WO2014151662A1 - Configuration d'un ensemble de dispositifs d'une structure - Google Patents
Configuration d'un ensemble de dispositifs d'une structure Download PDFInfo
- Publication number
- WO2014151662A1 WO2014151662A1 PCT/US2014/026201 US2014026201W WO2014151662A1 WO 2014151662 A1 WO2014151662 A1 WO 2014151662A1 US 2014026201 W US2014026201 W US 2014026201W WO 2014151662 A1 WO2014151662 A1 WO 2014151662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- devices
- mobile computing
- computing device
- communication
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/023—Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0806—Configuration setting for initial configuration or provisioning, e.g. plug-and-play
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2101/00—Indexing scheme associated with group H04L61/00
- H04L2101/60—Types of network addresses
- H04L2101/618—Details of network addresses
- H04L2101/622—Layer-2 addresses, e.g. medium access control [MAC] addresses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
Definitions
- the described embodiments relate generally to a structure plan of a structure. More particularly, the described embodiments relate to apparatuses, methods and systems of configuring a set of devices of a structure on a plan, and placement of the device on the plan.
- Lighting control can be used to automatically control lighting under certain conditions, thereby conserving power.
- lighting control specifically advanced lighting controls have not been widely adopted in the general commercial market because the installation, setup related costs and complexity have made these lighting systems prohibitively expensive for most commercial customers.
- An embodiment includes a method of configuring a set of devices of a structure.
- the method includes loading a structure plan to a mobile computing device, wherein the structure plan is associated with the structure, communicating, by the mobile computing device, with one or more of the set of devices, communicating, by each of the one or more of the set of devices, a device identifier and proximity dependent information of the device back to the mobile computing device, wherein the proximity dependent information allows the mobile computing device to estimate a proximate location of the device, and placing, by the mobile computing device, each of the one or more of the set of devices on the structure floor plan based at least in part on the proximity dependent information.
- Another embodiment includes a mobile computing device configuring a set of devices of a structure.
- the mobile computing device is operative to upload a structure floor plan, wherein the structure floor plan is associated with the structure, communicate with one or more of the set of devices, receive from each of the one or more of the set of devices, a device identifier and proximity dependent information the device back to the mobile computing device, and place each of the one or more of the set of devices on the structure floor plan.
- Figure 1 A shows a mobile computing device downloading a plan of a structure, according to an embodiment.
- Figure IB shows a mobile computing device collecting information about devices within a structure, and placing the devices on the downloaded plan of the structure, according to an embodiment.
- Figure 2A shows a mobile computing device uploading a plan of a structure that includes placement of devices of the structure to a central server, according to an embodiment.
- Figure 2B shows a central server communicating with the devices of the structure after the devices have been placed in the structure, according to an embodiment.
- Figure 3 is a flow chart that includes steps of a method of configuring a set of devices of a structure, according to an embodiment.
- Figure 4 shows a lighting device, according to an embodiment.
- Figure 5 shows a user interface of a mobile computing device that facilitates placements of the devices on the plan, according to an embodiment.
- the described embodiments are embodied in an apparatuses, systems and methods of placing devices (such as, lighting fixtures or temperature control devices) on a plan (such as, a floor plan) of a structure (such as a building).
- devices such as, lighting fixtures or temperature control devices
- the lighting system can be used to generate a building floor plan, or to supplement an existing building floor plan.
- the light intensity of any of the lights can be changed.
- Proximate light sensors detect the change in light intensity.
- a user of a mobile device senses the changes in light intensity of the lights, and records the locations of the lights.
- Figure 1 A shows a mobile computing device 112 downloading a plan of a structure from a central server 110, according to an embodiment.
- the structure can include, for example, a building, a parking lot, or any other structure that might include lighting devices or any other devices, such as, temperature and environmental control units.
- the plan provides for placement of the devices, but may not include exact or precise knowledge of which devices are placed at which location within the structure. That is, for example, the plan may provide approximate location of a device, but may not include information of which device is at which approximate location.
- the mobile computing device can use this information as a first data point in determining the precise locations of each of the devices within the structure.
- Figure IB shows a mobile computing device collecting information about devices within a structure, and placing the devices on the downloaded plan of the structure, according to an embodiment.
- the mobile device can include, for example, a smart mobile phone (such as an iPhone) or a laptop personal computer (which possibly include GPS capability).
- the mobile device can be used to communicate information from the mobile device to a sensor device using radio technology or other means of communications. This is, for example, to specify the location of the sensor, give a command to a sensor, and associate two or more sensors. Additionally, the mobile device can receive communications from a sensor device using radio technology or other means of communications. This allows a sensor device to be identified (and location recorded), give commands (such as direct motion), and provide results from an operation.
- a structure 100 includes devices (such as fixtures 121 - 129) that are located within or around the structure.
- devices such as fixtures 121 - 129) that are located within or around the structure.
- a general plan, or floor plan of the structure may generally provide approximate placement of the devices within the structure.
- the mobile computing device 112 is transported around the structure. One exemplary path of travel is shown.
- the mobile computing device 112 communicates within one or more of the devices 121- 129.
- the mobile computing device 112 includes a radio that allows the mobile computing device to communicate with each of the devices 121- 129 through a communications channel utilized by, for example, the central server 110, or gateways associated with the central server 110 to communicate with the devices 121-129.
- the mobile computing device 112 transmits a communications signal that is received by one or more of the devices 121-129.
- the devices 121-129 respond to the communications signal with a device identifier and proximity dependent information.
- the device identifier includes a MAC (media access control) address of the device.
- the proximity dependent information includes a Link Quality Indicator (LQI) of the received communication signal.
- the LQI includes, for example, a received signal strength indicator (RSSI) that provides an indication of how close the mobile computing device is to the particular device.
- RSSI received signal strength indicator
- the transmit power of the mobile device is varied which adjusts, the size of the set of responding devices. For example, by sufficiently reducing the transmit power of the mobile device, only the nearest device or devices (to the mobile device) will respond, a procedure which may further augment the process of locating a device on a floor plan. That is, for example, by varying the transmit power, an LQI list generated by the responding devices can be adjusted in length (that is, the number of responding devices is adjusted). Further, at least some embodiments include adjusting the timing of the response of the devices. By adjusting the timing of the response of the devices, congestion due to near simultaneous responses can be alleviated. For an embodiment, the response times of the devices is randomly selected. For an embodiment, the response time of each device is selected based at least in part on a MAC (media access control) address of the device. For example, the response time of each device can be selected based on the last bit or byte of the MAC address of the device.
- MAC media access control
- a user that is operating the mobile computing device will have a visual of the devices the mobile computing device is communicating with, but this is not required.
- the mobile computing device can attempt to place each of the devices on the plan or floor plan based on the proximity dependent information. For example, typically the device responding with the highest or best LQI is the device located most proximate to the mobile computing device. Therefore, the mobile computing device can place the device on the plan based on this information.
- the mobile computing device (or a user of the mobile computing device) can confirm the placement by sending a message to a specifically placed device using the device identification (such as, MAC address).
- the message indicates to the specific device to provide a user observable indicator.
- the user observable indicator can be visual, audible or any other means that allows for the mobile computing device or a user of the mobile computing device to confirm the indicator.
- the mobile computing device can confirm the placement of the device on the plan or floor plan.
- One embodiment includes sending a command to the target device to identify itself, after which the device responds with a visual or audio or other signal.
- an embodiment includes a bulk process that includes instructing each device in a floor plan, selected in an order (for an embodiment, the order includes a serpentine order), to respond and identify itself.
- the serpentine order proceeds down one row of devices, verifying each device at a time, and when the last device in the row is processed, the last device on the next row is selected. This procedure ensures that the next device to be verified is physically close to the prior device. The process continues automatically and un-attended until all devices have been verified.
- at least some embodiment include capabilities to issue wireless commands to all devices to turn off/on the light simultaneously, or selected devices from the software user interface to do the same.
- Figure 2 A shows a mobile computing device 112 uploading a plan of a structure that includes placement of devices of the structure, to a central server 110, according to an embodiment. After going through the described process of placing the devices of the structure on the plan, for an embodiment, the plan is then uploaded to the central server 110. The central server now has placement of each of the devices within the structure, and the device identifier (MAC address) of the device.
- MAC address device identifier
- Figure 2B shows a central server 110 communicating with the devices 121- 129 of the structure 110 after the devices 121-129 have been placed in the structure, according to an embodiment.
- the central server 110 is network connected to gateways 240, 242.
- the gateways 240, 242 then communicate with the devices 121-129.
- Some of the devices 121-129 will naturally be located farther away, or otherwise have inferior quality links to the gateways 240, 242.
- certain of the devices are designated as repeater devices.
- certain of the devices are designated as repeater devices based on the proximity of the devices to gateways and other device as determined by the placement of the devices and gateways on the plan or floor plan.
- device 128 is designated as a repeater device.
- gateway 240 communicates with device 123
- the gateway 240 communicated through the repeater device 128 to the device 123.
- Figure 3 is a flow chart that includes steps of a method of configuring a set of devices of a structure, according to an embodiment.
- a first step 310 includes loading a structure plan to a mobile computing device, wherein the structure plan is associated with the structure.
- a second step 320 includes communicating, by the mobile computing device, with one or more of the set of devices.
- a third step 330 includes communicating, by each of the one or more of the set of devices, a device identifier and proximity dependent information the device back to the mobile computing device, wherein the proximity dependent information allows the mobile computing device to estimate a proximate location of the device.
- a fourth step 340 includes placing, by the mobile computing device, each of the one or more of the set of devices on the structure floor plan based at least in part on the proximity dependent information.
- An embodiment further includes each of the one or more of the set of devices, communicating an observable feedback to an operator of the mobile computing device.
- the observable feedback can be visual, audible, or any other means of feedback that the user of the mobile computing device, or the mobile computing device itself can receive, and therefore, confirm placement of the device providing the observable feedback.
- the mobile computing device includes a user interface that more readily allows the user of the mobile computing device to confirm locations of each of the devices.
- the user interface of the mobile computing device provides an in-range list of devices.
- the in-range list includes the devices that are within the communication range of, for example, wireless communication from the mobile computing device to the devices.
- the list of devices of the in-range list are listed in an estimated order of proximity to the mobile computing device.
- the proximity can be estimated, for example, based on the link quality between the mobile computing device and each of the devices.
- the user interface allows the user to select a device from the list, and further, communicate a command to the device, wherein the device provides a user-observable feedback in response to being selected. Further, the user interface can easily allow the user to then select the next device of the list for placement confirmation.
- the mobile computing device then uploads the placement of each of the one or more of the set of devices on the structure floor plan to a central server.
- An embodiment can further include the central server confirming or supplementing the placements of one or more of the set of devices on the structure floor plan through activation of a user-selected device of the one or more of the set of device.
- An embodiment further includes providing a user-interface that depicts at least a portion of the structure floor plan and at least a portion of the set of devices, and further depicts the user-selected device, and further facilitates communication to the user- selected device.
- An embodiment further includes providing a capability to record meta data and other information (such as diagnostic data) about each device on a floorplan, either in the mobile device or central server or both.
- This capability enables, for example, a "punchlist" (a list of diagnostic problems) of the sensor devices to be created and maintained, which will simplify the repair process and overall maintenance of the sensor devices. That is, the responses of the devices to the communication by the mobile device can include information related to the operating condition and health of the device.
- the operating condition and health information of each device can be used by a system operator to schedule maintenance of the devices.
- the operating condition and health information of each device can be used to identify problem conditions associated with the devices.
- the mobile computing device communicates with the one or more of the set of devices through a wireless channel that a central server or a gateway uses to communicate with each of the set of devices. This saves resources because each of the devices already has the electronics required to communicate with the central server or gateways connected to the central server. That is, an extra channel for communication between the mobile computing device and each device is not required. An existing communication channel is utilized.
- embodiment further includes physically transporting the mobile computing device about the structure, and the mobile computing device communicating with one or more of the set of devices.
- the mobile computing device receives a device identifier and proximity dependent information back from the devices.
- the proximity dependent information includes a received signal strength of
- the proximity dependent information includes a Link Quality Indicator of communication received by the device.
- the device identifier includes a MAC address of the device.
- an embodiment further includes designating at least a portion of the set of devices as repeater devices, wherein repeater devices receive communication signals from either a gateway or another repeater device, and transmit the communication signals to another device.
- the gateway device is located on the floor plan, and the portion of the set of devices are designated as repeater devices based on a proximity of the portion of the set of devices relative to the gateway.
- the devices are lighting fixtures that are controllable, for example, by the central server. Further, for at least some embodiment, the lighting fixtures include sensors.
- An embodiment further includes a network setup being executed after the placement of the devices on the floor plan has been completed.
- the network setup can include associating certain devices with particular gateways, thereby establishing groups of devices.
- the central controller can then communication with particular groups through corresponding gateways.
- An embodiment further includes the central controller initiating or causing the devices to provide a sequential user observable feedback after all of the devices have been placed. That is, each device sequentially generates a user observable feedback that allows a user to confirm the placement of the devices. For example, the lighting of lighting devices can be sequentially performed to allow the user to confirm that each device has been properly placed on a floor plan of a building.
- FIG. 4 shows a lighting device (lighting fixture 400), according to an embodiment.
- this embodiment includes a light 410, a light intensity controller 420, a controller 430, and a communications interface 450.
- the intensity of light emitted from the light is controlled by the light intensity controller 420 which can be of different forms depending, for example, if the light 410 is an LED (light emitting diode) or florescent light.
- the controller 430 is operative to communicate with external devices (such as, a gateway or the mobile computing device) through the communications interface 450.
- the communications interface 450 includes a wireless communication interface.
- the controller 430 is further operative to receive commands and react accordingly.
- the controller 430 when the controller 430 receives a first command from the mobile computing device, the controller 430 transmits back to the mobile computing device the device identifies and proximity dependent information of the lighting fixture 400. Further the controller 430 can provide user observable feedback, thereby indicating to a user that the lighting fixture has received the first command.
- the controller 430 is further operative to provide the user- observable feedback to the mobile computing device upon receiving communication specifically for the lighting fixture as identified by the device identifier (for example, MAC address).
- the user-observable feedback can take one of many different forms, but one form includes controlling the intensity of emitted light, which can be observer by the user of the mobile computing device.
- Figure 5 shows a user interface 510 of a mobile computing device that facilitates placements of the devices on the plan, according to an embodiment.
- the user interface includes at least a portion of a floor plan of a building (structure) in which placement of devices is being performed.
- the user interface can provide a visual depiction of the placed devices and their corresponding MAC addresses.
- the user can then select a device, and the mobile computing device sends the selected device a command. Upon receiving the command, the device provides the user observable feedback.
- the user interface includes a device in-range list.
- the device in-range list orders the devices according to the signal quality of the communication signal receive from the mobile computing device. It can be inferred that the devices having the best link quality are the closest or most proximate to the mobile computing device.
- the user of the mobile computing device can then select a device from the device in-range list for confirmation of placement. Once confirmation of a device has been made, the list can then move to the next device on the list for confirmation.
- the in-range list can be varies or adjusted by varying or adjusting the transmit power of the mobile device. That is, by varying the transmit power of the mobile device, the number of devices that receive the communication from the mobile device is adjusted. Accordingly, the size of number of devices of the in-range list can by controllably adjusted. Further, the response times of the devices can be adjusted.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
L'invention porte sur des systèmes, des procédés et des appareils pour configurer un ensemble de dispositifs d'une structure. Un procédé consiste à charger un plan de structure dans un dispositif informatique mobile, le plan de structure étant associé à la structure, à communiquer, par le dispositif informatique mobile, avec un ou plusieurs dispositifs de l'ensemble de dispositifs, à communiquer, par chacun du ou des dispositifs de l'ensemble de dispositifs, un identifiant de dispositif et des informations dépendantes de la proximité du dispositif en retour au dispositif informatique mobile, les informations dépendantes de la proximité permettant au dispositif informatique mobile d'estimer un emplacement proche du dispositif, et à placer, par le dispositif informatique mobile, chacun du ou des dispositifs de l'ensemble de dispositifs sur le plan d'étage de la structure au moins en partie sur la base des informations dépendantes de la proximité.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361790037P | 2013-03-15 | 2013-03-15 | |
| US61/790,037 | 2013-03-15 | ||
| US14/040,640 US9575478B2 (en) | 2009-09-05 | 2013-09-28 | Configuring a set of devices of a structure |
| US14/040,640 | 2013-09-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014151662A1 true WO2014151662A1 (fr) | 2014-09-25 |
Family
ID=51581007
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/026201 Ceased WO2014151662A1 (fr) | 2013-03-15 | 2014-03-13 | Configuration d'un ensemble de dispositifs d'une structure |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2014151662A1 (fr) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050169643A1 (en) * | 1997-01-02 | 2005-08-04 | Franklin Philip G. | Method and apparatus for the zonal transmission of data using building lighting fixtures |
| US20050174960A1 (en) * | 2003-02-14 | 2005-08-11 | Perlman Stephen G. | Method of operation for a three-dimensional, wireless network |
| US20110183685A1 (en) * | 2010-01-20 | 2011-07-28 | Airpatrol Corporation | Multi-band radio frequency detection and location system |
| WO2012001428A1 (fr) * | 2010-07-02 | 2012-01-05 | Vodafone Ip Licensing Limited | Dispositif informatique mobile |
| US20120130632A1 (en) * | 2007-08-06 | 2012-05-24 | Amrit Bandyopadhyay | System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors |
-
2014
- 2014-03-13 WO PCT/US2014/026201 patent/WO2014151662A1/fr not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050169643A1 (en) * | 1997-01-02 | 2005-08-04 | Franklin Philip G. | Method and apparatus for the zonal transmission of data using building lighting fixtures |
| US20050174960A1 (en) * | 2003-02-14 | 2005-08-11 | Perlman Stephen G. | Method of operation for a three-dimensional, wireless network |
| US20120130632A1 (en) * | 2007-08-06 | 2012-05-24 | Amrit Bandyopadhyay | System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors |
| US20110183685A1 (en) * | 2010-01-20 | 2011-07-28 | Airpatrol Corporation | Multi-band radio frequency detection and location system |
| WO2012001428A1 (fr) * | 2010-07-02 | 2012-01-05 | Vodafone Ip Licensing Limited | Dispositif informatique mobile |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9575478B2 (en) | Configuring a set of devices of a structure | |
| US9872271B2 (en) | Tracking locations of a computing device and recording locations of sensor units | |
| US9618915B2 (en) | Configuring a plurality of sensor devices of a structure | |
| US20170188438A1 (en) | System and method for control of an illumination device | |
| US9420667B2 (en) | User control of an environmental parameter of a structure | |
| JP5547745B2 (ja) | デバイスの設定を別のデバイスにコピーする、特にランプ間の設定をコピーするシステム及び方法 | |
| JP5606553B2 (ja) | 非アクティブ・ダウンリンク・コンポーネント・キャリアを測定するようにユーザ機器を制御する方法および装置 | |
| JP2019528527A (ja) | 構成デバイスを使用するフィールドデバイスを構成するためのシステム及び方法 | |
| EP3130203B1 (fr) | Configuration d'une pluralité de dispositifs capteurs d'une structure | |
| JP2013520050A5 (fr) | ||
| EP3622785B1 (fr) | Formation de groupes de dispositifs par analyse d'informations de commande de dispositif | |
| US10743394B2 (en) | Two-layer lighting control network systems and methods | |
| JP7312699B2 (ja) | ビルオートメーションシステム | |
| CN110650575B (zh) | 灯具、控制器、灯具系统及灯具监测方法 | |
| EP3272104B1 (fr) | Réseau distribué de structure fournissant une interaction humaine basée sur une position et intelligence | |
| JP2012089277A (ja) | 照明制御装置 | |
| US10537003B2 (en) | Methods of operation of smart lighting systems | |
| KR20180037180A (ko) | 스마트 홈 시스템 | |
| WO2014151662A1 (fr) | Configuration d'un ensemble de dispositifs d'une structure | |
| JP6830208B2 (ja) | 照明システム、照明器具、および、照明システムのペアリング方法 | |
| US9848481B2 (en) | Radio-controlled lighting system, radio device, and registration method | |
| US20240313575A1 (en) | Building energy management system | |
| JP2022554331A (ja) | トリガベースのコミッショニングシステム | |
| US20230292091A1 (en) | Electronic Label Localization and Mesh Network Desynchronization | |
| KR101895696B1 (ko) | Li-Fi/RF(WiFi/ZigBee/Bluetooth) Hybrid 기술 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14767363 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14767363 Country of ref document: EP Kind code of ref document: A1 |