WO2014099472A1 - Flame instability detector and identification of unstable burners in industrial furnaces - Google Patents
Flame instability detector and identification of unstable burners in industrial furnaces Download PDFInfo
- Publication number
- WO2014099472A1 WO2014099472A1 PCT/US2013/074039 US2013074039W WO2014099472A1 WO 2014099472 A1 WO2014099472 A1 WO 2014099472A1 US 2013074039 W US2013074039 W US 2013074039W WO 2014099472 A1 WO2014099472 A1 WO 2014099472A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- burners
- detectors
- furnace
- unstable
- instability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/24—Preventing development of abnormal or undesired conditions, i.e. safety arrangements
- F23N5/242—Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
Definitions
- the invention is generally related to flame instability detectors.
- the present application relates to monitoring a flame state and identifying an instability using a multi-channel detector.
- the present application further relates to identification of unstable burners in a furnace with multiple burners.
- Furnace monitoring is becoming an increasingly important problem in refinery operations.
- Industrial furnaces, fired heaters, and boilers are used extensively across multiple refinery processes such as process heating and steam production, and are generally responsible for the largest proportion of the total refinery fuel consumption.
- the proper operation of these furnaces is particularly relevant for safety, environmental, and energy efficiency concerns.
- NOx emissions can be reduced through lowering the adiabatic flame temperature while maintaining safe operation, which can be achieved by, e.g., enhancing fuel gas recirculation, steam injection, or use of technologies such as premixed flames and ultra-low NOx s.
- these technologies are often more prone to flame instability than tradition processes. It therefore is necessary to monitor the burner stability and provide feedback signals to control fuel and/or diluent flow when instabilities occur.
- the disclosed subject matter includes a method for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners.
- the method can include the steps of obtaining at least one measurement from each of a plurality of detectors, detecting an instability associated with the furnace, computing, using at least one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstable subset of burners based at least in part on the unstable signal matrix.
- the at least one measurement from each of a plurality of detectors can include obtaining from each of the plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition, and obtaining from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state.
- detecting an instability associated with the furnace can include determining, based at least in part on the first measurement from each of the plurality of detectors, a stable signal component representation for the furnace, determining, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detecting an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
- the plurality can be, for example, a plurality of vibration sensors, a plurality of pressure sensors, or a plurality of video sensors.
- the stable signal component representation for the furnace can be a stable covariance matrix.
- the unstable signal component representation can be an instability component covariance.
- the instability component covariance can be calculated based on a stable covariance matrix and a current covariance matrix.
- the current covariance matrix can be calculated based on the stable covariance matrix and a vector of the second measurement from each of the plurality of burners.
- the instability threshoid can be compared against a detection test statisiic.
- the detection test statistic can be, for example, a Neyman-Pearson detector.
- the detection test statistic can be computed based on the inverse of a stable covariance matrix.
- the detection test statistic can be calculated based on an inverse of a current covariance matrix.
- the inv erse of the current co variance matrix can be computed via matrix inversion lemma.
- the plurality of detectors can comprise one or more detectors of a first detector type and one or more detectors of a second detector type.
- the first measurement can be obtained by obtaining a first time series of measurements from each of one or more detectors of a first detector type, the first detector type having a first sampling rate, and obtaining a second time series of measurements from each of the one or m ore detectors of a second detector type, the second time series of measurements from each of the one or more detectors of a second detector type having a second sampling rate.
- the first time series of measurements can include the first measurement for each of the one or more detectors of the first detector type
- the second time series can include the first measurement for each of the one or more detectors of a second detector type.
- the method can further include converting the first time series of measurements and the second time series of measurements into a combined time series of measurements having a common sampling rate, wherein determining the stable signal component representation of the furnace comprises determining the stable signal component representation for the furnace based at feast in part on the combined time series measurements.
- the common sampling rate can be, for example, the first sampling rate, or a sampling rate other than the first sampling rate and the second sampling rate.
- the first time series of measurements can also include the second measurement for each of the one or more detectors of a first detector type, and the second time series of measurements can include the second measurement for each of the one or more detectors of a second detector type.
- the first time series of measurements and the second time series of measurements can be converted into a combined time series of measurements ha ving a common sampling rate.
- the unstable signal component representation for the furnace can be determined based at least in part on the combined time series of measurements.
- the first time series of measurements includes at least one video frame.
- the at feast one video frame can be converted into a single vakte.
- the at feast one video frame can be converted into a single value based on an intensity of each pixel in the at least one video frame.
- the second time series of measurements can include, for example, at least one value measured by a pressure sensor.
- the unstable signal component representation can be, for example, an instability component covariance.
- Eigenvalue decomposition of the unstable signal component representation can be used to obtain at least one dominant eigenvector.
- the at least one dominant eigenvector can included three components defining a point on a unit ball.
- the point can be clustered with a plurality of other points obtained from a plurality of previous dominant eigenvectors.
- the unstable subset of burners can be identified based on the clustering. Historical data can be used to identify the unstable subset of burners.
- a Green's function vector can be recovered from the at least one dominant eigenvector.
- the at least one dominant eigenvector can be normalized to obtain the Green's function vector.
- the unstable subset of burners can include a single burner, a plurality of burners, or a group of burners including at least one unstable burner.
- the system can include a plurality of detectors and a processor coupled to the plurality of burners and configured to obtain at least one measurement from each of the plurality of detectors, detect an instability associated with the furnace, compute an unstable signal matrix associated with the instability based on the at least one measurement from each of the pluraiiiy of burners, and identify the unstable subset of burners based at least in part on the unstable signal matrix. Additional aspects and features of the system are described in conjunction with the method.
- FIGURE 1 is a high-level flow chart describing a representative embodiment of a method for identifying the source of an instability in accordance with the disclosed subject matter.
- FIGURE 2 is a flow chart describing a representative embodiment of a method for detecting an instability in a furnace using multiple channels of data in accordance with the disclosed subject matter.
- FIGURE 3 is a graph showing the draft pressure measured by five pressure sensors over time as a flame is driven from a stable condition or phase to an unstable condition or phase and approaches blowoff.
- FIGURE 4 is a series of processed video frames showing the flames of three burners over time with background removed. The flames of the three burners are viewed from the top at a 45° angle.
- the video frame rate for the video frames in Figure 4 is around 6.4 frames per second which, with the oscillation cycle spanning 1 1 frames, leads to an approximately 1.72 second oscillation cycle, or equivalently 0,58 Hz peak frequency.
- FIG LIRE 5 is a flow chart describing a representative embodiment of a method for converting a series of video frames into a scalar time series signal in accordance with the disclosed subject matter.
- FIGURE 6 is a graph of a scalar time series calculated based on a series of video frames in accordance with the disclosed subject matter.
- FIGURE 7 is a flow chart describing a representative embodiment of a method for processing two sets of measurements having different sampling rates into a combined set of measurements in accordance with the disclosed subject matter
- FIGURE 8 is a flow chart describing a representative method for calculating the unstable signal component representation in accordance with the disclosed subject matter.
- FIGURE 9 is a flow chart describing a representative method for computing a detection test statistic in accordance with the disclosed subject matter.
- FIGURE 10 is a graph showing a comparison of the detection rate for an instability indicator in accordance with the disclosed subject matter against the detection rate for an instability detec tor based on the variance of pressure measurements from a single channel for a given false positive rate.
- FIGUR E 1 1 is a graph showing a representative embodiment of the system for detecting an instability using a multi-channel approach in accordance with the disclosed subject matter.
- Figure 12 is a flow chart showing a representative embodiment of a method for identifying an unstable subset of burners in accordance with the disclosed subject matter.
- FIGURE 13 is a flow chart showing a representative embodiment of a method for identify ing an unstable subset of burners based on the unstable signal matrix in accordance with the disclosed subject matter.
- FIGURE 14 is a graph showing two instances of clustering on a unit bail in accordance with the disclosed subject matter.
- FIGURE 15 is an illustration of a representative system for identifying an unstable subset of burners in accordance with the disclosed subject matter.
- the disclosed subject matter is directed to a method of detecting an instability in a furnace having a plurality of burners, the method comprising obtaining from each of a plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition, determining, based at least in part on the first measurement from each of the plurality of detectors, a stable signal component representation for the furnace, obtaining from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determining, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detecting, using at least one processor, an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
- the system generally includes a plurality of detectors, and at least one processor coupled to the plurality of detectors and configured to obtain from each of the plurality of detectors a first measurement related to a plurality of burners when the furnace is operating in a stable condition, determine, based at least in part on the first measurements from each of the plurality of detectors, a stable signal component representation for the furnace, obtain from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determine, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detect an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
- the disclosed subject matter is generally- directed to a method of identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners, the method comprising obtaining at least one measurement from each of a plurality of detectors, detecting an instability associated with the furnace, computing, using at least one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstable subset of burners based at least in part on the unstable signal matrix.
- a system is provided herein.
- the system generally includes a plurality of detectors and a processor coupled to the plurality of burners and configured to obtain at least one measurement from each of the plurality of detectors, detect an instability associated with the furnace, compute an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identify the unstable subset of burners based at least in part on the unstable signal matrix.
- a system can detect an instability in accordance with the disclosed subject matter without thereafter proceeding to the identification of an unstable subset of burners.
- a method for identify ing an unstable subset of burners in accordance with the disclosed subject matter can be used regardless of how the instability is detected.
- subset of burners refers to any number of burners that is less than the total number of burners associated with a furnace.
- the term “subset of burners” therefore can reference a single burner, or the term “subset of burners” can refer to two or more burners that are unstable.
- the term “subset of burners” can refer to a group of any number of burners, wherein at least one burner is unstable (i.e., one or more burners of the subset can be stable).
- the system and methods disclosed herein may identify a subset of burners in accordance with this final embodiment when there are more burners than detectors.
- Coupled means operaiively in communication with each other, either directly or indirectly , using any suitable techniques, including hard wire, connectors, or remote communication.
- a pressure signal at sensor p at time n can be modeled as:
- x s B [n] is the stable pressure component for sensor p and Sx D [n] is the unstable signal component for sensor p. It is observed that stable combustion generates more or less random variations (for example, in a pressure measurement). In contrast, flame instability is typically coherent, as manifested by harmonic pressure oscillations.
- an instability is detected. (See 102).
- an exemplary method of detecting an instability in a furnace having a plurality of burners in accordance with the disclosed subject matter is shown.
- the system obtains from each of a plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition. (See 202),
- the signals from the detector are then processed by a processor as described further below.
- each of the plurality of detectors is a pressure sensor.
- the pressure sensor can be, for example, a dynamic pressure sensor, such as a pressure probe, that can capture a high frequency signal.
- Each of the pressure sensors can measure the draft pressure at a single point inside a furnace.
- Figure 3 illustrates an exemplary draft pressure measurement at five pressure sensors, P1-P4 and P6, as a function of time as the flames at each of the plurality of burners gradually approach blowoff.
- each of the plurality of detectors is a device that captures video frames.
- the device can be, for example, a video camera. With reference to Figure 4, the detector captures video frames 402-424.
- Each of the video frames in Figure 4 shows the flames associated with three burners at various times.
- each video frame must be converted into a single value that can be plotted against time.
- Such pre-processing can be performed by the detector, by the processor, or by any intermediate device.
- the first video frame immediately precedes the second video frame (i.e., the first and second video frames are consecutive samples).
- a change index between the intensity in the first video frame and the intensity at the second video frame is calculated (See 508).
- the change index for each pixel is then aggregated to calculate a fluctuation index for the second video frame (See 510).
- each of the plurality of detectors can be a vibration sensor.
- the vibration sensor can be an accelerometer.
- the vibration sensor can be used to measure the oscillation of the furnace wall or piping.
- detectors can also be used without departing from the scope of the disclosed subject matter.
- optical sensors can be used to measure flicker.
- detectors for measuring carbon dioxide or sulfur dioxide levels in the furnace can be used.
- the plurality of detectors can include one or more detectors of a first detector type and one or more detectors of a second detec tor type.
- Detectors of the first or second detec tor type ean be pressure sensors, devices that capture video frames, vibration sensors, optical sensors, or sensors that measure carbon dioxide or sulfur dioxide levels,
- sensors generally measure some characteristic of an environment at regular intervals.
- the frequency of the measurements can be described in terms of the number of measurements taken over a given time period, or the sampling rate. For example, if Sensor A takes one measurement every second, the sampling rate of Sensor A is 1 per second, or 1 Hertz.
- each of the measurements should have a common sampling rate, if the detectors of a first detector type do not have the same sampling rate as detectors of a second detector type, one or both of the signals will need to be pre -processed.
- An exemplary pre-processing method in accordance with the disclosed subject matter is illustrated in Figure 7.
- a first series of time mea surements is obtained from each of the one or more detectors of the first detector type (See 702).
- the detectors of the first detector type have a first sampling rate Rl .
- a second series of time is obtained from each of the one or more detectors of the first detector type (See 702).
- the detectors of the second detector type have a second sampling rate R2
- the first time series of measurements and the second time series of measurements can be converted into a combined time series of measurements having a common sampling rate and a dynamic range.
- This conversion can include determining a common sampling rate and converting each of the first and second time series of measurements into a converted fsrst and second time series of measurements based on the common sampling rate.
- a common sampling rate Re is determined (See 706).
- the common sampling rate can be determined based on any sampling techniques as known in the art.
- the common sampling rate can be determined using Least Common Multiple-based upsampling when the first and second sampling rates are both low.
- the common sampling rate can be determined using Maximum Common Divisor-based downsampling when the first and second sampling rates are sufficiently high.
- the common sampling rate can be the first sampling rate Rl .
- Each of the first and second series of time series measurements is then converted into a converted times series of measurements based on the common samplmg rate (See 708). If the common sampling rate is the first sampling rate Rl, the first converted time series of measurements is the first time series of measurements. Tf the common sampling rate is a sampling rate other than the first sampling rate and the second sampling rate, both the first and second series of measurements will need to be converted.
- a stable signal component representation for the furnace is determined based at least in part on the first measurement related to the plurality of burners. (See 204).
- the stable signal component representation is a stable statistic.
- the stable signal component representation can be a stable covarianee matrix.
- the stable covariance matrix, Q xs [m], at time m when the signal is known to be stable can be calculated as:
- the system later obtains from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state. (See 206).
- An unstable signal component representation for the furnace is subsequently determined based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation.
- stable signal component refers to the portion of the signal that is not attributed to the stable signal component, and does not denote that one or more burners in the furnace is necessarilv unstable.
- the unstable signal component representation can be an instability covariance matrix.
- the instability covariance matrix can be calculated based on the stable covariance matrix and a current covariance matrix.
- the current covariance matrix is a function of the second measurement from each of the plurality of detectors.
- FIG. 8 One embodiment of a method for calculating the unstable signal component representation in accordance with the disclosed subject matter is illustrated in Figure 8.
- a current covariance matrix Q n] is calculated (See 802).
- the current covariance matrix can be calculated as:
- ⁇ is the forgetting factor taking a value between [0, 1 ] such that past data is discounted at a rate of . ⁇ 3 ⁇ 4.
- ' " ' , Q r [n - 1] is the current covariance matrix for the previous time period
- x[n] is the vector of the second measurements from each of the plurality of detectors
- x[n] ! is the transpose of vector x[n].
- the inverse of the current covariance matrix is calculated (See 804).
- the inverse of the current covariance matrix Q. l [n] can be calculated using matrix inversion lemma:
- the instability covariance component representation is then calculated (See 806).
- the instability covariance component representation can be calculated as:
- an instability in the furnace is detected based at least in part on the unstable signal component representation and an instability threshold (See 210).
- an instability will be detected when a detector, which can be based on the unstable signal component representation, exceeds the instabilit threshold.
- the instability threshold can be compared against a detection test statistic.
- the detection test statistic can be, for example, a Neyman-Pearson detector.
- the detection test statistic can be computed based on the inverse of a s table covariance matrix.
- the detection test statistic can be computed based on the inverse of a current covariance matrix.
- Figure 9 illustrates one method of computing a detection test statistic in accordance with the disclosed subject matter.
- An instability estimate is calculated (See 902).
- the instability estimate can be calculated as the minimum mean squared error
- detection test statistic is then calculated based on the instability estimate (See 904).
- the detection test statistic can be based on the Neyman-Pearson detector.
- the detection test statistic T(x[n]) can be calculated as:
- Equation (8) can be simplified as:
- the detection test statistic can be calculated based solely on the instability estimate.
- the detection test statistic can be calcul ated as the squared norm of the MMSE estimate of the instability signal:
- the detection test statistic is compared to the instability threshold (906).
- the threshold can be mathematically derived or based on experimental observations.
- the identification of the threshold can vary based on several variables, including the types of detector(s) utilized to obtain the signal, the desired target detection probability, the false positive rate, and the detection delay. For example, if it is desired to minimize the false positive rate (e.g., because incorrect detection of an instability is economically inefficient), the threshold can be raised and the detection delay will increase.
- the instability threshold y for a Ney man-Pearson detector is calculated as: where P f dirt - a is a given false positive alarm rate, L(x) is the probability that the signal is unstable given a vector x divided by the probability that the signal is stable given the vector x, and p(x; 3 ⁇ 4) is the probability thai the signal is siable given the vecior x.
- an instability can be detected.
- an instability can be detected only if the detection test statistic has exceeded the instability threshold for a. predetermined number of samples in a row. If the detection test statistic exceeds the instability threshold, but this has occurred for fewer than the predetermined number of samples in a row, a count variable can be incremented. [0071] If the detection statistic does not exceed the threshold, an instability is not detected. If present, a count variable can be reset to zero. In addition, the stable signal component can be reset as:
- Figitre 10 illustrates a comparison between an instability detector in accordance with the disclosed subject matter (top line in Figure 10) and an instability detector based on the variance of pressure measurements from a single channel (bottom line in Figure 10), both of which are based on the same set of measurement data.
- the instability detector in accordance with the disclosed subject matter corresponds to the detection test statistic ⁇ ] (x[n ⁇ ) as described herein.
- the detection test statistic 7[ (jc[w]) method of invention top line in Figure 10) has a better detection rate for a given false positive rate than the variance-based instability detector (bottom line in Figure 10).
- An alarm can be provided when an instability is detected.
- the alarm can be, for example, an audio alarm such as a siren or a visual alarm such as a flashing light or an indication on the monitor of a computer screen. More generally, any method of informing an operator that an instability has been detected can be used as known in the art for its intended purpose,
- Corrective action can also be taken when an instability is detected.
- the furnace can be shut down, which can prevent an explosion and allow repairs and/or maintenance to be provided to the furnace.
- an operating property of the furnace can be adjusted. For example, the amount of steam injected into the furnace can be decreased until the instability is resolved.
- the disclosed subject matter further includes a system for multi-channel detection of an instability.
- a system for multi-channel detection of an instability For purpose of explanation and illustration, and not limitation, an exemplary embodiment of the system for detecting an instability using multiple data channels in accordance with the disclosed subject matter is shown in Figure 1 1.
- the instability detection system 1 100 can include a plurality of detectors 1 102, a stable signal component processing unit 1 104, an unstable signal component processing unit 1 106, and an instability detection unit 1 108.
- Each of the plurality of detectors 1 102 is disposed within or near a furnace 1 1 10.
- the detectors 1 102 are disposed to measure the characteristic of interest.
- the detectors 1 102 can be disposed within the furnace 1 1 10 (e.g., in the case of a pressure sensor) or outside of the furnace 1 1 10 (e.g., in the case of a video camera for recording the flame) as desired and suitable.
- the stable signal detection processing unit 1 104 is coupled to the detectors 1 102 and configured to receive a first measurement from each of the plurality of detectors 1 102 during stable combustion and determine a stable signal component representation of the furnace 1 110 based on the first measurement from each of the plurality of detectors 1 102,
- each of the detectors 1 102. can optionally be coupled via suitable wiring or other transmission device 1 1 14 to the stable signal detection processing unit 1 104,
- any component can be coupled to any other component either directly or indirectly through other components.
- the unstable signal component processing unit 1 106 is coupled to the detectors 1 102 and the stable signal component processing unit 1 104.
- the unstable signal component processing unit 1 106 is configured to receive a second measurement from each of the plurality of the detectors 1 102 when the furnace is operating in an unknown state and determine an unstable signal component representation of the furnace 1 1 10 based on the stable signal component representation and the second measurement received from each of the plurality of detectors 1 102.
- the instability detection unit 1 108 is coupled to the unstable signal component processing unit 1 106 and is configured to detect an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
- the instability detection unit can include a detection test statistic generator that is configured to determine a detection test statistic as discussed herein. Additional functional units can be used to perform other functions of the method as disclosed herein.
- the stable signal component processing unit 104, the unstable signal component processing unit 1 106, the instability detection unit 108, the detection test statistic generator, and other functional units of the instability detection system 1 100 can be implemented in a variety of ways as known in the art.
- each of the functional units can be implemented using an integrated single processor.
- each functional unit can be implemented on a separate processor. Therefore, the instability detection system 1 100 can be implemented using at least one processor and/or one or more processors.
- the at least one processor comprises one or more circuits.
- the one or more circuits can be designed so as to implement the disclosed subject matter using hardware only.
- the processor can be designed to carry out the instructions specified by computer code stored in a hard drive, a removable storage medium, or any other storage media.
- Such non-transitory computer readable media can store instructions that, upon execution, cause the at least one processor to perform the methods as disclosed herein.
- the furnace 1 1 10 includes a plurality of burners 1 1 12.
- the term ''furnace refers to a wide variety of equipment that includes at least one burner, including, for example, industrial furnaces, fired heaters, and boilers.
- the furnace 1 10 can be located at a refinery or similar location.
- Each of the plurality of burners 1 1 12 or another functional element of the furnace 1 1 10 e.g., a steam injector
- the corrective action processor can include one or more processors comprising one or more circui ts as discussed above.
- the instability detection system 1 100 can further include additional components in accordance with the disclosed subject matter.
- the system can include an alarm coupled to the instability detector that is activated when an instability is detected.
- the alarm can be, for example, a siren, a flashing light, an alarm on a computer console (preferred a maimed distributed control console), or any other alarm.
- an instability caused by one burner can have significant impact on the operation of the furnace and system as a whole.
- one unstable burner can require that an entire furnace be shut down when all of the other burners are stable. This is both environmentally and economically inefficient.
- the operator may replace one or more burners based on his or her best judgment. This "best judgment" replacement strategy can be both costly and ineffective.
- the disclosed subject matter therefore provides systems and methods for identifying an unstable subset of burners.
- the method disclosed herein includes obtaining at least one measurement from each of a plurality of detectors, detecting an instability associated with the furnace, computing, using at least one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstable subset of burners based at least in part on the unstable signal matrix
- At least one measurement is obtained from each of a plurality of detectors (See 12.02).
- detectors See 12.02.
- a wide variety of detectors can be used as previously described herein with reference to the disclosed system and method for detecting an instability.
- An instability associated with the furnace is then detected (See 1204).
- the instability can be detected as discussed above with reference to, for example, the method of Figure 2 as previously described in detail.
- the method for identifying an unstable subset of burners in accordance to the disclosed subject matter is not limited to such embodiment.
- Other instabilit '' detection systems can also be used as known and suitable for their intended purpose.
- a variance-based instability detector as discussed and illustrated with regard to Figure 10 can be used to detect an instability.
- An unstable signal matrix associated with the instability can be calculated based on the at least one measurement from each of the plurality of burners (See 1206).
- the unstable signal matrix can be the instability component covariance as previously discussed herein with reference to Figure 8.
- the unstable subset of burners can be identified based at least in part on the unstable signal matrix (See 1208), One embodiment of the method for identifying the unstable subset of burners based on the unstable signal matrix in accordance with the disclosed subject matter is illustrated in Figure 13.
- the at least one dominant eigenvector of the unstable signal matrix is obtained using eigenvalue decomposition (See 1302).
- the method for obtaining an eigenvector is well known in the art, and can be represented as:
- the length of the eigenvectors will depend on the number of sensors deployed in the furnace and used in the calculation of the unstable signal matrix. For example, in a furnace with three pressure sensors, the eigenvector will be 3 x 1.
- clustering is performed based on the dominant eigenvector.
- Clustering generally refers to grouping data recovered from the current dominant eigenvector and a plurality of previous dominant eigenvectors.
- the furnace has three detectors.
- the resulting eigenvector will be 3 x 1.
- the three components of this eigenvector define a point on a unit ball.
- An exemplary embodiment of a unit bail in accordance with the disclosed subject matter is illustrated in Figure 14. The point corresponding to the three components of the eigenvector can be plotted on the unit ball along with points corresponding to the three components of the plurality of previous eigenvectors.
- the first dominant eigenvector represents a combined effect of ail unstable burners
- other eigenvectors may also contain information thai is useful for burner identification.
- the unit bail concept can easily be generalized to a higher dimensional clustering with additional eigenvectors as feature vectors. Although visualization in the higher dimensional space is not as intuitive as in the unit bail with three dimensions, the clustering technique is fundamentally the same.
- the subset of burners associated with the instability are identified (See 1306) based on the clustering. Additional information can be used to interpret the results of the clustering. For example, the locations of the burners and the pressure sensors can be used to constrain the Greens function. The signal frequency can likewise be used to constrain the signal function. Trial and error can also be used to assist in the interpretation of the clustering.
- each instance of clustering can be interpreted to produce a resulting vector.
- the first instance of clustering can result in vector 1402, while the second instance of clustering can result in vector 1404.
- vector 1402 corresponds to the identification of Burner 2 as the unstable burner.
- Vector 1404 corresponds to the identification of Burners 1 and 3 as the unstable burners.
- the identification of one or snore unstable burners allows the operator of the furnace additional options when the instability is detected. For example, the operator can choose to deactivate the unstable burner(s) rather than shutting down the furnace as a whole. This process can also be automated such that the unstable burner is automatically deactivated when the system identifies the source of the instability.
- This identification also allows repairs to be made to the furnace in a timely manner, minimizing the inactivity period of the furnace.
- identification system 1500 can include a plurality of detectors 1502, an instability detection unit 1504, an unstable matrix computation unit 1506, and an unstable burner identifier 1508.
- the plurality of detectors 1502 can include any detectors as discussed above with reference to the detectors 1 102 in Figure 1 1, and do not require further explanation.
- the instability detection unit 1504 is coupled to the detectors 1502. and is configured to detect an instability associated with the furnace 1510 comprising a multi tude of burners 151 1.
- the instability detection unit 1504 can include the stable signal component processing unit 1 104, the unstable signal component processing unit 1 106, and the instability detection unit 1 108 of Figure 1 1.
- the instability detection unit 1504 of the unstable burner identification system 1500 is not limited to such embodiments.
- the instability detection unit 1504 can be any system for detecting an insiability associated with a furnace.
- the instability detection unit 1504 can be a system that implements a variance-based detection approach and identifies an insiability based on a variance-based instability indicator such as instability indicator described and illustrated in Figure 10.
- the unstable matrix computation unit 1506 is coupled to the detectors 1502 and the instability detection unit 1504.
- the unstable matrix computation unit 1506 is configured to compute an unstable signal matrix associated with the instability based on at least one measurement from each of the plurality of burners.
- the unstable burner identifier 1508 is coupled to the unstable matrix computation unit 1506 and is configured to identify an unstable subset of burners based at least in part on the unstable signal matrix.
- the unstable burner identifier can include an eigenvalue decomposer 1512 that is configured to perform eigenvalue decomposition of the unstable signal matrix to obtain at least one dominant eigen vector, a clusterer 1514 configured to cluster data obtained from the dominant eigenvector with data obtained from a plurality of previous eigenvectors, and an interpretation unit 1516 configured to interpret the cluster data and identity one or more unstable burners.
- the instability detection unit 1504, the unstable matrix computation unit 1506, the unstable burner identifier 1508, the eigenvalue decomposer 1512, the clusterer 1514, the interpretation unit 1516, and other functional units of the unstable burner identification system 1500 can be implemented in a variety of ways as known in the art.
- each of the functional units can be implemented using an integrated single processor.
- the each functional unit can be implemented on a separate processor. Therefore, the unstable burner identification system 1500 can be
- the at least one processor comprises one or more circuits.
- the one or more circuits can be designed so as to implement the disclosed subject matter using hardware only.
- the processor can be designed to cany out the instructions specified by computer code stored in a hard drive, a removable storage medium, or any other storage media.
- Such non-transitory computer readabie media can store instructions that, upon execution, cause the at least one processor to perform the methods as disclosed herein.
- the unstable burner identification system 1500 can further include additional components in accordance with the disclosed subject matter.
- the system can include an alarm coupled to the instability detector that is activated when instability is detected.
- the alarm can be, for example, a siren, a flashing light, or any other alarm.
- the invention can include one or more of the following embodiments
- Embodiment i A method for detecting an instability in a furnace having a plurality of burners, the method comprising obtaining from each of a plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition, determining, based at least in part on the first measurement from each of the plurality of detectors, a stable signal component representation for the furnace, obtaining from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determining, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detecting, using at least one processor, an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
- Embodiment 2 The method of Embodiment 1 , wherein the plurality of detectors comprises a plurality of pressure sensors.
- Embodiment 3 The method of any of the foregoing Embodiments, wherein the plurality of detectors comprises a plurality of vibration sensors.
- Embodiment 4 The method of any of the foregoing Embodiments, wherein the plurality of detectors comprises a plurality of video sensors.
- Embodiment 5 The method of any of the foregoing Embodiments, wherein the stable signal component representation for the furnace comprises a stable covariance matrix.
- Embodiment 6 The method of any of the foregoing Embodiments, wherein the unstable signal component representation for the furnace comprises an instability component covariance.
- Embodiment 7 The method of Embodiment 6, wherein the instability component covariance is calculated based on a stable covariance matrix and a current covariance matrix.
- Embodiment 8 The method of Embodiment 7, wherem the current covariance matrix is calculated based on the stable component covariance matrix and a vector of the second measurement from each of the plurality of burners.
- Embodiment 9 The method of any of the foregoing Embodiments, wherein the instability threshold is compared against a detection test statistic.
- Embodiment 10 The method of Embodiment 9, wherem the detection test statistic comprises a Neyman-Pearson detector.
- Embodiment 1 1 The method of Embodiments 9 or 10, further comprising computing the detection test statistic based on an inverse of a stable covariance matrix.
- Embodiment 12 The method of Embodiments 9 or 10, further comprising computing the detection test statistic based on an inverse of a current covariance matrix.
- Embodiment 13 The method of Embodiment 12, wherein the inverse of the current covariance matrix is computed via matrix inversion lemma.
- Embodiment 14 The method of any of the foregoing Embodiments, wherein the plurality of detectors comprise one or more detectors of a first detector type and one or more detectors of a second detector type,
- Embodiment 15 The method of Embodiment 14, wherein obtaining the first measurement comprises obtaining a first time series of measurements from each of one or more detectors of a first detector type the first time series of measurements from each of the one or more detec tors of a first detector type having a first sampling rate, and obtaining a second time series of measurements from each of the one or more detectors of a second detector type, the second time series of measurements from each of the one or more detectors of a second detector type having a second sampling rate.
- Embodiment 16 The method of Embodiment 15, wherein the first time series of measurements includes the first measurement for each of the one or more detec tors of a first detector type, and wherem the second time series of measurements includes the first measurement for each of the one or more detectors of a second detector type.
- Embodiment 17 The method of Embodiments 15 or 16, further comprising converting the first time series of measurements and the second time series of measurements into a combined time series of measurements having a common sampling rate,
- Embodiment 18 The method of Embodiment 17, wherein determining the stable signal component representation for the furnace comprises determining the stable signal component for the furnace based at least in part on the combined time series of measurements.
- Embodiment 19 The method of Embodiments 17 or 18, wherein the common sampling rate comprises the first sampling rate.
- Embodiment 20 The method of Embodiments 17 or 18, wherein the common sampling rate is a sampling rate other than the first sampling rate and the second sampling rate.
- Embodiment 2.1 The method of any of Embodiments 15 through 20, wherein the first time series of measurements includes the second measurement for each of the one or more detectors of a first detector type, and wherein the second time series of measurements includes the second measurement for each of the one or more detectors of a second detector type.
- Embodiment 22 The method of Embodiment 21, wherein determining the unstable signal component for the furnace comprises determining the unstable signal component representation for the furnace based on the combined time series of measurements.
- Embodiment 23 The method of any of Embodiments 15 through 22, wherein the first time series of measurements comprises at least one video frame.
- Embodiment 24 The method of Embodiment 23, further comprising converting the at least one video frame into a single value.
- Embodiment 2.5 The method of Embodiment 24, wherein the at least one video frame is converted into a single value based at least in part on the intensity of each pixel in the at least one video frame.
- Embodiment 26 A method for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners, the method comprising obtaining at least one measurement from each of a plurality of detectors, detecting an instability associated with the furnace, computing, using at least one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstable subset of burners based at least in part on the unstable signal matrix,
- Embodiment 27 The method of Embodiment 26, wherein detecting an instability associated with the furnace comprises any of Embodiments 1 through 25.
- Embodiment 28 The method of Embodiments 26 or 27, wherein the unstable signal matrix comprises an instability component covariance.
- Embodiment 29 The method of Embodiments 26, 27, or 28, further comprising using eigenvector decomposition of the unstable signal matrix to obtain at least one dominant eigenvector.
- Embodiment 30 The method of Embodiment 29, wherein the at least one dominant eigenvector includes three components defining a point on a unit ball.
- Embodiment 31 The method of Embodiment 30, further comprising clustering the point with a plurality of other points from a plurality of previous dominant eigenvectors.
- Embodiment 32 The method of Embodiment 31, further comprising identifying the unstable subsets of burners based on the clustering.
- Embodiment 33 The method of Embodiment 32, wherein historical data is used to identify the unstable subset of burners.
- Embodiment 34 The method of Embodiment 29, further comprising recovering a Green's function vector from the at least one dominant eigenvector.
- Embodiment 35 The method of Embodiment 34, wherein the at least one dominant eigenvector is normalized to obtain the Green's function vector.
- Embodiment 36 The method of any of Embodiments 26 through 35, wherein the unstable subset of burners comprises a single burner.
- Embodiment 37 The method of any of Embodiments 26 through 35, wherein the unstable subset of burners comprises a plurality of burners.
- Embodiment 38 The method of any of Embodiments 26 through 35, wherein the unstable subset of burners comprises a group of burners containing at least one unstable burner.
- Embodiment 39 A system for detecting an instability in a furnace having a plurality of burners, the system comprising a plurality of detectors, and at least one processor coupled to the plurality of detectors and configured to obtain from each of the plurality of detectors a first measurement related to a plurality of burners when the furnace is operating in a stable condition, determine, based at least in part on the first measurements from each of the pluralit of detectors, a stable signal component representation for the furnace, obtain from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determine, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detect an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
- Embodiment 40 The system of Embodiment 39 configured to use in accordance with any of the methods described in Embodiments 1 through 25.
- Embodiment 41 A system for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners, the system comprising a plurality of detectors and a processor coupled to the plurality of burners and configured to obtain at least one measurement from each of the plurality of detectors, detect an instability associated with the furnace, compute an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identify the unstable subset of burners based at least in part on the unstable signal matrix
- Embodiment 42 The system of Embodiment 41 configured for use in accordance with any of the methods described in Embodiments 26 through 38.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Systems and method for identifying an unstable subset of burners from among a plurality of burners in a furnace are also disclosed. At least one measurement is obtained from each of the plurality of burners. An instability associated with the furnace is detected. An unstable signal matrix associated with the instability is computed based on the at least one measurement from each of the plurality of burners. An unstable subset of burners is identified based at least in part on the unstable signal matrix.
Description
FLAME INSTABILITY DETECTION AND IDENTIFICATION
OF UNSTABLE BURNERS IN INDUSTRIAL FURNACES
FIELD
[0881] The invention is generally related to flame instability detectors.
Particularly, the present application relates to monitoring a flame state and identifying an instability using a multi-channel detector. The present application further relates to identification of unstable burners in a furnace with multiple burners.
BACKGROUND
[0002] Furnace monitoring is becoming an increasingly important problem in refinery operations. Industrial furnaces, fired heaters, and boilers are used extensively across multiple refinery processes such as process heating and steam production, and are generally responsible for the largest proportion of the total refinery fuel consumption. The proper operation of these furnaces is particularly relevant for safety, environmental, and energy efficiency concerns.
[0003] In addition, industrial furnaces can contribute substantially to total refinery NOx emissions. NOx emissions can be reduced through lowering the adiabatic flame temperature while maintaining safe operation, which can be achieved by, e.g., enhancing fuel gas recirculation, steam injection, or use of technologies such as premixed flames and ultra-low NOx s. However, these technologies are often more prone to flame instability than tradition processes. It therefore is necessary to monitor the burner stability and provide feedback signals to control fuel and/or diluent flow when instabilities occur.
[00041 Traditionally, flame monitoring in industrial furnaces has been accomplished through visual inspection, analyzer-based monitoring, and photodetector devices. Visual inspection can readily identify flame blowoff, but is generally inadequate for identifying instability prior to blowoff. Analyzer-based monitoring typically has long latency and lacks the dynamic coverage needed for reliable detection. Photodetector devices such as flame eye are mainly burner based and expensive for wide-deployment. Furthermore, the practical use of line-of-sight techniques, such as Tunable Diode Laser-based monitoring can be restricted due to their design.
[0005] New flame monitoring strategies have been introduced, but are limited in various ways. For example, variance-based approaches have been proposed, but are limited due to their low output signal-to-noise ratio, which requires an operator to choose between early detection and a low false positive rate. In addition, draft pressure fluctuation approaches have been reported in the past, but these techniques have been limited to a specific frequency range.
SUMMARY
[0006 j The purpose and advantages of the present application will be set forth in and apparent from the description that follows, as well as will be learned by practice of the disclosed subject matter. Additional advantages of the disclosed subject matter will be realized and attained by the method and apparatus particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
[0007] To achieve these and other advantages and in accordance with the purpose of the application, as embodied and broadly described, the disclosed subject matter includes a method for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners. The method can include the steps of obtaining at least one measurement from each of a plurality of detectors, detecting an instability associated with the furnace, computing, using at least one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstable subset of burners based at least in part on the unstable signal matrix.
[0008 j For example, the at least one measurement from each of a plurality of detectors can include obtaining from each of the plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition, and obtaining from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state. In accordance with one embodiment of the disclosed subject matter, detecting an instability associated with the furnace can include determining, based at least in part on the first measurement from each of the plurality of detectors, a stable signal component representation for the furnace, determining, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component
representation, an unstable signal component representation for the furnace, and detecting an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
[0009] As disclosed herein, the plurality can be, for example, a plurality of vibration sensors, a plurality of pressure sensors, or a plurality of video sensors.
[0010] In accordance with one embodiment of the disclosed subject matter, the stable signal component representation for the furnace can be a stable covariance matrix. The unstable signal component representation can be an instability component covariance. The instability component covariance can be calculated based on a stable covariance matrix and a current covariance matrix. The current covariance matrix can be calculated based on the stable covariance matrix and a vector of the second measurement from each of the plurality of burners.
[0011] In accordance with another embodiment of the disclosed subject matter, the instability threshoid can be compared against a detection test statisiic. The detection test statistic can be, for example, a Neyman-Pearson detector. The detection test statistic can be computed based on the inverse of a stable covariance matrix. In another embodiment, the detection test statistic can be calculated based on an inverse of a current covariance matrix. For example, the inv erse of the current co variance matrix can be computed via matrix inversion lemma.
[0012J In accordance with another embodiment of the disclosed subject matter, the plurality of detectors can comprise one or more detectors of a first detector type and one or more detectors of a second detector type. The first measurement can be obtained by obtaining a first time series of measurements from each of one or more detectors of a first detector type, the first detector type having a first sampling rate, and obtaining a second time series of measurements from each of the one or m ore detectors of a second detector type, the second time series of measurements from each of the one or more detectors of a second detector type having a second sampling rate. For example, the first time series of measurements can include the first measurement for each of the one or more detectors of the first detector type, and the second time series can include the first measurement for each of the one or more detectors of a second detector type.
[0013] The method can further include converting the first time series of measurements and the second time series of measurements into a combined time series of measurements having a common sampling rate, wherein determining the stable signal component representation of the furnace comprises determining the stable signal component representation for the furnace based at feast in part on the combined time series measurements. The common sampling rate can be, for example, the first sampling rate, or a sampling rate other than the first sampling rate and the second sampling rate.
10014] The first time series of measurements can also include the second measurement for each of the one or more detectors of a first detector type, and the second time series of measurements can include the second measurement for each of the one or more detectors of a second detector type. The first time series of measurements and the second time series of measurements can be converted into a combined time series of measurements ha ving a common sampling rate. The unstable signal component representation for the furnace can be determined based at least in part on the combined time series of measurements.
[0015] In accordance with one embodiment of the disclosed subject matter, the first time series of measurements includes at least one video frame. The at feast one video frame can be converted into a single vakte. For example, the at feast one video frame can be converted into a single value based on an intensity of each pixel in the at least one video frame. The second time series of measurements can include, for example, at least one value measured by a pressure sensor.
[0016] in accordance with another embodiment of the disclosed subject matter, the unstable signal component representation can be, for example, an instability component covariance. Eigenvalue decomposition of the unstable signal component representation can be used to obtain at least one dominant eigenvector. The at least one dominant eigenvector can includ three components defining a point on a unit ball.
[0017] As disclosed herein, the point can be clustered with a plurality of other points obtained from a plurality of previous dominant eigenvectors. The unstable subset of burners can be identified based on the clustering. Historical data can be used to identify the unstable subset of burners. In accordance with another embodiment, a Green's function vector can be recovered from the at least one dominant eigenvector.
For example, the at least one dominant eigenvector can be normalized to obtain the Green's function vector.
[0018] As disclosed herein, the unstable subset of burners can include a single burner, a plurality of burners, or a group of burners including at least one unstable burner.
[001 ] Also disclosed herein is a system for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners. The system can include a plurality of detectors and a processor coupled to the plurality of burners and configured to obtain at least one measurement from each of the plurality of detectors, detect an instability associated with the furnace, compute an unstable signal matrix associated with the instability based on the at least one measurement from each of the pluraiiiy of burners, and identify the unstable subset of burners based at least in part on the unstable signal matrix. Additional aspects and features of the system are described in conjunction with the method.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] FIGURE 1 is a high-level flow chart describing a representative embodiment of a method for identifying the source of an instability in accordance with the disclosed subject matter.
[0021] FIGURE 2 is a flow chart describing a representative embodiment of a method for detecting an instability in a furnace using multiple channels of data in accordance with the disclosed subject matter.
[0022] FIGURE 3 is a graph showing the draft pressure measured by five pressure sensors over time as a flame is driven from a stable condition or phase to an unstable condition or phase and approaches blowoff.
[00231 FIGURE 4 is a series of processed video frames showing the flames of three burners over time with background removed. The flames of the three burners are viewed from the top at a 45° angle. The video frame rate for the video frames in Figure 4 is around 6.4 frames per second which, with the oscillation cycle spanning 1 1 frames, leads to an approximately 1.72 second oscillation cycle, or equivalently 0,58 Hz peak frequency.
[0024] FIG LIRE 5 is a flow chart describing a representative embodiment of a method for converting a series of video frames into a scalar time series signal in accordance with the disclosed subject matter.
[0025J FIGURE 6 is a graph of a scalar time series calculated based on a series of video frames in accordance with the disclosed subject matter.
[00261 FIGURE 7 is a flow chart describing a representative embodiment of a method for processing two sets of measurements having different sampling rates into a combined set of measurements in accordance with the disclosed subject matter,
[0027] FIGURE 8 is a flow chart describing a representative method for calculating the unstable signal component representation in accordance with the disclosed subject matter.
[0028] FIGURE 9 is a flow chart describing a representative method for computing a detection test statistic in accordance with the disclosed subject matter.
[0029] FIGURE 10 is a graph showing a comparison of the detection rate for an instability indicator in accordance with the disclosed subject matter against the detection rate for an instability detec tor based on the variance of pressure measurements from a single channel for a given false positive rate.
[0030] FIGUR E 1 1 is a graph showing a representative embodiment of the system for detecting an instability using a multi-channel approach in accordance with the disclosed subject matter.
[0031] Figure 12 is a flow chart showing a representative embodiment of a method for identifying an unstable subset of burners in accordance with the disclosed subject matter.
[0032] FIGURE 13 is a flow chart showing a representative embodiment of a method for identify ing an unstable subset of burners based on the unstable signal matrix in accordance with the disclosed subject matter.
[0033] FIGURE 14 is a graph showing two instances of clustering on a unit bail in accordance with the disclosed subject matter.
[0034] FIGURE 15 is an illustration of a representative system for identifying an unstable subset of burners in accordance with the disclosed subject matter.
DETAILED DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
Overvie
[0035] Generally, the disclosed subject matter is directed to a method of detecting an instability in a furnace having a plurality of burners, the method comprising obtaining from each of a plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition, determining, based at least in part on the first measurement from each of the plurality of detectors, a stable signal component representation for the furnace, obtaining from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determining, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detecting, using at least one processor, an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
Additionally, a system is provided herein. The system generally includes a plurality of detectors, and at least one processor coupled to the plurality of detectors and configured to obtain from each of the plurality of detectors a first measurement related to a plurality of burners when the furnace is operating in a stable condition, determine, based at feast in part on the first measurements from each of the plurality of detectors, a stable signal component representation for the furnace, obtain from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determine, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detect an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
[0036] in accordance with another aspect, the disclosed subject matter is generally- directed to a method of identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners, the method comprising obtaining
at least one measurement from each of a plurality of detectors, detecting an instability associated with the furnace, computing, using at feast one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstable subset of burners based at least in part on the unstable signal matrix. Additionally, a system is provided herein. The system generally includes a plurality of detectors and a processor coupled to the plurality of burners and configured to obtain at least one measurement from each of the plurality of detectors, detect an instability associated with the furnace, compute an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identify the unstable subset of burners based at least in part on the unstable signal matrix.
[0037] Reference will now be made in detail to representative embodiments of the disclosed subject matter, examples of which are illustrated in the accompanying drawings. The methods and systems disclosed herein will be described in conjunction with each other for clarity.
[0038] With reference to Figure 1 , a process for identifying an unstable subset of burners in a furnace comprising a plurality of burners is shown. First, a method is provided for detection of an instability (See 102). Subsequently, a method is provided for identify ing the unstable subset of burners (See 104), Further details about these methods will be described herein.
[0039] Although these methods will generally be described herein in conjunction with each other, either of these methods can be used independently. For example, a system can detect an instability in accordance with the disclosed subject matter without thereafter proceeding to the identification of an unstable subset of burners. Similarly, a method for identify ing an unstable subset of burners in accordance with the disclosed subject matter can be used regardless of how the instability is detected.
Definitions
[0040] In the discussion herein, the phrase "subset of burners" refers to any number of burners that is less than the total number of burners associated with a furnace. The term "subset of burners" therefore can reference a single burner, or the term "subset of burners" can refer to two or more burners that are unstable. Furthermore, the term
"subset of burners" can refer to a group of any number of burners, wherein at least one burner is unstable (i.e., one or more burners of the subset can be stable). Additionally, the system and methods disclosed herein may identify a subset of burners in accordance with this final embodiment when there are more burners than detectors.
In the discussed herein, the term "coupled" means operaiively in communication with each other, either directly or indirectly , using any suitable techniques, including hard wire, connectors, or remote communication.
Detecting an Instability
[00421 Although the disclosed subject matter is not limited to any particular theory of operation, a pressure signal at sensor p at time n can be modeled as:
wherein xs B[n] is the stable pressure component for sensor p and SxD[n] is the unstable signal component for sensor p. It is observed that stable combustion generates more or less random variations (for example, in a pressure measurement). In contrast, flame instability is typically coherent, as manifested by harmonic pressure oscillations.
With further reference to Figure 1, an instability is detected. (See 102). With reference to Figure 2, an exemplary method of detecting an instability in a furnace having a plurality of burners in accordance with the disclosed subject matter is shown. First, the system obtains from each of a plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition. (See 202), The signals from the detector are then processed by a processor as described further below.
In one embodiment, each of the plurality of detectors is a pressure sensor. The pressure sensor can be, for example, a dynamic pressure sensor, such as a pressure probe, that can capture a high frequency signal. Each of the pressure sensors can measure the draft pressure at a single point inside a furnace. Figure 3 illustrates an exemplary draft pressure measurement at five pressure sensors, P1-P4 and P6, as a function of time as the flames at each of the plurality of burners gradually approach blowoff.
[0045] In another embodiment, each of the plurality of detectors is a device that captures video frames. The device can be, for example, a video camera. With reference to Figure 4, the detector captures video frames 402-424. Each of the video frames in Figure 4 shows the flames associated with three burners at various times.
[0046] In order to determine a stable signal component representation for the furnace, the series of video frames from each device must be converted into a scalar time series signal, i.e., each video frame must be converted into a single value that can be plotted against time. Such pre-processing can be performed by the detector, by the processor, or by any intermediate device. In one embodiment, a video frame can be converted into a single value based on the intensity fluctuations associated with each pixel. For example, and with reference to Figure 5, the intensity for each pixel in a first video frame (t=0) can be measured (See 502). The intensity for each pixel in a second video frame (t=l) can also be measured (See 504). The first video frame immediately precedes the second video frame (i.e., the first and second video frames are consecutive samples). For each pixel, a change index between the intensity in the first video frame and the intensity at the second video frame is calculated (See 508). The change index for each pixel is then aggregated to calculate a fluctuation index for the second video frame (See 510). The magnitude of the fluctuation index can then be plotted at time t=l as part of the scalar time series signal. With reference to Figure 6, a scalar time series signal obtained from a series of video frames at one device is shown.
[00471 In another embodiment, each of the plurality of detectors can be a vibration sensor. For example, the vibration sensor can be an accelerometer. The vibration sensor can be used to measure the oscillation of the furnace wall or piping.
[0048] Other detectors can also be used without departing from the scope of the disclosed subject matter. For example, optical sensors can be used to measure flicker. In other embodiments, detectors for measuring carbon dioxide or sulfur dioxide levels in the furnace can be used.
[0049] in accordance with one embodiment of the disclosed subject matter, the plurality of detectors can include one or more detectors of a first detector type and one or more detectors of a second detec tor type. Detectors of the first or second detec tor type
ean be pressure sensors, devices that capture video frames, vibration sensors, optical sensors, or sensors that measure carbon dioxide or sulfur dioxide levels,
[0050] As known in the art, sensors generally measure some characteristic of an environment at regular intervals. The frequency of the measurements can be described in terms of the number of measurements taken over a given time period, or the sampling rate. For example, if Sensor A takes one measurement every second, the sampling rate of Sensor A is 1 per second, or 1 Hertz. In order to obtain the best results, each of the measurements should have a common sampling rate, if the detectors of a first detector type do not have the same sampling rate as detectors of a second detector type, one or both of the signals will need to be pre -processed. An exemplary pre-processing method in accordance with the disclosed subject matter is illustrated in Figure 7.
[0051] A first series of time mea surements is obtained from each of the one or more detectors of the first detector type (See 702). The detectors of the first detector type have a first sampling rate Rl . Simultaneously, a second series of time
measurements is obtained from each of the one or more detectors of the second detector type (See 704). The detectors of the second detector type have a second sampling rate R2,
[0052] The first time series of measurements and the second time series of measurements can be converted into a combined time series of measurements having a common sampling rate and a dynamic range. This conversion can include determining a common sampling rate and converting each of the first and second time series of measurements into a converted fsrst and second time series of measurements based on the common sampling rate.
[0053] For example, and with further reference to Figure 7, a common sampling rate Re is determined (See 706). The common sampling rate can be determined based on any sampling techniques as known in the art. For example, the common sampling rate can be determined using Least Common Multiple-based upsampling when the first and second sampling rates are both low. Alternatively, the common sampling rate can be determined using Maximum Common Divisor-based downsampling when the first and second sampling rates are sufficiently high.. The common sampling rate can be the first sampling rate Rl . In another embodiment, the common sampling rate can be a sampling
rate other than the first sampling rate and the second sampling rate. If the first sampling rate and the second sampling rate are the same (i.e., R1=R2), no upsampling or downsampling is needed.
[0054 j Each of the first and second series of time series measurements is then converted into a converted times series of measurements based on the common samplmg rate (See 708). If the common sampling rate is the first sampling rate Rl, the first converted time series of measurements is the first time series of measurements. Tf the common sampling rate is a sampling rate other than the first sampling rate and the second sampling rate, both the first and second series of measurements will need to be converted.
[0055] While the upsanipling or downsampling process described herein is described with reference to detectors of two or more types, it can also be used for detectors of a single type that do not have the same sampling rate.
With further reference to Figure 2, a stable signal component representation for the furnace is determined based at least in part on the first measurement related to the plurality of burners. (See 204). In one embodiment, the stable signal component representation is a stable statistic. For example, the stable signal component representation can be a stable covarianee matrix. The stable covariance matrix, Qxs[m], at time m when the signal is known to be stable can be calculated as:
O . Im] = T (4m] - x[m])(xim] - x[m]Y KM - 1) (2) where x[m] is the vector of sensor measurements at time m, x[m] is the mean of x[m] estimated at time m, ( ] - x[m])' is the transpose of the vector x[in]■ x[m] , and M is the length of the time windo during which the stable covariance matrix is estimated.
[0057] With further reference to Figure 2, the system later obtains from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state. (See 206).
[0058] An unstable signal component representation for the furnace is subsequently determined based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation. (See 208), As used herein, "unstable signal component" refers to the portion of the signal that is not
attributed to the stable signal component, and does not denote that one or more burners in the furnace is necessarilv unstable.
The unstable signal component representation can be an instability covariance matrix. The instability covariance matrix can be calculated based on the stable covariance matrix and a current covariance matrix. The current covariance matrix is a function of the second measurement from each of the plurality of detectors.
[0060] One embodiment of a method for calculating the unstable signal component representation in accordance with the disclosed subject matter is illustrated in Figure 8. A current covariance matrix Q n] is calculated (See 802). In accordance with one embodiment of the disclosed subject matter, the current covariance matrix can be calculated as:
0 n \ λ()Α η Π · v[ ;/ ].vi ;/ i (3) where λ is the forgetting factor taking a value between [0, 1 ] such that past data is discounted at a rate of .·¾.'" ' , Qr[n - 1] is the current covariance matrix for the previous time period, x[n] is the vector of the second measurements from each of the plurality of detectors, and x[n]! is the transpose of vector x[n].
[0061] With further reference to Figure 8, the inverse of the current covariance matrix is calculated (See 804). For example, the inverse of the current covariance matrix Q. l[n] can be calculated using matrix inversion lemma:
[«] - [n - 1] - ,/| /; ] ; | Ι(λ + x' \n]q{n\) (4) where
'/Ι " I G\ I'; ΦΉ (5)
[0062] The instability covariance component representation is then calculated (See 806). In one embodiment, the instability covariance component representation can be calculated as:
V, \ » \ C> ! ί·! . (6)
This calculation can be followed by a projection to ensure that the resulting instability covanance matrix is non-negative.
Finally, an instability in the furnace is detected based at least in part on the unstable signal component representation and an instability threshold (See 210).
Generally, an instability will be detected when a detector, which can be based on the unstable signal component representation, exceeds the instabilit threshold.
[0064] in accordance with one embodiment of the disclosed subject matter, the instability threshold can be compared against a detection test statistic. The detection test statistic can be, for example, a Neyman-Pearson detector. The detection test statistic can be computed based on the inverse of a s table covariance matrix. In another embodiment, the detection test statistic can be computed based on the inverse of a current covariance matrix.
[0065] Figure 9 illustrates one method of computing a detection test statistic in accordance with the disclosed subject matter. An instability estimate is calculated (See 902). The instability estimate can be calculated as the minimum mean squared error
&mmsM ^ Q&QM' n] (7)
[0066] detection test statistic is then calculated based on the instability estimate (See 904). The detection test statistic can be based on the Neyman-Pearson detector. For example, the detection test statistic T(x[n]) can be calculated as:
In cases where instability mainly consists of pressure oscillations, it can be assumed that the instability signal has zero-mean, i.e., δχ =0. Thus, Equation (8) can be simplified as:
T(x[n]) - -xM' Q^&^n] (9)
[0067] in accordance with another embodiment of the disclosed subject matter, the detection test statistic can be calculated based solely on the instability estimate. For
example, the detection test statistic can be calcul ated as the squared norm of the MMSE estimate of the instability signal:
7 N ) <Sr. (10)
In the presence of an instability, it can be shown, that
where tr(-) denotes matrix trace.
With further reference to Figure 9, the detection test statistic is compared to the instability threshold (906). The threshold can be mathematically derived or based on experimental observations. The identification of the threshold can vary based on several variables, including the types of detector(s) utilized to obtain the signal, the desired target detection probability, the false positive rate, and the detection delay. For example, if it is desired to minimize the false positive rate (e.g., because incorrect detection of an instability is economically inefficient), the threshold can be raised and the detection delay will increase.
In accordance with one embodiment of the disclosed subject matter, the instability threshold y for a Ney man-Pearson detector is calculated as:
where Pf„ - a is a given false positive alarm rate, L(x) is the probability that the signal is unstable given a vector x divided by the probability that the signal is stable given the vector x, and p(x; ¾) is the probability thai the signal is siable given the vecior x.
[00701 If the detection test statistic exceeds the threshold, then an instability can be detected. In accordance with another embodiment, for example, an instability can be detected only if the detection test statistic has exceeded the instability threshold for a. predetermined number of samples in a row. If the detection test statistic exceeds the instability threshold, but this has occurred for fewer than the predetermined number of samples in a row, a count variable can be incremented.
[0071] If the detection statistic does not exceed the threshold, an instability is not detected. If present, a count variable can be reset to zero. In addition, the stable signal component can be reset as:
0 \ ,, \ λυ, \ η ί | · .ψ [ /; ] (13)
The use of multiple channels of data can significantly improve the output signal to noise ratio (SNR). Generally, the output signal to noise ratio of a coherent processor is understood to increase linearly with the number of channels. The improved SNR, in turn can, improve detection performance in the sense that given a fixed false positive rate, the mufti-channel detector can achieve higher detection probability or a shorter detection delay than a detector with lower output SNR. For example, Figitre 10 illustrates a comparison between an instability detector in accordance with the disclosed subject matter (top line in Figure 10) and an instability detector based on the variance of pressure measurements from a single channel (bottom line in Figure 10), both of which are based on the same set of measurement data. The instability detector in accordance with the disclosed subject matter corresponds to the detection test statistic Ί] (x[n} ) as described herein. As shown, the detection test statistic 7[ (jc[w]) method of invention (top line in Figure 10) has a better detection rate for a given false positive rate than the variance-based instability detector (bottom line in Figure 10).
[0073] An alarm can be provided when an instability is detected. The alarm can be, for example, an audio alarm such as a siren or a visual alarm such as a flashing light or an indication on the monitor of a computer screen. More generally, any method of informing an operator that an instability has been detected can be used as known in the art for its intended purpose,
[0074] Corrective action can also be taken when an instability is detected. For example, the furnace can be shut down, which can prevent an explosion and allow repairs and/or maintenance to be provided to the furnace. In another embodiment, an operating property of the furnace can be adjusted. For example, the amount of steam injected into the furnace can be decreased until the instability is resolved.
Instability Detection System
[0075] As previously noted, the disclosed subject matter further includes a system for multi-channel detection of an instability. For purpose of explanation and illustration, and not limitation, an exemplary embodiment of the system for detecting an instability using multiple data channels in accordance with the disclosed subject matter is shown in Figure 1 1. The instability detection system 1 100 can include a plurality of detectors 1 102, a stable signal component processing unit 1 104, an unstable signal component processing unit 1 106, and an instability detection unit 1 108.
[0076] Each of the plurality of detectors 1 102 is disposed within or near a furnace 1 1 10. The detectors 1 102 are disposed to measure the characteristic of interest. For example, the detectors 1 102 can be disposed within the furnace 1 1 10 (e.g., in the case of a pressure sensor) or outside of the furnace 1 1 10 (e.g., in the case of a video camera for recording the flame) as desired and suitable.
[0077] The stable signal detection processing unit 1 104 is coupled to the detectors 1 102 and configured to receive a first measurement from each of the plurality of detectors 1 102 during stable combustion and determine a stable signal component representation of the furnace 1 110 based on the first measurement from each of the plurality of detectors 1 102, For purposes of illustration, each of the detectors 1 102. can optionally be coupled via suitable wiring or other transmission device 1 1 14 to the stable signal detection processing unit 1 104, However, any component can be coupled to any other component either directly or indirectly through other components.
[0078] The unstable signal component processing unit 1 106 is coupled to the detectors 1 102 and the stable signal component processing unit 1 104. The unstable signal component processing unit 1 106 is configured to receive a second measurement from each of the plurality of the detectors 1 102 when the furnace is operating in an unknown state and determine an unstable signal component representation of the furnace 1 1 10 based on the stable signal component representation and the second measurement received from each of the plurality of detectors 1 102.
[0079] The instability detection unit 1 108 is coupled to the unstable signal component processing unit 1 106 and is configured to detect an instability in the furnace based at least in part on the unstable signal component representation and an instability
threshold. The instability detection unit can include a detection test statistic generator that is configured to determine a detection test statistic as discussed herein. Additional functional units can be used to perform other functions of the method as disclosed herein.
[0080 j The stable signal component processing unit 104, the unstable signal component processing unit 1 106, the instability detection unit 108, the detection test statistic generator, and other functional units of the instability detection system 1 100 can be implemented in a variety of ways as known in the art. For example, each of the functional units can be implemented using an integrated single processor. Alternatively, each functional unit can be implemented on a separate processor. Therefore, the instability detection system 1 100 can be implemented using at least one processor and/or one or more processors.
[0081] The at least one processor comprises one or more circuits. The one or more circuits can be designed so as to implement the disclosed subject matter using hardware only. Alternatively, the processor can be designed to carry out the instructions specified by computer code stored in a hard drive, a removable storage medium, or any other storage media. Such non-transitory computer readable media can store instructions that, upon execution, cause the at least one processor to perform the methods as disclosed herein.
[0082] Continuing with Figure 1 1 , the furnace 1 1 10 includes a plurality of burners 1 1 12. The term ''furnace," as used herein, refers to a wide variety of equipment that includes at least one burner, including, for example, industrial furnaces, fired heaters, and boilers. The furnace 1 10 can be located at a refinery or similar location. Each of the plurality of burners 1 1 12 or another functional element of the furnace 1 1 10 (e.g., a steam injector) can be coupled to the instability detection unit 1 108 and a corrective action processor in order to automatically institute a corrective action when an instability is detected. The corrective action processor can include one or more processors comprising one or more circui ts as discussed above.
[0083] The instability detection system 1 100 can further include additional components in accordance with the disclosed subject matter. For example, the system can include an alarm coupled to the instability detector that is activated when an instability is detected. The alarm can be, for example, a siren, a flashing light, an alarm
on a computer console (preferred a maimed distributed control console), or any other alarm.
Identification of Unstable Burner! s)
[0084] in furnaces with a large number of burners, an instability caused by one burner can have significant impact on the operation of the furnace and system as a whole. For example, one unstable burner can require that an entire furnace be shut down when all of the other burners are stable. This is both environmentally and economically inefficient. Moreover, once that furnace has been shut down, it may take an extended period of time to investigate which burner is responsible for the instability. In the event of an inconclusive investigation, the operator may replace one or more burners based on his or her best judgment. This "best judgment" replacement strategy can be both costly and ineffective.
[0085] The disclosed subject matter therefore provides systems and methods for identifying an unstable subset of burners. Generally, the method disclosed herein includes obtaining at least one measurement from each of a plurality of detectors, detecting an instability associated with the furnace, computing, using at least one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstable subset of burners based at least in part on the unstable signal matrix
[0086] One embodiment of identifying the unstable subset of burners in accordance with the disclosed subject matter is illustrated in Figure 12.
[0087] First, at least one measurement is obtained from each of a plurality of detectors (See 12.02). A wide variety of detectors can be used as previously described herein with reference to the disclosed system and method for detecting an instability.
[0088] An instability associated with the furnace is then detected (See 1204). In accordance with one embodiment of the disclosed subject matter, the instability can be detected as discussed above with reference to, for example, the method of Figure 2 as previously described in detail. However, the method for identifying an unstable subset of burners in accordance to the disclosed subject matter is not limited to such embodiment. Other instabilit '' detection systems can also be used as known and suitable
for their intended purpose. For example, a variance-based instability detector as discussed and illustrated with regard to Figure 10 can be used to detect an instability.
[0089] An unstable signal matrix associated with the instability can be calculated based on the at feast one measurement from each of the plurality of burners (See 1206). The unstable signal matrix can be the instability component covariance as previously discussed herein with reference to Figure 8.
[0090] Finally, the unstable subset of burners can be identified based at least in part on the unstable signal matrix (See 1208), One embodiment of the method for identifying the unstable subset of burners based on the unstable signal matrix in accordance with the disclosed subject matter is illustrated in Figure 13.
With reference to Figure 13, the at least one dominant eigenvector of the unstable signal matrix is obtained using eigenvalue decomposition (See 1302). The method for obtaining an eigenvector is well known in the art, and can be represented as:
[V, D] = eig(Q& [n]) (14) where D represents the dominant eigenvalues and V represents the associated eigenvectors. In the case of a single unstable burner, the Greens function vector gm , which relates to the mapping from the unstable burner(s) to the piurality of sensors, can be recovered from the first dominant eigenvector of Q &[n] : gm = aV{\j) (15) where a is a scaling factor that normalizes the Greens function and V( ) is the first dominant eigenvector. The principle of linear superposition applies in the case of multiple unstable burners. Thus, the dominant eigenvector is directly correlated to the Green's function vector and can be used to identify the unstable subset of burners.
[0092] The length of the eigenvectors will depend on the number of sensors deployed in the furnace and used in the calculation of the unstable signal matrix. For example, in a furnace with three pressure sensors, the eigenvector will be 3 x 1.
With further reference to Figure 13, clustering (See 1304) is performed based on the dominant eigenvector. Clustering generally refers to grouping data recovered from the current dominant eigenvector and a plurality of previous dominant
eigenvectors. For example, in one embodiment the furnace has three detectors. As discussed above, the resulting eigenvector will be 3 x 1. The three components of this eigenvector define a point on a unit ball. An exemplary embodiment of a unit bail in accordance with the disclosed subject matter is illustrated in Figure 14. The point corresponding to the three components of the eigenvector can be plotted on the unit ball along with points corresponding to the three components of the plurality of previous eigenvectors.
[00941 More generally, while the first dominant eigenvector represents a combined effect of ail unstable burners, other eigenvectors may also contain information thai is useful for burner identification. In such case, the unit bail concept can easily be generalized to a higher dimensional clustering with additional eigenvectors as feature vectors. Although visualization in the higher dimensional space is not as intuitive as in the unit bail with three dimensions, the clustering technique is fundamentally the same.
[0095] As previously noted, it has been observed that stable combustion produces random fluctuations. As such, the mapping associated with the instability during stable combustion, and therefore the point associated with the dominant eigenvector during stable combustion, will be random. However, if at least one of the burners is unstable, the resulting points will still vary, but will generally group around the point related to the mapping between the unstable burner(s) and the plurality of detectors, because all other fluctuations will be random. Thus, the points plotted on a unit bail will tend to cluster in the presence of an instability.
[0096] With further reference to Figure 13, the subset of burners associated with the instability are identified (See 1306) based on the clustering. Additional information can be used to interpret the results of the clustering. For example, the locations of the burners and the pressure sensors can be used to constrain the Greens function. The signal frequency can likewise be used to constrain the signal function. Trial and error can also be used to assist in the interpretation of the clustering.
[0097] For example, with further reference to Figure 14, the results of two instances of clustering are shown. Each instance of clustering can be interpreted to produce a resulting vector. For example, the first instance of clustering can result in vector 1402, while the second instance of clustering can result in vector 1404. Based on
experimental data and the locations of the burners and sensors, vector 1402 corresponds to the identification of Burner 2 as the unstable burner. Vector 1404 corresponds to the identification of Burners 1 and 3 as the unstable burners.
[0098j The identification of one or snore unstable burners allows the operator of the furnace additional options when the instability is detected. For example, the operator can choose to deactivate the unstable burner(s) rather than shutting down the furnace as a whole. This process can also be automated such that the unstable burner is automatically deactivated when the system identifies the source of the instability.
[0099] This identification also allows repairs to be made to the furnace in a timely manner, minimizing the inactivity period of the furnace.
Unstable Burner Identification System
[001001 For puipose of explanation and illustration, and not limitation, an exemplary embodiment of the system for identifying a subset of unstable burners in accordance with the application is shown in Figure 15. The unstable burner
identification system 1500 can include a plurality of detectors 1502, an instability detection unit 1504, an unstable matrix computation unit 1506, and an unstable burner identifier 1508.
[OlOOj The plurality of detectors 1502 can include any detectors as discussed above with reference to the detectors 1 102 in Figure 1 1, and do not require further explanation.
[0101] The instability detection unit 1504 is coupled to the detectors 1502. and is configured to detect an instability associated with the furnace 1510 comprising a multi tude of burners 151 1. The instability detection unit 1504 can include the stable signal component processing unit 1 104, the unstable signal component processing unit 1 106, and the instability detection unit 1 108 of Figure 1 1. However, the instability detection unit 1504 of the unstable burner identification system 1500 is not limited to such embodiments. In general, the instability detection unit 1504 can be any system for detecting an insiability associated with a furnace. For example, the instability detection unit 1504 can be a system that implements a variance-based detection approach and identifies an insiability based on a variance-based instability indicator such as instability indicator described and illustrated in Figure 10.
[0102] The unstable matrix computation unit 1506 is coupled to the detectors 1502 and the instability detection unit 1504. The unstable matrix computation unit 1506 is configured to compute an unstable signal matrix associated with the instability based on at least one measurement from each of the plurality of burners.
[0103] The unstable burner identifier 1508 is coupled to the unstable matrix computation unit 1506 and is configured to identify an unstable subset of burners based at feast in part on the unstable signal matrix. The unstable burner identifier can include an eigenvalue decomposer 1512 that is configured to perform eigenvalue decomposition of the unstable signal matrix to obtain at least one dominant eigen vector, a clusterer 1514 configured to cluster data obtained from the dominant eigenvector with data obtained from a plurality of previous eigenvectors, and an interpretation unit 1516 configured to interpret the cluster data and identity one or more unstable burners.
[0104] Additional functional units can be used to perform other functions of the method as disclosed herein.
[0105] The instability detection unit 1504, the unstable matrix computation unit 1506, the unstable burner identifier 1508, the eigenvalue decomposer 1512, the clusterer 1514, the interpretation unit 1516, and other functional units of the unstable burner identification system 1500 can be implemented in a variety of ways as known in the art. For example, each of the functional units can be implemented using an integrated single processor. Alternatively, the each functional unit can be implemented on a separate processor. Therefore, the unstable burner identification system 1500 can be
implemented using at least one processor and/or one or more processors.
[0106] The at least one processor comprises one or more circuits. The one or more circuits can be designed so as to implement the disclosed subject matter using hardware only. Al ernatively, the processor can be designed to cany out the instructions specified by computer code stored in a hard drive, a removable storage medium, or any other storage media. Such non-transitory computer readabie media can store instructions that, upon execution, cause the at least one processor to perform the methods as disclosed herein.
[0107] The unstable burner identification system 1500 can further include additional components in accordance with the disclosed subject matter. For example, the
system can include an alarm coupled to the instability detector that is activated when instability is detected. The alarm can be, for example, a siren, a flashing light, or any other alarm.
Additional Embodiments
Additionally or alternately, the invention can include one or more of the following embodiments
Embodiment i . A method for detecting an instability in a furnace having a plurality of burners, the method comprising obtaining from each of a plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition, determining, based at least in part on the first measurement from each of the plurality of detectors, a stable signal component representation for the furnace, obtaining from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determining, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detecting, using at least one processor, an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
[0110 f Embodiment 2: The method of Embodiment 1 , wherein the plurality of detectors comprises a plurality of pressure sensors.
[01111 Embodiment 3: The method of any of the foregoing Embodiments, wherein the plurality of detectors comprises a plurality of vibration sensors.
[01121 Embodiment 4: The method of any of the foregoing Embodiments, wherein the plurality of detectors comprises a plurality of video sensors.
[0113 f Embodiment 5: The method of any of the foregoing Embodiments, wherein the stable signal component representation for the furnace comprises a stable covariance matrix.
[0114] Embodiment 6: The method of any of the foregoing Embodiments, wherein the unstable signal component representation for the furnace comprises an instability component covariance.
[0115] Embodiment 7: The method of Embodiment 6, wherein the instability component covariance is calculated based on a stable covariance matrix and a current covariance matrix.
[0116 f Embodiment 8: The method of Embodiment 7, wherem the current covariance matrix is calculated based on the stable component covariance matrix and a vector of the second measurement from each of the plurality of burners.
[0117] Embodiment 9: The method of any of the foregoing Embodiments, wherein the instability threshold is compared against a detection test statistic.
[0118] Embodiment 10: The method of Embodiment 9, wherem the detection test statistic comprises a Neyman-Pearson detector.
[011 1 Embodiment 1 1 : The method of Embodiments 9 or 10, further comprising computing the detection test statistic based on an inverse of a stable covariance matrix.
Embodiment 12: The method of Embodiments 9 or 10, further comprising computing the detection test statistic based on an inverse of a current covariance matrix.
Embodiment 13: The method of Embodiment 12, wherein the inverse of the current covariance matrix is computed via matrix inversion lemma.
[01221 Embodiment 14: The method of any of the foregoing Embodiments, wherein the plurality of detectors comprise one or more detectors of a first detector type and one or more detectors of a second detector type,
[0123] Embodiment 15: The method of Embodiment 14, wherein obtaining the first measurement comprises obtaining a first time series of measurements from each of one or more detectors of a first detector type the first time series of measurements from each of the one or more detec tors of a first detector type having a first sampling rate, and obtaining a second time series of measurements from each of the one or more detectors of a second detector type, the second time series of measurements from each of the one or more detectors of a second detector type having a second sampling rate.
[0124] Embodiment 16: The method of Embodiment 15, wherein the first time series of measurements includes the first measurement for each of the one or more detec tors of a first detector type, and wherem the second time series of measurements
includes the first measurement for each of the one or more detectors of a second detector type.
[0125] Embodiment 17: The method of Embodiments 15 or 16, further comprising converting the first time series of measurements and the second time series of measurements into a combined time series of measurements having a common sampling rate,
[0126] Embodiment 18: The method of Embodiment 17, wherein determining the stable signal component representation for the furnace comprises determining the stable signal component for the furnace based at least in part on the combined time series of measurements.
[0127] Embodiment 19: The method of Embodiments 17 or 18, wherein the common sampling rate comprises the first sampling rate.
[0128] Embodiment 20: The method of Embodiments 17 or 18, wherein the common sampling rate is a sampling rate other than the first sampling rate and the second sampling rate.
Embodiment 2.1 : The method of any of Embodiments 15 through 20, wherein the first time series of measurements includes the second measurement for each of the one or more detectors of a first detector type, and wherein the second time series of measurements includes the second measurement for each of the one or more detectors of a second detector type.
Embodiment 22: The method of Embodiment 21, wherein determining the unstable signal component for the furnace comprises determining the unstable signal component representation for the furnace based on the combined time series of measurements.
[0131] Embodiment 23 : The method of any of Embodiments 15 through 22, wherein the first time series of measurements comprises at least one video frame.
[0132] Embodiment 24: The method of Embodiment 23, further comprising converting the at least one video frame into a single value.
[0133] Embodiment 2.5: The method of Embodiment 24, wherein the at least one video frame is converted into a single value based at least in part on the intensity of each pixel in the at least one video frame.
[01341 Embodiment 26: A method for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners, the method comprising obtaining at least one measurement from each of a plurality of detectors, detecting an instability associated with the furnace, computing, using at least one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstable subset of burners based at least in part on the unstable signal matrix,
[0135] Embodiment 27: The method of Embodiment 26, wherein detecting an instability associated with the furnace comprises any of Embodiments 1 through 25.
[0136] Embodiment 28: The method of Embodiments 26 or 27, wherein the unstable signal matrix comprises an instability component covariance.
[0137] Embodiment 29: The method of Embodiments 26, 27, or 28, further comprising using eigenvector decomposition of the unstable signal matrix to obtain at least one dominant eigenvector.
[0138] Embodiment 30: The method of Embodiment 29, wherein the at least one dominant eigenvector includes three components defining a point on a unit ball.
[0139] Embodiment 31 : The method of Embodiment 30, further comprising clustering the point with a plurality of other points from a plurality of previous dominant eigenvectors.
[0140] Embodiment 32: The method of Embodiment 31, further comprising identifying the unstable subsets of burners based on the clustering.
[0141] Embodiment 33: The method of Embodiment 32, wherein historical data is used to identify the unstable subset of burners.
[0142] Embodiment 34: The method of Embodiment 29, further comprising recovering a Green's function vector from the at feast one dominant eigenvector.
[0143] Embodiment 35: The method of Embodiment 34, wherein the at least one dominant eigenvector is normalized to obtain the Green's function vector.
[0144] Embodiment 36: The method of any of Embodiments 26 through 35, wherein the unstable subset of burners comprises a single burner.
[0145] Embodiment 37: The method of any of Embodiments 26 through 35, wherein the unstable subset of burners comprises a plurality of burners.
[0146] Embodiment 38: The method of any of Embodiments 26 through 35, wherein the unstable subset of burners comprises a group of burners containing at least one unstable burner.
[0147] Embodiment 39: A system for detecting an instability in a furnace having a plurality of burners, the system comprising a plurality of detectors, and at least one processor coupled to the plurality of detectors and configured to obtain from each of the plurality of detectors a first measurement related to a plurality of burners when the furnace is operating in a stable condition, determine, based at least in part on the first measurements from each of the pluralit of detectors, a stable signal component representation for the furnace, obtain from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determine, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detect an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
[0148] Embodiment 40: The system of Embodiment 39 configured to use in accordance with any of the methods described in Embodiments 1 through 25.
[0149] Embodiment 41 : A system for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners, the system comprising a plurality of detectors and a processor coupled to the plurality of burners and configured to obtain at least one measurement from each of the plurality of detectors, detect an instability associated with the furnace, compute an unstable signal matrix associated with the instability based on the at least one measurement from each of the
plurality of burners, and identify the unstable subset of burners based at least in part on the unstable signal matrix
[0150] Embodiment 42: The system of Embodiment 41 configured for use in accordance with any of the methods described in Embodiments 26 through 38.
[0151] While the present application is described herein in terms of certain preferred embodiments, those skilled in the art will recognize that various modifications and improvements may be made to the application without departing from the scope thereof Thus, it is intended that the present application include modifications and variations that are within the scope of the appended claims and their equivalents.
Moreover, although individual features of one embodiment of the application may be discussed herein or shown in the drawings of one embodiment and not in other embodiments, it should be apparent that individual features of one embodiment may be combined with one or more features of another embodiment or features from a plurality of embodiments.
[0152] In addition to the specific embodiments claimed below, the application is also directed to other embodiments having any other possible combination of the dependent features claims below and those disclosed above. As such, the particular features presented in the dependent claims and disclosed above can be combined with each other in other manners within the scope of the application such that the application should be recognized as also specifically directed to other embodiments having any other possible combinations. Thus, the foregoing description of specific embodiments of the application has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the application to those embodiments disclosed.
Claims
1. A method for detecting an instability in a furnace having a plurality of burners, the method comprising
obtaining from each of a plurality of detectors a first measurement related to the plurality of burners when the furnace is operating in a stable condition,
determining, based at least in part on the first measurement from each of the plurality of detectors, a stable signal component representation for the furnace,
obtaining from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determining, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and
detecting, using at least one processor, an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold,
2: The method of Claim 1, wherein the plurali ty of detectors comprises a plurality of pressure sensors.
3: The method of any of the foregoing Claims, wherein the plurality of detectors comprises a plurality of vibration sensors.
4: The method of any of the foregoing Claims, wherein the plurality of detectors comprises a plurality of video sensors.
5: The method of any of the foregoing Claims, wherein the stable signal component representation for the furnace comprises a stable covariance matrix.
6: The method of any of the foregoing Claims, wherein the unstable signal component representation for the furnace comprises an instability component covariance.
7: The method of Claim 6, wherein the instability component covariance is calculated based on a stable covariance matrix and a current covariance matrix.
8: The method of Claim 7, wherein the eurrent covariance matrix is calculated based on the stable component covariance matrix and a vector of the second measurement from each of the plurality of burners.
9: The method of any of the foregoing Claims, wherein the instability threshold is compared against a detection test statistic.
10: The method of Claim 9, wherein the detection test statistic comprises a Neymaii-Pearson detector.
1 1 : The method of Claims 9 or 10, further comprising computing the detection test statistic based on an inverse of a stable covariance matrix.
12: The method of Claims 9 or 10, further comprising computing the detection test statistic based on an inverse of a current covariance matrix.
13: The method of Claim 12, wherein the inverse of the current covariance matrix is computed via matrix inversion lemma.
14: The method of any of the foregoing Claims, wherein the plurality of detectors comprise one or more detectors of a first detector type and one or more detectors of a second detector type.
15: The method of Claim 14, wherein obtaining the first measurement comprises obtaining a first time series of measurements from each of one or more detectors of a first detector type the first time series of measurements from each of the one or more detectors of a first detector type having a first sampling rate, and obtaining a second time series of measurements from each of the one or more detectors of a second detector type, the second time series of measurements from each of the one or more detectors of a second detector type having a second sampling rate.
16: The method of Claim 15, wherein the first time series of measurements includes the first measurement for each of the one or more detectors of a first detector type, and wherein the second time series of measurements includes the first measurement for each of the one or more detectors of a second detector type.
17: The method of Claims 15 or 16, further comprising converting the first time series of measurements and the second time series of measurements into a combined time series of measurements having a common sampling rate.
18: The method of Claim 17, wherein determining the stable signal component representation for the furnace comprises determining the stable signal component for the furnace based at least in part on the combined time series of measurements.
19: The method of Claims 17 or 1 8, wherein the common sampling rate comprises the first sampling rate.
20: The method of Claims 17 or 18, wherein the common sampling rate is a sampling rate other than the first sampling rate and the second sampling rate.
2.1 : The method of any of Claims 15 through 20, wherein the first time series of measurements includes the second measurement for each of the one or more detectors of a first detector type, and wherein the second time series of measurements includes the second measurement for each of the one or more detectors of a second detector type.
22: The method of Claim 21 , wherein determining the unstable signal component for the furnace comprises determining the unstable signal component representation for the furnace based on the combined time series of measurements.
23 : The method of any of Claims 15 through 22, wherein the first time series of measurements comprises at least one video frame.
24: The method of Claim 23, further comprising converting the at least one video frame into a single value.
25: The method of Claim 24, wherein the at ieast one video frame is converted into a single value based at least in part on the intensity of each pixel in the at least one video frame.
26: A method for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners, the method comprising obtaining at least one measurement from each of a pluralit of detectors, detecting an instability associated with the furnace, computing, using at least one processor, an unstable signal matrix associated with the instability based on the at least one measurement from each of the plurality of burners, and identifying the unstabl e subset of burners based at feast in part on the unstable signal matrix.
27: The method of Claim 26, wherein detecting an instability associated with the furnace comprises any of Claims 1 through 25.
28: The method of Claims 26 or 27, wherein the unstable signal matrix comprises an instability component covariance.
29: The method of Claims 26, 27, or 28, further comprising using eigenvector decomposition of the unstable signal matrix to obtain at least one dominant eigenvector.
30: The method of Claim 29, wherein the at least one dominant eigenvector includes three components defining a point on a unit ball.
31 : The method of Claim 30, further comprising clustering the point with a plurality of other points from a plurality of previous dominant eigenvectors.
32: The method of Claim 31 , further comprising identifying the unstable subsets of burners based on the clustering.
33: The method of Claim 32, wherein historical data is used to identify the unstable subset of burners.
34: The method of Claim 29, further comprising recovering a Green's function vector from the at feast one dominant eigenvector,
35: The method of Claim 34, wherein the at feast one dominant eigenvector is normalized to obtain the Green's function vector.
36: The method of any of Claims 26 through 35, wherein the unstable subset of burners comprises a single burner.
37: The method of any of Claims 26 through 35, wherein the unstable subset of burners comprises a plurality of burners.
38: The method of any of Claims 26 through 35, wherein the unstable subset of burners comprises a group of burners containing at least one unstable burner.
39: A system for detecting an instability in a furnace having a plurality of burners, the system comprising a plurality of detectors, and at least one processor coupled to the plurality of detectors and configured to obtain from each of the plurality of detectors a first measurement related to a plurality of burners when the furnace is
operating in a stable condition, determine, based at least in part on the first
measurements from each of the plurality of detectors, a stable signal component representation for the furnace, obtain from each of the plurality of detectors a second measurement related to the plurality of burners when the furnace is operating in an unknown state, determine, based at least in part on the second measurement from each of the plurality of detectors and the stable signal component representation, an unstable signal component representation for the furnace, and detect an instability in the furnace based at least in part on the unstable signal component representation and an instability threshold.
40: The system of Claim 39 configured to use in accordance with any of the methods described in Claims 1 through 25.
41 : A sy stem for identifying, in a furnace having a plurality of burners, an unstable subset of burners from among the plurality of burners, the system comprising a plurality of detectors and a processor coupled to the plurality of burners and configured to obtain at least one measurement from each of the plurality of detectors, detect an instability associated with the furnace, compute an unstable signal matrix associated with t e instability based on the at least one measurement from each of the plurality of burners, and identify the unstable subset of burners based at least in part on the unstable signal matrix.
42: The system of Claim 41 configured for use in accordance with any of the methods described in Claims 26 through 38.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261737888P | 2012-12-17 | 2012-12-17 | |
| US61/737,888 | 2012-12-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014099472A1 true WO2014099472A1 (en) | 2014-06-26 |
Family
ID=50033763
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/074039 Ceased WO2014099472A1 (en) | 2012-12-17 | 2013-12-10 | Flame instability detector and identification of unstable burners in industrial furnaces |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20140172370A1 (en) |
| WO (1) | WO2014099472A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101816212B1 (en) * | 2016-09-12 | 2018-01-08 | 두산중공업 주식회사 | Apparatus for analyzing influence of combustibles |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008116037A1 (en) * | 2007-03-22 | 2008-09-25 | Honeywell International Inc. | A flare characterization and control system |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040059265A1 (en) * | 2002-09-12 | 2004-03-25 | The Regents Of The University Of California | Dynamic acoustic focusing utilizing time reversal |
| US8926317B2 (en) * | 2008-12-15 | 2015-01-06 | Exxonmobil Research And Engineering Company | System and method for controlling fired heater operations |
-
2013
- 2013-12-10 WO PCT/US2013/074039 patent/WO2014099472A1/en not_active Ceased
- 2013-12-10 US US14/101,626 patent/US20140172370A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008116037A1 (en) * | 2007-03-22 | 2008-09-25 | Honeywell International Inc. | A flare characterization and control system |
Non-Patent Citations (3)
| Title |
|---|
| HOLICZER W ET AL: "A new data processing algorithm for enhancing the measurement accuracy of monovalent alkaline metals microconcentration", ELECTROTECHNICAL CONFERENCE, 2004. MELECON 2004. PROCEEDINGS OF THE 12 TH IEEE MEDITERRANEAN DUBROVNIK, CROATIA 12-15 MAY 2004, PISCATAWAY, NJ, USA,IEEE, US, 12 May 2004 (2004-05-12), pages 63 - 66Vol.1, XP010733732, ISBN: 978-0-7803-8271-8, DOI: 10.1109/MELCON.2004.1346772 * |
| POINSOT T ET AL: "ACTIVE CONTROL : AN INVESTIGATION METHOD FOR COMBUSTION INSTABILITIES", JOURNAL DE PHYSIQUE III, EDITIONS DE PHYSIQUE, PARIS, FR, vol. 2, no. 7, 1 July 1992 (1992-07-01), pages 1331 - 1357, XP000307090, ISSN: 1155-4320, DOI: 10.1051/JP3:1992103 * |
| ZENGSHOU DONG ET AL: "Flame stability recognizing of HTAC based on texture and structure analysis", INTELLIGENT CONTROL AND AUTOMATION, 2008. WCICA 2008. 7TH WORLD CONGRESS ON, IEEE, PISCATAWAY, NJ, USA, 25 June 2008 (2008-06-25), pages 5040 - 5044, XP031301713, ISBN: 978-1-4244-2113-8 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US20140172370A1 (en) | 2014-06-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113281998B (en) | Multi-point FDI attack detection method based on generative adversarial network | |
| Maglaras et al. | Ocsvm model combined with k-means recursive clustering for intrusion detection in scada systems | |
| EP2904247B1 (en) | System and method for predetermining the onset of impending oscillatory instabilities in practical devices | |
| EP1055239A1 (en) | Ultrasensitive surveillance of sensors and processes | |
| CN106030273B (en) | Knock Intensity Measurement | |
| Sun et al. | Condition monitoring of combustion processes through flame imaging and kernel principal component analysis | |
| JP6398383B2 (en) | Abnormality diagnosis device | |
| CN108052954B (en) | A fault diagnosis method based on the sample space of multi-level high-dimensional features | |
| CN114492629B (en) | Abnormality detection method, abnormality detection device, electronic device, and storage medium | |
| US20130322690A1 (en) | Situation recognition apparatus and method using object energy information | |
| Jiang et al. | Combustion condition recognition of coal-fired kiln based on chaotic characteristics analysis of flame video | |
| US20170219208A1 (en) | Methods and systems for monitoring burner flame conditions in a furnace | |
| WO2014099472A1 (en) | Flame instability detector and identification of unstable burners in industrial furnaces | |
| CN117272082A (en) | Data processing method and system based on industrial Internet of things | |
| US20140172368A1 (en) | Flame instability detection and identification in industrial furnaces | |
| CN110942258B (en) | Performance-driven industrial process anomaly monitoring method | |
| CN119807864B (en) | A temperature sensor fault diagnosis method and system | |
| JP6685124B2 (en) | Diagnostic device and diagnostic method | |
| JP7362743B2 (en) | A method for monitoring the operation of a machine that generates vibrations, and a device for the realization of such a method | |
| Honarvar et al. | A PCA-based algorithm for online false data injection and jamming attacks detection in cyber-physical systems | |
| CN117421974A (en) | Artificial intelligence auxiliary pulse wind tunnel heat and pressure measurement data processing method | |
| CN112465874B (en) | Method and system for guiding and positioning of crane spreader based on image perception | |
| US11131985B2 (en) | Noise generation cause estimation device | |
| US20140170574A1 (en) | Flame instability detector | |
| CN114136614B (en) | Magnetic bearing system, rotor position evaluation method and device thereof, and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13826903 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 13826903 Country of ref document: EP Kind code of ref document: A1 |