[go: up one dir, main page]

WO2014156797A1 - Detection device and detection method - Google Patents

Detection device and detection method Download PDF

Info

Publication number
WO2014156797A1
WO2014156797A1 PCT/JP2014/057231 JP2014057231W WO2014156797A1 WO 2014156797 A1 WO2014156797 A1 WO 2014156797A1 JP 2014057231 W JP2014057231 W JP 2014057231W WO 2014156797 A1 WO2014156797 A1 WO 2014156797A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
collection substrate
heating
light source
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2014/057231
Other languages
French (fr)
Japanese (ja)
Inventor
克佳 高橋
藤岡 一志
伸佳 石野
大樹 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of WO2014156797A1 publication Critical patent/WO2014156797A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0612Optical scan of the deposits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the present invention relates to a detection apparatus and a detection method, and more particularly to a detection apparatus and a detection method for detecting biological particles in a specimen.
  • an apparatus for counting microorganisms in a sample such as the atmosphere there is an apparatus for measuring fluorescence derived from microorganisms (very weak autofluorescence emitted by microorganisms itself or fluorescence by a fluorescent reagent that acts specifically on microorganisms).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-187935 collects microorganisms, stains them with a fluorescent staining reagent, obtains a fluorescent image, and determines the microorganisms (viable bacteria / Disclosed is a microbe counting apparatus for discriminating between dead cells) and contaminants.
  • JP 2008-187935 A Japanese Patent Laid-Open No. 3-43069 JP 2003-38163 A
  • Patent Document 1 In order to cope with the above-mentioned problems, a technique using a fluorescent reagent which is disclosed in the above-mentioned Patent Document 1 and acts specifically on microorganisms can be employed.
  • the technique of Patent Document 1 requires a fluorescent reagent to act on a specimen before measurement, and there is a problem that complicated work is required before measurement.
  • the amount of microorganisms in the sample is a very small amount, there is a problem that the measurement becomes more complicated because the operation of reliably acting the fluorescent reagent is important.
  • the fluorescent reagent is expensive, there is a problem that the measurement is expensive.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a detection apparatus and a detection method capable of easily detecting biologically-derived particles in a specimen.
  • a detection device includes a fixing means for fixing a collection substrate capable of collecting particles in a specimen on a surface, and a trap fixed by the fixing means.
  • a calculating means for calculating the amount of the derived particles.
  • the calculation means calculates the amount of biologically derived particles among the particles collected on the surface of the collection substrate by analyzing a photographed image obtained by the photographing means after being heated by the heating means.
  • the calculation unit analyzes the captured image captured by the imaging unit in a state where the collection substrate is irradiated with the excitation light from the light source to obtain the luminance value of each pixel, and the heating unit acquires the luminance value of the captured image before heating. Based on the change between the luminance value of each pixel and the luminance value of each pixel of the captured image after being heated by the heating means, the biological particles collected on the surface of the collection substrate are discriminated and the amount is calculated. To do.
  • the detection device further includes a storage unit for storing a pixel that is determined by the calculation unit as having a biological particle in the photographed image, and the calculation unit includes the biological particle from the photographed image. Based on the difference between the pixel determined to be present and the pixel stored in the storage means, the amount of biologically-derived particles among the particles collected on the surface of the collection substrate is calculated.
  • the light source emits light in a wavelength region that can excite biological particles.
  • the light source is a semiconductor laser.
  • the light source emits light having a wavelength in the range of 300 nm to 450 nm.
  • a detection method includes a step of heating a collection substrate capable of collecting particles in a specimen on a surface, and excitation light from a light source on the surface of the collection substrate after heating.
  • a plurality of sensors arranged in a two-dimensional manner with at least a partial region of the surface of the collection substrate as an imaging range in a state where the irradiation substrate and the collection substrate after heating are irradiated with excitation light from a light source
  • step S33 of FIG. It is a figure showing the flow of operation
  • FIG. 1 is a block diagram showing a schematic configuration of a detection apparatus 100 according to the present embodiment.
  • a detection apparatus 100 detects a control unit 10 for controlling the entire apparatus, and a collection substrate 200 such as a culture medium or a plastic substrate that can collect particles in a specimen on the surface thereof.
  • the fixing unit 20 is fixed to a predetermined position in the apparatus 100, the excitation light source 30 is used to irradiate the surface of the collection substrate 200 fixed by the fixing unit 20, and the fixing unit 20 is fixed.
  • the imaging unit 40 for imaging at least a partial region of the surface of the collection substrate 200 as an imaging range, and the heating unit 50 including a heater (not shown) for heating the collection substrate 200 are included.
  • the control unit 10 analyzes the captured image obtained by the imaging unit 40, thereby calculating a biological unit-derived particle amount among the particles collected in the imaging range on the surface of the collection substrate 200. including.
  • the imaging unit 40 includes an area sensor in which image sensors such as a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal Oxide Semiconductor) image sensor are arranged two-dimensionally, and acquires a two-dimensional captured image.
  • the imaging unit 40 is electrically connected to the control unit 10 and performs an imaging operation according to the control signal. Then, the captured image obtained by the imaging operation is input from the imaging unit 40 to the control unit 10.
  • the excitation light source 30 is electrically connected to the control unit 10 and emits and extinguishes according to the control signal.
  • the excitation light source 30 corresponds to a laser such as a semiconductor laser, an LED (Light Emitting Diode) element, or the like.
  • the wavelength may be in the ultraviolet or visible region as long as it excites biological particles and emits fluorescence.
  • the wavelength is from 300 nm to 450 nm at which fluorescent tryptophan, NaDH, riboflavin and the like are efficiently excited.
  • the optical system that is the excitation light source 30 and the imaging unit 40 may be further provided with a lens and a filter (FIG. 2).
  • the collection mechanism for collecting particles in the specimen on the surface of the collection substrate 200 may or may not be included in the detection device 100. Therefore, the collection method may be any method. For example, a sample such as outside air may be introduced into a collection device (not shown) on which the collection substrate 200 is set, and particles that fall naturally may be collected on the surface of the collection substrate 200. Alternatively, the surface of the collection substrate 200 is connected to the electrode, and the charged particles in the specimen are collected on the surface of the collection substrate 200 using the electrostatic force generated by the potential difference with the other electrode. It may be. Of course, it is not limited only to these methods. And the fixing
  • the heating unit 50 is electrically connected to the control unit 10, and the heating amount (heating time, heating temperature, etc.) is controlled according to the control signal.
  • the heating unit 50 includes a heater such as a ceramic heater, a far infrared heater, and a far infrared lamp.
  • FIGS. 2A and 2B are schematic diagrams for explaining the arrangement of the optical system included in the detection apparatus 100.
  • FIG. 2A shows the arrangement of the optical system included in the detection apparatus 100
  • FIG. 2B shows the comparison.
  • An example of the arrangement is shown.
  • a light source lens 31 for adjusting the irradiation direction is arranged in front of the irradiation direction of the excitation light source 30, and fluorescence is arranged in front of the imaging direction of the imaging unit 40.
  • a detection lens 41 and a filter 42 are arranged.
  • the excitation light source 30 and the imaging unit 40 are arranged on the oblique axis with respect to the surface of the collection substrate 200. That is, the excitation light source 30 and the imaging unit 40 have an angle ⁇ A formed by the irradiation direction from the excitation light source 30 with respect to the normal direction of the surface of the collection substrate 200 fixed by the fixing unit 20 and the above method.
  • the angle ⁇ B formed by the photographing direction in the photographing unit 40 is different from the line direction.
  • the excitation light source 30 is arranged at a position where the irradiation direction does not coincide with the normal direction of the surface of the collection substrate 200 ( ⁇ A ⁇ 0).
  • FIG. 2B shows a specific example when the excitation light source 30 and the imaging unit 40 are arranged coaxially with respect to the surface of the collection substrate 200. That is, the angle ⁇ A formed by the irradiation direction from the excitation light source 30 with respect to the normal direction of the surface of the collection substrate 200 fixed by the fixing unit 20 between the excitation light source 30 and the imaging unit 40, and the above method
  • An example is shown in which the angle ⁇ B formed by the photographing direction in the photographing unit 40 coincides with the line direction.
  • all the angles are 0, that is, they are arranged (directly above) so as to coincide with the normal direction of the surface of the collection substrate 200.
  • a wavelength selective mirror 43 such as a dichroic mirror at a position where the main line of the excitation light optical path and the fluorescent light path main line intersect.
  • the excitation light source 30 and the imaging unit 40 are arranged coaxially with respect to the collection substrate 200 as shown in FIG. 2B, the excitation light from the excitation light source 30 is partially reflected on the surface of the collection substrate 200, and the light is reflected. If the filter 42 and the wavelength selective mirror 43 cannot cut the light, the light enters the imaging unit 40. When the imaging unit 40 receives the reflected light, the detection background (background value) increases (the S / N ratio decreases), leading to a decrease in detection accuracy. Therefore, as shown in FIG. 2A, preferably, the excitation light source 30 and the imaging unit 40 capture the excitation light from the excitation light source 30 reflected on the surface of the collection substrate 200 by the imaging unit 40. Arranged in a positional relationship that does not match the direction. Thereby, the influence on the detection of the reflected light of excitation light can be suppressed, and detection accuracy can be improved.
  • FIG. 3 is a diagram showing an outline of detection of biological particles by the detection apparatus 100.
  • the biologically-derived particles include molds such as mold fungi exemplified in the following description, microorganisms such as bacteria, and yeasts and pollen.
  • excitation light source 30 emits light according to a control signal from control unit 10
  • excitation light is irradiated on the surface of collection substrate 200 from the arrangement.
  • the imaging unit 40 performs an imaging operation in accordance with a control signal from the control unit 10, so that at least one region of the surface of the collection substrate 200 that is irradiated with excitation light from the excitation light source 30.
  • the part is taken as the shooting range.
  • biologically derived particles are present in the imaging range, the particles are excited by excitation light to emit fluorescence, and the fluorescence is imaged by the imaging unit 40.
  • FIG. 4 shows measurement results of fluorescence spectra before and after the heat treatment (curve 76) when the green mold as biological particles was heat-treated at 200 ° C. for 5 minutes.
  • 5A and 5B are fluorescence images of green mold before and after heating photographed using the detection apparatus 100.
  • FIG. 5A is a fluorescence image before the heat treatment
  • FIG. 5B is a fluorescence image after the heat treatment. From the measurement results shown in FIG. 4, it can be seen that the fluorescence intensity from the biological particles is significantly increased by the heat treatment.
  • comparing the fluorescence images before and after the heat treatment shown in FIGS. 5A and 5B also shows that the fluorescence intensity from the biological particles is significantly increased by the heat treatment.
  • FIG. 6A and FIG. 6B show the measurement of fluorescence spectra before and after heat treatment (curve 78) when the fluorescent dust is heat treated at 200 ° C. for 5 minutes, respectively.
  • 7A and 7B are fluorescence images of dust that emits fluorescence before and after heating photographed using the detection apparatus 100.
  • FIG. 7A is a fluorescence image before the heat treatment
  • FIG. 7B is a fluorescence image after the heat treatment.
  • these measurement results are substantially the same, and it can be seen that the fluorescence intensity from the dust emitting fluorescence does not change before and after the heat treatment.
  • comparing the fluorescence images before and after the heat treatment shown in FIGS. 7A and 7B also shows that the fluorescence intensity from the dust that emits fluorescence does not change before and after the heat treatment.
  • the detection apparatus 100 detects biologically derived particles among the particles on the surface of the collection substrate 200 based on at least the fluorescence intensity after heating.
  • FIG. 4 to FIG. 7B there is a large difference in fluorescence intensity after heating between biologically derived particles and non-biologically derived particles. That is, as shown in FIGS. 5A and 7A, before the heating, both the fluorescence intensity from the biological particles and the fluorescence intensity from the non-biological particles are small, and the difference cannot be distinguished in the fluorescence image. Degree.
  • after heating as shown in FIG. 5B and FIG.
  • the fluorescence intensity from the biologically-derived particles is greatly increased, and no change is observed in the fluorescence intensity from the non-biologically-derived particles. That is, there is a marked difference in the change in fluorescence intensity between before and after heating between biologically derived particles and non-biologically derived particles. Therefore, it is possible to identify and detect biologically derived particles from the absolute value of the fluorescence intensity after heating.
  • biological particles among the particles on the surface of the collection substrate 200 are detected based on the difference in fluorescence intensity before and after heating.
  • the detection apparatus 100 can detect the particles collected on the surface of the collection substrate 200 by separating biological particles more accurately from non-biological particles. It becomes. Further, at that time, the detection apparatus 100 can detect without performing processing with a fluorescent staining reagent.
  • FIG. 8 is a diagram illustrating a flow of operations for detecting biologically derived particles among particles collected on the surface of the collection substrate 200 using the detection apparatus 100.
  • an operation for collecting particles in the specimen is performed using collection substrate 200 (step S ⁇ b> 1), and particles in the specimen are collected on the surface of collection substrate 200.
  • the operation of step S1 may be performed within the detection device or may be performed outside the detection device.
  • the collection substrate 200 is fixed to the detection device 100 by the fixing unit 20 (step S3).
  • the surface thereof is imaged by the imaging unit 40, and the fluorescence image F1 is acquired (step S5).
  • excitation light is applied to the surface of the collection substrate 200 fixed from the excitation light source 30 (step S21).
  • the particles collected on the surface of the collection substrate 200 are excited and irradiated with excitation light to emit fluorescence.
  • the fluorescence is received by the imaging unit 40 (step S23), and the image data is acquired (step S25).
  • the image data acquired here includes information on the luminance value of each pixel.
  • step S5 After capturing in step S5, the collection substrate 200 is heated by the heating unit 50, whereby the particles collected on the surface are heated (step S7). Thereafter, in the same manner as in step S5, a fluorescent image F2 of the surface of the collection substrate 200 after heating is acquired (step S9). Then, the amount of microorganisms is calculated using at least the fluorescence image F2 after heating, preferably the fluorescence images F1 and F2 before and after heating (step S11).
  • step S11 The calculation process in step S11 is largely separated from the separation process for separating whether or not biological-derived particles are included in the fluorescence image (step S31), and is separated if biological-derived particles are included. And a calculation process (step S33) for calculating the amount of microorganisms based on the fluorescence image.
  • the absolute value of the fluorescence intensity of the fluorescence image F2 is captured by determining whether or not it falls within the previously stored range of the brightness value after heating the biological particle. It is determined whether or not organism-derived particles are included in the imaging range on the surface of the current collecting substrate 200.
  • the fluorescent images F1 and F2 are compared for each pixel, the luminance value changes for the same pixel, and the change degree of the luminance value is stored in advance before and after the heating of the biological particles.
  • the degree of change in luminance value before and after the heating of the biological particles is obtained by conducting an experiment or the like in advance and stored in a memory (not shown) of the control unit 10.
  • FIG. 9 to 12 are diagrams for explaining the calculation process in step S33.
  • FIG. 9 is a diagram schematically showing the fluorescence image F2 that is determined to contain biological particles
  • FIG. 10 is image data that schematically shows luminance information for each pixel of the fluorescence image of FIG. This is a specific example.
  • image data is binarized by applying a prescribed threshold value to the luminance information for each pixel.
  • FIG. 11 shows the result of binarizing the image data of FIG. Prior to the binarization processing, the image data may be reduced in bit.
  • a bright spot is specified from the binarized image data, and it is determined whether or not the bright spot is derived from a biological particle based on its shape.
  • the number and shape of pixels constituting one bright spot caused by biological particles are stored in advance, and compared with the bright spot specified from the binarized image data, It is discriminated whether or not the bright spot is caused by a biological particle.
  • FIG. 12 shows bright spots included in the binarized image data of FIG. 11, and regions R1 to R4 surrounded by a thick frame in FIG. 12 correspond to bright spots.
  • the regions R1 and R2 are biological particles. It is determined that it is a bright spot caused by.
  • the other regions R3 and R4 are excluded from the subsequent calculation processing as electrical noise and stray light components. Then, by counting the bright spots determined to be caused by the biological particles, the biological particle amount (number of particles) is calculated.
  • the range of the number of pixels and the shape constituting one luminescent spot caused by biological particles is stored, and when the luminescent spot specified from the binarized image data satisfies the range, the biological origin It may be discriminated as a bright spot caused by the particles.
  • FIG. 13 is a block diagram illustrating a specific example of a functional configuration of the control unit 10 for performing the above operation.
  • Each function of FIG. 13 is mainly formed on the CPU by reading and executing a program (Central Processing Unit) (not shown) included in the control unit 10 that is stored in the memory.
  • a part may be realized by a hardware configuration such as an electric circuit.
  • the control unit 10 includes a calculation unit 101 for calculating the amount of biological particles collected in the imaging range of the imaging unit 40 on the surface of the collection substrate 200, and the excitation light source 30. And an imaging operation unit 102 for controlling the operation of the imaging unit 40 to cause the detection apparatus 100 to perform an imaging operation, and a heating control unit 106 for controlling the heating operation in the heating unit 50.
  • the photographing operation unit 102 includes a light emission control unit 103 for controlling emission / extinction of excitation light of the excitation light source 30, a photographing control unit 104 for controlling photographing in the photographing unit 40, and photographing from the photographing unit 40.
  • An image input unit 105 for receiving image input.
  • the calculation unit 101 determines whether or not organism-derived particles exist in the imaging range by analyzing the fluorescence image F2 after heating, or by comparing the fluorescence images F1 and F2 before and after heating.
  • the image analysis unit 108 specifies a bright spot from the binarization unit 109 for binarizing image data representing luminance value information for each pixel which is a fluorescent image, and binarized image data, And a discriminator 110 for discriminating whether or not the particle is derived from a biological particle.
  • ⁇ Operation flow> 14 and 15 are flowcharts showing the flow of control in the control unit 10, and in particular, are flowcharts showing the separation process in step S31 and the calculation process in step S33.
  • step S101 the control unit 10 compares the luminance values of the fluorescent images F1 and F2 from the photographing unit 40 for each pixel. And the pixel with a change in a luminance value is contained (it is YES at step S103), and the change degree of the luminance value corresponds to the change degree of the luminance value before and behind the heating of the biological particle memorize
  • control unit 10 determines that the biological images (microorganisms) are not present in the fluorescent images F1 and F2 (step S109).
  • the detection apparatus 100 can also calculate the amount of biologically derived particles using only the fluorescent image F2 after heating.
  • fluorescent dust generated from fibers, etc.
  • both fluorescent images F1 and F2 before and after heating are analyzed, and fluorescent dust and biological particles are analyzed. Can improve the accuracy.
  • an environment such as a high-grade clean room, there is a high possibility that fluorescent dust is not present or very little. In such a case, it is highly likely that the bright spot can be distinguished from those derived from living organisms. Therefore, in such a case, analysis of both fluorescence images before and after heating is not necessarily required, and only analysis of the fluorescence image F2 after heating may be performed.
  • FIG. 19 is a flowchart showing a modified example of the flow of the separation process in step S31. That is, with reference to FIG. 19, for each pixel of the fluorescent image F ⁇ b> 2 after heating, the control unit 10 has the luminance value of the pixel within the range of the luminance value of the biological particle stored in advance. Whether or not (step S301).
  • the range of the luminance value after heating the biological particles may be acquired in advance through experiments or the like and stored in a memory (not shown) of the control unit 10.
  • the control unit 10 displays biological particles (microorganisms) in the fluorescent image F2. Is present (step S305).
  • the control unit 10 determines that biological-derived particles (microorganisms) are not present in the fluorescent image F2 ( Step S307).
  • step S201 the control unit 10 determines the luminance value information for each pixel that is the fluorescent image F2 that has been determined as having biologically derived particles (microorganisms) by the above-described processing. Is binarized (step S201). The control unit 10 identifies a bright spot from the binarized image data, and sets the number of pixels (area) and shape constituting one bright spot for each of the identified bright spots in advance to a biological particle. The number of pixels and the characteristics of the shape stored as the resulting bright spots are respectively compared.
  • the control unit 10 discriminate
  • the detection apparatus 100 can obtain the number of organism-derived particles (microorganisms) present in the imaging range by counting the bright spots determined to be caused by the organism-derived particles.
  • the control unit 10 converts the obtained number of particles into the area of the entire surface of the collection substrate 200, and then the amount of the sample used when the collection operation is performed on the collection substrate 200 (for example, 1 m 3 in the atmosphere). Etc.) can be used to calculate the concentration of biological particles.
  • FIG. 16B shows a line profile that represents the luminance value in the horizontal direction of the bright spot in the fluorescent image F2 of the blue mold after heat treatment, which is surrounded by white circles in FIG. 16A.
  • FIG. 16B shows a large difference between the luminance value at the bright spot and the background value.
  • FIG. 17A shows an image (binarized image) obtained by binarizing the fluorescent image F2 of FIG. 16A using the luminance value 50 as a threshold value.
  • a black area represents a pixel having a luminance value larger than the threshold value
  • a white area represents a pixel having a luminance value smaller than the threshold value.
  • FIG. 17B is a diagram showing a region determined to be caused by biological particles based on the area (number of pixels) and shape of the bright spot of the binarized image of FIG. 17A. From FIG. 17B, the number of bright spots attributed to organism-derived particles was counted as 14 (chained fungi linked in a chain were counted as 1 group).
  • FIG. 18 is a diagram for explaining a state of collected particles when the same collection substrate 200 is used for n collection operations.
  • the particles on the surface after the n-th collection operation ((C) in FIG. 18) Particles collected in the collecting operation, particles collected in the second collecting operation,... (Omitted), (n-2) particles collected in the second collecting operation ((A) in FIG. 18) ), And (n-1) particles collected in the collection operation ((B) in FIG. 18) are added together. Therefore, the particles collected in the n-th collection operation are excluded from the particles collected in the n-th collection operation until the (n-1) -th collection operation. Become particles.
  • the detection apparatus 100 stores the detection result of the previous (n-1) th collection operation, and calculates the difference from the detection result of the current (nth) collection operation, The amount of organism-derived particles collected by the collection operation is calculated. Thereby, in the detection apparatus 100, even if it is a case where the same collection board
  • the detection apparatus 100 may store a detection result for each pixel instead of the image data. For example, it is possible to reduce the amount of data stored in the memory by binarizing the image data by setting the value of the pixel region where the biological particles are present to 1 and the value of the non-existing pixel region to 0.
  • the imaging unit 40 includes an area sensor of 10 million pixels and acquires 16-bit luminance information per pixel
  • the data amount of the entire captured image is 20 MB.
  • the value for each pixel is binarized with 0 or 1 according to the discrimination result as described above, the information amount per pixel becomes 1 bit (0 or 1), and the data amount is reduced to 1/16. Reduced.
  • the detection apparatus 100 stores the detection results as few times as possible including at least the detection result of the previous (n ⁇ 1) collection operation by overwriting the detection results, for example. Also good. In this way, the amount of data stored in the memory can be reduced. Furthermore, at this time, as described above, the amount of data can be further reduced by storing the information obtained by binarizing the image data with the value for each pixel according to the determination result as described above.
  • control unit 20 fixing unit, 30 excitation light source, 31 lens for light source, 40 imaging unit, 41 lens, 42 filter, 43 wavelength selective mirror, 50 heating unit, 75-78 curve, 100 detection device, 101 calculation unit, 102 imaging operation unit, 103 light emission control unit, 104 imaging control unit, 105 image input unit, 106 heating control unit, 107 separation unit, 108 image analysis unit, 109 binarization unit, 110 discrimination unit, 200 collection substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A detection device (100) is provided with: a securing unit (20) for securing a collection substrate (200) that can collect on the surface thereof particles in a sample; an excitation light source (30) for irradiating the surface of the secured collection substrate with excitation light; an imaging unit (40) that includes a plurality of sensors, arranged in two dimensions, for imaging at least part of the area of the surface of the secured collection substrate for an imaging range; a heating unit (50) for heating the collection substrate; and a calculation unit (101) for calculating the amount of particles of biological origin out of the particles collected on the surface of the collection substrate using an image that is imaged after heating.

Description

検出装置および検出方法Detection apparatus and detection method

 この発明は検出装置および検出方法に関し、特に、検体中の生物由来の粒子を検出するための検出装置および検出方法に関する。 The present invention relates to a detection apparatus and a detection method, and more particularly to a detection apparatus and a detection method for detecting biological particles in a specimen.

 大気等の検体中の微生物を計数するための装置として、微生物由来の蛍光(微生物自身が発する極微弱な自家蛍光、または、微生物に特有に作用する蛍光試薬による蛍光)を測定する装置がある。 As an apparatus for counting microorganisms in a sample such as the atmosphere, there is an apparatus for measuring fluorescence derived from microorganisms (very weak autofluorescence emitted by microorganisms itself or fluorescence by a fluorescent reagent that acts specifically on microorganisms).

 たとえば、特開2008-187935号公報(以下、特許文献1)は、微生物を捕集し、蛍光染色試薬で染色した後に蛍光画像を取得し、蛍光像の面積および輝度値より微生物(生菌/死菌)と夾雑物とを判別する微生物計数装置を開示している。 For example, Japanese Patent Application Laid-Open No. 2008-187935 (hereinafter referred to as Patent Document 1) collects microorganisms, stains them with a fluorescent staining reagent, obtains a fluorescent image, and determines the microorganisms (viable bacteria / Disclosed is a microbe counting apparatus for discriminating between dead cells) and contaminants.

特開2008-187935号公報JP 2008-187935 A 特開平3-43069号公報Japanese Patent Laid-Open No. 3-43069 特開2003-38163号公報JP 2003-38163 A

 しかしながら、微生物の個数を1個ずつ正確に計数する場合や、微生物の個数が少なく、低濃度の状態であるときには蛍光量が微弱となり、検出が難しくなる。そのため、光電子増倍管や、電子増倍機能付センサや、冷却CCD(Charge Coupled Device Image Sensor)などの高価な検出器が必要となってしまう。また、空気中に存在する、化学繊維など蛍光を発する、生物由来の粒子以外の物質から生物由来の粒子を分離する必要があるため、微生物からの散乱光(サイズ情報)を同時に検出するなどの分離のための装置が必要となってしまう。そのため、装置の構成が複雑になったり、高コストとなったりするという問題がある。 However, when the number of microorganisms is accurately counted one by one, or when the number of microorganisms is small and the concentration is low, the amount of fluorescence becomes weak, making detection difficult. Therefore, an expensive detector such as a photomultiplier tube, a sensor with an electron multiplying function, or a cooled CCD (Charge Coupled Device Image Sensor) is required. In addition, because it is necessary to separate biological particles from substances other than biological particles that emit fluorescence such as chemical fibers that exist in the air, it is possible to detect scattered light (size information) from microorganisms at the same time. An apparatus for separation is required. Therefore, there is a problem that the configuration of the apparatus becomes complicated and the cost becomes high.

 上記の課題に対処するため、上記特許文献1に開示されている、微生物に特有に作用する蛍光試薬を用いる技術を採用することもできる。しかしながら、上記特許文献1の技術は、測定前に検体に対して蛍光試薬を作用させる必要があり、測定前に煩雑な作業が要求されるという問題がある。特に、検体中の微生物量が微量である場合には、蛍光試薬を確実に作用させる作業が重要となるため、測定がより煩雑になるという問題がある。また、蛍光試薬が高価である場合、測定が高コストとなるという問題もある。 In order to cope with the above-mentioned problems, a technique using a fluorescent reagent which is disclosed in the above-mentioned Patent Document 1 and acts specifically on microorganisms can be employed. However, the technique of Patent Document 1 requires a fluorescent reagent to act on a specimen before measurement, and there is a problem that complicated work is required before measurement. In particular, when the amount of microorganisms in the sample is a very small amount, there is a problem that the measurement becomes more complicated because the operation of reliably acting the fluorescent reagent is important. In addition, when the fluorescent reagent is expensive, there is a problem that the measurement is expensive.

 なお、上記特許文献1の技術は検体が液体であることが想定されたものであるため、検体が空気などの大気の場合に上記特許文献1の技術を採用しようとすると、大気を捕集した後、試液へ分散し、蛍光試薬との混合した上で測定基板上に塗布する、といった、測定前の煩雑な作業が要求されるという問題もある。 In addition, since the technique of the said patent document 1 was assumed that the test substance is a liquid, when trying to employ | adopt the technique of the said patent document 1 when the test substance is air | atmosphere, such as air, air | atmosphere was collected. Thereafter, there is also a problem that a complicated operation before measurement, such as dispersion in a test solution, mixing with a fluorescent reagent, and coating on a measurement substrate, is required.

 本発明はこのような問題に鑑みてなされたものであって、容易に検体中の生物由来の粒子を検出することのできる検出装置および検出方法を提供することを目的としている。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a detection apparatus and a detection method capable of easily detecting biologically-derived particles in a specimen.

 上記目的を達成するために、本発明のある局面に従うと、検出装置は、検体中の粒子を表面に捕集可能な捕集基板を固定するための固定手段と、固定手段によって固定された捕集基板の表面に対して励起光を照射するための光源と、固定手段によって固定された捕集基板の表面の少なくとも一部領域を撮影範囲として撮影するための、二次元的に配列された複数のセンサを含む撮影手段と、捕集基板を加熱するための加熱手段と、加熱手段で加熱後の撮影手段での撮影画像を用いて捕集基板の表面に捕集された粒子のうちの生物由来の粒子の量を算出するための算出手段とを備える。 In order to achieve the above object, according to one aspect of the present invention, a detection device includes a fixing means for fixing a collection substrate capable of collecting particles in a specimen on a surface, and a trap fixed by the fixing means. A light source for irradiating excitation light onto the surface of the collecting substrate and a plurality of two-dimensionally arranged images for photographing at least a partial area of the surface of the collecting substrate fixed by the fixing means as an imaging range An imaging means including the sensor, a heating means for heating the collection substrate, and a living organism among the particles collected on the surface of the collection substrate using a photographed image obtained by the imaging means after being heated by the heating means. And a calculating means for calculating the amount of the derived particles.

 好ましくは、算出手段は、加熱手段で加熱後の撮影手段での撮影画像を解析することで、捕集基板の表面に捕集された粒子のうちの生物由来の粒子の量を算出する。 Preferably, the calculation means calculates the amount of biologically derived particles among the particles collected on the surface of the collection substrate by analyzing a photographed image obtained by the photographing means after being heated by the heating means.

 好ましくは、算出手段は、捕集基板が光源から励起光が照射された状態で撮影手段によって撮影された撮影画像を解析して各画素の輝度値を得、加熱手段で加熱前の撮影画像の各画素の輝度値と加熱手段で加熱後の撮影画像の各画素の輝度値との間の変化に基づいて捕集基板の表面に捕集された生物由来の粒子を判別してその量を算出する。 Preferably, the calculation unit analyzes the captured image captured by the imaging unit in a state where the collection substrate is irradiated with the excitation light from the light source to obtain the luminance value of each pixel, and the heating unit acquires the luminance value of the captured image before heating. Based on the change between the luminance value of each pixel and the luminance value of each pixel of the captured image after being heated by the heating means, the biological particles collected on the surface of the collection substrate are discriminated and the amount is calculated. To do.

 より好ましくは、検出装置は、算出手段において撮影画像のうちの生物由来の粒子が存在すると判別された画素を記憶するための記憶手段をさらに備え、算出手段は、撮影画像から生物由来の粒子が存在すると判別された画素と、記憶手段に記憶されている画素との差分に基づいて、捕集基板の表面に捕集された粒子のうちの生物由来の粒子の量を算出する。 More preferably, the detection device further includes a storage unit for storing a pixel that is determined by the calculation unit as having a biological particle in the photographed image, and the calculation unit includes the biological particle from the photographed image. Based on the difference between the pixel determined to be present and the pixel stored in the storage means, the amount of biologically-derived particles among the particles collected on the surface of the collection substrate is calculated.

 好ましくは、光源は、生物由来の粒子を励起させることのできる波長領域の光を照射する。 Preferably, the light source emits light in a wavelength region that can excite biological particles.

 より好ましくは、光源は、半導体レーザである。
 好ましくは、光源は、300nm~450nmの範囲の波長の光を照射する。
More preferably, the light source is a semiconductor laser.
Preferably, the light source emits light having a wavelength in the range of 300 nm to 450 nm.

 本発明の他の局面に従うと、検出方法は、検体中の粒子を表面に捕集可能な捕集基板を加熱するステップと、加熱後の捕集基板の表面に対して、光源から励起光を照射するステップと、加熱後の捕集基板が光源から励起光が照射された状態で、捕集基板の表面の少なくとも一部領域を撮影範囲として、二次元的に配列された複数のセンサを含む撮影手段を用いて撮影するステップと、撮影手段での撮影画像を用いて捕集基板の表面に捕集された粒子のうちの生物由来の粒子の量を算出するステップとを備える。 According to another aspect of the present invention, a detection method includes a step of heating a collection substrate capable of collecting particles in a specimen on a surface, and excitation light from a light source on the surface of the collection substrate after heating. A plurality of sensors arranged in a two-dimensional manner with at least a partial region of the surface of the collection substrate as an imaging range in a state where the irradiation substrate and the collection substrate after heating are irradiated with excitation light from a light source A step of photographing using the photographing means, and a step of calculating the amount of biologically-derived particles among the particles collected on the surface of the collection substrate using a photographed image by the photographing means.

 この発明によると、容易に検体中の生物由来の粒子を検出することができる。 According to the present invention, it is possible to easily detect organism-derived particles in a specimen.

実施の形態にかかる検出装置の概略構成を表わしたブロック図である。It is a block diagram showing the schematic structure of the detection apparatus concerning embodiment. 検出装置に含まれる光学系の配置を表わした図である。It is a figure showing arrangement | positioning of the optical system contained in a detection apparatus. 光学系の配置の他の例を表わした図である。It is a figure showing the other example of arrangement | positioning of an optical system. 検出装置での生物由来の粒子(微生物)の検出概要を表わした図である。It is a figure showing the outline | summary of the detection of the particle | grains (microorganism) derived from the living body in a detection apparatus. 生物由来の粒子としてのアオカビ菌を200℃にて5分間加熱処理したときの加熱処理前後の蛍光スペクトルの測定結果を表わした図である。It is a figure showing the measurement result of the fluorescence spectrum before and behind heat processing when the green mold | fungi microbe as biological origin particle | grains are heat-processed at 200 degreeC for 5 minute (s). 加熱処理前の生物由来の粒子としてのアオカビ菌を実施の形態にかかる検出装置で検出した蛍光画像である。It is the fluorescence image which detected the blue mold | fungi as biological-derived particle | grains before heat processing with the detection apparatus concerning embodiment. 加熱処理後の生物由来の粒子としてのアオカビ菌を、実施の形態にかかる検出装置で検出した蛍光画像である。It is the fluorescence image which detected the blue mold | fungi microbe as a biological-derived particle | grains after heat processing with the detection apparatus concerning embodiment. 加熱処理前の蛍光を発する埃の蛍光スペクトルの測定結果を表わした図である。It is a figure showing the measurement result of the fluorescence spectrum of the dust which emits the fluorescence before heat processing. 蛍光を発する埃を200℃にて5分間加熱処理した後の蛍光スペクトルの測定結果を表わした図である。It is a figure showing the measurement result of the fluorescence spectrum after heat-treating the dust which emits fluorescence for 5 minutes at 200 degreeC. 加熱処理前の蛍光を発する埃を、実施の形態にかかる検出装置で検出した蛍光画像である。It is the fluorescence image which detected the dust which emits the fluorescence before heat processing with the detection apparatus concerning embodiment. 加熱処理後の蛍光を発する埃を、実施の形態にかかる検出装置で検出した蛍光画像である。It is the fluorescence image which detected the dust which emits the fluorescence after heat processing with the detection apparatus concerning embodiment. 検出装置を用いて捕集基板の表面に捕集された粒子のうちの生物由来の粒子を検出するための動作の流れを表わす図である。It is a figure showing the flow of operation | movement for detecting the particle | grains derived from a biological body among the particles collected on the surface of the collection board | substrate using the detection apparatus. 図8のステップS33での算出処理を説明するための図である。It is a figure for demonstrating the calculation process in step S33 of FIG. 図8のステップS33での算出処理を説明するための図である。It is a figure for demonstrating the calculation process in step S33 of FIG. 図8のステップS33での算出処理を説明するための図である。It is a figure for demonstrating the calculation process in step S33 of FIG. 図8のステップS33での算出処理を説明するための図である。It is a figure for demonstrating the calculation process in step S33 of FIG. 検出装置の制御部の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of the control part of a detection apparatus. 図8のステップS31での分離処理の流れを表わしたフローチャートである。It is a flowchart showing the flow of the separation process in step S31 of FIG. 図8のステップS33での算出処理の流れを表わしたフローチャートである。It is a flowchart showing the flow of the calculation process in step S33 of FIG. 加熱処理後のアオカビ菌の蛍光画像を示す図である。It is a figure which shows the fluorescence image of the blue mold | fungi after heat processing. 加熱処理後のアオカビ菌の輝点の水平方向の輝度値を表わしたラインプロファイルを示す図である。It is a figure which shows the line profile showing the luminance value of the horizontal direction of the luminescent point of the blue mold after heat processing. 図16Aの蛍光画像に対して二値化処理を行なった画像(二値化画像)を表わした図である。It is a figure showing the image (binarized image) which performed the binarization process with respect to the fluorescence image of FIG. 16A. 図16Aの蛍光画像に対して二値化処理を行なった画像の輝点の面積(画素数)および形状に基づいて生物由来の粒子に起因するものと判定された領域を表わした図である。It is the figure showing the area | region determined to originate in the particle | grains derived from a living organism | raw_food based on the area (the number of pixels) and the shape of the bright spot of the image which binarized the fluorescence image of FIG. 16A. 同一の捕集基板200を、n回の捕集動作に用いた場合の、捕集された粒子の状態を説明するための図である。It is a figure for demonstrating the state of the collected particle | grains at the time of using the same collection board | substrate 200 for n times of collection operation | movement. 図8のステップS31での分離処理の流れの変形例を表わしたフローチャートである。It is a flowchart showing the modification of the flow of the separation process in FIG.8 S31.

 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらの説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, these descriptions will not be repeated.

 [第1の実施の形態]
 <装置構成>
 図1は、本実施の形態にかかる検出装置100の概略構成を表わしたブロック図である。図1を参照して、検出装置100は、装置全体を制御するための制御部10と、検体中の粒子をその表面に捕集可能な、培地やプラスチック基板などである捕集基板200を検出装置100内の所定位置に固定するための固定部20と、固定部20によって固定された捕集基板200の表面に対して励起光を照射するための励起光源30と、固定部20によって固定された捕集基板200の表面の少なくとも一部領域を撮影範囲として撮影するための撮影部40と、捕集基板200を加熱するための図示しないヒータを含む加熱部50とを含む。制御部10は、撮影部40での撮影画像を解析することで、捕集基板200の表面の撮影範囲に捕集された粒子のうちの生物由来の粒子の量を算出するための算出部101を含む。
[First Embodiment]
<Device configuration>
FIG. 1 is a block diagram showing a schematic configuration of a detection apparatus 100 according to the present embodiment. Referring to FIG. 1, a detection apparatus 100 detects a control unit 10 for controlling the entire apparatus, and a collection substrate 200 such as a culture medium or a plastic substrate that can collect particles in a specimen on the surface thereof. The fixing unit 20 is fixed to a predetermined position in the apparatus 100, the excitation light source 30 is used to irradiate the surface of the collection substrate 200 fixed by the fixing unit 20, and the fixing unit 20 is fixed. The imaging unit 40 for imaging at least a partial region of the surface of the collection substrate 200 as an imaging range, and the heating unit 50 including a heater (not shown) for heating the collection substrate 200 are included. The control unit 10 analyzes the captured image obtained by the imaging unit 40, thereby calculating a biological unit-derived particle amount among the particles collected in the imaging range on the surface of the collection substrate 200. including.

 撮影部40は、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどのイメージセンサが2次元に配されたエリアセンサを含み、2次元の撮影画像を取得する。撮影部40は制御部10と電気的に接続され、その制御信号に従って撮影動作を行なう。そして、撮影動作によって得られた撮影画像は、撮影部40から制御部10に入力される。 The imaging unit 40 includes an area sensor in which image sensors such as a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal Oxide Semiconductor) image sensor are arranged two-dimensionally, and acquires a two-dimensional captured image. The imaging unit 40 is electrically connected to the control unit 10 and performs an imaging operation according to the control signal. Then, the captured image obtained by the imaging operation is input from the imaging unit 40 to the control unit 10.

 励起光源30は制御部10と電気的に接続され、その制御信号に従って発光および消光する。励起光源30は、半導体レーザなどのレーザ、LED(Light Emitting Diode)素子などが該当する。波長は、生物由来の粒子を励起して蛍光を発させるものであれば、紫外または可視いずれの領域の波長でもよい。好ましくは、蛍光を発するトリプトファン、NaDH、リボフラビン等が効率よく励起される300nmから450nmである。 The excitation light source 30 is electrically connected to the control unit 10 and emits and extinguishes according to the control signal. The excitation light source 30 corresponds to a laser such as a semiconductor laser, an LED (Light Emitting Diode) element, or the like. The wavelength may be in the ultraviolet or visible region as long as it excites biological particles and emits fluorescence. Preferably, the wavelength is from 300 nm to 450 nm at which fluorescent tryptophan, NaDH, riboflavin and the like are efficiently excited.

 励起光源30および撮影部40である光学系には、レンズやフィルタがさらに設けられてもよい(図2)。 The optical system that is the excitation light source 30 and the imaging unit 40 may be further provided with a lens and a filter (FIG. 2).

 捕集基板200の表面で検体中の粒子を捕集するための捕集機構は、検出装置100に含まれていなくてもよいし、含まれていてもよい。従って、その捕集方法はどのような方法であってもよい。たとえば、捕集基板200をセットした図示しない捕集装置に外気等の検体中を導入し、自然落下する粒子を捕集基板200の表面で捕集するようにしてもよい。または、捕集基板200の表面を電極に接続し、他方の電極との間の電位差によって生じる静電力を利用して、検体中の帯電させた粒子を捕集基板200の表面で捕集するようにしてもよい。もちろん、これらの方法のみに限定されるものではない。そして、固定部20は、捕集基板200が規定された方向に向くように固定する。この「固定」には、特定の位置に捕集基板200を載荷するような場合も含む。その構成は特定の構成に限定されない。 The collection mechanism for collecting particles in the specimen on the surface of the collection substrate 200 may or may not be included in the detection device 100. Therefore, the collection method may be any method. For example, a sample such as outside air may be introduced into a collection device (not shown) on which the collection substrate 200 is set, and particles that fall naturally may be collected on the surface of the collection substrate 200. Alternatively, the surface of the collection substrate 200 is connected to the electrode, and the charged particles in the specimen are collected on the surface of the collection substrate 200 using the electrostatic force generated by the potential difference with the other electrode. It may be. Of course, it is not limited only to these methods. And the fixing | fixed part 20 is fixed so that the collection board | substrate 200 may face the defined direction. The “fixing” includes a case where the collection substrate 200 is loaded at a specific position. The configuration is not limited to a specific configuration.

 加熱部50は制御部10と電気的に接続され、その制御信号に従って加熱量(加熱時間、加熱温度等)が制御される。加熱部50は、セラミックヒータや、遠赤外線ヒータや、遠赤外線ランプなどのヒータを含む。 The heating unit 50 is electrically connected to the control unit 10, and the heating amount (heating time, heating temperature, etc.) is controlled according to the control signal. The heating unit 50 includes a heater such as a ceramic heater, a far infrared heater, and a far infrared lamp.

 図2Aおよび図2Bは、検出装置100に含まれる光学系の配置を説明するための概略図であって、図2Aが検出装置100に含まれる光学系の配置、図2Bが比較のために表わした配置例を表わしている。なお、好ましくは、図2Aや図2Bに表われたように、励起光源30の照射方向前方には照射方向を整えるための光源用レンズ31が配され、撮影部40の撮影方向前方には蛍光検出用のレンズ41およびフィルタ42が配される。 2A and 2B are schematic diagrams for explaining the arrangement of the optical system included in the detection apparatus 100. FIG. 2A shows the arrangement of the optical system included in the detection apparatus 100, and FIG. 2B shows the comparison. An example of the arrangement is shown. Preferably, as shown in FIGS. 2A and 2B, a light source lens 31 for adjusting the irradiation direction is arranged in front of the irradiation direction of the excitation light source 30, and fluorescence is arranged in front of the imaging direction of the imaging unit 40. A detection lens 41 and a filter 42 are arranged.

 図2Aを参照して、励起光源30および撮影部40は、捕集基板200の表面に対して斜軸に配置される。すなわち、励起光源30および撮影部40は、固定部20によって固定された捕集基板200に対して、その表面の法線方向に対して励起光源30からの照射方向がなす角度αAと、上記法線方向に対して撮影部40での撮影方向がなす角度αBとが異なる角度となるように配される。具体的には、図2Aを参照して、撮影部40を、その撮影方向が捕集基板200の表面の法線方向と一致するように(真上に)(αB=0)配置したときに、励起光源30は、その照射方向が捕集基板200の表面の法線方向とは一致しない(αA≠0)位置に配置される。 Referring to FIG. 2A, the excitation light source 30 and the imaging unit 40 are arranged on the oblique axis with respect to the surface of the collection substrate 200. That is, the excitation light source 30 and the imaging unit 40 have an angle αA formed by the irradiation direction from the excitation light source 30 with respect to the normal direction of the surface of the collection substrate 200 fixed by the fixing unit 20 and the above method. The angle αB formed by the photographing direction in the photographing unit 40 is different from the line direction. Specifically, referring to FIG. 2A, when the imaging unit 40 is arranged (directly above) (αB = 0) so that the imaging direction coincides with the normal direction of the surface of the collection substrate 200 (αB = 0). The excitation light source 30 is arranged at a position where the irradiation direction does not coincide with the normal direction of the surface of the collection substrate 200 (αA ≠ 0).

 これに対して、図2Bは、励起光源30および撮影部40が捕集基板200の表面に対して同軸に配されたときの具体例を表わしている。すなわち、励起光源30および撮影部40が、固定部20によって固定された捕集基板200に対して、その表面の法線方向に対して励起光源30からの照射方向がなす角度αAと、上記法線方向に対して撮影部40での撮影方向がなす角度αBとが一致するように配される例が示されている。図2Bの場合には、いずれの角度も0、つまり、捕集基板200の表面の法線方向と一致するように(真上に)配置されている。波長の異なる励起光と蛍光とをこのように配置するために、励起光光路の主線と蛍光光路主線との交わる位置に、ダイクロイックミラーなどの波長選択性ミラー43を配置することが好ましい。 On the other hand, FIG. 2B shows a specific example when the excitation light source 30 and the imaging unit 40 are arranged coaxially with respect to the surface of the collection substrate 200. That is, the angle αA formed by the irradiation direction from the excitation light source 30 with respect to the normal direction of the surface of the collection substrate 200 fixed by the fixing unit 20 between the excitation light source 30 and the imaging unit 40, and the above method An example is shown in which the angle αB formed by the photographing direction in the photographing unit 40 coincides with the line direction. In the case of FIG. 2B, all the angles are 0, that is, they are arranged (directly above) so as to coincide with the normal direction of the surface of the collection substrate 200. In order to arrange excitation light and fluorescence having different wavelengths in this way, it is preferable to arrange a wavelength selective mirror 43 such as a dichroic mirror at a position where the main line of the excitation light optical path and the fluorescent light path main line intersect.

 図2Bのように励起光源30および撮影部40が捕集基板200に対して同軸に配置されると、励起光源30からの励起光の捕集基板200の表面で一部反射し、その光がフィルタ42および波長選択性ミラー43でカットし切れないと撮影部40に入射することになる。撮影部40が反射光を受光すると、検出のバックグラウンド(背景値)が高くなる(S/N比が低下する)ため、検出精度の低下につながる。そこで、図2Aに表わされたように、好ましくは、励起光源30と撮影部40とは、励起光源30からの励起光の捕集基板200の表面での反射光が撮影部40での撮影方向に一致しないような位置関係で配置される。これにより、励起光の反射光の検出への影響を抑え、検出精度を向上させることができる。 When the excitation light source 30 and the imaging unit 40 are arranged coaxially with respect to the collection substrate 200 as shown in FIG. 2B, the excitation light from the excitation light source 30 is partially reflected on the surface of the collection substrate 200, and the light is reflected. If the filter 42 and the wavelength selective mirror 43 cannot cut the light, the light enters the imaging unit 40. When the imaging unit 40 receives the reflected light, the detection background (background value) increases (the S / N ratio decreases), leading to a decrease in detection accuracy. Therefore, as shown in FIG. 2A, preferably, the excitation light source 30 and the imaging unit 40 capture the excitation light from the excitation light source 30 reflected on the surface of the collection substrate 200 by the imaging unit 40. Arranged in a positional relationship that does not match the direction. Thereby, the influence on the detection of the reflected light of excitation light can be suppressed, and detection accuracy can be improved.

 <動作概要>
 (検出原理)
 図3は、検出装置100での生物由来の粒子の検出概要を表わした図である。なお、生物由来の粒子は、以降の説明にて例示されるアオカビ菌などのカビ菌、細菌、および酵母等の微生物や花粉を含む。図3を参照して、励起光源30が制御部10からの制御信号に従って発光すると、その配置より、捕集基板200の表面に励起光が照射される。撮影部40は、制御部10からの制御信号に従って撮影動作を行なうことで、捕集基板200の表面の少なくとも一部領域であって、励起光源30によって励起光が照射されている領域の少なくとも一部を撮影範囲として撮影する。上記の撮影範囲に生物由来の粒子が存在する場合、その粒子は励起光によって励起されて蛍光を発し、その蛍光が撮影部40によって撮影される。
<Overview of operation>
(Detection principle)
FIG. 3 is a diagram showing an outline of detection of biological particles by the detection apparatus 100. The biologically-derived particles include molds such as mold fungi exemplified in the following description, microorganisms such as bacteria, and yeasts and pollen. Referring to FIG. 3, when excitation light source 30 emits light according to a control signal from control unit 10, excitation light is irradiated on the surface of collection substrate 200 from the arrangement. The imaging unit 40 performs an imaging operation in accordance with a control signal from the control unit 10, so that at least one region of the surface of the collection substrate 200 that is irradiated with excitation light from the excitation light source 30. The part is taken as the shooting range. When biologically derived particles are present in the imaging range, the particles are excited by excitation light to emit fluorescence, and the fluorescence is imaged by the imaging unit 40.

 図4は、生物由来の粒子としてのアオカビ菌を200℃にて5分間加熱処理したときの加熱処理前(曲線75)および加熱処理後(曲線76)の蛍光スペクトルの測定結果である。また、図5Aおよび図5Bは、検出装置100を用いて撮影した加熱前後のアオカビ菌の蛍光画像である。詳しくは、図5Aが加熱処理前、図5Bが加熱処理後の蛍光画像である。図4に表わされた測定結果より、加熱処理を施すことによって生物由来の粒子からの蛍光強度は大幅に増加していることが分かる。また、図5Aおよび図5Bに示された加熱処理前後の蛍光画像を比較することでも、加熱処理によって生物由来の粒子からの蛍光強度が大幅に増加することが分かる。 FIG. 4 shows measurement results of fluorescence spectra before and after the heat treatment (curve 76) when the green mold as biological particles was heat-treated at 200 ° C. for 5 minutes. 5A and 5B are fluorescence images of green mold before and after heating photographed using the detection apparatus 100. FIG. Specifically, FIG. 5A is a fluorescence image before the heat treatment, and FIG. 5B is a fluorescence image after the heat treatment. From the measurement results shown in FIG. 4, it can be seen that the fluorescence intensity from the biological particles is significantly increased by the heat treatment. In addition, comparing the fluorescence images before and after the heat treatment shown in FIGS. 5A and 5B also shows that the fluorescence intensity from the biological particles is significantly increased by the heat treatment.

 これに対して、図6Aおよび図6Bは、それぞれ、蛍光を発する埃を200℃にて5分間加熱処理したときの加熱処理前(曲線77)および加熱処理後(曲線78)の蛍光スペクトルの測定結果である。また、図7Aおよび図7Bは、検出装置100を用いて撮影した加熱前後の蛍光を発する埃の蛍光画像である。詳しくは、図7Aが加熱処理前、図7Bが加熱処理後の蛍光画像である。図6Aおよび図6Bを参照して、これら測定結果は概ね同じであり、蛍光を発する埃からの蛍光強度は加熱処理の前後において変化がないことが分かる。また、図7Aおよび図7Bに示された加熱処理前後の蛍光画像を比較することでも、蛍光を発する埃からの蛍光強度は加熱処理の前後において変化がないことが分かる。 In contrast, FIG. 6A and FIG. 6B show the measurement of fluorescence spectra before and after heat treatment (curve 78) when the fluorescent dust is heat treated at 200 ° C. for 5 minutes, respectively. It is a result. 7A and 7B are fluorescence images of dust that emits fluorescence before and after heating photographed using the detection apparatus 100. FIG. Specifically, FIG. 7A is a fluorescence image before the heat treatment, and FIG. 7B is a fluorescence image after the heat treatment. With reference to FIG. 6A and FIG. 6B, these measurement results are substantially the same, and it can be seen that the fluorescence intensity from the dust emitting fluorescence does not change before and after the heat treatment. Further, comparing the fluorescence images before and after the heat treatment shown in FIGS. 7A and 7B also shows that the fluorescence intensity from the dust that emits fluorescence does not change before and after the heat treatment.

 検出装置100はこの原理を利用して、少なくとも加熱後の蛍光強度に基づいて捕集基板200の表面の粒子のうちの生物由来の粒子を検出する。図4~図7Bに示すように、生物由来の粒子と非生物由来の粒子とでは、加熱後の蛍光強度には大きな差がある。すなわち、図5Aおよび図7Aに表れているように、加熱前は生物由来の粒子からの蛍光強度も非生物由来の粒子からの蛍光強度も共に小さく、その差異は蛍光画像において判別が不可能な程度である。一方、加熱後は、図5Bおよび図7Bに表れているように、生物由来の粒子からの蛍光強度は大幅に増加し、非生物由来の粒子からの蛍光強度に変化は見られない。つまり、生物由来の粒子と非生物由来の粒子とでは、加熱前後での蛍光強度の変化に顕著な差異が見られる。そのため、加熱後の蛍光強度の絶対値から生物由来の粒子を特定して検出することが可能となる。好ましくは、加熱前後での蛍光強度の差異に基づいて、捕集基板200の表面の粒子のうちの生物由来の粒子を検出する。この原理を利用することで、検出装置100では、捕集基板200の表面に捕集された粒子を、生物由来の粒子を非生物由来の粒子から、より正確に分離して検出することが可能となる。また、その際に、検出装置100では、蛍光染色試薬による処理を行なわなくても検出可能となる。 Using this principle, the detection apparatus 100 detects biologically derived particles among the particles on the surface of the collection substrate 200 based on at least the fluorescence intensity after heating. As shown in FIG. 4 to FIG. 7B, there is a large difference in fluorescence intensity after heating between biologically derived particles and non-biologically derived particles. That is, as shown in FIGS. 5A and 7A, before the heating, both the fluorescence intensity from the biological particles and the fluorescence intensity from the non-biological particles are small, and the difference cannot be distinguished in the fluorescence image. Degree. On the other hand, after heating, as shown in FIG. 5B and FIG. 7B, the fluorescence intensity from the biologically-derived particles is greatly increased, and no change is observed in the fluorescence intensity from the non-biologically-derived particles. That is, there is a marked difference in the change in fluorescence intensity between before and after heating between biologically derived particles and non-biologically derived particles. Therefore, it is possible to identify and detect biologically derived particles from the absolute value of the fluorescence intensity after heating. Preferably, biological particles among the particles on the surface of the collection substrate 200 are detected based on the difference in fluorescence intensity before and after heating. By utilizing this principle, the detection apparatus 100 can detect the particles collected on the surface of the collection substrate 200 by separating biological particles more accurately from non-biological particles. It becomes. Further, at that time, the detection apparatus 100 can detect without performing processing with a fluorescent staining reagent.

 (検出動作)
 図8は、検出装置100を用いて捕集基板200の表面に捕集された粒子のうちの生物由来の粒子を検出するための動作の流れを表わす図である。図8を参照して、はじめに、捕集基板200を用いて検体中の粒子を捕集するための動作が行なわれ(ステップS1)、捕集基板200の表面に検体中の粒子が捕集される。ただし、ステップS1の動作は、検出装置内で行なわれてもよいし、検出装置外で行なわれてもよい。次に、捕集基板200が固定部20によって検出装置100に固定される(ステップS3)。
(Detection operation)
FIG. 8 is a diagram illustrating a flow of operations for detecting biologically derived particles among particles collected on the surface of the collection substrate 200 using the detection apparatus 100. Referring to FIG. 8, first, an operation for collecting particles in the specimen is performed using collection substrate 200 (step S <b> 1), and particles in the specimen are collected on the surface of collection substrate 200. The However, the operation of step S1 may be performed within the detection device or may be performed outside the detection device. Next, the collection substrate 200 is fixed to the detection device 100 by the fixing unit 20 (step S3).

 捕集基板200が固定部20によって固定された状態で、その表面が撮影部40で撮影されて蛍光画像F1が取得される(ステップS5)。ここでの動作は、詳しくは、まず、励起光が励起光源30から固定された捕集基板200の表面に対して照射される(ステップS21)。捕集基板200の表面に捕集された粒子は、励起光が照射されることによって励起されて蛍光を発する。その蛍光が撮影部40によって受光されることで(ステップS23)、その画像データが取得される(ステップS25)。ここで取得される画像データには、各画素の輝度値の情報が含まれている。 In a state where the collection substrate 200 is fixed by the fixing unit 20, the surface thereof is imaged by the imaging unit 40, and the fluorescence image F1 is acquired (step S5). Specifically, in this operation, first, excitation light is applied to the surface of the collection substrate 200 fixed from the excitation light source 30 (step S21). The particles collected on the surface of the collection substrate 200 are excited and irradiated with excitation light to emit fluorescence. The fluorescence is received by the imaging unit 40 (step S23), and the image data is acquired (step S25). The image data acquired here includes information on the luminance value of each pixel.

 上記ステップS5の撮影の後、加熱部50によって捕集基板200が加熱されることで、その表面に捕集された粒子が加熱される(ステップS7)。その後、上記ステップS5と同様にして、加熱後の捕集基板200の表面の蛍光画像F2が取得される(ステップS9)。そして、少なくとも加熱後の蛍光画像F2、好ましくは加熱前後の蛍光画像F1,F2を用いて微生物量が算出される(ステップS11)。 After capturing in step S5, the collection substrate 200 is heated by the heating unit 50, whereby the particles collected on the surface are heated (step S7). Thereafter, in the same manner as in step S5, a fluorescent image F2 of the surface of the collection substrate 200 after heating is acquired (step S9). Then, the amount of microorganisms is calculated using at least the fluorescence image F2 after heating, preferably the fluorescence images F1 and F2 before and after heating (step S11).

 ステップS11の算出処理は、大きくは、蛍光画像に生物由来の粒子が含まれているか否かを分離するための分離処理と(ステップS31)、生物由来の粒子が含まれていると分離された蛍光画像に基づいて微生物量を算出するための算出処理(ステップS33)とを含む。 The calculation process in step S11 is largely separated from the separation process for separating whether or not biological-derived particles are included in the fluorescence image (step S31), and is separated if biological-derived particles are included. And a calculation process (step S33) for calculating the amount of microorganisms based on the fluorescence image.

 詳しくは、上記ステップS31では、蛍光画像F2の蛍光強度の絶対値が、予め記憶している、生物由来の粒子の加熱後の輝度値の範囲に該当するか否かを判別することで、捕集基板200の表面の撮影範囲に生物由来の粒子が含まれているか否かを判別する。好ましくは、蛍光画像F1,F2を画素ごとに比較して、同一の画素について輝度値が変化し、さらに、その輝度値の変化度合いが、予め記憶している、生物由来の粒子の加熱前後の輝度値の変化度合いに該当するか否かを判別することで、捕集基板200の表面の撮影範囲に生物由来の粒子が含まれているか否かを判別する。生物由来の粒子の加熱前後の輝度値の変化度合いは、予め実験等を行なうことで取得し、制御部10の図示しないメモリに記憶しておく。 Specifically, in step S31, the absolute value of the fluorescence intensity of the fluorescence image F2 is captured by determining whether or not it falls within the previously stored range of the brightness value after heating the biological particle. It is determined whether or not organism-derived particles are included in the imaging range on the surface of the current collecting substrate 200. Preferably, the fluorescent images F1 and F2 are compared for each pixel, the luminance value changes for the same pixel, and the change degree of the luminance value is stored in advance before and after the heating of the biological particles. By determining whether or not the degree of change in luminance value is satisfied, it is determined whether or not organism-derived particles are included in the imaging range on the surface of the collection substrate 200. The degree of change in luminance value before and after the heating of the biological particles is obtained by conducting an experiment or the like in advance and stored in a memory (not shown) of the control unit 10.

 図9~図12は、上記ステップS33での算出処理を説明するための図である。図9は、生物由来の粒子が含まれると判別された蛍光画像F2を模式的に表わした図あり、図10は、図9の蛍光画像の画素ごとの輝度情報を模式的に表わした画像データの具体例である。上記ステップS33では、画素ごとの輝度情報に対して規定のしきい値が適用されて画像データが二値化される。図11は、しきい値を50として図10の画像データを二値化した結果を表わしている。二値化処理に先だって画像データが低ビット化されてもよい。 9 to 12 are diagrams for explaining the calculation process in step S33. FIG. 9 is a diagram schematically showing the fluorescence image F2 that is determined to contain biological particles, and FIG. 10 is image data that schematically shows luminance information for each pixel of the fluorescence image of FIG. This is a specific example. In step S33, image data is binarized by applying a prescribed threshold value to the luminance information for each pixel. FIG. 11 shows the result of binarizing the image data of FIG. Prior to the binarization processing, the image data may be reduced in bit.

 二値化された画像データから輝点が特定され、その形状に基づいてその輝点が生物由来の粒子に起因するものであるか否かが判別される。ここでは、予め、生物由来の粒子に起因する1つの輝点を構成する画素数および形状が記憶されており、二値化された画像データから特定された輝点と比較されることで、その輝点が生物由来の粒子に起因するものであるか否かが判別される。 A bright spot is specified from the binarized image data, and it is determined whether or not the bright spot is derived from a biological particle based on its shape. Here, the number and shape of pixels constituting one bright spot caused by biological particles are stored in advance, and compared with the bright spot specified from the binarized image data, It is discriminated whether or not the bright spot is caused by a biological particle.

 図12は、図11の二値化された画像データに含まれる輝点を表わしており、図12中の太枠で囲まれた領域R1~R4が輝点に該当する。生物由来の粒子に起因する1つの輝点を構成する画素数が6、および形状が正方形として記憶されている場合、図12中の領域R1~R4のうち、領域R1,R2が生物由来の粒子に起因する輝点と判別される。他の領域R3,R4は電気的なノイズや迷光成分として、以降の算出処理からは除かれる。そして、生物由来の粒子に起因すると判別された輝点が計数されることで、生物由来の粒子量(粒子数)が算出される。なお、生物由来の粒子に起因する1つの輝点を構成する画素数および形状の範囲が記憶されており、二値化された画像データから特定された輝点がその範囲を満たすときに生物由来の粒子に起因する輝点と判別されてもよい。 FIG. 12 shows bright spots included in the binarized image data of FIG. 11, and regions R1 to R4 surrounded by a thick frame in FIG. 12 correspond to bright spots. When the number of pixels constituting one luminescent spot due to biological particles is stored as 6 and the shape is stored as a square, among the regions R1 to R4 in FIG. 12, the regions R1 and R2 are biological particles. It is determined that it is a bright spot caused by. The other regions R3 and R4 are excluded from the subsequent calculation processing as electrical noise and stray light components. Then, by counting the bright spots determined to be caused by the biological particles, the biological particle amount (number of particles) is calculated. In addition, the range of the number of pixels and the shape constituting one luminescent spot caused by biological particles is stored, and when the luminescent spot specified from the binarized image data satisfies the range, the biological origin It may be discriminated as a bright spot caused by the particles.

 <機能構成>
 図13は、上記動作を行なうための制御部10の機能構成の具体例を示すブロック図である。図13の各機能は、制御部10に含まれる図示しないCPU(Central Processing Unit)がメモリに記憶されるプログラムを読み出して実行することで、主にCPU上に形成されるものであるが、少なくとも一部が、電気回路等のハードウェア構成によって実現されてもよい。
<Functional configuration>
FIG. 13 is a block diagram illustrating a specific example of a functional configuration of the control unit 10 for performing the above operation. Each function of FIG. 13 is mainly formed on the CPU by reading and executing a program (Central Processing Unit) (not shown) included in the control unit 10 that is stored in the memory. A part may be realized by a hardware configuration such as an electric circuit.

 図13を参照して、制御部10は、捕集基板200の表面の撮影部40での撮影範囲に捕集された生物由来の粒子の量を算出するための算出部101と、励起光源30および撮影部40の動作を制御することで検出装置100に撮影動作を行なわせるための撮影動作部102と、加熱部50での加熱動作を制御するための加熱制御部106とを含む。撮影動作部102は、励起光源30の励起光の発光/消光を制御するための発光制御部103と、撮影部40での撮影を制御するための撮影制御部104と、撮影部40からの撮影画像の入力を受け付けるための画像入力部105とを含む。また、算出部101は、加熱後の蛍光画像F2を解析することで、または、加熱前後の蛍光画像F1,F2を比較することで撮影範囲に生物由来の粒子が存在するか否かを判別して生物由来の粒子が存在する蛍光画像を分離するための分離部107と、生物由来の粒子が存在する蛍光画像を画像解析するための画像解析部108とを含む。画像解析部108は、蛍光画像である画素ごとの輝度値の情報を表わす画像データを二値化処理するための二値化部109と、二値化された画像データから輝点を特定し、生物由来の粒子に起因するものであるか否かを判別するための判別部110とを含む。 Referring to FIG. 13, the control unit 10 includes a calculation unit 101 for calculating the amount of biological particles collected in the imaging range of the imaging unit 40 on the surface of the collection substrate 200, and the excitation light source 30. And an imaging operation unit 102 for controlling the operation of the imaging unit 40 to cause the detection apparatus 100 to perform an imaging operation, and a heating control unit 106 for controlling the heating operation in the heating unit 50. The photographing operation unit 102 includes a light emission control unit 103 for controlling emission / extinction of excitation light of the excitation light source 30, a photographing control unit 104 for controlling photographing in the photographing unit 40, and photographing from the photographing unit 40. An image input unit 105 for receiving image input. Further, the calculation unit 101 determines whether or not organism-derived particles exist in the imaging range by analyzing the fluorescence image F2 after heating, or by comparing the fluorescence images F1 and F2 before and after heating. A separating unit 107 for separating a fluorescent image in which biological particles are present, and an image analyzing unit 108 for analyzing an image of the fluorescent image in which biological particles are present. The image analysis unit 108 specifies a bright spot from the binarization unit 109 for binarizing image data representing luminance value information for each pixel which is a fluorescent image, and binarized image data, And a discriminator 110 for discriminating whether or not the particle is derived from a biological particle.

 <動作フロー>
 図14および図15は、制御部10での制御の流れを表わしたフローチャートであり、特に、上記ステップS31での分離処理、および上記ステップS33での算出処理を表わしたフローチャートである。
<Operation flow>
14 and 15 are flowcharts showing the flow of control in the control unit 10, and in particular, are flowcharts showing the separation process in step S31 and the calculation process in step S33.

 図14を参照して、ステップS101で制御部10は、撮影部40からの蛍光画像F1,F2の輝度値を画素ごとに比較する。そして、輝度値に変化のある画素が含まれ(ステップS103でYES)、かつ、その輝度値の変化度合いが、予め記憶している、生物由来の粒子の加熱前後の輝度値の変化度合いに該当する場合(ステップS105でYES)、制御部10は、蛍光画像F1,F2には生物由来の粒子(微生物)が存在していると判別する(ステップS107)。輝度値に変化のある画素が含まれていない場合や(ステップS103でNO)、輝度値に変化があった場合であってもその輝度値の変化度合いが生物由来の粒子の加熱前後の輝度値の変化度合いには該当しない場合(ステップS105でNO)には、制御部10は、蛍光画像F1,F2には生物由来の粒子(微生物)が存在していないと判別する(ステップS109)。 Referring to FIG. 14, in step S101, the control unit 10 compares the luminance values of the fluorescent images F1 and F2 from the photographing unit 40 for each pixel. And the pixel with a change in a luminance value is contained (it is YES at step S103), and the change degree of the luminance value corresponds to the change degree of the luminance value before and behind the heating of the biological particle memorize | stored beforehand. If so (YES in step S105), the control unit 10 determines that biologically derived particles (microorganisms) are present in the fluorescent images F1 and F2 (step S107). Even if a pixel with a change in luminance value is not included (NO in step S103), or even if there is a change in luminance value, the luminance value before and after the heating of the particles derived from living organisms If the degree of change does not correspond (NO in step S105), the control unit 10 determines that the biological images (microorganisms) are not present in the fluorescent images F1 and F2 (step S109).

 なお、上記のように、検出装置100では、加熱後の蛍光画像F2のみを用いて生物由来の粒子の量を算出することもできる。一般大気環境下では、大気中に(繊維等から発生する)蛍光埃が存在するため、上記のように、加熱前後の蛍光画像F1,F2の両画像を解析し、蛍光埃と生物由来の粒子とを判別する方が精度を向上させることができる。しかしながら、たとえば高グレードのクリーンルームのような環境では、蛍光埃は存在しない、または極めて少ない可能性が高い。こういった場合には、輝点を生物由来の粒子に起因するものと判別できる可能性が高いと考えられる。そこで、こういった場合には、必ずしも加熱前と加熱後との両蛍光画像の解析は必須ではなく、加熱後の蛍光画像F2の解析のみであってもよい。 As described above, the detection apparatus 100 can also calculate the amount of biologically derived particles using only the fluorescent image F2 after heating. In general atmospheric environment, fluorescent dust (generated from fibers, etc.) exists in the atmosphere. Therefore, as described above, both fluorescent images F1 and F2 before and after heating are analyzed, and fluorescent dust and biological particles are analyzed. Can improve the accuracy. However, in an environment such as a high-grade clean room, there is a high possibility that fluorescent dust is not present or very little. In such a case, it is highly likely that the bright spot can be distinguished from those derived from living organisms. Therefore, in such a case, analysis of both fluorescence images before and after heating is not necessarily required, and only analysis of the fluorescence image F2 after heating may be performed.

 図19は、上記ステップS31での分離処理の流れの変形例を表わしたフローチャートである。すなわち、図19を参照して、制御部10は、加熱後の蛍光画像F2の画素ごとに、その画素の輝度値が、予め記憶している、生物由来の粒子の輝度値の範囲内であるか否かを判別する(ステップS301)。生物由来の粒子の加熱後の輝度値の範囲もまた、予め実験等を行なうことで取得し、制御部10の図示しないメモリに記憶されるようにすればよい。そして、加熱後の輝度値が上記の範囲内、つまり、生物由来の輝度値であった場合には(ステップS303でYES)、制御部10は、蛍光画像F2には生物由来の粒子(微生物)が存在していると判別する(ステップS305)。加熱後の輝度値が生物由来の輝度値でなかった場合には(ステップS303でNO)、制御部10は、蛍光画像F2には生物由来の粒子(微生物)が存在していないと判別する(ステップS307)。 FIG. 19 is a flowchart showing a modified example of the flow of the separation process in step S31. That is, with reference to FIG. 19, for each pixel of the fluorescent image F <b> 2 after heating, the control unit 10 has the luminance value of the pixel within the range of the luminance value of the biological particle stored in advance. Whether or not (step S301). The range of the luminance value after heating the biological particles may be acquired in advance through experiments or the like and stored in a memory (not shown) of the control unit 10. When the luminance value after heating is within the above-described range, that is, a biological luminance value (YES in Step S303), the control unit 10 displays biological particles (microorganisms) in the fluorescent image F2. Is present (step S305). When the luminance value after heating is not a biological-derived luminance value (NO in step S303), the control unit 10 determines that biological-derived particles (microorganisms) are not present in the fluorescent image F2 ( Step S307).

 次に、図15を参照して、ステップS201で制御部10は、上記の処理で生物由来の粒子(微生物)が存在していると判別された蛍光画像F2である画素ごとの輝度値の情報を表わす画像データを二値化処理する(ステップS201)。制御部10は、二値化された画像データから輝点を特定し、特定された輝点ごとに、1つの輝点を構成する画素数(面積)および形状を、予め、生物由来の粒子に起因する輝点として記憶されている画素数および形状の特徴とそれぞれ比較する。すなわち、1つの輝点を構成する画素数(面積)が予め、生物由来の粒子に起因する1つの輝点を構成する画素数として記憶されている画素数(面積)に一致しており(ステップS203でYES)、かつ、1つの輝点の形状が予め、生物由来の粒子に起因する1つの輝点の形状として記憶されている形状に一致している場合(ステップS205でYES)、制御部10は、その1つの輝点を生物由来の粒子に起因するものと判別する。そして、制御部10は、その輝点を生物由来の粒子として計数する(ステップS207)。 Next, referring to FIG. 15, in step S201, the control unit 10 determines the luminance value information for each pixel that is the fluorescent image F2 that has been determined as having biologically derived particles (microorganisms) by the above-described processing. Is binarized (step S201). The control unit 10 identifies a bright spot from the binarized image data, and sets the number of pixels (area) and shape constituting one bright spot for each of the identified bright spots in advance to a biological particle. The number of pixels and the characteristics of the shape stored as the resulting bright spots are respectively compared. In other words, the number of pixels (area) constituting one bright spot matches the number of pixels (area) stored in advance as the number of pixels constituting one bright spot caused by biological particles (step) If the shape of one bright spot matches the shape stored in advance as the shape of one bright spot derived from a biological particle (YES in step S205), the control unit 10 discriminate | determines that the one luminescent spot originates in the particle | grains derived from living organisms. Then, the control unit 10 counts the bright spot as a biological particle (step S207).

 以上の動作で、検出装置100では、生物由来の粒子に起因すると判別された輝点を計数することで、撮影範囲に存在する生物由来の粒子(微生物)の数を得ることができる。制御部10は、得られた粒子数を捕集基板200の表面全体の面積分に換算した上で、捕集基板200で捕集動作を行なった際に用いた検体の量(たとえば大気1m3等)で除することで、生物由来の粒子の濃度を算出することができる。 With the above operation, the detection apparatus 100 can obtain the number of organism-derived particles (microorganisms) present in the imaging range by counting the bright spots determined to be caused by the organism-derived particles. The control unit 10 converts the obtained number of particles into the area of the entire surface of the collection substrate 200, and then the amount of the sample used when the collection operation is performed on the collection substrate 200 (for example, 1 m 3 in the atmosphere). Etc.) can be used to calculate the concentration of biological particles.

 <実施の形態の効果>
 上記の検出装置100を用いることで、蛍光試薬を用いることなく蛍光を利用して生物由来の粒子を検出することができる。そのため、容易に、また、蛍光試薬を不要とした分、コストを抑えて検出することができる。
<Effect of Embodiment>
By using the detection device 100 described above, it is possible to detect biologically-derived particles using fluorescence without using a fluorescent reagent. Therefore, the detection can be easily performed at a reduced cost because the fluorescent reagent is unnecessary.

 なお、発明者らは、図5Bに示された加熱処理後のアオカビ菌の蛍光画像F2を用いて、上記の算出処理で生物由来の粒子の数を計数することが可能であることを検証した。図16Bは、図16Aで白丸で囲まれた、加熱処理後のアオカビ菌の蛍光画像F2中の輝点の水平方向の輝度値を表わしたラインプロファイルを示している。図16Bより、輝点での輝度値とバックグラウンド値との間には大きな差が見られる。 In addition, the inventors verified that it is possible to count the number of organism-derived particles by the above calculation process using the fluorescence image F2 of the blue mold after the heat treatment shown in FIG. 5B. . FIG. 16B shows a line profile that represents the luminance value in the horizontal direction of the bright spot in the fluorescent image F2 of the blue mold after heat treatment, which is surrounded by white circles in FIG. 16A. FIG. 16B shows a large difference between the luminance value at the bright spot and the background value.

 図17Aは、図16Aの蛍光画像F2に対して、輝度値50をしきい値として用いて二値化処理を行なった画像(二値化画像)を表わしている。図17Aにおいて、黒領域がしきい値よりも輝度値の大きい画素、白領域がしきい値よりも輝度値の小さい画素を表わしている。図17Bは、図17Aの二値化画像の輝点の面積(画素数)および形状に基づいて生物由来の粒子に起因するものと判定された領域を表わした図である。図17Bより、生物由来の粒子に起因する輝点が14個と計数された(鎖状に連なった連鎖菌は1まとまりを1個として計数した)。 FIG. 17A shows an image (binarized image) obtained by binarizing the fluorescent image F2 of FIG. 16A using the luminance value 50 as a threshold value. In FIG. 17A, a black area represents a pixel having a luminance value larger than the threshold value, and a white area represents a pixel having a luminance value smaller than the threshold value. FIG. 17B is a diagram showing a region determined to be caused by biological particles based on the area (number of pixels) and shape of the bright spot of the binarized image of FIG. 17A. From FIG. 17B, the number of bright spots attributed to organism-derived particles was counted as 14 (chained fungi linked in a chain were counted as 1 group).

 以上より、生物由来の粒子に起因する輝点が画像処理によって計数可能であることが検証された。従って、検出装置100を用いて容易に生物由来の粒子を検出することができることが検証された。 From the above, it was verified that bright spots caused by biological particles can be counted by image processing. Therefore, it was verified that the biological particles can be easily detected using the detection apparatus 100.

 [第2の実施の形態]
 捕集基板200が捕集動作の後に検出装置100の固定部20で固定されて検出されることで、その捕集動作で捕集された生物由来の粒子が検出されることになる。このとき、捕集前に捕集基板200の表面をリフレッシュしておかないと、先の捕集動作で捕集された粒子が捕集基板200の表面に残留し、後の捕集動作で捕集された生物由来の粒子のみを検出することができない。しかしながら、捕集動作の度にリフレッシュするのは煩雑となる。そこで、検出装置100を用いて、同一の捕集基板200を複数回、捕集動作に用いた場合であっても、各捕集動作で捕集された生物由来の粒子を検出する計数方法について説明する。
[Second Embodiment]
When the collection substrate 200 is fixed and detected by the fixing unit 20 of the detection device 100 after the collection operation, the biological particles collected by the collection operation are detected. At this time, if the surface of the collection substrate 200 is not refreshed before collection, the particles collected in the previous collection operation remain on the surface of the collection substrate 200 and are collected in the subsequent collection operation. Only the collected biological particles cannot be detected. However, refreshing every collection operation becomes complicated. Therefore, even when the same collection substrate 200 is used for the collection operation a plurality of times using the detection apparatus 100, a counting method for detecting the biological particles collected in each collection operation. explain.

 図18は、同一の捕集基板200を、n回の捕集動作に用いた場合の、捕集された粒子の状態を説明するための図である。図18を参照して、n回の捕集動作に同一の捕集基板200を用いると、n回目の捕集動作の後の表面の粒子(図18の(C))は、1回目の捕集動作で捕集された粒子、2回目の捕集動作で捕集された粒子、…(中略)、(n-2)回目の捕集動作で捕集された粒子(図18の(A))、および(n-1)回目の捕集動作で捕集された粒子(図18の(B))が足し合わされたものとなる。従って、n回の捕集動作で捕集された粒子は、n回の捕集動作までで捕集された粒子から(n-1)回目の捕集動作までで捕集された粒子を除いた粒子となる。 FIG. 18 is a diagram for explaining a state of collected particles when the same collection substrate 200 is used for n collection operations. Referring to FIG. 18, when the same collection substrate 200 is used for the n-th collection operation, the particles on the surface after the n-th collection operation ((C) in FIG. 18) Particles collected in the collecting operation, particles collected in the second collecting operation,... (Omitted), (n-2) particles collected in the second collecting operation ((A) in FIG. 18) ), And (n-1) particles collected in the collection operation ((B) in FIG. 18) are added together. Therefore, the particles collected in the n-th collection operation are excluded from the particles collected in the n-th collection operation until the (n-1) -th collection operation. Become particles.

 そこで、検出装置100は、前回(n-1)回目の捕集動作の検出結果を記憶しておき、今回(n回目)の捕集動作の検出結果との差分を算出することで、今回の捕集動作で捕集された生物由来の粒子の量を算出する。これにより、検出装置100では、同一の捕集基板200を複数回、捕集動作に用いた場合であっても、各捕集動作で捕集された生物由来の粒子を検出することができる。そのため、捕集動作ごとのリフレッシュを不要とすることができ、容易に検出ができるようになる。 Therefore, the detection apparatus 100 stores the detection result of the previous (n-1) th collection operation, and calculates the difference from the detection result of the current (nth) collection operation, The amount of organism-derived particles collected by the collection operation is calculated. Thereby, in the detection apparatus 100, even if it is a case where the same collection board | substrate 200 is used for collection operation | movement several times, the particle | grains derived from the organism collected by each collection operation | movement can be detected. This eliminates the need for refreshing for each collection operation and facilitates detection.

 なお、検出動作ごとに検出結果として画像データを保存するとデータ量が膨大になり、制御部10に含まれる(または接続されたPC等に含まれる)ハードディスクなどの記憶装置やRAM(Random Access Memory)などのメモリを圧迫することになる。そこで、好ましくは、検出装置100は、画像データに替えて、画素ごとの検出結果を記憶するようにしてもよい。たとえば、生物由来の粒子が存在する画素領域の値を1、存在しない画素領域の値を0として、画像データを二値化することで、メモリに記憶されるデータ量を低減することができる。 If image data is saved as a detection result for each detection operation, the amount of data becomes enormous, and a storage device such as a hard disk or RAM (Random Access Memory) included in the control unit 10 (or included in a connected PC or the like). It will squeeze the memory. Therefore, preferably, the detection apparatus 100 may store a detection result for each pixel instead of the image data. For example, it is possible to reduce the amount of data stored in the memory by binarizing the image data by setting the value of the pixel region where the biological particles are present to 1 and the value of the non-existing pixel region to 0.

 たとえば、撮影部40が1000万画素のエリアセンサを含んで、1画素あたり16bitの輝度情報を取得する場合、撮影画像全体のデータ量は20MBとなる。これに対して、上記のように判別結果に従って画素ごとの値を0または1で二値化すると、1画素あたりの情報量は1bit(0または1)になるため、データ量が1/16に低減される。 For example, when the imaging unit 40 includes an area sensor of 10 million pixels and acquires 16-bit luminance information per pixel, the data amount of the entire captured image is 20 MB. On the other hand, if the value for each pixel is binarized with 0 or 1 according to the discrimination result as described above, the information amount per pixel becomes 1 bit (0 or 1), and the data amount is reduced to 1/16. Reduced.

 さらに、上記のように差分を算出するためには、少なくとも前回(n-1)回目の捕集動作の検出結果が記憶されていればよく、それよりも以前の捕集動作の検出結果は必ずしも記憶されていなくてもよい。そこで、好ましくは、検出装置100は、たとえば検出結果を上書きするなどして、少なくとも前回(n-1)回目の捕集動作の検出結果を含む、できるだけ少ない回数の検出結果を記憶するようにしてもよい。このようにすることでも、メモリに記憶されるデータ量を低減することができる。さらに、このとき、上記のように、検出結果として画像データを判別結果に従って画素ごとの値で二値化した情報を記憶することで、よりデータ量を低減することができる。 Furthermore, in order to calculate the difference as described above, it is only necessary to store at least the previous (n−1) th collection operation detection result, and the previous collection operation detection result is not necessarily the same. It does not have to be stored. Therefore, preferably, the detection apparatus 100 stores the detection results as few times as possible including at least the detection result of the previous (n−1) collection operation by overwriting the detection results, for example. Also good. In this way, the amount of data stored in the memory can be reduced. Furthermore, at this time, as described above, the amount of data can be further reduced by storing the information obtained by binarizing the image data with the value for each pixel according to the determination result as described above.

 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

 10 制御部、20 固定部、30 励起光源、31 光源用レンズ、40 撮影部、41 レンズ、42 フィルタ、43 波長選択性ミラー、50 加熱部、75~78 曲線、100 検出装置、101 算出部、102 撮影動作部、103 発光制御部、104 撮影制御部、105 画像入力部、106 加熱制御部、107 分離部、108 画像解析部、109 二値化部、110 判別部、200 捕集基板。 10 control unit, 20 fixing unit, 30 excitation light source, 31 lens for light source, 40 imaging unit, 41 lens, 42 filter, 43 wavelength selective mirror, 50 heating unit, 75-78 curve, 100 detection device, 101 calculation unit, 102 imaging operation unit, 103 light emission control unit, 104 imaging control unit, 105 image input unit, 106 heating control unit, 107 separation unit, 108 image analysis unit, 109 binarization unit, 110 discrimination unit, 200 collection substrate.

Claims (8)

 検体中の粒子を表面に捕集可能な捕集基板を固定するための固定手段と、
 前記固定手段によって固定された前記捕集基板の表面に対して励起光を照射するための光源と、
 前記固定手段によって固定された前記捕集基板の表面の少なくとも一部領域を撮影範囲として撮影するための、二次元的に配列された複数のセンサを含む撮影手段と、
 前記捕集基板を加熱するための加熱手段と、
 前記加熱手段で加熱後の前記撮影手段での撮影画像を用いて前記捕集基板の表面に捕集された粒子のうちの生物由来の粒子の量を算出するための算出手段とを備える、検出装置。
Fixing means for fixing a collection substrate capable of collecting particles in the specimen on the surface;
A light source for irradiating excitation light onto the surface of the collection substrate fixed by the fixing means;
An imaging means including a plurality of two-dimensionally arranged sensors for imaging at least a partial area of the surface of the collection substrate fixed by the fixing means as an imaging range;
Heating means for heating the collection substrate;
A detection means comprising: a calculation means for calculating an amount of biologically-derived particles out of particles collected on the surface of the collection substrate using a photographed image obtained by the photographing means after being heated by the heating means. apparatus.
 前記算出手段は、前記加熱手段で加熱後の前記撮影手段での撮影画像を解析することで、前記捕集基板の表面に捕集された粒子のうちの生物由来の粒子の量を算出する、請求項1に記載の検出装置。 The calculation means calculates the amount of biologically-derived particles among the particles collected on the surface of the collection substrate by analyzing a photographed image by the photographing means after being heated by the heating means. The detection device according to claim 1.  前記算出手段は、前記捕集基板が前記光源から前記励起光が照射された状態で前記撮影手段によって撮影された前記撮影画像を解析して各画素の輝度値を得、前記加熱手段で加熱前の前記撮影画像の各画素の輝度値と前記加熱手段で加熱後の前記撮影画像の各画素の輝度値との間の変化に基づいて前記捕集基板の表面に捕集された前記生物由来の粒子を判別してその量を算出する、請求項2に記載の検出装置。 The calculation unit analyzes the captured image captured by the imaging unit in a state where the collection substrate is irradiated with the excitation light from the light source, obtains a luminance value of each pixel, and before heating by the heating unit Derived from the organism collected on the surface of the collection substrate based on a change between the luminance value of each pixel of the captured image and the luminance value of each pixel of the captured image after being heated by the heating means. The detection device according to claim 2, wherein particles are discriminated and the amount thereof is calculated.  前記算出手段において前記撮影画像のうちの前記生物由来の粒子が存在すると判別された画素を記憶するための記憶手段をさらに備え、
 前記算出手段は、前記撮影画像から前記生物由来の粒子が存在すると判別された画素と、前記記憶手段に記憶されている画素との差分に基づいて、前記捕集基板の表面に捕集された粒子のうちの生物由来の粒子の量を算出する、請求項3に記載の検出装置。
A storage means for storing the pixels determined in the calculation means that the organism-derived particles in the photographed image are present;
The calculation means is collected on the surface of the collection substrate based on a difference between a pixel determined from the captured image that the biological particle is present and a pixel stored in the storage means. The detection device according to claim 3, wherein the amount of biological particles among the particles is calculated.
 前記光源は、生物由来の粒子を励起させることのできる波長領域の光を照射する、請求項1~4のいずれかに記載の検出装置。 The detection device according to any one of claims 1 to 4, wherein the light source emits light in a wavelength region that can excite biological particles.  前記光源は、半導体レーザである、請求項5に記載の検出装置。 The detection device according to claim 5, wherein the light source is a semiconductor laser.  前記光源は、300nm~450nmの範囲の波長の光を照射する、請求項5または6に記載の検出装置。 The detection device according to claim 5 or 6, wherein the light source irradiates light having a wavelength in a range of 300 nm to 450 nm.  検体中の粒子を表面に捕集可能な捕集基板を加熱するステップと、
 前記加熱後の前記捕集基板の表面に対して、光源から励起光を照射するステップと、
 前記加熱後の前記捕集基板が前記光源から前記励起光が照射された状態で、前記捕集基板の表面の少なくとも一部領域を撮影範囲として、二次元的に配列された複数のセンサを含む撮影手段を用いて撮影するステップと、
 前記撮影手段での撮影画像を用いて前記捕集基板の表面に捕集された粒子のうちの生物由来の粒子の量を算出するステップとを備える、検出方法。
Heating a collection substrate capable of collecting particles in the specimen on the surface;
Irradiating excitation light from a light source to the surface of the collection substrate after the heating;
A plurality of sensors arranged in a two-dimensional manner with at least a partial region of the surface of the collection substrate as an imaging range in a state in which the collection substrate after the heating is irradiated with the excitation light from the light source; Photographing using a photographing means;
And a step of calculating an amount of biologically-derived particles among particles collected on the surface of the collection substrate using a photographed image obtained by the photographing means.
PCT/JP2014/057231 2013-03-26 2014-03-18 Detection device and detection method Ceased WO2014156797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013064026 2013-03-26
JP2013-064026 2013-03-26

Publications (1)

Publication Number Publication Date
WO2014156797A1 true WO2014156797A1 (en) 2014-10-02

Family

ID=51623777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057231 Ceased WO2014156797A1 (en) 2013-03-26 2014-03-18 Detection device and detection method

Country Status (1)

Country Link
WO (1) WO2014156797A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109253954A (en) * 2017-07-14 2019-01-22 株式会社堀场制作所 Analytical equipment, system, analysis method and storage medium
US11181456B2 (en) 2020-02-14 2021-11-23 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11221288B2 (en) 2020-01-21 2022-01-11 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11326999B2 (en) 2019-08-02 2022-05-10 Honeywell International Inc. Particle mass characteristics determining device and method
US11333593B2 (en) 2020-02-14 2022-05-17 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11391613B2 (en) 2020-02-14 2022-07-19 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11835432B2 (en) 2020-10-26 2023-12-05 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11923081B2 (en) 2017-09-27 2024-03-05 Honeywell International Inc. Respiration-vocalization data collection system for air quality determination
US12111257B2 (en) 2020-08-26 2024-10-08 Honeywell International Inc. Fluid composition sensor device and method of using the same
US12281976B2 (en) 2021-05-13 2025-04-22 Honeywell International Inc. In situ fluid sampling device and method of using the same
US12292362B2 (en) 2019-04-26 2025-05-06 Honeywell International Inc. Flow device and associated method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281131A (en) * 1989-04-24 1990-11-16 Mitsubishi Heavy Ind Ltd Apparatus for judging alive or dead state of microorganism cell
JP2005065570A (en) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd Viable bacteria detection method and viable bacteria counting device
JP2007024612A (en) * 2005-07-14 2007-02-01 Matsushita Ecology Systems Co Ltd Comet assay analysis method, comet assay image analyzer, comet assay analyzer
JP2010071928A (en) * 2008-09-22 2010-04-02 Casio Computer Co Ltd Biological macromolecule analysis support apparatus
WO2012165036A1 (en) * 2011-06-03 2012-12-06 シャープ株式会社 Detection device and detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281131A (en) * 1989-04-24 1990-11-16 Mitsubishi Heavy Ind Ltd Apparatus for judging alive or dead state of microorganism cell
JP2005065570A (en) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd Viable bacteria detection method and viable bacteria counting device
JP2007024612A (en) * 2005-07-14 2007-02-01 Matsushita Ecology Systems Co Ltd Comet assay analysis method, comet assay image analyzer, comet assay analyzer
JP2010071928A (en) * 2008-09-22 2010-04-02 Casio Computer Co Ltd Biological macromolecule analysis support apparatus
WO2012165036A1 (en) * 2011-06-03 2012-12-06 シャープ株式会社 Detection device and detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANAGE P. DAMMIKA ET AL.: "Sub-microliter scale in-gel loop-mediated isothermal amplification (LAMP) for detection of Mycobacterium tuberculosis", MICROFLUIDICS AND NANOFLUIDICS, vol. 14, November 2012 (2012-11-01), pages 731 - 741 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109253954B (en) * 2017-07-14 2022-12-23 株式会社堀场制作所 Analysis device, analysis system, analysis method, and storage medium
CN109253954A (en) * 2017-07-14 2019-01-22 株式会社堀场制作所 Analytical equipment, system, analysis method and storage medium
US11923081B2 (en) 2017-09-27 2024-03-05 Honeywell International Inc. Respiration-vocalization data collection system for air quality determination
US12292362B2 (en) 2019-04-26 2025-05-06 Honeywell International Inc. Flow device and associated method and system
US11326999B2 (en) 2019-08-02 2022-05-10 Honeywell International Inc. Particle mass characteristics determining device and method
US11221288B2 (en) 2020-01-21 2022-01-11 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11391613B2 (en) 2020-02-14 2022-07-19 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11333593B2 (en) 2020-02-14 2022-05-17 Honeywell International Inc. Fluid composition sensor device and method of using the same
US12181400B2 (en) 2020-02-14 2024-12-31 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11181456B2 (en) 2020-02-14 2021-11-23 Honeywell International Inc. Fluid composition sensor device and method of using the same
US12111257B2 (en) 2020-08-26 2024-10-08 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11835432B2 (en) 2020-10-26 2023-12-05 Honeywell International Inc. Fluid composition sensor device and method of using the same
US12209941B2 (en) 2020-10-26 2025-01-28 Honeywell International Inc. Fluid composition sensor device and method of using the same
US12281976B2 (en) 2021-05-13 2025-04-22 Honeywell International Inc. In situ fluid sampling device and method of using the same

Similar Documents

Publication Publication Date Title
WO2014156797A1 (en) Detection device and detection method
JP7590741B2 (en) Analysis System
CN108012553B (en) Information processing apparatus, information processing method, and information processing system
US9810633B2 (en) Classification of surface features using fluoresence
JP5597248B2 (en) Biological and chemical collection and detection
CN109073536B (en) Information processing apparatus, information processing method, program, and information processing system
CN112689752B (en) Systems, methods and apparatus for autonomous diagnostic verification of optical components of vision-based inspection systems
CN105203445B (en) Particle detection device and particle detection method
JP2010085194A (en) Sample analyzer
JP2009530691A (en) Imaging device system
US20040243318A1 (en) Microbe examining device and method
KR20170128786A (en) Method and system for detecting and separation of biological particles using multi-wavelength fluorescence analysis
JP3850418B2 (en) Pollen sensor
WO2002064818A1 (en) Method and apparatus for immediately discriminating microorganism
JP2005065570A (en) Viable bacteria detection method and viable bacteria counting device
JP4487985B2 (en) Microorganism weighing device
JP7286070B2 (en) Inspection system, inspection method, program, and computer-readable storage medium
JP2007060945A (en) Microbe counting device
JP5374809B2 (en) Microbe measurement system
JP4792880B2 (en) Microorganism counting method and microorganism counting apparatus
CN116266013A (en) Fluorescence Microscopy Systems and Methods
JP2006081427A (en) Bacteria detection method and bacteria counting device
JP2008116422A (en) Fine particle detector
Browne Imaging and image analysis in the comet assay
CN116223457A (en) Method and Fluorescence Analyzer for Analyzing Mixed Fluorescence Responses of Multiple Fluorophores

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP