸エステルが、電解液全体の0.005wt%~10wt%の割合で含まれることを特徴とする請求項1~5のいずれか1項に記載の電解液。
- ビニレンカーボネートまたはその誘導体をさらに含むことを特徴とする請求項1~6のいずれか1項に記載の電解液。
- 環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ-ラクトン類、環状エーテル類、鎖状エーテル類およびこれらの化合物のフッ素誘導体からなる群より選択される少なくとも1種の非水溶媒を含むことを特徴とする請求項1~7のいずれか1項に記載の電解液。
- リチウム塩として、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiAlCl4、およびLiN(CnF2n+1SO2)(CmF2m+1SO2)(但し、n、mは自然数)からなる群より選択される1種以上の物質を含むことを特徴とする請求項1~8のいずれか1項に記載の電解液。
- 正極、負極および請求項1~9のいずれか1項に記載のリチウム二次電池用電解液を含むことを特徴とする二次電池。
- 正極活物質としてリチウム含有複合酸化物を含むことを特徴とする請求項10に記載の二次電池。
- 負極活物質として、リチウムを吸蔵・放出できる材料、リチウム金属、リチウムと合金を形成しうる金属材料および酸化物材料からなる群より選択される少なくとも1種の物質を含むことを特徴とする請求項10または11に記載の二次電池。
- 前記負極活物質として、炭素材料および酸化物から選ばれるリチウムを吸蔵・放出できる材料を含むことを特徴とする請求項12に記載の二次電池。
- 前記炭素材料が黒鉛であることを特徴とする請求項13に記載の二次電池。
- 前記炭素材料が非晶質炭素であることを特徴とする請求項13に記載の二次電池。
- フィルム外装体を有することを特徴とする請求項10~15のいずれか1項に記載の二次電池。
- 請求項10~16のいずれか1項に記載の二次電池を含むことを特徴とする自動車用電池。
- 請求項17に記載の自動車用電池を用いたことを特徴とする自動車。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/771,763 US9941545B2 (en) | 2013-03-01 | 2014-02-28 | Electrolyte solution for secondary batteries, and secondary battery using same |
| JP2015503069A JP6341195B2 (ja) | 2013-03-01 | 2014-02-28 | 二次電池用電解液およびそれを用いた二次電池 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013-041320 | 2013-03-01 | ||
| JP2013041320 | 2013-03-01 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014133169A1 true WO2014133169A1 (ja) | 2014-09-04 |
Family
ID=51428426
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2014/055179 Ceased WO2014133169A1 (ja) | 2013-03-01 | 2014-02-28 | 二次電池用電解液およびそれを用いた二次電池 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US9941545B2 (ja) |
| JP (1) | JP6341195B2 (ja) |
| WO (1) | WO2014133169A1 (ja) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016021596A1 (ja) * | 2014-08-07 | 2016-02-11 | 日本電気株式会社 | リチウム二次電池およびその製造方法 |
| CN107093765A (zh) * | 2017-04-28 | 2017-08-25 | 张家港市国泰华荣化工新材料有限公司 | 一种非水电解液及二次电池 |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015061370A1 (en) | 2013-10-21 | 2015-04-30 | Milwaukee Electric Tool Corporation | Adapter for power tool devices |
| CN109326824B (zh) * | 2017-07-31 | 2020-04-21 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液及锂离子电池 |
| CN112786963B (zh) * | 2019-11-01 | 2022-03-11 | 广汽埃安新能源汽车有限公司 | 锂离子电池电解液及其制备方法、锂离子电芯、锂离子电池包及其应用 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004185931A (ja) * | 2002-12-02 | 2004-07-02 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
| JP2004281368A (ja) * | 2002-08-29 | 2004-10-07 | Nec Corp | 二次電池用電解液およびそれを用いた二次電池 |
| JP2006278106A (ja) * | 2005-03-29 | 2006-10-12 | Nec Corp | 二次電池用電解液およびそれを用いた二次電池 |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2418257A1 (fr) | 2003-01-30 | 2004-07-30 | Hydro-Quebec | Composition electrolytique et electrolyte, generateurs les contenant et operant sans formation de dendrite lors du cyclage |
| JP4465968B2 (ja) | 2003-03-18 | 2010-05-26 | 日本電気株式会社 | 二次電池用電解液およびそれを用いた二次電池 |
| US8227116B2 (en) * | 2003-12-15 | 2012-07-24 | Nec Corporation | Secondary battery |
| JP4577482B2 (ja) | 2004-02-06 | 2010-11-10 | 日本電気株式会社 | リチウム二次電池用電解液およびそれを用いたリチウム二次電池 |
| JP5078334B2 (ja) | 2005-12-28 | 2012-11-21 | 三洋電機株式会社 | 非水電解質二次電池 |
| US7754390B2 (en) | 2006-03-14 | 2010-07-13 | Panasonic Corporation | Manufacturing method of negative electrode for nonaqueous electrolytic rechargeable battery, and nonaqueous electrolytic rechargeable battery using it |
| JP5055865B2 (ja) | 2006-07-19 | 2012-10-24 | パナソニック株式会社 | リチウムイオン二次電池 |
| JP5236875B2 (ja) | 2006-12-19 | 2013-07-17 | Necエナジーデバイス株式会社 | 非水電解液およびそれを用いた非水電解液二次電池 |
| EP2071650A4 (en) | 2007-03-30 | 2013-04-03 | Panasonic Corp | ACTIVE MATERIAL FOR A NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR THE PRODUCTION THEREOF |
| US20090123832A1 (en) | 2007-11-14 | 2009-05-14 | Sony Corporation | Non-aqueous electrolyte battery |
| JP2010272380A (ja) | 2009-05-22 | 2010-12-02 | Hitachi Ltd | リチウム二次電池用負極およびそれを用いたリチウム二次電池 |
| JP5573146B2 (ja) | 2009-12-21 | 2014-08-20 | パナソニック株式会社 | 電気化学素子 |
| EP2535974B1 (en) * | 2010-02-08 | 2016-10-26 | NEC Energy Devices, Ltd. | Nonaqueous electrolyte secondary battery |
| EP2549569A4 (en) * | 2010-03-18 | 2014-08-06 | Nec Energy Devices Ltd | Lithium ion secondary battery |
| JP5553180B2 (ja) * | 2010-03-26 | 2014-07-16 | トヨタ自動車株式会社 | 電極活物質の製造方法 |
| CN102214826A (zh) | 2010-04-08 | 2011-10-12 | 深圳市比克电池有限公司 | 锂离子电池及负极材料、改善锂电池低温放电效率的方法 |
| JP5508923B2 (ja) | 2010-04-09 | 2014-06-04 | 日立ビークルエナジー株式会社 | 蓄電モジュール |
| US10211451B2 (en) | 2013-01-11 | 2019-02-19 | Nec Corporation | Negative electrode for lithium ion secondary battery comprising negative electrode active material containing two carbons and method for manufacturing lithium ion secondary battery comprising same |
| US9780411B2 (en) * | 2013-03-01 | 2017-10-03 | Nec Corporation | Nonaqueous electrolyte solution secondary battery |
| JP6380377B2 (ja) * | 2013-03-01 | 2018-08-29 | 日本電気株式会社 | リチウムイオン二次電池 |
-
2014
- 2014-02-28 WO PCT/JP2014/055179 patent/WO2014133169A1/ja not_active Ceased
- 2014-02-28 JP JP2015503069A patent/JP6341195B2/ja active Active
- 2014-02-28 US US14/771,763 patent/US9941545B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004281368A (ja) * | 2002-08-29 | 2004-10-07 | Nec Corp | 二次電池用電解液およびそれを用いた二次電池 |
| JP2004185931A (ja) * | 2002-12-02 | 2004-07-02 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
| JP2006278106A (ja) * | 2005-03-29 | 2006-10-12 | Nec Corp | 二次電池用電解液およびそれを用いた二次電池 |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016021596A1 (ja) * | 2014-08-07 | 2016-02-11 | 日本電気株式会社 | リチウム二次電池およびその製造方法 |
| JPWO2016021596A1 (ja) * | 2014-08-07 | 2017-05-25 | 日本電気株式会社 | リチウム二次電池およびその製造方法 |
| US10840551B2 (en) | 2014-08-07 | 2020-11-17 | Nec Corporation | Lithium secondary battery and manufacturing method therefor |
| CN107093765A (zh) * | 2017-04-28 | 2017-08-25 | 张家港市国泰华荣化工新材料有限公司 | 一种非水电解液及二次电池 |
| CN107093765B (zh) * | 2017-04-28 | 2020-03-31 | 张家港市国泰华荣化工新材料有限公司 | 一种非水电解液及二次电池 |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2014133169A1 (ja) | 2017-02-09 |
| JP6341195B2 (ja) | 2018-06-13 |
| US9941545B2 (en) | 2018-04-10 |
| US20160028118A1 (en) | 2016-01-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5169400B2 (ja) | 非水電解液およびそれを用いた非水電解液二次電池 | |
| US9991561B2 (en) | Lithium ion secondary battery | |
| JP6380376B2 (ja) | 非水電解液二次電池 | |
| JP6380377B2 (ja) | リチウムイオン二次電池 | |
| US9583789B2 (en) | Non-aqueous electrolyte secondary battery | |
| JP5236875B2 (ja) | 非水電解液およびそれを用いた非水電解液二次電池 | |
| JP6341195B2 (ja) | 二次電池用電解液およびそれを用いた二次電池 | |
| JP4304570B2 (ja) | 非水電解液およびそれを用いた二次電池 | |
| JP2015115268A (ja) | 非水電解質二次電池 | |
| WO2016021596A1 (ja) | リチウム二次電池およびその製造方法 | |
| JP6319092B2 (ja) | 二次電池 | |
| JP4909649B2 (ja) | 非水電解液およびそれを用いた非水電解液二次電池 | |
| JP4265169B2 (ja) | 二次電池用電解液およびそれを用いた二次電池 | |
| JPWO2014171518A1 (ja) | リチウムイオン二次電池 | |
| JP4525018B2 (ja) | リチウム二次電池用電解液およびそれを用いたリチウム二次電池 | |
| JP6086116B2 (ja) | リチウム二次電池用電解液およびこれを含むリチウム二次電池 | |
| KR20090106993A (ko) | 비수 전해액 및 이를 이용한 비수 전해액 2차 전지 | |
| WO2014133161A1 (ja) | 非水電解液二次電池 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14757697 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2015503069 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14771763 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14757697 Country of ref document: EP Kind code of ref document: A1 |