WO2014140541A3 - Signal processing systems - Google Patents
Signal processing systems Download PDFInfo
- Publication number
- WO2014140541A3 WO2014140541A3 PCT/GB2014/050695 GB2014050695W WO2014140541A3 WO 2014140541 A3 WO2014140541 A3 WO 2014140541A3 GB 2014050695 W GB2014050695 W GB 2014050695W WO 2014140541 A3 WO2014140541 A3 WO 2014140541A3
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- category
- output example
- output
- probability vector
- probability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0475—Generative networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0895—Weakly supervised learning, e.g. semi-supervised or self-supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
We describe a signal processor, the signal processor comprising: a probability vector generation system, wherein said probability vector generation system has an input to receive a category vector for a category of output example and an output to provide a probability vector for said category of output example, wherein said output example comprises a set of data points, and wherein said probability vector defines a probability of each of said set of data points for said category of output example; a memory storing a plurality of said category vectors, one for each of a plurality of said categories of output example; and a stochastic selector to select a said stored category of output example for presentation of the corresponding category vector to said probability vector generation system; wherein said signal processor is configured to output data for an output example corresponding to said selected stored category.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201480016209.5A CN105144203B (en) | 2013-03-15 | 2014-03-10 | Signal processing system |
| EP14715977.6A EP2973241B1 (en) | 2013-03-15 | 2014-03-10 | Signal processing systems |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB1304795.6 | 2013-03-15 | ||
| GB1304795.6A GB2513105A (en) | 2013-03-15 | 2013-03-15 | Signal processing systems |
| US13/925,637 US9342781B2 (en) | 2013-03-15 | 2013-06-24 | Signal processing systems |
| US13/925,637 | 2013-06-24 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2014140541A2 WO2014140541A2 (en) | 2014-09-18 |
| WO2014140541A3 true WO2014140541A3 (en) | 2015-03-19 |
Family
ID=48226490
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2014/050695 Ceased WO2014140541A2 (en) | 2013-03-15 | 2014-03-10 | Signal processing systems |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US9342781B2 (en) |
| EP (1) | EP2973241B1 (en) |
| CN (1) | CN105144203B (en) |
| GB (1) | GB2513105A (en) |
| WO (1) | WO2014140541A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107291690A (en) * | 2017-05-26 | 2017-10-24 | 北京搜狗科技发展有限公司 | Punctuate adding method and device, the device added for punctuate |
Families Citing this family (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102366783B1 (en) * | 2014-07-07 | 2022-02-24 | 광주과학기술원 | Neuromorphic system operating method therefor |
| WO2017122785A1 (en) * | 2016-01-15 | 2017-07-20 | Preferred Networks, Inc. | Systems and methods for multimodal generative machine learning |
| US9802599B2 (en) * | 2016-03-08 | 2017-10-31 | Ford Global Technologies, Llc | Vehicle lane placement |
| EP3444758B1 (en) * | 2016-04-15 | 2021-11-17 | Cambricon Technologies Corporation Limited | Discrete data representation-supporting apparatus and method for back-training of artificial neural network |
| EP3451240A4 (en) * | 2016-04-27 | 2020-01-01 | Cambricon Technologies Corporation Limited | Apparatus and method for performing auto-learning operation of artificial neural network |
| EP3459017B1 (en) | 2016-05-20 | 2023-11-01 | Deepmind Technologies Limited | Progressive neural networks |
| US9779355B1 (en) | 2016-09-15 | 2017-10-03 | International Business Machines Corporation | Back propagation gates and storage capacitor for neural networks |
| WO2018085697A1 (en) * | 2016-11-04 | 2018-05-11 | Google Llc | Training neural networks using a variational information bottleneck |
| CN110383299B (en) | 2017-02-06 | 2023-11-17 | 渊慧科技有限公司 | Memory-augmented generation time model |
| KR102410820B1 (en) * | 2017-08-14 | 2022-06-20 | 삼성전자주식회사 | Method and apparatus for recognizing based on neural network and for training the neural network |
| WO2019098644A1 (en) * | 2017-11-17 | 2019-05-23 | 삼성전자주식회사 | Multimodal data learning method and device |
| KR102387305B1 (en) * | 2017-11-17 | 2022-04-29 | 삼성전자주식회사 | Method and device for learning multimodal data |
| CN110110853B (en) * | 2018-02-01 | 2021-07-30 | 赛灵思电子科技(北京)有限公司 | Deep neural network compression method and device and computer readable medium |
| CN108388446A (en) | 2018-02-05 | 2018-08-10 | 上海寒武纪信息科技有限公司 | Computing module and method |
| JP6601644B1 (en) * | 2018-08-03 | 2019-11-06 | Linne株式会社 | Image information display device |
| JP7063230B2 (en) * | 2018-10-25 | 2022-05-09 | トヨタ自動車株式会社 | Communication device and control program for communication device |
| EP3857324B1 (en) * | 2018-10-29 | 2022-09-14 | Siemens Aktiengesellschaft | Dynamically refining markers in an autonomous world model |
| US12293292B2 (en) * | 2019-03-12 | 2025-05-06 | Samsung Electronics Co., Ltd | Multiple-input multiple-output (MIMO) detector selection using neural network |
| US12008478B2 (en) | 2019-10-18 | 2024-06-11 | Unlearn.AI, Inc. | Systems and methods for training generative models using summary statistics and other constraints |
| CN111127179B (en) * | 2019-12-12 | 2023-08-29 | 恩亿科(北京)数据科技有限公司 | Information pushing method, device, computer equipment and storage medium |
| US11823060B2 (en) * | 2020-04-29 | 2023-11-21 | HCL America, Inc. | Method and system for performing deterministic data processing through artificial intelligence |
| US20210374524A1 (en) * | 2020-05-31 | 2021-12-02 | Salesforce.Com, Inc. | Systems and Methods for Out-of-Distribution Detection |
| US11868428B2 (en) * | 2020-07-21 | 2024-01-09 | Samsung Electronics Co., Ltd. | Apparatus and method with compressed neural network computation |
| EP3975038A1 (en) * | 2020-09-29 | 2022-03-30 | Robert Bosch GmbH | An image generation model based on log-likelihood |
| DE102020212515A1 (en) * | 2020-10-02 | 2022-04-07 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method and device for training a machine learning system |
| CN112348158B (en) * | 2020-11-04 | 2024-02-13 | 重庆大学 | Industrial equipment state evaluation method based on multi-parameter deep distribution learning |
| WO2022182905A1 (en) * | 2021-02-24 | 2022-09-01 | Protopia AI, Inc. | Stochastic noise layers |
| US20230073226A1 (en) * | 2021-09-09 | 2023-03-09 | Yahoo Assets Llc | System and method for bounding means of discrete-valued distributions |
| WO2024107461A1 (en) * | 2022-11-16 | 2024-05-23 | Unlearn.AI, Inc. | Systems and methods for supplementing data with generative models |
| WO2024172853A1 (en) | 2023-02-17 | 2024-08-22 | Unlearn. Ai, Inc. | Systems and methods enabling baseline prediction correction |
| US11868900B1 (en) | 2023-02-22 | 2024-01-09 | Unlearn.AI, Inc. | Systems and methods for training predictive models that ignore missing features |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0360674A2 (en) * | 1988-09-17 | 1990-03-28 | Sony Corporation | Signal processing system and learning processing system |
| US20120072215A1 (en) * | 2010-09-21 | 2012-03-22 | Microsoft Corporation | Full-sequence training of deep structures for speech recognition |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7424270B2 (en) * | 2002-09-25 | 2008-09-09 | Qualcomm Incorporated | Feedback decoding techniques in a wireless communications system |
| EP1638042A2 (en) * | 2005-09-14 | 2006-03-22 | Neal E. Solomon | Mobile hybrid software router |
| US8762358B2 (en) * | 2006-04-19 | 2014-06-24 | Google Inc. | Query language determination using query terms and interface language |
| US20100169328A1 (en) * | 2008-12-31 | 2010-07-01 | Strands, Inc. | Systems and methods for making recommendations using model-based collaborative filtering with user communities and items collections |
| US9287713B2 (en) * | 2011-08-04 | 2016-03-15 | Siemens Aktiengesellschaft | Topology identification in distribution network with limited measurements |
| US10453479B2 (en) * | 2011-09-23 | 2019-10-22 | Lessac Technologies, Inc. | Methods for aligning expressive speech utterances with text and systems therefor |
| US20130325770A1 (en) * | 2012-06-05 | 2013-12-05 | Sap Ag | Probabilistic language model in contextual network |
-
2013
- 2013-03-15 GB GB1304795.6A patent/GB2513105A/en not_active Withdrawn
- 2013-06-24 US US13/925,637 patent/US9342781B2/en active Active
-
2014
- 2014-03-10 CN CN201480016209.5A patent/CN105144203B/en active Active
- 2014-03-10 EP EP14715977.6A patent/EP2973241B1/en active Active
- 2014-03-10 WO PCT/GB2014/050695 patent/WO2014140541A2/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0360674A2 (en) * | 1988-09-17 | 1990-03-28 | Sony Corporation | Signal processing system and learning processing system |
| US20120072215A1 (en) * | 2010-09-21 | 2012-03-22 | Microsoft Corporation | Full-sequence training of deep structures for speech recognition |
Non-Patent Citations (2)
| Title |
|---|
| DANILO JIMENEZ REZENDE ET AL: "Stochastic Backpropagation and Approximate Inference in Deep Generative Models", 16 January 2014 (2014-01-16), XP055159172, Retrieved from the Internet <URL:http://arxiv.org/abs/1401.4082> * |
| MARC'AURELIO RANZATO ET AL: "On deep generative models with applications to recognition", COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011 IEEE CONFERENCE ON, IEEE, 20 June 2011 (2011-06-20), pages 2857 - 2864, XP032038212, ISBN: 978-1-4577-0394-2, DOI: 10.1109/CVPR.2011.5995710 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107291690A (en) * | 2017-05-26 | 2017-10-24 | 北京搜狗科技发展有限公司 | Punctuate adding method and device, the device added for punctuate |
| CN107291690B (en) * | 2017-05-26 | 2020-10-27 | 北京搜狗科技发展有限公司 | Punctuation adding method and device and punctuation adding device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105144203A (en) | 2015-12-09 |
| US20140279777A1 (en) | 2014-09-18 |
| GB2513105A (en) | 2014-10-22 |
| GB201304795D0 (en) | 2013-05-01 |
| US9342781B2 (en) | 2016-05-17 |
| EP2973241B1 (en) | 2020-10-21 |
| WO2014140541A2 (en) | 2014-09-18 |
| CN105144203B (en) | 2018-09-07 |
| EP2973241A2 (en) | 2016-01-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2014140541A3 (en) | Signal processing systems | |
| MX2017013500A (en) | Inventory information distribution systems, devices and methods. | |
| RU2015106668A (en) | TROUBLESHOOTING DIFFERENTIAL DYNAMIC TEAMS | |
| SG11201907942QA (en) | Blockchain cluster processing system and method, computer device and storage medium | |
| WO2014143208A8 (en) | Systems, methods and apparatuses for implementing data upload, processing, and predictive query api exposure | |
| WO2015160713A3 (en) | Platform for providing customizable user activity experiences | |
| MY208279A (en) | Electronic device and method for providing guide information based on genetic information | |
| WO2014004524A3 (en) | Notification classification and display | |
| GB2550798A (en) | Order pairing system and method | |
| WO2015066489A3 (en) | Efficient implementations for mapreduce systems | |
| WO2016018472A3 (en) | Content-based association of device to user | |
| IN2013CH05115A (en) | ||
| WO2015134544A3 (en) | Converter device and system including converter device | |
| RU2014112950A (en) | SYSTEM FOR DISPLAYING FUNCTIONS ON THE USER VEHICLE INTERFACE | |
| MX2015000304A (en) | Systems and methods for quantitative evaluation of a property for renovation. | |
| TW201612743A (en) | Bit group interleave processors, methods, systems, and instructions | |
| WO2015114207A3 (en) | Display management solution | |
| PH12017500234B1 (en) | Information-processing system | |
| EA201791342A1 (en) | INTERFACE METHOD AND COMPUTER SOFTWARE PRODUCT FOR MANAGING ELECTRONIC TRANSMISSION TRANSFER | |
| WO2014165208A3 (en) | Meter reading data validation | |
| GB2571686A (en) | System and method for analyzing and associating elements of a computer system by shared characteristics | |
| GB2531678A (en) | Moving objects in primary computer based on memory errors in secondary computer | |
| WO2014080872A3 (en) | Logic configuration method for reconfigurable semiconductor device | |
| EP3101598A3 (en) | Augmented neural networks | |
| GB2541620A (en) | Electrical system for universal charging station |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201480016209.5 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14715977 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014715977 Country of ref document: EP |