WO2014147293A1 - Procédé de fabrication de cellulose nano- ou microfibrillée - Google Patents
Procédé de fabrication de cellulose nano- ou microfibrillée Download PDFInfo
- Publication number
- WO2014147293A1 WO2014147293A1 PCT/FI2014/050190 FI2014050190W WO2014147293A1 WO 2014147293 A1 WO2014147293 A1 WO 2014147293A1 FI 2014050190 W FI2014050190 W FI 2014050190W WO 2014147293 A1 WO2014147293 A1 WO 2014147293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- previous
- cell wall
- treatment
- fibers
- nfc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/08—Fractionation of cellulose, e.g. separation of cellulose crystallites
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C3/00—Pulping cellulose-containing materials
- D21C3/02—Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
- D21C9/007—Modification of pulp properties by mechanical or physical means
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/16—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
- D21H11/18—Highly hydrated, swollen or fibrillatable fibres
Definitions
- the present invention relates to a method of producing nano- and microfibrillated cellulose.
- the present invention relates to a process of producing nano- and/or microfi- brillated cellulose from cellulosic fibers yielding enhanced final product properties and higher productivity.
- Nanocellulose (NFC) or microfibrillated cellulose (MFC) is a material composed of nanosized cellulose fibrils with a high aspect ratio (length to width ratio).
- NFC produc- tion processes are generally based on treating chemical cellulose fibers. This can be done with enzymes or by changing swelling of the fiber by e.g. cationizing the fibers, acid hydrolysis, solvent treatments or ionic liquids. These pretreated fibers are next usually refined or fluidized in order to get the fibers deaggregated. These operations increase chemical and/or enzyme consumption and the energy consumption is very high. Significant amounts of water are also consumed and effluents are generated in these processes.
- NFC production today commonly includes pulps from semichemical, mechanical and chemical pulping processes, which are used for pulping hardwood, softwood and non-wood raw materials.
- Various additives are used in order to improve economy in chemical consumption and washing of the pulp as well as the economy of the pulp production.
- Pretreatment of these fibers for NFC production includes various enzymatic, chemical and mechanical unit operations.
- US-publication 201 1 /0277947 A1 presents a method for production of cellulose nano- filaments from bleached cellulose kraft pulps, e.g. hard and softwood pulps. These pulps are produced according to a prior art kraft process and the inventors claim that by using a special device, they may produce longer cellulose nanofilaments compared to the prior art.
- US publication 2008/0057307 A1 teaches a method for production of nano-sized fiber fibrils from solid fibers having high aspect ratio.
- the raw materials useable in the embodiments can be selected from cellulose, acrylic and polyester fibers.
- CA publication 2437616 A1 presents a method for production of cellulose nano fila- ments from cellulose kraft pulps. These pulps are produced according to prior art kraft processes and the inventors claim that by defibrating the pulp under higher shear forces they may produce NFC.
- US publication 5385640 presents a method for production of NFC (MDC) from wheat fiber and bleached sulfite cellulose pulps. The method comprises passing fibers through high shear in a double disc refiner.
- MDC NFC
- US 4869783 a chemical pulping process is disclosed wherein wood chips are partially defibrated such that the fibers in the chips are substantially separated from one another but sufficient inter-fiber bonding is maintained to preserve chip integrity and thereby to provide chips having an open porous fibrous network. To remove a majority of the lignin in the chips, they are then subjected to chemical pulp- ing at an elevated temperature.
- this fiber material is typically digested enzymatically, carbox- ymethylated or subjected to TEMPO-mediated oxidation and cationization in high consistency up to 50% solids.
- the pretreatment is followed by fibril removal from the pulp fibers, for example, with a Masuko-collider or fluidizer to yield NFC or MFC.
- the present invention is not limited to these pretreatments or further treatments, but also other methods can be used for production of NFC or MFC.
- An objective of the present invention is thus to provide environmentally friendly and improved pulping and papermaking methods and dissolution and digestion methods for cellulosic material in NFC or MFC production.
- the present invention is especially aimed at producing chemical pulps to be used for NFC production. According to the present invention this improvement is achieved by changing the fiber structure in the pulping.
- Pulps may contain any type of cellulosic fibers, including wood and non-wood fibers, originated from virgin wood, or non-wood fiber sources or combinations thereof. Contrary to results obtained in the prior art, it was also unexpectedly found that the yield of the kraft cooking process remained the same and no increase in wood consumption was observed. By applying the method of the invention, the amount of water required for washing the pulp and the energy consumption in the NFC production by grinding or fluidizing all decreased. Accordingly, employing the invention also yielded decreased chemical consumption. BRI EF DESCRI PTION OF THE DRAWINGS
- Figure 1 illustrates the damage on the fiber wall caused by the prior art methods, which methods aim at the removal of fibers from the chip matrix to be continued with cooking or bleaching processes. In this way the cell wall will remain intact or will be partially removed/damaged. Typical damages to the cell wall in wood chip fiberizing are indicated for different pulping processes.
- RMP Refiner Mechanical Pulping
- TMP Thermo Mechanical Pulping
- CTMP Chemo-thermo-mechanical Pulping
- P refers to primary cell wall
- Si refers to Secondary cell wall 1
- S 2 refers to Secondary cell wall 2
- S 3 refers to Secondary cell wall 3
- ML refers to middle lamella).
- Figure 2 represents schematically an example of a continuous kraft cooking system. Positions marked with numbers 1 , 2, 3 and 4 show sites, wherein the treatment according to embodiments of the present invention can be applied during or after impregnation. Positions 5, 6, 7, and 8 show other embodiments where the modified pressing and shearing devices can be placed in the cooking stage in the digester and after the digester of the continuous cooking system.
- Figure 3 A explains schematically the structure of a cross-cut cellulose fiber.
- Figure 3 B explains as a before (left) and after (right) presentation the generation of pores and softening of the fiber cell wall in the cooking according to the present in- vention, wherein the letters P, S-i , S 2 and S 3 have the same meaning as in figure 1 .
- the black areas denote lignin or lignin-hemicellulose and white blocks cellulose aggregates or protofibrils.
- Figure 3 C illustrates a wood chip cross-cut and points out the direction in which the mechanical treatment according to the present invention, such as shearing, affects the fiber cell wall.
- Figure 4 describes the transformation caused by the treatment according to the present invention as AFM (atomic force microscopy) and SEM (scanning electron microscopy) pictures.
- Figure 4 A is AFM picture taken after pretreatment which has opened the fiber cell wall pore structure. Pretreatment provides increased accessibil- ity of the cell wall and more efficient enzymatic efficiency.
- Figure 4 B has been taken with SEM after further processing into NFC with e.g. a Masuko collider or fluidizer. This step exhibits lower energy consumption because of the opened cell wall structure (and improved enzymatic digestibility).
- AFM atomic force microscopy
- SEM scanning electron microscopy
- the main challenge in NFC production is high energy consumption in separating cellulose aggregates from cellulosic fibers.
- NFC or MFC from a cellulosic fiber source.
- this method may be described to comprise chemical pulping wherein physical/mechanical treatment selected from pressing and shearing is applied to impregnated pulp, followed typically by cooking, washing and bleaching, and a further refining with enzymes or solvent and finally the NFC grinding.
- physical/mechanical treatment selected from pressing and shearing is applied to impregnated pulp, followed typically by cooking, washing and bleaching, and a further refining with enzymes or solvent and finally the NFC grinding.
- this has now been shown to decrease the energy consumption in NFC production.
- better NFC yield has also been proven by said experiments for NFC obtained by the method of the present invention.
- the present method may be described and claimed as a method of producing NFC or MFC from a cellulosic fiber source, comprising at least steps a), d) and e) in the order given below a) chemical pulping, wherein a physical/mechanical treatment step select- ed from pressing or shearing impregnated cellulosic fiber source, is applied during or after impregnation or during or after cooking in the pulping process, wherein a change in the fiber wall cell structure is effected and the conditions in said treatment comprise
- ii a temperature effective for increasing the swelling of the hemi- celluloses and/or the lignins and for reaching a material softening point
- the fiber material to be pulped e.g. wood chips
- the treatment according to the present invention is impregnated prior to applying the treatment according to the present invention which is then followed by processing into NFC.
- Preferably said impregnation is conducted under pressure.
- It can be applied to chemical pulping, wherein the preferable application is the kraft pulping process.
- the stages in the continuous kraft cooking processes are impregnation, transfer circulation and cooking.
- the treatment of the present invention can be performed in the same process stages as in the continuous process. It has been in the present invention unexpectedly found that some or all the benefits discussed above can be achieved by applying physical/mechanical treatment to raw material in the process of chemical pulping.
- Raw materials applicable in this method may contain any type of cellulosic fibers, including wood and non-wood fibers or possibly mixtures thereof.
- Cellulosic refers to fibers comprising cellulose, preferably as the main component.
- a preferable cellulosic fiber source comprises wood chips.
- Said cellulosic fibers may be treated by alkaline conditions, or bleached by any bleaching method. However, preferably fibers are bleached after treatment according to the invention.
- Non-wood material here refers to cellulosic fibers other than wood which are applicable to pulping, and known to a person skilled in the art.
- treatment refers to applying to a chemical pulping process the step of physical/mechanical treatment conven- tionally absent from such processes.
- the method of the invention comprises said treatment.
- physical/mechanical treatment is meant any means of importing to the chemical pulping physical energy to affect the chips and/or fibers.
- the physical/mechanical treatment of the present invention is performed by inducing pressure forces, pressing or shearing to the fibers at the above-mentioned conditions so that the fiber wall structure changes. It is advantageous to treat the cellulosic material, e.g. the wood chips, into cross direction of the fibers in the wood chips.
- the pressing or shearing of the wood chips is applied in the cross direction of the wood chips and so that the volume of the chips decreases e.g. to half of the original volume. It is also not necessary that the fibers are removed from the wood chip.
- said physical/mechanical treatment is preferably selected from pressing or shearing said fiber source, i.e. impregnated cellulosic fibrous material.
- the energy applied to the system during the physical/mechanical treatment step ranges preferably from 1 to 100 kWh/t. Applying energy in the form of physical/mechanical treatment during transfer circulation or cooking stages or therebetween is contrary to the teaching of common energy economics of kraft pulping. However, it has now been found that the overall benefit for the process in its entirety exceeds the value gainable by energy trade.
- conditions for said treatment comprise alkali charge of 10 - 40 %, preferably a high alkali charge, preferably 15-35 % effective alkali as NaOH on cellulosic fiber source, such as wood chips.
- Said conditions further comprise an effective temperature for increasing the swelling of the hemicelluloses and/or the lignin to reach their material softening point.
- said treatment temperature is preferably from 50 to 200 ° C.
- said treatment temperature is preferably from 120 to 185 ° C.
- the change in the fiber structure is preferably performed in the conditions of high alkali charge and temperature so that the hemicelluloses and the lignin have reached their material softening points (Gorig 1961 and Salmen 1982).
- the wood chips could be also preferably partially delignified so that the middle lamella holds the chips together and the kappa number of the chips is for example between 1 10 and 5.
- the method of the invention may be applied in at least one stage in the kraft pulping process selected from transfer circulation and cooking.
- the treatment can thus be incorporated into normal process steps involved in kraft pulping.
- Figure 2 shows typical digester arrangements, in which the physical/mechanical treatment of the cellulosic fibers, such as wood chips, can be carried out during or after impregnation.
- the treatment herein means pressing and/or shearing the impregnated wood chips at elevated temperatures so that the fiber matrix in the chip will be broken.
- the shearing and pressing can be performed with e.g. a conical plug feeder (US Patent 5570850) modified so that the surfaces of the feeder will provide this action (e.g. according to US Patent 4953795) in one or several of the positions numbered as 1 , 2, and 4 in Fig. 2a.
- the positions are as follows: 1 . Top of the impregnation vessel; 2.
- the shearing and pressing can be performed with a conical plug feeder (US Patent 5570850) modified so that the surfaces of the feeder provide this action (e.g. according to US Patent 4953795) in the positions 3 and 8 in the Fig. 2. This does not mean that other devices providing the similar action could not be used.
- the shearing and pressing at the positions 5, 6 and 7 can be carried out with a modified bottom scraper (US Patent 5736005), which provides the action mentioned above e.g. by providing it with shearing plates.
- these positions can be provided with any kind of mixer or screw or press providing a shearing and pressing action on the fiber matrix.
- the position 8 can be provided with feed screws, pumps or presses after modification. Feasible examples can be found in US patents 4915830 or 6036818, US patents 5622598 and 4121967 or in US patent application 20050053496. All of these modifications can be performed by a person skilled in the art.
- any one of the above-mentioned positions alone or any combination of these positions can be used in the method of the present invention.
- the combination of these positions is dependent on the properties of the pulp which are desired after cooking.
- the conditions can be typical to the kraft cooking process in the current positions or they can be modified to desired positions.
- the surprising dewatering properties, which decrease the flow resistance characteristics are best observed and benefited when the method of the invention further comprises washing in the digester and subsequent washing stages, oxygen delignification and/or bleaching.
- porous pretreated cellulose fibers are fibrillated in a Masuko mass collider or fluidizer in order to separate fibrils from the porous fiber cell wall, whereby NFC or MFC is obtained.
- internal fibril/aggregate separation in the fiber cell wall during kraft cooking means a change in the fiber referring to modification of the individual or agglomerated fibers, which affects at least part of the fiber wall, separating it to its constituents.
- One preferable example is increasing the porosity of the fibers, in other words, affecting a change in the fiber cell wall structure by increasing the size of the pores in the fiber cell wall.
- Porosity refers to cell wall porosity as measured with atomic force microscopy (AFM).
- the flow resistance can be determined by pressing a column of fibers with a force and monitoring the increase in the flow pressure over the column. It was surprisingly found that the pressure increase decreased when fibers were manufactured according to the invention. This allows one skilled in the art to run the process in higher pulp consistency than the medium pulp consistency 15% normally practiced in the art.
- the medium pulp consistency in the physical/mechanical treatment step of the present method may be up to 50 %, preferably up to 40%, or more preferably between 5 % and 40 %.
- the following stage can be one of the following or any combination thereof: washing, oxygen delignification, bleaching, enzymatic digestion, carboxymethylation, subjecting to TEMPO-mediated oxidation, cationization and drying.
- the final two stages need to be enzymatic digestion or carboxymethylated or subjected to TEMPO-mediated oxidation and cationization mechanical fibrillation with a fluidizer or refiner know in the art.
- the drying can be performed between these two stages or it can be omitted.
- the present process comprises a pretreatment step, which takes advantage of the increased accessibility of the fiber source, for production of NFC or MFC.
- Pretreat- ments known to a person skilled in the art comprise subjecting an opened cell wall to enzymatic digestion, ionic liquid modification or carboxymethylation or TEMPO- mediated oxidation or cationization.
- the pretreatment is selected from enzymatic digestion and solvent pretreatment. It was also surprisingly found that enzy- matic treatment efficiency increased when fibers were produced according to the invention, which was seen as a higher viscosity drop of the fibers after the treatment, indicating higher accessibility of the cell wall of the fibers.
- the conceptual process steps comprise the following:
- This softened and porous fiber cell wall is pressed in the cross direction (as disclosed in Figure 3 C) of the longitudinal axis of the fibers axis in the wood chips under the conditions of the invention and internal fibril/aggregate separation in the fiber cell wall during kraft cooking as used herein will occur, a change in the fiber refers to modification of the individual or agglomerated fibers, which affects at least part of the fiber wall, separating it to its constituents.
- Fig 4 is presented separation of the (A-B) nanofibrils according to invention.
- the opened cell wall (A) is subjected to enzymatic digestion, or carboxymethylation or TEMPO-mediated oxidation and cationization and then pulp is fibrillated with a Masuko collider or fluidizer.
- eucalyptus wood pulp was produced both according to the invention and as reference (REF), conventionally with cooking at 165 °C with 20% alkali charge.
- the results are shown in table 1 .
- the wood chips were pressed and sheared cross-directionally to the fiber direction.
- the energy applied was 1 1 kWh/t. Table 1 .
- the pulp column flow resistance was measured with the following experiment, which measures the liquid pressure difference over the digester column.
- the amount of pulp which was used was 500g.
- the fiber column resistance was measured so that the column was pressed with 2 bar pressure and water flow was pressed through the pad with increasing pressure from 1 to 7 bar.
- Fig. 5 The liquor flow resistance results are presented in Fig. 5.
- liquor flow ml/s In the Y-axis is shown liquor flow ml/s and in the x-axis is shown consistency (%).
- Fig 5. shows that it is practically impossible to use a reactor with pulp consistencies higher than 20% with REF, while the pulp consistency can be increased up to 40% according to the invention (EPD). This allows very low water consumption in the process stages.
- the pulps at the amount of 100g each were then fibrillated at target concentration during fibrillation of 2%.
- the fibrillation equipment was a Masuko Super mass collider MKZA10-15J.
- Pulp produced according to the invention was treated with enzymes in the same manner as the pulp produced according to conventional methods. These four pulps were grinded with a Mazuko mass collider at 3 different levels of the energy applied to the fibers as kWh/kg of pulp.
- the NFC amount is presented as particles of sizes between 1 -100 nm and MFC particles between 100-1000 nm (included in the same value as %), the viscosity defines the homogeneity of the nano- or micro-sized material; the higher the more homogenous.
- the refining results are presented in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Wood Science & Technology (AREA)
- Paper (AREA)
Abstract
L'invention concerne la production de NFC ou de MFC par réduction en pâte chimique. Elle concerne un procédé amélioré de réduction en pâte et de fabrication de papier, qui est respectueux de l'environnement, ainsi qu'un procédé de dissolution et de digestion de matière cellulosique. Ce procédé est particulièrement utile pour le traitement de pâtes chimiques. Des produits améliorés sont donc obtenus par ces procédés. L'amélioration résulte de la modification de la structure des fibres pendant la réduction en pâte. Ces pâtes peuvent comprendre n'importe quel type de fibres cellulosiques, notamment des fibres ligneuses ou non ligneuses.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FI20135281 | 2013-03-22 | ||
| FI20135281 | 2013-03-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014147293A1 true WO2014147293A1 (fr) | 2014-09-25 |
Family
ID=50442547
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/FI2014/050190 Ceased WO2014147293A1 (fr) | 2013-03-22 | 2014-03-14 | Procédé de fabrication de cellulose nano- ou microfibrillée |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2014147293A1 (fr) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015007953A1 (fr) * | 2013-07-16 | 2015-01-22 | Stora Enso Oyj | Procédé de production de cellulose oxydée ou microfibrillaire |
| GB2525689A (en) * | 2014-08-29 | 2015-11-04 | Statoil Petroleum As | Drilling fluids |
| CN105369663A (zh) * | 2015-08-11 | 2016-03-02 | 中国制浆造纸研究院 | 一种高效率、低能耗制备纳米纤维素的方法 |
| WO2016196983A1 (fr) | 2015-06-04 | 2016-12-08 | Bruce Crossley | Procédé de production de nanofibrilles de cellulose |
| WO2017103335A1 (fr) * | 2015-12-15 | 2017-06-22 | Kemira Oyj | Procédé de fabrication de papier, de carton ou autres |
| WO2017117503A1 (fr) | 2015-12-30 | 2017-07-06 | Cargill, Incorporated | Biopolymère, son procédé de production, procédé de production de papier, procédé de production de cellulose, utilisation d'un biopolymère et produit le contenant |
| US9718980B2 (en) | 2012-08-14 | 2017-08-01 | Goldeast Paper (Jiangsu) Co., Ltd | Coating composition and coated paper |
| WO2017203329A1 (fr) | 2016-05-27 | 2017-11-30 | Fibratech Pte. Ltd | Procédé et système de production de lignine de poids moléculaire élevé |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4121967A (en) | 1976-09-07 | 1978-10-24 | Reinhall P G | Screw conveyor in pulp-making equipment |
| US4869783A (en) | 1986-07-09 | 1989-09-26 | The Mead Corporation | High-yield chemical pulping |
| US4915830A (en) | 1988-08-19 | 1990-04-10 | Sprout-Bauer, Inc. | Pulp wash press |
| US4953795A (en) | 1988-10-24 | 1990-09-04 | Beloit Corporation | Wood chip cracking apparatus |
| US5385640A (en) | 1993-07-09 | 1995-01-31 | Microcell, Inc. | Process for making microdenominated cellulose |
| US5570850A (en) | 1992-05-25 | 1996-11-05 | Kay; Roger T. | Crusher |
| US5622598A (en) | 1995-04-25 | 1997-04-22 | Ahlstrom Machinery Inc. | Chip pumping to a digester |
| US5736005A (en) | 1993-04-21 | 1998-04-07 | Kvaerner Pulping Technologies Aktiebolag | Scraper device for a continuous digester |
| US6036818A (en) | 1995-12-08 | 2000-03-14 | Sunds Defibrator Industries Ab | Pulp-dewatering roll press |
| CA2437616A1 (fr) | 2003-08-04 | 2005-02-04 | Mohini M. Sain | Fabrication de nano-fibrilles a partir de fibres naturelles, de fibres a base agricole et de fibres de racines |
| US20050053496A1 (en) | 2001-08-08 | 2005-03-10 | Peter Danielsson | Pulp pump |
| US20080057307A1 (en) | 2006-08-31 | 2008-03-06 | Kx Industries, Lp | Process for producing nanofibers |
| US20110277947A1 (en) | 2010-05-11 | 2011-11-17 | Fpinnovations | Cellulose nanofilaments and method to produce same |
| WO2012007642A1 (fr) | 2010-07-13 | 2012-01-19 | Olli Joutsimo | Procédé de traitement d'une pâte chimique amélioré |
| JP2012219413A (ja) * | 2011-04-12 | 2012-11-12 | Oji Paper Co Ltd | 微細繊維の製造方法 |
-
2014
- 2014-03-14 WO PCT/FI2014/050190 patent/WO2014147293A1/fr not_active Ceased
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4121967A (en) | 1976-09-07 | 1978-10-24 | Reinhall P G | Screw conveyor in pulp-making equipment |
| US4869783A (en) | 1986-07-09 | 1989-09-26 | The Mead Corporation | High-yield chemical pulping |
| US4915830A (en) | 1988-08-19 | 1990-04-10 | Sprout-Bauer, Inc. | Pulp wash press |
| US4953795A (en) | 1988-10-24 | 1990-09-04 | Beloit Corporation | Wood chip cracking apparatus |
| US5570850A (en) | 1992-05-25 | 1996-11-05 | Kay; Roger T. | Crusher |
| US5736005A (en) | 1993-04-21 | 1998-04-07 | Kvaerner Pulping Technologies Aktiebolag | Scraper device for a continuous digester |
| US5385640A (en) | 1993-07-09 | 1995-01-31 | Microcell, Inc. | Process for making microdenominated cellulose |
| US5622598A (en) | 1995-04-25 | 1997-04-22 | Ahlstrom Machinery Inc. | Chip pumping to a digester |
| US6036818A (en) | 1995-12-08 | 2000-03-14 | Sunds Defibrator Industries Ab | Pulp-dewatering roll press |
| US20050053496A1 (en) | 2001-08-08 | 2005-03-10 | Peter Danielsson | Pulp pump |
| CA2437616A1 (fr) | 2003-08-04 | 2005-02-04 | Mohini M. Sain | Fabrication de nano-fibrilles a partir de fibres naturelles, de fibres a base agricole et de fibres de racines |
| US20080057307A1 (en) | 2006-08-31 | 2008-03-06 | Kx Industries, Lp | Process for producing nanofibers |
| US20110277947A1 (en) | 2010-05-11 | 2011-11-17 | Fpinnovations | Cellulose nanofilaments and method to produce same |
| WO2012007642A1 (fr) | 2010-07-13 | 2012-01-19 | Olli Joutsimo | Procédé de traitement d'une pâte chimique amélioré |
| JP2012219413A (ja) * | 2011-04-12 | 2012-11-12 | Oji Paper Co Ltd | 微細繊維の製造方法 |
Non-Patent Citations (3)
| Title |
|---|
| FAHLEN, J., THE CELL WALL ULTRASTRUCTURE OF WOOD FIBER EFFECTS OF CHEMICAL PULP FIBER LINE, 2005, pages 55 |
| GORING, D.A.I.: "The physical chemistry of lignin", PROCEEDINGS OF THE WOOD CHEMISTRY SYMPOSIUM (I.U.P.A.C.),. MONTREAL, CANADA, 1961, pages 231 - 254 |
| SALMEN, L.: "Temperature and water induced softening behavior of wood fiber based materials", 1982, THE ROYAL INSTITUTE OF TECHNOLOGY, pages: 114 |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9718980B2 (en) | 2012-08-14 | 2017-08-01 | Goldeast Paper (Jiangsu) Co., Ltd | Coating composition and coated paper |
| WO2015007953A1 (fr) * | 2013-07-16 | 2015-01-22 | Stora Enso Oyj | Procédé de production de cellulose oxydée ou microfibrillaire |
| GB2525689A (en) * | 2014-08-29 | 2015-11-04 | Statoil Petroleum As | Drilling fluids |
| EP3303404A4 (fr) * | 2015-06-04 | 2019-01-23 | GL&V Luxembourg S.à.r.l. | Procédé de production de nanofibrilles de cellulose |
| EP3303404A1 (fr) | 2015-06-04 | 2018-04-11 | GL&V Luxembourg S.à.r.l. | Procédé de production de nanofibrilles de cellulose |
| WO2016196983A1 (fr) | 2015-06-04 | 2016-12-08 | Bruce Crossley | Procédé de production de nanofibrilles de cellulose |
| CN108137709A (zh) * | 2015-06-04 | 2018-06-08 | Gl&V卢森堡公司 | 纤维素纳米原纤的生产方法 |
| CN105369663A (zh) * | 2015-08-11 | 2016-03-02 | 中国制浆造纸研究院 | 一种高效率、低能耗制备纳米纤维素的方法 |
| US10767312B2 (en) | 2015-12-15 | 2020-09-08 | Kemira Oyj | Method for producing paper, board or the like |
| KR20180092971A (ko) * | 2015-12-15 | 2018-08-20 | 케미라 오와이제이 | 종이, 판재 또는 이와 유사한 것을 제조하는 방법 |
| CN108474181A (zh) * | 2015-12-15 | 2018-08-31 | 凯米罗总公司 | 用于生产纸、纸板或类似物的方法 |
| WO2017103335A1 (fr) * | 2015-12-15 | 2017-06-22 | Kemira Oyj | Procédé de fabrication de papier, de carton ou autres |
| US11131062B2 (en) | 2015-12-15 | 2021-09-28 | Kemira Oyj | Method for producing paper, board or the like |
| KR102669134B1 (ko) | 2015-12-15 | 2024-05-23 | 케미라 오와이제이 | 종이, 판재 또는 이와 유사한 것을 제조하는 방법 |
| WO2017117503A1 (fr) | 2015-12-30 | 2017-07-06 | Cargill, Incorporated | Biopolymère, son procédé de production, procédé de production de papier, procédé de production de cellulose, utilisation d'un biopolymère et produit le contenant |
| WO2017203329A1 (fr) | 2016-05-27 | 2017-11-30 | Fibratech Pte. Ltd | Procédé et système de production de lignine de poids moléculaire élevé |
| US11186948B2 (en) | 2016-05-27 | 2021-11-30 | Fibratech Pte. Ltd | Method and a system for production of high molecular weight lignin |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2014147293A1 (fr) | Procédé de fabrication de cellulose nano- ou microfibrillée | |
| CN105051070B (zh) | 制造微原纤化纤维素的方法 | |
| US20120136146A1 (en) | Process for the production of microfibrillated cellulose and produced microfibrillated cellulose | |
| CA2596796C (fr) | Processus et systemes de trituration de substances lignocellulosiques | |
| US20120135506A1 (en) | Process for producing microfibrillated cellulose | |
| JP2008169497A (ja) | ナノファイバーの製造方法およびナノファイバー | |
| US11186948B2 (en) | Method and a system for production of high molecular weight lignin | |
| EP2593248B1 (fr) | Procédé de traitement d'une pâte chimique amélioré | |
| EP3545128B1 (fr) | Processus de fabrication de cellulose nanocristalline fibrillée à faible consommation d'énergie | |
| Guo et al. | PULP AND FIBER CHARACTERIZATION OF WHEAT STRAW AND EUCALUPTUS PULPS-A. | |
| AU2016228870B2 (en) | Processes and systems for the pulping of lignocellulosic materials | |
| Park et al. | Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers | |
| JP7365796B2 (ja) | セルロース繊維の成形体及びその製造方法 | |
| CN110462132B (zh) | 生产纸,纸板或类似物的方法 | |
| Ngene et al. | Influence of Hollander beater refining on xylan extraction from hardwood paper pulp by cold caustic extraction and xylanase treatment | |
| Moezzipour et al. | The influence of pulping process and energy consumption on properties of nanofibrillated lignocellulose (NFLC) films isolated from wheat straw | |
| JP7388824B2 (ja) | セルロース繊維の成形体及びその製造方法 | |
| Lamminen | Understanding the fines in BCTMP process | |
| WO2024182872A1 (fr) | Cellulose microfibrillée (mfc) réticulée, composition et procédé de production de mfc réticulée | |
| Brännvall | Differences and similarities between kraft and oxygen delignification of softwood fibers: effects on mechanical properties | |
| Park et al. | Effect of PFI mill and Valley beater refining on Viscosity, Alpha Cellulose, and Crystallinity of wood and cotton fibers | |
| Gorski et al. | Role of equipment configuration and process chemicals in peroxide-based ATMP refining of spruce | |
| JPWO2023073552A5 (fr) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14715972 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14715972 Country of ref document: EP Kind code of ref document: A1 |