[go: up one dir, main page]

WO2014181024A1 - Computer-implemented method for recognising and classifying abnormal blood cells, and computer programs for performing the method - Google Patents

Computer-implemented method for recognising and classifying abnormal blood cells, and computer programs for performing the method Download PDF

Info

Publication number
WO2014181024A1
WO2014181024A1 PCT/ES2014/070393 ES2014070393W WO2014181024A1 WO 2014181024 A1 WO2014181024 A1 WO 2014181024A1 ES 2014070393 W ES2014070393 W ES 2014070393W WO 2014181024 A1 WO2014181024 A1 WO 2014181024A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood cells
abnormal blood
cells
cytoplasm
nucleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/ES2014/070393
Other languages
Spanish (es)
French (fr)
Inventor
Santiago ALFÉREZ BARQUERO
José RODELLAR BENEDÉ
Luis Eduardo MÚJICA DELGADO
Magda RUIZ ORDÓÑEZ
Anna Merino Gonzalez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitat Politecnica de Catalunya UPC
Original Assignee
Universitat Politecnica de Catalunya UPC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politecnica de Catalunya UPC filed Critical Universitat Politecnica de Catalunya UPC
Publication of WO2014181024A1 publication Critical patent/WO2014181024A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification

Definitions

  • the present invention concerns in a first aspect, in general, a method implemented by computer for recognition and classification of abnormal blood cells, and in particular a method comprising using said abnormal blood cells recognized and classified to perform a diagnostic orientation of diseases.
  • a second aspect of the invention concerns computer programs adapted to perform some of the steps of the method of the first aspect.
  • SP Peripheral blood
  • Chronic Lymphoid Leukemia cells or LLC are typically described as small lymphocytes with pooled chromatin and poor cytoplasm, on the contrary, Tricoleukemia or HCL cells have a low basophilic cytoplasm and abundant irregular or hairy edges. Therefore, the morphological differentiation between various types of lymphoid cells is not trivial, due in large part to the lack of objective values to define cytological variables, which requires high experience and skill.
  • the invention provides, according to a first aspect, a computer-implemented method for recognition and classification of abnormal blood cells, which, like known techniques, comprises classifying cells based on automatic processing techniques.
  • imaging and blood sample analysis techniques which includes acquiring digital images of abnormal or atypical blood cells, for example lymphoid or blast cells, from a plurality of blood cells.
  • the proposed method comprises performing the following steps:
  • a step of pre-processing of said digital images of acquired abnormal blood cells is performed.
  • the variable form of them is taken into account, with different shades and textures both in the nucleus and at the cytoplasm level, and that the periphery of the cytoplasm can show extensions.
  • Cell segmentation can be done by two different techniques. For example, either by using an active contour technique in said digital images of abnormal blood cells using Gradient Vector Flow (GVF) or conversely, by using a technique of grouping the components of different spaces of color and Watershed transformation in such digital images of abnormal blood cells.
  • GVF Gradient Vector Flow
  • the calculation of the intrinsic characteristics of said identified regions of the nucleus, the cytoplasm and the external region of said abnormal blood cells further comprises extracting first-order statistical characteristics, for example, the mean, standard deviation. , statistical asymmetry, etc. of said identified regions based on a histogram of the identified region.
  • the calculation of the intrinsic characteristics of said identified regions of the nucleus, cytoplasm and the external area of the cell of said abnormal blood cells further comprises calculating statistical characteristics of second order, for example, contrast, homogeneity, entropy, etc. of said regions identified based on a co-occurrence matrix of each region identified.
  • said calculation of the intrinsic characteristics of the identified regions of the nucleus, cytoplasm and the external area of the cell of said abnormal blood cells comprises extracting characteristics of granularity of the nucleus and of the cytoplasm identified by the application of a Mathematical morphology technique.
  • said first and second order statistical characteristics, and the granularity characteristics of the nucleus and cytoplasm are calculated in different components of various color spaces.
  • said calculation of the intrinsic characteristics of said regions of the nucleus, cytoplasm and external area of the cell of said abnormal blood cells comprises calculating a parameter of hairiness of the identified cytoplasm, wherein said segmentation is performed by using a technique of grouping the components of different color spaces and the Watershed Transformation into said digital images of abnormal blood cells.
  • the villus parameter is calculated, according to a preferred embodiment, using a threshold segmentation of a green component of the abnormal blood cells by calculating the total number of pixels of said segmented green region of the digital image.
  • the classification of abnormal blood cells comprises at least one classification into five different groups.
  • these five groups will be: N or healthy patients; HCL or patients with Tricoleukemia; LLC or patients with Chronic Lymphoid Leukemia; MCL or patients with lympoma of the leukemic mantle; and B-PLL or patients with Prolymphocytic B-cell leukemia.
  • steps a) through c) will be repeated as many times as digital images of abnormal blood cells are acquired.
  • the invention provides several computer programs for carrying out the method of the first aspect of the present invention.
  • Fig. 1 shows a flow chart that includes the different steps of the method proposed by the present invention for an exemplary embodiment
  • Fig. 2 illustrates a flow chart of the general scheme of the method proposed by the invention, in the case of applying a Watershed transformation
  • Fig. 3 illustrates a flow chart of the general methodology for the segmentation of lymphoid cells
  • Fig. 4 shows an example of the segmentation methodology stage, where the region that limits a normal lymphoid cell is obtained
  • Fig. 5 shows an example of the different stages to obtain the transformation
  • Fig. 6 shows an example of several cells of a patient with MCL and its corresponding labeled image obtained after applying the Watershed transformation to obtain the complete regions of each cell;
  • Fig. 7 shows the complete segmentations of the cells used as examples in the previous figures.
  • Fig. 8 shows the general scheme that is followed to perform the extraction of intrinsic characteristics or descriptors according to an embodiment of the present invention
  • Fig. 9 shows the image of a lymphocyte with its respective histogram
  • Fig. 10 shows the creation of the co-occurrence matrix, with a distance of 1 pixel, according to an embodiment example
  • Fig. 11 shows the example of a complete granulometric curve for the case of the normal lymphoid cell of Fig. 9; Y
  • Fig. 12 shows the steps to calculate the villus descriptor of a Tricoleucocyte according to an embodiment of the present invention: where in a) the calculated Watershed lines are shown; in b) the region of interest to describe the villi, in c) the resulting histogram for the region of interest; and in d) the pixels between intensities 70 and 215 of the green component.
  • FIG. 1 A flowchart depicting the basic stages of the proposed method is shown in Fig. 1. These basic steps to perform digital cell image processing include: acquisition, preprocessing, segmentation, description (extraction of the main morphological characteristics), and recognition and classification.
  • the present invention provides a new mechanism implemented and / or executed in a computer to identify descriptors or intrinsic characteristics of abnormal blood cells, such as the lymphoid cell, which enable the classification of different diseases or pathologies. , for example neoplasms.
  • the proposed methodology develops a segmentation that separates the regions of the nucleus, cytoplasm and periphery from the outer edge of the cytoplasm or external area of the cell, from which the calculations of the different variables can be performed.
  • the analysis of the variables is preferably carried out by means of a linear discriminant analysis, where the classes referring to each of the different pathologies are separated.
  • the first step to perform is the preparation of blood samples and the acquisition of digital images.
  • factors that affect the quality of the acquisition and processing of the images derived from the SP smear: a) staining process; b) variations in lighting; c) optical geometric distortions due to the type of lens and microscope; d) format in which images are saved; e) random noise; f) lack of contrast between tone levels, etc.
  • different techniques can be applied, such as: spatial and frequency filtering, color transformations, histogram manipulations and others.
  • a preprocessing step is performed that attenuates or enhances the characteristics of the image, such as edges, limits or you can also modify the contrast.
  • This procedure does not increase the information present in the data, but it does increase the dynamic range of the properties of an image to facilitate its manipulation.
  • Some of the preprocessing techniques that can be used are the filtering of the images through the application of Gaussian filters, medium filters, Wiener filter and / or convolution with Wavelets, in order to reduce the noise level.
  • the images stained with MGG are bluish and purple, so it is also possible to apply a color treatment of the images of the blood cells, which can separate, highlight or extract the best profiles.
  • segmentation of the abnormal cell images is performed to separate the regions of the nucleus, cytoplasm and periphery from the outer edge of the cytoplasm, from which the calculations of the variables can be performed.
  • the shape of the cells is variable, with different shades and textures both in the nucleus and at the cytoplasm level and that the periphery of the cytoplasm can show prolongations.
  • Segmentation in the proposed method can be done according to two different alternatives. For example, either using active contour segmentation or using color segmentation by grouping and Watershed transformation.
  • the method recognizes the cellular components using color information from the original image of the cell and by applying contour detection techniques in an H component of the HSV color space, the entire cell is obtained. Similarly, the entire cell nucleus is also obtained using an RGB color space.
  • the method uses the composition of the different colors in the image of the cell due to the staining that is applied to the blood sample, especially in the colors blue, magenta and pink, seen as a first perceptual approach.
  • the technique developed involves segmentation in a preferred way through color grouping to obtain the nucleus directly and indirectly for the segmentation of the entire lymphoid cell.
  • Fig. 3 shows the proposed general methodology, which in turn contains sub-algorithms that are used throughout the segmentation. The most important procedures of the mentioned methodology are mentioned below:
  • this algorithm takes the original image as input and produces as an output a labeled image where the regions of the lymphoid cells are separated from the rest.
  • the main part of this algorithm uses the Kernel Spatial Fuzzy C-means (KSFCM) grouping technique to the Cyan and Magenta components of the CMYK color space to isolate the red blood cells from the lymphoid cell. Subsequently, the Watershed transformation is applied to obtain each region that contains cells.
  • KSFCM Kernel Spatial Fuzzy C-means
  • RG approach of the nucleus its input is the original image and produces a simple approximation of the lymphocyte nucleus, using a combination of the red and green components of the RGB space. Its usefulness is that it can be located approximately where the cells of interest are located.
  • ⁇ XYZ core This procedure mainly uses the KSFCM grouping technique on the XYZ color space to isolate the nucleus, cytoplasm and background groups. To precisely segment the nucleus, it requires as input the original image and the region of interest of the lymphoid cells (obtained in Cell Only). As a result, it produces a binary mask of the nucleus (s) of the lymphoid cell (s), the gradient of the Y component of the XYZ color space, as well as the background group of the cluster.
  • Fig. 4 shows the previous process for a normal lymphoid cell: Fig. 4a represents a normal lymphoid cell, Fig. 4b is the binary mask that approaches the nucleus, Fig. 4c shows the labeled matrix that separates the cells in different regions and Fig. 4d is the resulting binary mask that encloses the lymphocyte of interest.
  • the perimeter of the latter region that limits the lymphoid cell (s) is used as the external marker to be used in the Watershed transformation.
  • Fig. 5 shows the different steps applied to a cell (Fig. 5a) of a patient with Mantle Cell Lymphoma.
  • the binary mask of the nucleus is achieved by the XYZ Core subroutine (Fig. 5b), in which the original image and the region surrounding the cells of interest (extO) have been used.
  • the nucleus mask is thinned if it reaches the external marker and this "improvement" is taken as the final segmentation of the nucleus, with some mathematical morphology operations.
  • This same binary mask is used as an internal marker of the WT that will determine the cytoplasm.
  • FIG. 5c shows the overlap of both markers.
  • the external and internal marker are imposed as minimum on the gradient of the Y component (Fig. 5d and Fig. 5e), to then perform a Watershed transformation and thus generate a labeled image where the whole cell (s) is located ( s) lymphoid (s), as shown in Fig. 5f.
  • Fig. 6 shows an example with four lymphocytes of a patient with MCL and its corresponding image labeled product of all the aforementioned stages. Therefore, another stage is created in which the masks are separated from the possible different cells. This procedure is highlighted by the shaded block Masks of Fig. 3, whose final product is the binary masks of the cell, the nucleus and the region surrounding the cell.
  • the algorithm preferably performs at the stage of the Masks block:
  • Fig. 7 compares the segmentation results for the three lymphoid cells shown above.
  • the segmentation process described and summarized in Fig. 3 also includes the creation of a database of binary masks (1 inside the object, 0 outside it) corresponding to the three regions (nucleus, whole cell and region that surrounds the cell) for the whole set of cells.
  • the method comprises the extraction of characteristics or descriptors according to a scheme like the one shown in Fig. 8.
  • the description is the stage in which information about the objects in the image that you want to analyze is extracted.
  • the characteristics that can be calculated depend on both qualitative and quantitative reasoning and the evaluation of abstract mathematical descriptors that can provide information.
  • Table 1 shows all the descriptors used in a characteristic manner by the present invention according to several embodiments.
  • Area defined as the internal area of the object in question, it is calculated by counting the number of pixels that the region contains.
  • Diameter defined as the diameter of a circle with the same area as the region.
  • Conical eccentricity calculated as the eccentricity of an ellipse whose second moment is equal to that of the region.
  • An eccentricity equal to 1 represents a rectilinear segment, while if it is 0 it represents a circle.
  • Perimeter is the length of the entire edge of the region.
  • Core / cytoplasm ratio For the specific case studied, the core - cytoplasm ratio is calculated by dividing the area of the nucleus by the area of the cytoplasm.
  • the CIE L * a * b * color space is the most complete color space created by the International Lighting Commission (Commission internationale de l'éclairage). This describes all the colors visible to the human eye and was created as a reference model independent of the device. Since Lab was created to approximate human vision, it is perceptually uniform and its L component is quite close to the human perception of Luminosity.
  • the histogram is a function that shows for each pixel value i, the number of pixels H (i) (proportional to the frequency) that have that value in the image.
  • i is represented by the horizontal axis
  • H (i) by the vertical.
  • Fig. 9 is an example of the histogram of the green component of an image of a peripheral blood lymphocyte. Since the image is a discretized rectangular matrix, the pixels take the value i in a range [0, Ll] (L is not necessarily the number of values that the pixels can take, but the number of containers under which the histogram frequencies).
  • the histogram can also be interpreted as the probability density function.
  • Table 2 shows the first order statistical parameters: mean, standard deviation, asymmetry, kurtosis, energy and entropy, obtained from the histogram.
  • Second-order descriptors can provide more information about the texture of the objects to be analyzed. These parameters are defined from the co-occurrence matrix. This matrix arrangement represents the joint probability that two pixels have an intensity value "/ ' " and "j", respectively, at a distance d in a given direction. The co-occurrence matrix considers not only information on intensity levels, but also the position of pixels with similar intensity values.
  • a possible matrix to be used by the proposed 4x4 size method with three intensity levels is shown.
  • the element at position (1,1) of the co-occurrence matrix indicates that level "0" is next to level "0 "2 times, in the diagonal northwest direction.
  • the element in position (2,3), relates level "1" next to level "2" in the same direction, presenting itself once.
  • Table 3 defines the second order descriptors used mathematically, based on the co-occurrence matrix.
  • Granulometry determines the distribution of particle sizes in an image, for this, mathematical morphology is generally used to estimate the distribution of particles indirectly, without having to identify and measure each of them on the image.
  • N is the dimension of the co-occurrence matrix (N x N).
  • is the average of
  • the Granulometry consists in applying openings increasing the size of the structural element of this morphological operation.
  • the basic idea is that opening operations with a particular size should have a greater effect on regions of the image that contain clear particles with a similar size.
  • the sum of the pixel intensity values in the image resulting from operating with the opening is calculated.
  • This sum (when normalized by the sum of the intensities of the pixels of the original region is called the size distribution function for granulometry) should decrease as much as the size of the structural element is increased, since openings reduce the intensity of Shining particles
  • This procedure produces a vector where each element is equal to the sum of the intensities of the pixels of the operated image (with opening) and each location of the vector represents a size of the structural element. To emphasize the changes between successive openings, the difference between adjacent elements of this 1D vector is calculated. To visualize the results you are differences (if The normalized function is the density distribution of the size distribution for granulometry) are plotted, where each peak is an indication of the dominant size distribution on the particles in the image.
  • the method is called antigranulometry.
  • the main difference is that the size distribution of the dark particles is measured. That is to say, as a new closing is executed (increasing the size of the structural element) there is a greater effect of the operation on the dark granules.
  • Granulometry produces information about bright particles, while anti-granulometry produces information about dark particles.
  • One way to take advantage of both methodologies is to join the distribution densities into one.
  • the result is the Granulometric Curve, which reflects the distribution of closing operations, placing them in the negative coordinates (size of the structural element for closing).
  • the distribution for the iterations with opening is left the same and they are placed in the positive coordinates (size of the structural element for the opening).
  • the density value for size zero is zero, so as not to affect the total contribution of the densities in subsequent quantitative measurements.
  • the result is a graph as shown in Fig. 11, with some symmetry and covering all sizes from closing to opening.
  • the proposed method uses, according to an exemplary embodiment, preferably four measures for the extraction of information on the granulometric curve of the nucleus and the cytoplasm of the lymphocytes: the mean, the standard deviation, the statistical asymmetry and the kurtosis.
  • Cytoplasmic profile descriptor A descriptor has been implemented that can estimate the amount of villi present on the outer edge of the cytoplasm by analyzing the region outside the cell, which has been previously segmented next to the nucleus and the cell. The number of pixels in this region that "do not belong to the background" is estimated by the number of pixels of a new thresholding segmentation between, for example, intensity levels 70 and 215 of the green component. In Fig. 12, the different steps for calculating the cytoplasmic profile descriptor of a Tricoleucocyte are shown.
  • all calculated descriptors are stored in a row vector for each cell. That is to say, that for a given set of cells there is a matrix with as many rows as cells to be analyzed. Once the characteristics of each cell have been calculated, these characteristics are used to classify the abnormal cells into 5 different groups. Generally, these five groups will be: N; HCL; LLC; MCL or B-PLL.
  • the proposed method has been made on 1500 digital images of SP lymphoid cells stained with May-Grünwald-Giemsa in the CellaVision DM96 (Cellavision AB, Lund, Sweden).
  • the images correspond to: 180 images characteristic cells of healthy patients (H), 301 images of lymphoid cells characteristic of patients with Tricholeukemia (HCL), 542 images of lymphoid cells characteristic of patients with Chronic Lymphocytic Leukemia (LLC), 401 images of cells characteristics of mantle cell lymphoma (MCL) and 75 images of lymphoid cells characteristic of prolymphocytic leukemia B (B-PLL).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Image Processing (AREA)

Abstract

The invention relates to a method consisting in classifying cells on the basis of automatic processing techniques and analysis of blood samples, which includes acquiring digital images of abnormal blood cells from blood cells, and then: segmenting said digital images of abnormal cells, providing identified regions of the nucleus, cytoplasm and outer area of the cell of said abnormal blood cells of said digital images; calculating intrinsic characteristics of each of said identified regions of the nucleus, cytoplasm and outer area of the cell of said abnormal blood cells, comprising calculating the geometric characteristics of said identified regions; automatically recognising and classifying abnormal blood cells on the basis of said calculated intrinsic characteristics of said identified regions; and using said recognised and classified abnormal blood cells for carrying out a diagnostic orientation of hematological diseases.

Description

Método implementado por ordenador para reconocimiento y clasificación de células sanguíneas anormales y programas informáticos para llevar a cabo el método  Computer-implemented method for recognition and classification of abnormal blood cells and computer programs to carry out the method

Sector de la técnica Technical sector

La presente invención concierne en un primer aspecto, en general, a un método implementado por ordenador para reconocimiento y clasificación de células sanguíneas anormales, y en particular a un método que comprende usar dichas células sanguíneas anormales reconocidas y clasificadas para realizar una orientación diagnóstica de enfermedades hematológicas.  The present invention concerns in a first aspect, in general, a method implemented by computer for recognition and classification of abnormal blood cells, and in particular a method comprising using said abnormal blood cells recognized and classified to perform a diagnostic orientation of diseases. Hematological

Un segundo aspecto de la invención concierne a programas informáticos adaptados para realizar algunas de las etapas del método del primer aspecto.  A second aspect of the invention concerns computer programs adapted to perform some of the steps of the method of the first aspect.

Estado de la técnica anterior Prior art

La sangre periférica (SP) es un fluido orgánico fácilmente accesible, por lo que su estudio representa el eslabón analítico inicial en el diagnóstico de la mayoría de enfermedades hematológicas o no hematológicas.  Peripheral blood (SP) is an easily accessible organic fluid, so its study represents the initial analytical link in the diagnosis of most hematological or non-hematological diseases.

El diagnóstico de más del 80 % de enfermedades hematológicas se consigue mediante estudios morfológicos que tienen como punto de partida la SP. A partir de técnicas automatizadas de procesamiento de imágenes mediante una red neuronal artificial, se han desarrollado equipos que realizan una preclasificación de las células nucleadas de SP teniendo en cuenta cientos de cálculos a partir de aspectos morfológicos, tales como coloración, tamaño, forma y textura de las células, entre otros. Sin embargo, estos analizadores, aunque representan un avance tecnológico de gran interés, no son capaces de identificar y pre- clasificar las células sanguíneas patológicas, especialmente las células linfoides, que pueden circular en la sangre periférica en determinadas neoplasias linfoides, cuya identificación morfológica suele ser una tarea compleja.  The diagnosis of more than 80% of hematological diseases is achieved through morphological studies that have SP as a starting point. Based on automated image processing techniques using an artificial neural network, equipment has been developed that performs preclassification of SP nucleated cells taking into account hundreds of calculations based on morphological aspects, such as coloring, size, shape and texture. of the cells, among others. However, although these analyzers represent a technological advance of great interest, they are not able to identify and pre-classify pathological blood cells, especially lymphoid cells, which can circulate in peripheral blood in certain lymphoid neoplasms, whose morphological identification is usually Be a complex task.

Debido a la dificultad que supone la correcta preclasificación automatizada de las células linfoides anormales, se han publicado pocos trabajos utilizando diferentes métodos de procesamiento digital de imágenes con resultados satisfactorios, y algunos de ellos todavía a día de la presentación de la presente invención continúan en estudio [1]. El problema se ha abordado mediante la extracción de un número importante de medidas y parámetros que describen las características morfológicas de interés en las células, junto a sistemas de reconocimiento de patrones para la clasificación de las diferentes células en categorías [2], [3], [4]. Due to the difficulty of correct automated preclassification of abnormal lymphoid cells, few papers have been published using different methods of digital image processing with satisfactory results, and some of them still up to date with the presentation of the present invention are still under study. [one]. The problem has been addressed by extracting a significant number of measures and parameters that describe the morphological characteristics of interest in the cells, together with systems of Pattern recognition for the classification of different cells into categories [2], [3], [4].

Por ejemplo, las células de Leucemia Linfoide Crónica o LLC se describen típicamente como pequeños linfocitos con cromatina agrupada y escaso citoplasma, por el contrario, las células de Tricoleucemia o HCL tienen un citoplasma poco basófilo y abundante de bordes irregulares o vellosos. Por lo que la diferenciación morfológica entre varios tipos de células linfoides no es trivial, debido en gran parte a la falta de valores objetivos para definir las variables citológicas, por lo que se requiere de elevada experiencia y habilidad.  For example, Chronic Lymphoid Leukemia cells or LLC are typically described as small lymphocytes with pooled chromatin and poor cytoplasm, on the contrary, Tricoleukemia or HCL cells have a low basophilic cytoplasm and abundant irregular or hairy edges. Therefore, the morphological differentiation between various types of lymphoid cells is not trivial, due in large part to the lack of objective values to define cytological variables, which requires high experience and skill.

[1]. F. Scotti, "Robust Segmentation and Measurements Techniques of White Cells in Blood[one]. F. Scotti, "Robust Segmentation and Measurements Techniques of White Cells in Blood

Microscope Images," 2006 IEEE Instrumentation and Measurement TechnologyMicroscope Images, "2006 IEEE Instrumentation and Measurement Technology

Conference Proceedings, Dec. 2006, pp. 43-48. Conference Proceedings, Dec. 2006, pp. 43-48.

[2]. Bergmann, M., Heyn, H., Müller-Hermelink, H.-K., Harms, H., Aus, H.M. (1990) [2]. Bergmann, M., Heyn, H., Müller-Hermelink, H.-K., Harms, H., Aus, H.M. (1990)

Automated recognition of cell images in high grade malignant lymphoma and reactive follicular hyperplasia. Analytical Cellular Pathology, 2:83-95. Automated recognition of cell images in high grade malignant lymphoma and reactive follicular hyperplasia. Analytical Cellular Pathology, 2: 83-95.

[3]. Foran, D. J., Comaniciu, D., Meer, P. et Goodell, L.A. Computer-Assisted Discrimination [3]. Foran, D. J., Comaniciu, D., Meer, P. et Goodell, L.A. Computer-Assisted Discrimination

Among Malignant Lymphomas and Leukemia Using Immunophenotyping, IntelligentAmong Malignant Lymphomas and Leukemia Using Immunophenotyping, Intelligent

Image Repositories, and Telemicroscopy. IEEE Trans. on Information Technology inImage Repositories, and Telemicroscopy. IEEE Trans. on Information Technology in

Biomedicine, 4(4):265-273, 2000. Biomedicine, 4 (4): 265-273, 2000.

[4]. Juan, J., Sigaux, F., Flandrin, G. (1985) Automated Classification of Lymphoid Cells.  [4]. Juan, J., Sigaux, F., Flandrin, G. (1985) Automated Classification of Lymphoid Cells.

Analytical and Quantitative Cytology and Histology, 7:38-46.  Analytical and Quantitative Cytology and Histology, 7: 38-46.

Resumen de la invención Summary of the Invention

Por tanto, existe un interés general en poder identificar descriptores o características intrínsecas de la célula linfoide que posibiliten la clasificación de diferentes patologías mejorando para ello el reconocimiento y la clasificación automática de dichas células, y de este modo permitir una mayor precisión en la detección y reconocimiento de enfermedades hematológicas como los diferentes tipos de leucemias, incluyendo las neoplasias linfoproliferativas B y T leucemizadas.  Therefore, there is a general interest in being able to identify descriptors or intrinsic characteristics of the lymphoid cell that make it possible to classify different pathologies by improving the recognition and automatic classification of said cells, and thus allowing greater accuracy in the detection and recognition of hematological diseases such as different types of leukemias, including leukemia B and T lymphoproliferative neoplasms.

La invención proporciona para ello, de acuerdo a un primer aspecto, un método implementado por ordenador para reconocimiento y clasificación de células sanguíneas anormales, que comprende, al igual que las técnicas conocidas, realizar una clasificación de células en base a técnicas de procesamiento automático de imágenes y de técnicas de análisis de muestras de sangre, que incluye adquirir imágenes digitales de células sanguíneas anormales o atípicas, por ejemplo células linfoides o blásticas, procedentes de una pluralidad de células sanguíneas. De una manera característica, y al contrario de las soluciones previamente conocidas en el estado del arte, el método propuesto comprende realizar las siguientes etapas: Accordingly, the invention provides, according to a first aspect, a computer-implemented method for recognition and classification of abnormal blood cells, which, like known techniques, comprises classifying cells based on automatic processing techniques. imaging and blood sample analysis techniques, which includes acquiring digital images of abnormal or atypical blood cells, for example lymphoid or blast cells, from a plurality of blood cells. In a characteristic way, and contrary to the solutions previously known in the state of the art, the proposed method comprises performing the following steps:

a) segmentar dichas imágenes digitales de células anormales proporcionando regiones identificadas del núcleo, citoplasma y área externa de la célula de dichas células sanguíneas anormales de dichas imágenes digitales;  a) segmenting said digital images of abnormal cells by providing identified regions of the nucleus, cytoplasm and external cell area of said abnormal blood cells of said digital images;

b) calcular características intrínsecas de cada una de dichas regiones identificadas del núcleo, citoplasma y área externa de la célula de dichas células sanguíneas anormales comprendiendo y calculando al menos las características geométricas de dichas regiones identificadas;  b) calculate intrinsic characteristics of each of said identified regions of the nucleus, cytoplasm and external cell area of said abnormal blood cells comprising and calculating at least the geometric characteristics of said identified regions;

c) reconocer y clasificar automáticamente células sanguíneas anormales con base en dichas características intrínsecas calculadas de dichas regiones identificadas; y  c) automatically recognize and classify abnormal blood cells based on said intrinsic characteristics calculated from said identified regions; Y

d) usar dichas células sanguíneas anormales reconocidas y clasificadas para realizar una orientación diagnóstica de enfermedades hematológicas.  d) using said recognized and classified abnormal blood cells to perform a diagnostic orientation of hematological diseases.

Para mejorar la calidad de las imágenes de las células sanguíneas, preferiblemente, de acuerdo a una realización, y previo a realizar dicha segmentación, se realiza una etapa de pre- procesamiento de dichas imágenes digitales de células sanguíneas anormales adquiridas.  To improve the quality of the images of the blood cells, preferably, according to one embodiment, and prior to performing said segmentation, a step of pre-processing of said digital images of acquired abnormal blood cells is performed.

Por otro lado, de acuerdo a otra realización, para la segmentación de las células se tiene en cuenta la forma variable de las mismas, con diferentes tonalidades y texturas tanto en el núcleo como a nivel del citoplasma, y que la periferia del citoplasma puede mostrar prolongaciones. La segmentación de las células se puede realizar mediante dos técnicas diferentes. Por ejemplo, bien mediante la utilización de una técnica de contornos activos en dichas imágenes digitales de células sanguíneas anormales utilizando el Flujo de Vector Gradiente (GVF) o por el contrario, mediante la utilización de una técnica de agrupación de las componentes de diferentes espacios de color y la transformación Watershed en dichas imágenes digitales de células sanguíneas anormales.  On the other hand, according to another embodiment, for the segmentation of the cells the variable form of them is taken into account, with different shades and textures both in the nucleus and at the cytoplasm level, and that the periphery of the cytoplasm can show extensions. Cell segmentation can be done by two different techniques. For example, either by using an active contour technique in said digital images of abnormal blood cells using Gradient Vector Flow (GVF) or conversely, by using a technique of grouping the components of different spaces of color and Watershed transformation in such digital images of abnormal blood cells.

De acuerdo a un ejemplo de realización, el cálculo de las características intrínsecas de dichas regiones identificadas del núcleo, del citoplasma y de la región externa de dichas células sanguíneas anormales comprende además extraer características estadísticas de primer orden, por ejemplo, la media, desviación estándar, asimetría estadística, etc. de dichas regiones identificadas basadas en un histograma de la región identificada.  According to an exemplary embodiment, the calculation of the intrinsic characteristics of said identified regions of the nucleus, the cytoplasm and the external region of said abnormal blood cells further comprises extracting first-order statistical characteristics, for example, the mean, standard deviation. , statistical asymmetry, etc. of said identified regions based on a histogram of the identified region.

De acuerdo a otro ejemplo de realización, el cálculo de las características intrínsecas de dichas regiones identificadas del núcleo, citoplasma y del área externa de la célula de dichas células sanguíneas anormales comprende además calcular características estadísticas de segundo orden, por ejemplo, el contraste, homogeneidad, entropía, etc. de dichas regiones identificadas en base a una matriz de coocurrencia de cada región identificada. According to another embodiment, the calculation of the intrinsic characteristics of said identified regions of the nucleus, cytoplasm and the external area of the cell of said abnormal blood cells further comprises calculating statistical characteristics of second order, for example, contrast, homogeneity, entropy, etc. of said regions identified based on a co-occurrence matrix of each region identified.

De acuerdo a otro ejemplo de realización, dicho cálculo de las características intrínsecas de las regiones identificadas del núcleo, citoplasma y del área externa de la célula de dichas células sanguíneas anormales comprende extraer características de granularidad del núcleo y del citoplasma identificado mediante la aplicación de una técnica de morfología matemática.  According to another embodiment, said calculation of the intrinsic characteristics of the identified regions of the nucleus, cytoplasm and the external area of the cell of said abnormal blood cells comprises extracting characteristics of granularity of the nucleus and of the cytoplasm identified by the application of a Mathematical morphology technique.

De acuerdo a otro ejemplo de realización, dichas características estadísticas de primer y segundo orden, y las características de granularidad del núcleo y del citoplasma son calculadas en diferentes componentes de varios espacios de color.  According to another embodiment, said first and second order statistical characteristics, and the granularity characteristics of the nucleus and cytoplasm are calculated in different components of various color spaces.

Finalmente, de acuerdo a otro ejemplo de realización, dicho cálculo de las características intrínsecas de dichas regiones del núcleo, citoplasma y área externa de la célula de dichas células sanguíneas anormales comprende calcular un parámetro de vellosidad del citoplasma identificado, en donde dicha segmentación se realiza mediante la utilización de una técnica de agrupación de las componentes de diferentes espacios de color y la Transformación Watershed en dichas imágenes digitales de células sanguíneas anormales.  Finally, according to another embodiment, said calculation of the intrinsic characteristics of said regions of the nucleus, cytoplasm and external area of the cell of said abnormal blood cells comprises calculating a parameter of hairiness of the identified cytoplasm, wherein said segmentation is performed by using a technique of grouping the components of different color spaces and the Watershed Transformation into said digital images of abnormal blood cells.

El parámetro de vellosidad se calcula, de acuerdo a un ejemplo de realización preferido, utilizando una segmentación de umbral de un componente de color verde de las células sanguíneas anormales calculando el número total de pixeles de dicha región de color verde segmentada de la imagen digital.  The villus parameter is calculated, according to a preferred embodiment, using a threshold segmentation of a green component of the abnormal blood cells by calculating the total number of pixels of said segmented green region of the digital image.

La clasificación de las células sanguíneas anormales comprende al menos una clasificación en cinco grupos diferentes. De una manera preferida estos cinco grupos serán: N o pacientes sanos; HCL o pacientes con Tricoleucemia; LLC o pacientes con Leucemia Linfoide Crónica; MCL o pacientes con Linfoma del manto leucemizado; y B-PLL o pacientes con Leucemia Prolinfocítica de células B.  The classification of abnormal blood cells comprises at least one classification into five different groups. In a preferred manner these five groups will be: N or healthy patients; HCL or patients with Tricoleukemia; LLC or patients with Chronic Lymphoid Leukemia; MCL or patients with lympoma of the leukemic mantle; and B-PLL or patients with Prolymphocytic B-cell leukemia.

Finalmente, dichas etapas a) hasta c) se repetirán tantas veces como imágenes digitales de células sanguíneas anormales sean adquiridas.  Finally, said steps a) through c) will be repeated as many times as digital images of abnormal blood cells are acquired.

La invención, de acuerdo a un segundo aspecto proporciona varios programas informáticos para llevar a cabo el método del primer aspecto de la presente invención.  The invention, according to a second aspect, provides several computer programs for carrying out the method of the first aspect of the present invention.

Breve descripción de los dibujos Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que: Brief description of the drawings The foregoing and other advantages and features will be more fully understood from the following detailed description of some embodiments with reference to the attached drawings, which should be taken by way of illustration and not limitation, in which:

la Fig. 1 muestra un diagrama de flujo que incluye las diferentes etapas del método propuesto por la presente invención para un ejemplo de realización;  Fig. 1 shows a flow chart that includes the different steps of the method proposed by the present invention for an exemplary embodiment;

la Fig. 2 ilustra un diagrama de flujo del esquema general del método propuesto por la invención, para el caso de aplicar una transformación Watershed;  Fig. 2 illustrates a flow chart of the general scheme of the method proposed by the invention, in the case of applying a Watershed transformation;

la Fig. 3 ilustra un diagrama de flujo de la metodología general para la segmentación de las células linfoides;  Fig. 3 illustrates a flow chart of the general methodology for the segmentation of lymphoid cells;

la Fig. 4 muestra un ejemplo de la etapa de la metodología de segmentación, en donde se obtiene la región que limita a una célula linfoide normal;  Fig. 4 shows an example of the segmentation methodology stage, where the region that limits a normal lymphoid cell is obtained;

la Fig. 5 muestra un ejemplo de las diferentes etapas para obtener la transformación Fig. 5 shows an example of the different stages to obtain the transformation

Watershed de la célula completa a través de la imposición de mínimos de marcadores sobre el gradiente de la componente Y, en una célula linfoide en un paciente con MCL; Watershed of the whole cell through the imposition of minimum markers on the gradient of the Y component, in a lymphoid cell in a patient with MCL;

la Fig. 6 muestra un ejemplo de varias células de un paciente con MCL y su correspondiente imagen etiquetada obtenida después de aplicar la transformación Watershed para obtener las regiones completas de cada célula;  Fig. 6 shows an example of several cells of a patient with MCL and its corresponding labeled image obtained after applying the Watershed transformation to obtain the complete regions of each cell;

la Fig. 7 muestra las segmentaciones completas de las células utilizadas como ejemplos en las figuras anteriores;  Fig. 7 shows the complete segmentations of the cells used as examples in the previous figures;

la Fig. 8 muestra el esquema general que se sigue para realizar la extracción de las características intrínsecas o descriptores de acuerdo a un ejemplo de realización de la presente invención;  Fig. 8 shows the general scheme that is followed to perform the extraction of intrinsic characteristics or descriptors according to an embodiment of the present invention;

la Fig. 9 muestra la imagen de un linfocito con su respectivo histograma;  Fig. 9 shows the image of a lymphocyte with its respective histogram;

la Fig. 10 muestra la creación de la matriz de co-ocurrencia, con distancia de 1 pixel, de acuerdo a un ejemplo de realización;  Fig. 10 shows the creation of the co-occurrence matrix, with a distance of 1 pixel, according to an embodiment example;

la Fig. 11 muestra el ejemplo de una curva granulométrica completa para el caso de la célula linfoide normal de la Fig. 9; y  Fig. 11 shows the example of a complete granulometric curve for the case of the normal lymphoid cell of Fig. 9; Y

la Fig. 12 muestra las etapas para calcular el descriptor de vellosidades de un Tricoleucocito de acuerdo a un ejemplo de realización de la presente invención: donde en a) se muestran las líneas de Watershed calculadas; en b) la región de interés para describir las vellosidades, en c) el histograma resultante para la región de interés; y en d) los píxeles entre las intensidades 70 y 215 de la componente verde. Descripción detallada de un ejemplo de realización Fig. 12 shows the steps to calculate the villus descriptor of a Tricoleucocyte according to an embodiment of the present invention: where in a) the calculated Watershed lines are shown; in b) the region of interest to describe the villi, in c) the resulting histogram for the region of interest; and in d) the pixels between intensities 70 and 215 of the green component. Detailed description of an embodiment example

En la Fig. 1 se expone un diagrama de flujo que representa las etapas básicas del método propuesto. Estas etapas básicas para realizar el procesamiento digital de imágenes de células incluyen: adquisición, pre-procesado, segmentación, descripción (extracción de las principales características morfológicas), y reconocimiento y clasificación.  A flowchart depicting the basic stages of the proposed method is shown in Fig. 1. These basic steps to perform digital cell image processing include: acquisition, preprocessing, segmentation, description (extraction of the main morphological characteristics), and recognition and classification.

Tal como se ha comentado anteriormente, la presente invención proporciona un nuevo mecanismo implementado y/o ejecutado en un ordenador para identificar descriptores o características intrínsecas de las células sanguíneas anormales, como por ejemplo la célula linfoide, que posibiliten la clasificación de diferentes enfermedades o patologías, por ejemplo neoplasias. Para ello, la metodología propuesta desarrolla una segmentación que separa las regiones del núcleo, citoplasma y periferia del borde externo del citoplasma o área externa de la célula, a partir de las cuales se pueden realizar los cálculos de las diferentes variables. El análisis de las variables, se realiza preferiblemente por medio de un análisis discriminante lineal, donde se separan las clases referentes a cada una de las diferentes patologías.  As discussed above, the present invention provides a new mechanism implemented and / or executed in a computer to identify descriptors or intrinsic characteristics of abnormal blood cells, such as the lymphoid cell, which enable the classification of different diseases or pathologies. , for example neoplasms. For this, the proposed methodology develops a segmentation that separates the regions of the nucleus, cytoplasm and periphery from the outer edge of the cytoplasm or external area of the cell, from which the calculations of the different variables can be performed. The analysis of the variables is preferably carried out by means of a linear discriminant analysis, where the classes referring to each of the different pathologies are separated.

El primer paso a realizar, al igual que las técnicas conocidas en el estado del arte, es la preparación de las muestras de sangre y la adquisición de las imágenes digitales. Existen diferentes factores que afectan a la calidad de la adquisición y del procesado de las imágenes, derivadas del frotis de SP: a) proceso de tinción; b) variaciones en la iluminación; c) distorsiones geométricas ópticas debidas al tipo de lente y microscopio; d) formato en el que se guardan las imágenes; e) ruido aleatorio; f) falta de contraste entre niveles de tonalidad, etc. Para mejorar la calidad de las imágenes de las células sanguíneas se pueden aplicar diferentes técnicas, tales como: filtrado espacial y frecuencial, transformaciones de color, manipulaciones del histograma y otras.  The first step to perform, like the techniques known in the state of the art, is the preparation of blood samples and the acquisition of digital images. There are different factors that affect the quality of the acquisition and processing of the images, derived from the SP smear: a) staining process; b) variations in lighting; c) optical geometric distortions due to the type of lens and microscope; d) format in which images are saved; e) random noise; f) lack of contrast between tone levels, etc. To improve the quality of blood cell images, different techniques can be applied, such as: spatial and frequency filtering, color transformations, histogram manipulations and others.

Posteriormente, se realiza una tinción de las células sanguíneas para lo que pueden utilizarse diversas técnicas, entre las que se destacan la tinción de May-Grünwald-Giemsa (MGG), que resalta los componentes básicos de la célula. Es de gran importancia desarrollar un proceso metodológico preciso y automatizado para conseguir frotis de SP de gran calidad en cuanto a la tinción, ya que es el primer paso para el proceso de adquisición, y es fundamental para el desarrollo de los posteriores algoritmos de procesamiento. Así, extensiones de baja calidad darán lugar a imágenes degradadas, es decir, con la inclusión de ruido a todo el sistema de análisis. Para la observación de las células sanguíneas el método más ampliamente utilizado es mediante un microscopio óptico y con objetivos de inmersión de 50 o 100 aumentos (500 o 1000 aumentos totales). Sin embargo, tal como se ha comentado anteriormente, recientemente se han desarrollado técnicas automatizadas para la adquisición y preclasificación de imágenes de las células sanguíneas. Dichos equipos llevan incorporado un microscopio motorizado, así como una cámara digital. Un ejemplo de estos equipos es el CellaVision DM96. Subsequently, a staining of the blood cells is performed for which various techniques can be used, among which the staining of May-Grünwald-Giemsa (MGG), which highlights the basic components of the cell. It is of great importance to develop a precise and automated methodological process to achieve high quality SP smears in terms of staining, since it is the first step in the acquisition process, and is essential for the development of subsequent processing algorithms. Thus, low quality extensions will result in degraded images, that is, with the inclusion of noise to the entire analysis system. For the observation of blood cells the most widely used method is by means of an optical microscope and with immersion objectives of 50 or 100 magnifications (500 or 1000 total magnifications). However, as discussed above, Recently, automated techniques have been developed for the acquisition and preclassification of blood cell images. Such equipment includes a motorized microscope, as well as a digital camera. An example of this equipment is the CellaVision DM96.

Una vez las imágenes de las células han sido adquiridas, de acuerdo a un ejemplo de realización y de una manera característica de la presente invención, se realiza una etapa de pre-procesamiento que atenúa o realza las características de la imagen, tales como bordes, límites o también puede modificar el contraste. Este procedimiento no aumenta la información presente en los datos, pero sí incrementa el rango dinámico de las propiedades de una imagen para facilitar su manipulación. Algunas de las técnicas de pre-procesado que pueden utilizarse son el filtrado de las imágenes mediante la aplicación de filtros Gaussianos, filtros mediana, filtro Wiener y/o convolución con Wavelets, con el objetivo de disminuir el nivel de ruido. Por otro lado, las imágenes teñidas con MGG son de color azulado y púrpura, por lo que también es posible aplicar sobre ellas un tratamiento por color de las imágenes de las células sanguíneas, que pueda separar, resaltar o extraer los mejores perfiles.  Once the images of the cells have been acquired, according to an exemplary embodiment and in a characteristic manner of the present invention, a preprocessing step is performed that attenuates or enhances the characteristics of the image, such as edges, limits or you can also modify the contrast. This procedure does not increase the information present in the data, but it does increase the dynamic range of the properties of an image to facilitate its manipulation. Some of the preprocessing techniques that can be used are the filtering of the images through the application of Gaussian filters, medium filters, Wiener filter and / or convolution with Wavelets, in order to reduce the noise level. On the other hand, the images stained with MGG are bluish and purple, so it is also possible to apply a color treatment of the images of the blood cells, which can separate, highlight or extract the best profiles.

Seguidamente, se realiza la segmentación de las imágenes de las células anormales para separar las regiones del núcleo, citoplasma y periferia del borde externo del citoplasma, a partir de las cuales se pueden realizar los cálculos de las variables. Para la segmentación se tiene en cuenta que: la forma de las células es variable, con diferentes tonalidades y texturas tanto en el núcleo como a nivel del citoplasma y que la periferia del citoplasma puede mostrar prolongaciones.  Next, segmentation of the abnormal cell images is performed to separate the regions of the nucleus, cytoplasm and periphery from the outer edge of the cytoplasm, from which the calculations of the variables can be performed. For segmentation it is taken into account that: the shape of the cells is variable, with different shades and textures both in the nucleus and at the cytoplasm level and that the periphery of the cytoplasm can show prolongations.

La segmentación en el método propuesto puede realizarse de acuerdo a dos alternativas diferentes. Por ejemplo, bien utilizando una segmentación de contornos activos o utilizando segmentación de color por agrupación y la transformación Watershed. En el primer caso, el método reconoce los componentes celulares utilizando información del color de la imagen original de la célula y mediante la aplicación de técnicas de detección de contornos en una componente H del espacio de color HSV se obtiene la totalidad de la célula. De igual modo, la totalidad del núcleo de la célula se obtiene también utilizando un espacio de color RGB.  Segmentation in the proposed method can be done according to two different alternatives. For example, either using active contour segmentation or using color segmentation by grouping and Watershed transformation. In the first case, the method recognizes the cellular components using color information from the original image of the cell and by applying contour detection techniques in an H component of the HSV color space, the entire cell is obtained. Similarly, the entire cell nucleus is also obtained using an RGB color space.

En el segundo caso, el método utiliza la composición de los diferentes colores en la imagen de la célula debida a la tinción que se aplica sobre la muestra de sangre, especialmente en los colores azul, magenta y rosado, vistos como una primera aproximación perceptiva. La técnica desarrollada involucra de una manera preferida la segmentación mediante la agrupación de colores para la obtención directa del núcleo y de forma indirecta para la segmentación de toda la célula linfoide. La Fig. 3 muestra la metodología general propuesta, que a su vez contiene sub-algoritmos que se utilizan a lo largo de la segmentación. A continuación se mencionan los procedimientos más importantes de la metodología citada: In the second case, the method uses the composition of the different colors in the image of the cell due to the staining that is applied to the blood sample, especially in the colors blue, magenta and pink, seen as a first perceptual approach. The technique developed involves segmentation in a preferred way through color grouping to obtain the nucleus directly and indirectly for the segmentation of the entire lymphoid cell. Fig. 3 shows the proposed general methodology, which in turn contains sub-algorithms that are used throughout the segmentation. The most important procedures of the mentioned methodology are mentioned below:

· Sólo células: este algoritmo toma como entrada la imagen original y produce como salida una imagen etiquetada en donde se separan las regiones de las células linfoides del resto. La parte principal de este algoritmo utiliza la técnica de agrupación Kernel Spatial Fuzzy C-means (KSFCM) a las componentes Cian y Magenta del espacio de color CMYK para aislar los hematíes de la célula linfoide. Posteriormente, se aplica la transformación Watershed para obtener cada región que contiene células.  · Cells only: this algorithm takes the original image as input and produces as an output a labeled image where the regions of the lymphoid cells are separated from the rest. The main part of this algorithm uses the Kernel Spatial Fuzzy C-means (KSFCM) grouping technique to the Cyan and Magenta components of the CMYK color space to isolate the red blood cells from the lymphoid cell. Subsequently, the Watershed transformation is applied to obtain each region that contains cells.

• Aproximación RG del núcleo: su entrada es la imagen original y produce una simple aproximación del núcleo del linfocito, utilizando una combinación de las componentes roja y verde del espacio RGB. Su utilidad reside en que se puede ubicar de forma aproximada dónde se encuentran las células de interés.  • RG approach of the nucleus: its input is the original image and produces a simple approximation of the lymphocyte nucleus, using a combination of the red and green components of the RGB space. Its usefulness is that it can be located approximately where the cells of interest are located.

· Núcleo XYZ: este procedimiento utiliza principalmente la técnica de agrupación KSFCM sobre el espacio de color XYZ para aislar los grupos del núcleo, citoplasma y fondo. Para segmentar el núcleo de forma precisa, requiere como entrada la imagen original y la región de interés de las células linfoides (obtenida en Sólo células). Como resultado produce una máscara binaria del núcleo(s) de la(s) célula(s) linfoides, el gradiente de la componente Y del espacio de color XYZ, así como el grupo fondo de la agrupación.  · XYZ core: This procedure mainly uses the KSFCM grouping technique on the XYZ color space to isolate the nucleus, cytoplasm and background groups. To precisely segment the nucleus, it requires as input the original image and the region of interest of the lymphoid cells (obtained in Cell Only). As a result, it produces a binary mask of the nucleus (s) of the lymphoid cell (s), the gradient of the Y component of the XYZ color space, as well as the background group of the cluster.

En primer lugar, la imagen original es preprocesada a través de un filtro que suaviza pero que conserva los bordes de los objetos. Seguidamente se genera una máscara binaria de la región "real" donde se encuentran los linfocitos (extO), a partir de la máscara aproximada del núcleo (obtenida combinando las componentes R y G) y la imagen etiquetada que separa las células (producto de Sólo células). La Fig.4 muestra el proceso anterior para una célula linfoide normal: la Fig. 4a representa una célula linfoide normal, la Fig. 4b es la máscara binaria que se aproxima al núcleo, la Fig. 4c muestra la matriz etiquetada que separa las células en diferentes regiones y la Fig. 4d es la máscara binaria resultante que encierra al linfocito de interés. El perímetro de esta última región que limita a la(s) célula(s) linfoide(s) se utiliza como el marcador externo para ser usado en la transformación Watershed.  First, the original image is preprocessed through a filter that softens but retains the edges of the objects. A binary mask is then generated from the "real" region where lymphocytes (extO) are found, from the approximate mask of the nucleus (obtained by combining the R and G components) and the labeled image that separates the cells (product of Only cells). Fig. 4 shows the previous process for a normal lymphoid cell: Fig. 4a represents a normal lymphoid cell, Fig. 4b is the binary mask that approaches the nucleus, Fig. 4c shows the labeled matrix that separates the cells in different regions and Fig. 4d is the resulting binary mask that encloses the lymphocyte of interest. The perimeter of the latter region that limits the lymphoid cell (s) is used as the external marker to be used in the Watershed transformation.

La siguiente etapa del proceso consiste en determinar el núcleo real y la consecuente generación del marcador interno de la WT para el citoplasma. La Fig. 5 muestra los diferentes pasos aplicados sobre una célula (Fig. 5a) de un paciente con Linfoma de Células del Manto. La máscara binaria del núcleo se logra mediante la subrutina Núcleo XYZ (Fig. 5b), en la cual se ha utilizado la imagen original y la región que rodea a las células de interés (extO). Posteriormente, se adelgaza la máscara del núcleo si llega a tocar al marcador externo y esta "mejora" es tomada como la segmentación final del núcleo, con algunas operaciones de morfología matemática. Esta misma máscara binaria se usa como marcador interno de la WT que determinará el citoplasma. La Fig. 5c muestra la superposición de ambos marcadores. Así, el marcador externo e interno son impuestos como mínimos en el gradiente de la componente Y (Fig. 5d y Fig. 5e), para luego realizar una transformación Watershed y generar así una imagen etiquetada donde se encuentra toda la(s) célula(s) linfoide(s), como se muestra en la Fig. 5f. The next stage of the process consists in determining the real nucleus and the consequent generation of the internal marker of the WT for the cytoplasm. Fig. 5 shows the different steps applied to a cell (Fig. 5a) of a patient with Mantle Cell Lymphoma. The binary mask of the nucleus is achieved by the XYZ Core subroutine (Fig. 5b), in which the original image and the region surrounding the cells of interest (extO) have been used. Subsequently, the nucleus mask is thinned if it reaches the external marker and this "improvement" is taken as the final segmentation of the nucleus, with some mathematical morphology operations. This same binary mask is used as an internal marker of the WT that will determine the cytoplasm. Fig. 5c shows the overlap of both markers. Thus, the external and internal marker are imposed as minimum on the gradient of the Y component (Fig. 5d and Fig. 5e), to then perform a Watershed transformation and thus generate a labeled image where the whole cell (s) is located ( s) lymphoid (s), as shown in Fig. 5f.

En este punto, ya se han generado de forma indirecta las tres regiones de interés: el núcleo, la célula completa y la región que rodea la célula. Sin embargo, el objetivo final es separar las máscaras binarias de cada región para cada célula, puesto que se puede presentar que existan varios linfocitos por imagen. En este caso, y en un perfeccionamiento de la presente invención, el procedimiento anterior es similar pero se debe separar las diferentes regiones por célula. La Fig. 6 muestra un ejemplo con cuatro linfocitos de un paciente con MCL y su correspondiente imagen etiquetada producto de todas las etapas anteriormente mencionadas. Por esto, se crea otra etapa en la cual se separan las máscaras de las posibles diferentes células. Este procedimiento es resaltado por el bloque sombreado Máscaras de la Fig. 3, cuyo producto final son las máscaras binarias de la célula, del núcleo y de la región que rodea a la célula. A continuación se describen algunos ítems importantes que preferiblemente el algoritmo realiza en la etapa del bloque Máscaras:  At this point, the three regions of interest have already been generated indirectly: the nucleus, the entire cell and the region surrounding the cell. However, the final objective is to separate the binary masks of each region for each cell, since it can be presented that there are several lymphocytes per image. In this case, and in an improvement of the present invention, the above procedure is similar but the different regions must be separated by cell. Fig. 6 shows an example with four lymphocytes of a patient with MCL and its corresponding image labeled product of all the aforementioned stages. Therefore, another stage is created in which the masks are separated from the possible different cells. This procedure is highlighted by the shaded block Masks of Fig. 3, whose final product is the binary masks of the cell, the nucleus and the region surrounding the cell. Here are some important items that the algorithm preferably performs at the stage of the Masks block:

• Une las regiones de la célula completa cuando hay varios núcleos a partir de la imagen etiquetada producto de la WT.  • Joins the entire cell regions when there are several nuclei from the image labeled WT product.

• Determina el número de núcleos por cada región celular y el número de niveles etiquetados para cada zona de acuerdo a la imagen etiquetada de la WT.  • Determine the number of nuclei for each cell region and the number of levels labeled for each zone according to the image labeled by the WT.

• Crea las zonas etiquetas correspondientes a las regiones que encierran cada región producida por la WT (sin tener en cuenta el fondo).  • Creates the label areas corresponding to the regions that enclose each region produced by the WT (regardless of the background).

· Determina los restos de citoplasmas que atraviesan las fronteras de las regiones que delimitan cada célula linfoide.  · Determine the cytoplasmic remains that cross the borders of the regions that delimit each lymphoid cell.

• Obtiene las líneas que delimitan la célula, el núcleo y la región externa a la célula. • Obtiene las máscaras para cada célula separando los casos: (1) se presenta un sólo núcleo por célula, (2) se presentan varios núcleos por célula en cuyo caso (a) existen varias células, cada una con un núcleo ó (b) se presentan una célula con varios núcleos.• Obtains the lines that delimit the cell, the nucleus and the region outside the cell. • Obtain the masks for each cell by separating the cases: (1) there is only one nucleus per cell, (2) several nuclei per cell are presented in which case (a) there are several cells, each with a nucleus or (b) a cell with several nuclei is presented.

• Para las máscaras resultantes: se eliminan aquellas células en los bordes de la imagen y se eliminan hematíes que se puedan presentar en la región que rodea a la célula por medio de la región sin hematíes del grupo fondo (del espacio XYZ). • For the resulting masks: those cells at the edges of the image are removed and red blood cells that may occur in the region surrounding the cell are eliminated through the red cell region of the background group (from the XYZ space).

La Fig. 7 compara los resultados de la segmentación para las tres células linfoides mostradas anteriormente.  Fig. 7 compares the segmentation results for the three lymphoid cells shown above.

El proceso de segmentación descrito y que se resume en la Fig. 3 comprende además la creación de una base de datos de máscaras binarias (1 dentro del objeto, 0 fuera del mismo) correspondientes a las tres regiones (núcleo, célula completa y región que rodea la célula) para todo el conjunto de células.  The segmentation process described and summarized in Fig. 3 also includes the creation of a database of binary masks (1 inside the object, 0 outside it) corresponding to the three regions (nucleus, whole cell and region that surrounds the cell) for the whole set of cells.

Una vez realizada la segmentación, el método comprende la extracción de características o descriptores según un esquema como el mostrado en la Fig. 8.  Once the segmentation has been carried out, the method comprises the extraction of characteristics or descriptors according to a scheme like the one shown in Fig. 8.

La descripción es la etapa en la cual se extrae la información sobre los objetos de la imagen que se desean analizar. Las características que se pueden calcular dependen tanto del razonamiento cualitativo como del cuantitativo y de la evaluación de descriptores matemáticos abstractos que pueden suministrar información. En la tabla 1 se muestran todos los descriptores utilizados de una manera característica por la presente invención de acuerdo a varios ejemplos de realización.  The description is the stage in which information about the objects in the image that you want to analyze is extracted. The characteristics that can be calculated depend on both qualitative and quantitative reasoning and the evaluation of abstract mathematical descriptors that can provide information. Table 1 shows all the descriptors used in a characteristic manner by the present invention according to several embodiments.

Figure imgf000012_0001
Figure imgf000012_0001

Figure imgf000013_0001
Figure imgf000013_0001

A continuación se detallan los principales descriptores calculados o utilizados de una manera preferida en la presente invención:  The main descriptors calculated or used in a preferred manner in the present invention are detailed below:

Descriptores Geométricos:  Geometric Descriptors:

Área: se define como el área interna del objeto en cuestión, se calcula contando el número de píxeles que contiene la región.  Area: defined as the internal area of the object in question, it is calculated by counting the number of pixels that the region contains.

Diámetro: se define como el diámetro de un círculo con la misma área que la región. Diameter: defined as the diameter of a circle with the same area as the region.

Excentricidad cónica: se calcula como la excentricidad de una elipse cuyo segundo momento es igual al de la región. Una excentricidad igual a 1 representa un segmento rectilíneo, mientras que si es 0 representa un círculo. Conical eccentricity: calculated as the eccentricity of an ellipse whose second moment is equal to that of the region. An eccentricity equal to 1 represents a rectilinear segment, while if it is 0 it represents a circle.

Perímetro: es la longitud de todo el borde de la región.  Perimeter: is the length of the entire edge of the region.

Relación núcleo/citoplasma: Para el caso específico que se estudia, la relación núcleo - citoplasma se calcula dividiendo el área del núcleo entre el área del citoplasma.  Core / cytoplasm ratio: For the specific case studied, the core - cytoplasm ratio is calculated by dividing the area of the nucleus by the area of the cytoplasm.

Descriptores de color - textura:  Color descriptors - texture:

Estos descriptores permiten extraer información acerca de la textura de la imagen. These descriptors allow you to extract information about the texture of the image.

Estos fueron aplicados a cada plano de color del espacio L*a*b*, sobre la región del núcleo y del citoplasma, obteniéndose un total de 96 descriptores. El espacio de color CIE L*a*b* es el más completo espacio de color creado por la Comisión internacional de Iluminación (Commission internationale de l'éclairage). Este describe todos los colores visibles al ojo humano y fue creado como un modelo referencia independiente del dispositivo. Dado que Lab fue creado para aproximarse a la visión humana, este es perceptualmente uniforme y su componente L se aproxima bastante a la percepción humana de la Luminosidad. Las tres coordenadas del modelo CIELAB representan la luminosidad del color (L = 0 produce negro y L = 100 representa un blanco difuso; blancos especulas pueden ser de valor más alto), la posición entre rojo/magenta y verde (valores de a negativos indican verde, mientras que valores positivos representan al magenta) y la posición entre amarillo y azul (valores negativos de b producen colores azules y valores positivos indican amarillo. These were applied to each color plane of the space L * a * b *, on the region of the nucleus and cytoplasm, obtaining a total of 96 descriptors. The CIE L * a * b * color space is the most complete color space created by the International Lighting Commission (Commission internationale de l'éclairage). This describes all the colors visible to the human eye and was created as a reference model independent of the device. Since Lab was created to approximate human vision, it is perceptually uniform and its L component is quite close to the human perception of Luminosity. The three coordinates of the CIELAB model represent the luminosity of the color (L = 0 produces black and L = 100 represents a diffuse white; white speculations may be of higher value), the position between red / magenta and green (values of a negative indicate green while positive values represent magenta) and the position between yellow and blue (negative values of b produce blue colors and positive values indicate yellow.

A continuación se explica cada descriptor según su interpretación estadística u obtención:  Each descriptor is explained below according to its statistical interpretation or obtaining:

- Descriptores estadísticos de primer orden: El histograma es una función que muestra para cada valor de pixel i, el número de pixeles H(i) (proporcional a la frecuencia) que en la imagen tienen ese valor. En la forma gráfica del histograma, i se representa por el eje horizontal, y H(i) por el vertical. La Fig. 9 es un ejemplo del histograma de la componente verde de una imagen de un linfocito de sangre periférica. Puesto que la imagen es una matriz rectangular discretizada, los pixeles toman el valor i en un rango [0, L-l] (L no es necesariamente el número de valores que pueden tomar los pixeles, sino el número de contenedores bajo los cuales se calculan las frecuencias del histograma). El histograma también se puede interpretar como la función de densidad de probabilidad. Por ejemplo p(i=3) = H(3)/16, es la probabilidad de que un pixel, que pertenece a una imagen de 4x4 elementos, tenga valor 3. Es decir, que p(i) es la densidad de probabilidad, calculada como la frecuencia del nivel respectivo, dividida entre el número de contenedores (L). En la tabla 2 se muestran los parámetros estadísticos de primer orden: media, desviación estándar, asimetría, curtosis, energía y entropía, obtenidos a partir del histograma.  - First-order statistical descriptors: The histogram is a function that shows for each pixel value i, the number of pixels H (i) (proportional to the frequency) that have that value in the image. In the graphical form of the histogram, i is represented by the horizontal axis, and H (i) by the vertical. Fig. 9 is an example of the histogram of the green component of an image of a peripheral blood lymphocyte. Since the image is a discretized rectangular matrix, the pixels take the value i in a range [0, Ll] (L is not necessarily the number of values that the pixels can take, but the number of containers under which the histogram frequencies). The histogram can also be interpreted as the probability density function. For example, p (i = 3) = H (3) / 16, is the probability that a pixel, which belongs to an image of 4x4 elements, has a value of 3. That is, that p (i) is the probability density , calculated as the frequency of the respective level, divided by the number of containers (L). Table 2 shows the first order statistical parameters: mean, standard deviation, asymmetry, kurtosis, energy and entropy, obtained from the histogram.

- Descriptores estadísticos de segundo orden: Los descriptores de segundo orden pueden proveer más información acerca de la textura de los objetos que se desean analizar. Estos parámetros son definidos a partir de la matriz de co-ocurrencia. Este arreglo matricial, representa la probabilidad conjunta de que dos pixeles tengan un valor de intensidad "/'" y "j", respectivamente, a una distancia d en una dirección determinada. La matriz de co-ocurrencia considera no sólo la información sobre los niveles de intensidad, sino también la posición de los pixeles con valores de intensidad similares. - Second-order statistical descriptors: Second-order descriptors can provide more information about the texture of the objects to be analyzed. These parameters are defined from the co-occurrence matrix. This matrix arrangement represents the joint probability that two pixels have an intensity value "/ ' " and "j", respectively, at a distance d in a given direction. The co-occurrence matrix considers not only information on intensity levels, but also the position of pixels with similar intensity values.

Figure imgf000015_0001
Figure imgf000015_0001

En la Fig. 10 se muestra, de acuerdo a un ejemplo de realización preferido, una posible matriz a utilizar por el método propuesto de tamaño 4 x 4 con tres niveles de intensidad. Al lado, se muestra la matriz de co-ocurrencia, con distancia d = 1 y dirección diagonal que apunta hacia el noroeste. Su dimensión es 3 x 3, pues los niveles de intensidad son: 0, 1 y 2. El elemento en la posición (1,1) de la matriz de co-ocurrencia indica que el nivel "0" está junto al nivel "0" 2 veces, en la dirección diagonal noroeste. El elemento en la posición (2,3), relaciona el nivel "1" junto al nivel "2" en la misma dirección, presentándose una vez. En la tabla 3 se definen matemáticamente los descriptores de segundo orden utilizados, a partir de la matriz de co-ocurrencia. In Fig. 10, according to a preferred embodiment example, a possible matrix to be used by the proposed 4x4 size method with three intensity levels is shown. To the side, the co-occurrence matrix is shown, with distance d = 1 and diagonal direction pointing northwest. Its dimension is 3 x 3, since the intensity levels are: 0, 1 and 2. The element at position (1,1) of the co-occurrence matrix indicates that level "0" is next to level "0 "2 times, in the diagonal northwest direction. The element in position (2,3), relates level "1" next to level "2" in the same direction, presenting itself once. Table 3 defines the second order descriptors used mathematically, based on the co-occurrence matrix.

- Descriptores de Granulometría: La granulometría determina la distribución de tamaños de las partículas en una imagen, para ello se utiliza generalmente la Morfología matemática para estimar la distribución de partículas indirectamente, sin tener que identificar y medir cada una de estas sobre la imagen. - Granulometry Descriptors: Granulometry determines the distribution of particle sizes in an image, for this, mathematical morphology is generally used to estimate the distribution of particles indirectly, without having to identify and measure each of them on the image.

Figure imgf000016_0006
Figure imgf000016_0006

es el valor del elemento (i, j) en la matriz de co-ocurrencia; is the value of the element (i, j) in the co-occurrence matrix;

Figure imgf000016_0003
Figure imgf000016_0003

Figure imgf000016_0002
Figure imgf000016_0002

N es la dimensión de la matriz de co-ocurrencia (N x N). μ es ta media deN is the dimension of the co-occurrence matrix (N x N). μ is the average of

Figure imgf000016_0004
Figure imgf000016_0004

Figure imgf000016_0005
Figure imgf000016_0005

Figure imgf000016_0001
Figure imgf000016_0001

Tabla 3. Descriptores de segundo orden, obtenidos con la matriz de co-ocurrencia.  Table 3. Second order descriptors, obtained with the co-occurrence matrix.

Puesto que las partículas claras con cierta forma regular son más brillantes que el fondo de la imagen, la Granulometría consiste en aplicar openings incrementando el tamaño del elemento estructural de esta operación morfológica. La idea básica es que las operaciones de opening con un tamaño particular deberán tener un efecto mayor sobre las regiones de la imagen que contienen partículas claras con un tamaño similar. En cada paso se calcula la suma de los valores de intensidad de los píxeles en la imagen resultante de operar con el opening. Esta suma (cuando se normaliza por la suma de las intensidades de los píxeles de la región original se denomina función de distribución del tamaño para la granulometría) deberá disminuir tanto como se incremente el tamaño del elemento estructural, dado que los openings reducen la intensidad de las partículas brillantes. Este procedimiento produce un vector donde cada elemento es igual a la suma de las intensidades de los píxeles de la imagen operada (con opening) y cada localización del vector representa un tamaño del elemento estructural. Para enfatizar los cambios entre openings sucesivos, se calcula la diferencia entre elementos adyacentes de este vector 1D. Para visualizar los resultados estás diferencias (si se ha normalizado es la función de densidad de la distribución del tamaño para la granulometría) son graficadas, en donde cada pico es un indicio de la distribución de tamaño dominante sobre las partículas de la imagen. Since the clear particles with a certain regular shape are brighter than the background of the image, the Granulometry consists in applying openings increasing the size of the structural element of this morphological operation. The basic idea is that opening operations with a particular size should have a greater effect on regions of the image that contain clear particles with a similar size. In each step the sum of the pixel intensity values in the image resulting from operating with the opening is calculated. This sum (when normalized by the sum of the intensities of the pixels of the original region is called the size distribution function for granulometry) should decrease as much as the size of the structural element is increased, since openings reduce the intensity of Shining particles This procedure produces a vector where each element is equal to the sum of the intensities of the pixels of the operated image (with opening) and each location of the vector represents a size of the structural element. To emphasize the changes between successive openings, the difference between adjacent elements of this 1D vector is calculated. To visualize the results you are differences (if The normalized function is the density distribution of the size distribution for granulometry) are plotted, where each peak is an indication of the dominant size distribution on the particles in the image.

Si todo el procedimiento descrito anteriormente se realiza con la operación morfológica de closing, el método se denomina Antigranulometría. La principal diferencia de ésta, radica en que se mide la distribución del tamaño de las partículas oscuras. Es decir, que a medida que se ejecuta un nuevo closing (incrementando el tamaño del elemento estructural) se tiene un mayor efecto de la operación sobre los gránulos oscuros.  If the entire procedure described above is performed with the morphological operation of closing, the method is called antigranulometry. The main difference is that the size distribution of the dark particles is measured. That is to say, as a new closing is executed (increasing the size of the structural element) there is a greater effect of the operation on the dark granules.

La granulometría produce información sobre las partículas brillantes, mientras que la antigranulometría lo hace respecto a las partículas oscuras. Una forma de aprovechar ambas metodologías es unir las densidades de distribución en una sola. El resultado es la Curva Granulométrica, en la cual se refleja la distribución de las operaciones con closing, colocándolas en las coordenadas negativas (tamaño del elemento estructural para el closing). La distribución para las iteraciones con opening se deja igual y se colocan en las coordenadas positivas (tamaño del elemento estructural para el opening). Por último, el valor de la densidad para el tamaño cero se coloca cero, para no afectar el aporte total de las densidades en posteriores medidas cuantitativas. El resultado es una gráfica como se muestra en la Fig. 11, con cierta simetría y que abarca todos los tamaños desde el closing hasta el opening.  Granulometry produces information about bright particles, while anti-granulometry produces information about dark particles. One way to take advantage of both methodologies is to join the distribution densities into one. The result is the Granulometric Curve, which reflects the distribution of closing operations, placing them in the negative coordinates (size of the structural element for closing). The distribution for the iterations with opening is left the same and they are placed in the positive coordinates (size of the structural element for the opening). Finally, the density value for size zero is zero, so as not to affect the total contribution of the densities in subsequent quantitative measurements. The result is a graph as shown in Fig. 11, with some symmetry and covering all sizes from closing to opening.

El método propuesto utiliza, de acuerdo a un ejemplo de realización, preferiblemente cuatro medidas para la extracción de información sobre la curva granulométrica del núcleo y el citoplasma de los linfocitos: la media, la desviación estándar, la asimetría estadística y la curtosis.  The proposed method uses, according to an exemplary embodiment, preferably four measures for the extraction of information on the granulometric curve of the nucleus and the cytoplasm of the lymphocytes: the mean, the standard deviation, the statistical asymmetry and the kurtosis.

- Descriptor del perfil citoplasmático: Se ha implementado un descriptor que puede estimar la cantidad de vellosidades presente en el borde exterior del citoplasma analizando la región externa a la célula, la cual ha sido segmentada previamente junto al núcleo y la célula. Se estima la cantidad de píxeles de esta región que "no pertenecen al fondo", mediante el número de píxeles de una nueva segmentación por umbralización entre, por ejemplo, los niveles de intensidad 70 y 215 de la componente verde. En la Fig. 12, se muestra las diferentes etapas para calcular el descriptor del perfil citoplasmático de un Tricoleucocito.  - Cytoplasmic profile descriptor: A descriptor has been implemented that can estimate the amount of villi present on the outer edge of the cytoplasm by analyzing the region outside the cell, which has been previously segmented next to the nucleus and the cell. The number of pixels in this region that "do not belong to the background" is estimated by the number of pixels of a new thresholding segmentation between, for example, intensity levels 70 and 215 of the green component. In Fig. 12, the different steps for calculating the cytoplasmic profile descriptor of a Tricoleucocyte are shown.

Finalmente, todos los descriptores calculados se almacenan en un vector fila por cada célula. Es decir, que para un conjunto determinado de células se tiene una matriz con tantas filas como células se desee analizar. Una vez las características de cada célula han sido calculadas, se utilizan dichas características para clasificar las células anormales en 5 grupos diferentes. Generalmente, estos cinco grupos serán: N; HCL; LLC; MCL o B-PLL. Finally, all calculated descriptors are stored in a row vector for each cell. That is to say, that for a given set of cells there is a matrix with as many rows as cells to be analyzed. Once the characteristics of each cell have been calculated, these characteristics are used to classify the abnormal cells into 5 different groups. Generally, these five groups will be: N; HCL; LLC; MCL or B-PLL.

De acuerdo a un ejemplo de realización preferido, el método propuesto se ha realizado sobre 1500 imágenes digitales de células linfoides de SP teñidas con May-Grünwald-Giemsa en el CellaVision DM96 (Cellavision AB, Lund, Sweden). Las imágenes corresponden a: 180 imágenes células características de pacientes sanos (H), 301 imágenes de células linfoides características de pacientes con Tricoleucemia (HCL), 542 imágenes de células linfoides características de pacientes con Leucemia Linfocítica Crónica (LLC), 401 imágenes de células características del linfoma de las células del manto (MCL) y 75 imágenes de células linfoides características de la leucemia prolinfocítica B (B-PLL). Así, se ha creado una base de datos de descriptores en forma de matriz de 1500 (células) x 44 (descriptores). Con el fin de analizar las características de cada una de las patologías mencionadas, se ha implementado el algoritmo de clasificación supervisado Análisis Discriminante Lineal (LDA).  According to a preferred embodiment, the proposed method has been made on 1500 digital images of SP lymphoid cells stained with May-Grünwald-Giemsa in the CellaVision DM96 (Cellavision AB, Lund, Sweden). The images correspond to: 180 images characteristic cells of healthy patients (H), 301 images of lymphoid cells characteristic of patients with Tricholeukemia (HCL), 542 images of lymphoid cells characteristic of patients with Chronic Lymphocytic Leukemia (LLC), 401 images of cells characteristics of mantle cell lymphoma (MCL) and 75 images of lymphoid cells characteristic of prolymphocytic leukemia B (B-PLL). Thus, a database of descriptors in the form of a matrix of 1500 (cells) x 44 (descriptors) has been created. In order to analyze the characteristics of each of the mentioned pathologies, the supervised classification algorithm Linear Discriminant Analysis (LDA) has been implemented.

Con el algoritmo de clasificación LDA se realiza una validación cruzada de 10 folders (10-fold cross-validation). Esta técnica divide el conjunto de datos en 10 subconjuntos igualmente espaciados. Entonces, un solo subconjunto es usado para validar mientras los nueve restantes son utilizados para el entrenamiento. De esta forma, se repite este proceso preferiblemente 10 veces, usando cada subconjunto como los datos de validación. La proporción de células mal clasificadas fue tan sólo del 1.93%. La tabla 4 muestra la matriz de confusión correspondiente a todo el proceso.  With the LDA classification algorithm, a cross-validation of 10 folders (10-fold cross-validation) is performed. This technique divides the data set into 10 equally spaced subsets. Then, a single subset is used to validate while the remaining nine are used for training. In this way, this process is preferably repeated 10 times, using each subset as the validation data. The proportion of poorly classified cells was only 1.93%. Table 4 shows the confusion matrix corresponding to the whole process.

Figure imgf000018_0001
Figure imgf000018_0001

El alcance de la invención está definido en el siguiente conjunto de reivindicaciones adjuntas. The scope of the invention is defined in the following set of appended claims.

Claims

Reivindicaciones Claims 1. Método implementado por ordenador para reconocimiento y clasificación de células sanguíneas anormales, que comprende realizar una clasificación de células en base a técnicas de procesamiento automático y de técnicas de análisis de muestras de sangre que incluye adquirir imágenes digitales de células sanguíneas anormales procedentes de una pluralidad de células sanguíneas, caracterizado porque comprende realizar las siguientes etapas:  1. A computer-based method for recognition and classification of abnormal blood cells, which comprises classifying cells based on automatic processing techniques and blood sample analysis techniques, including acquiring digital images of abnormal blood cells from a plurality of blood cells, characterized in that it comprises performing the following steps: a) segmentar dichas imágenes digitales de células anormales proporcionando regiones identificadas del núcleo, citoplasma y área externa de la célula de dichas células sanguíneas anormales de dichas imágenes digitales;  a) segmenting said digital images of abnormal cells by providing identified regions of the nucleus, cytoplasm and external cell area of said abnormal blood cells of said digital images; b) calcular características intrínsecas de cada una de dichas regiones identificadas del núcleo, citoplasma y área externa de la célula de dichas células sanguíneas anormales comprendiendo calcular al menos las características geométricas de dichas regiones identificadas;  b) calculate intrinsic characteristics of each of said identified regions of the nucleus, cytoplasm and external cell area of said abnormal blood cells comprising calculating at least the geometric characteristics of said identified regions; c) reconocer y clasificar automáticamente células sanguíneas anormales en base a dichas características intrínsecas calculadas de dichas regiones identificadas; y  c) automatically recognize and classify abnormal blood cells based on said intrinsic characteristics calculated from said identified regions; Y d) usar dichas células sanguíneas anormales reconocidas y clasificadas para realizar un diagnóstico de enfermedades hematológicas.  d) use said recognized and classified abnormal blood cells to make a diagnosis of hematological diseases. 2. Método según la reivindicación 1, caracterizado porque comprende realizar, previo a dicha segmentación, una etapa de pre-procesamiento de dichas imágenes digitales de células sanguíneas anormales adquiridas.  2. Method according to claim 1, characterized in that it comprises performing, prior to said segmentation, a pre-processing step of said digital images of acquired abnormal blood cells. 3. Método según la reivindicación 1, caracterizado porque dicha segmentación se realiza empleando una técnica de contornos activos en dichas imágenes digitales de células sanguíneas anormales utilizando el Flujo del Vector Gradiente (GVF).  3. Method according to claim 1, characterized in that said segmentation is performed using an active contour technique in said digital images of abnormal blood cells using the Gradient Vector Flow (GVF). 4. Método según la reivindicación 1, caracterizado porque dicha segmentación se realiza empleando una técnica de agrupación de las componentes de diferentes espacios de color y transformación de Watershed en dichas imágenes digitales de células sanguíneas anormales.  Method according to claim 1, characterized in that said segmentation is carried out using a technique of grouping the components of different color spaces and transforming Watershed into said digital images of abnormal blood cells. 5. Método según la reivindicación 1, caracterizado porque dicho cálculo de las características intrínsecas de dichas regiones identificadas del núcleo, del citoplasma y de la región externa de dichas células sanguíneas anormales comprende además extraer características de primer orden de dichas regiones identificadas basadas en un histograma de la región identificada. Method according to claim 1, characterized in that said calculation of the intrinsic characteristics of said identified regions of the nucleus, cytoplasm and the external region of said abnormal blood cells further comprises extracting first order characteristics of said identified regions based on a histogram. of the region identified. 6. Método según las reivindicaciones 1 o 5, caracterizado porque dicho cálculo de las características intrínsecas de dichas regiones identificadas del núcleo, citoplasma y del área externa de la célula de dichas células sanguíneas anormales comprende además calcular características de segundo orden de dichas regiones identificadas en base a una matriz de coocurrencia de cada región identificada. Method according to claims 1 or 5, characterized in that said calculation of the intrinsic characteristics of said identified regions of the nucleus, cytoplasm and of the external area of the cell of said abnormal blood cells further comprises calculating second order characteristics of said regions identified in based on a co-occurrence matrix of each region identified. 7. Método según las reivindicaciones 1, 5 o 6, caracterizado porque dicho cálculo de las características intrínsecas de las regiones identificadas del núcleo, citoplasma y del área externa de la célula de dichas células sanguíneas anormales comprende además extraer características de granularidad del núcleo y del citoplasma identificado mediante la aplicación de una técnica de morfología matemática.  Method according to claims 1, 5 or 6, characterized in that said calculation of the intrinsic characteristics of the identified regions of the nucleus, cytoplasm and of the external area of the cell of said abnormal blood cells further comprises extracting characteristics of granularity of the nucleus and the Cytoplasm identified by applying a mathematical morphology technique. 8. Método según cualquiera de las reivindicaciones 5, 6 o 7, caracterizado porque dichas características de primer orden, segundo orden y de granularidad son calculadas en diferentes componentes de varios espacios de color.  Method according to any one of claims 5, 6 or 7, characterized in that said first order, second order and granularity characteristics are calculated in different components of several color spaces. 9. Método según la reivindicación 1, caracterizado porque dicho cálculo de las características intrínsecas de dichas regiones del núcleo, citoplasma y área externa de la célula de dichas células sanguíneas anormales comprende además calcular un parámetro de vellosidad del citoplasma identificado, en donde dicha segmentación se realiza mediante la utilización de una técnica de agrupación de las componentes de diferentes espacios de color y Transformación de Watershed en dichas imágenes digitales de células sanguíneas anormales.  Method according to claim 1, characterized in that said calculation of the intrinsic characteristics of said regions of the nucleus, cytoplasm and external area of the cell of said abnormal blood cells further comprises calculating a parameter of hairiness of the identified cytoplasm, wherein said segmentation is performed by using a technique of grouping the components of different color spaces and Watershed Transformation into said digital images of abnormal blood cells. 10. Método según la reivindicación 9, caracterizado porque dicho parámetro de vellosidad se calcula utilizando una segmentación de umbral de un componente de color verde de las células sanguíneas anormales calculando el número total de píxeles de dicha región de color verde segmentada de la imagen digital.  A method according to claim 9, characterized in that said hairiness parameter is calculated using a threshold segmentation of a green component of the abnormal blood cells by calculating the total number of pixels of said segmented green region of the digital image. 11. Método según la reivindicación 1, caracterizado porque dichas clasificación de las células sanguíneas anormales comprende al menos una clasificación en cinco grupos diferentes.  Method according to claim 1, characterized in that said classification of the abnormal blood cells comprises at least one classification in five different groups. 12. Método según la reivindicación 1, caracterizado porque comprende repetir dichas etapas a) hasta c) tantas veces como imágenes digitales de células sanguíneas anormales sean adquiridas.  12. Method according to claim 1, characterized in that it comprises repeating said steps a) to c) as many times as digital images of abnormal blood cells are acquired. 13. Método según cualquiera de las reivindicaciones anteriores, caracterizado porque dichas células sanguíneas anormales son células linfoides.  13. Method according to any of the preceding claims, characterized in that said abnormal blood cells are lymphoid cells. 14. Método según cualquiera de las reivindicaciones anteriores 1 a 12, caracterizado porque dichas células sanguíneas anormales son células blásticas. 14. Method according to any of the preceding claims 1 to 12, characterized in that said abnormal blood cells are blast cells. 15. Programa informático de ordenador que comprende medios de código de programa informático que ejecutados en un ordenador implementan el método según las etapas a), b) y c) de la reivindicación 1. 15. Computer computer program comprising means of computer program code that executed in a computer implement the method according to steps a), b) and c) of claim 1. 16. Programa informático de ordenador que comprende medios de código de programa informático que ejecutados en un ordenador implementan el método según la etapa d) de la reivindicación 1.  16. Computer computer program comprising means of computer program code that executed in a computer implement the method according to step d) of claim 1.
PCT/ES2014/070393 2013-05-09 2014-05-09 Computer-implemented method for recognising and classifying abnormal blood cells, and computer programs for performing the method Ceased WO2014181024A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201330671 2013-05-09
ES201330671A ES2428215B2 (en) 2013-05-09 2013-05-09 Computer-implemented method for recognition and classification of abnormal blood cells and computer programs to carry out the method

Publications (1)

Publication Number Publication Date
WO2014181024A1 true WO2014181024A1 (en) 2014-11-13

Family

ID=49384242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070393 Ceased WO2014181024A1 (en) 2013-05-09 2014-05-09 Computer-implemented method for recognising and classifying abnormal blood cells, and computer programs for performing the method

Country Status (2)

Country Link
ES (1) ES2428215B2 (en)
WO (1) WO2014181024A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659217C1 (en) * 2017-12-12 2018-06-28 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Method for recognition of the structure of blood blast nuclei and bone marrow using light microscopy in combination with computer data processing for the diagnosis of b- and t-linear acute lymphoblastic leukemia
CN113516061B (en) * 2021-06-23 2022-04-29 南开大学 A machine learning-based method for PC12 cell state recognition
CN114898866B (en) * 2022-05-24 2024-03-15 广州锟元方青医疗科技有限公司 Thyroid cell auxiliary diagnosis method, thyroid cell auxiliary diagnosis equipment and thyroid cell auxiliary diagnosis storage medium

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANGULO J ET AL.: "Ontology-based lymphocyte population description using mathematical morphology on colour blood images.", CELLULAR AND MOLECULAR BIOLOGY, vol. 52, no. 6, 30 November 2005 (2005-11-30), NOISY-LE-GRAND, pages 2 - 15 *
HAYAN T MADHLOOM ET AL.: "A Robust Feature Extraction and Selection Method for the Recognition of Lymphocytes versus Acute Lymphoblastic Leukemia.", ADVANCED COMPUTER SCIENCE APPLICATIONS AND TECHNOLOGIES (ACSAT), 2012 INTERNATIONAL CONFERENCE ON, IEEE, 26 November 2012 (2012-11-26), pages 330 - 335 *
MOHAPATRA S ET AL.: "Image analysis of blood microscopic images for acute leukemia detection.", INDUSTRIAL ELECTRONICS, CONTROL&ROBOTICS (IECR), 2010 INTERNATIONAL CONFERENCE ON, IEEE, 27 December 2010 (2010-12-27), pages 215 - 219 *
SCOTTI F: "Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images.", COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2005. CIMSA. 2005 IEEE INTERNATIONAL CONFERENCE ON, 20 July 2005 (2005-07-20) - 22 July 2005 (2005-07-22), ITALY, pages 96 - 101 *
SUBRAJEET MOHAPATRA ET AL.: "Automated leukemia detection using hausdorff dimension in blood microscopic images.", EMERGING TRENDS IN ROBOTICS AND COMMUNICATION TECHNOLOGIES (INTERACT), 2010 INTERNATIONAL CONFERENCE ON, IEEE, 3 December 2010 (2010-12-03), pages 64 - 68 *
SUBRAJEET MOHAPATRA ET AL.: "Fuzzy Based Blood Image Segmentation for Automated Leukemia Detection.", DEVICES AND COMMUNICATIONS (ICDECOM), 2011 INTERNATIONAL CONFERENCE ON, IEEE, 24 February 2011 (2011-02-24), pages 1 - 5 *

Also Published As

Publication number Publication date
ES2428215B2 (en) 2014-10-07
ES2428215A1 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Chang et al. Gold-standard and improved framework for sperm head segmentation
Gurcan et al. Image analysis for neuroblastoma classification: segmentation of cell nuclei
Arslan et al. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images
US8300938B2 (en) Methods for segmenting objects in images
Khan et al. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution
CN111448569B (en) Methods for storing and retrieving digital pathology analysis results
Kothari et al. Automatic batch-invariant color segmentation of histological cancer images
Mahmood et al. Blood cells extraction using color based segmentation technique
Madhloom et al. An image processing application for the localization and segmentation of lymphoblast cell using peripheral blood images
US10671832B2 (en) Method and apparatus for tissue recognition
CN112215790A (en) KI67 index analysis method based on deep learning
US20150186755A1 (en) Systems and Methods for Object Identification
US10565706B2 (en) Method and apparatus for tissue recognition
Rahman et al. Automatic detection of white blood cells from microscopic images for malignancy classification of acute lymphoblastic leukemia
Pandit et al. Survey on automatic rbc detection and counting
WO2017051195A1 (en) Pattern driven image processing method & apparatus for tissue recognition
Son et al. Morphological change tracking of dendritic spines based on structural features
WO2014181024A1 (en) Computer-implemented method for recognising and classifying abnormal blood cells, and computer programs for performing the method
Liu et al. Adaptive and automatic red blood cell counting method based on microscopic hyperspectral imaging technology
Tosta et al. Unsupervised segmentation of leukocytes images using thresholding neighborhood valley-emphasis
Amitha et al. Developement of computer aided system for detection and classification of mitosis using SVM
Senthilbabu et al. White Blood Cell Segmentation using hybrid segmentation methods
Anantha Sivaprakasam et al. SEGMENTATION AND CLASSIFICATION OF CERVICAL CYTOLOGY IMAGES USING MORPHOLOGICAL AND STATISTICAL OPERATIONS.
Veta Breast cancer histopathology image analysis
RU2659217C1 (en) Method for recognition of the structure of blood blast nuclei and bone marrow using light microscopy in combination with computer data processing for the diagnosis of b- and t-linear acute lymphoblastic leukemia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794256

Country of ref document: EP

Kind code of ref document: A1