[go: up one dir, main page]

WO2014084382A1 - 医用画像処理装置 - Google Patents

医用画像処理装置 Download PDF

Info

Publication number
WO2014084382A1
WO2014084382A1 PCT/JP2013/082278 JP2013082278W WO2014084382A1 WO 2014084382 A1 WO2014084382 A1 WO 2014084382A1 JP 2013082278 W JP2013082278 W JP 2013082278W WO 2014084382 A1 WO2014084382 A1 WO 2014084382A1
Authority
WO
WIPO (PCT)
Prior art keywords
responsible
stenosis
blood vessel
unit
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2013/082278
Other languages
English (en)
French (fr)
Inventor
匠真 五十嵐
智司 若井
和正 荒木田
石井 秀明
藤澤 恭子
茂生 神長
廣畑 賢治
淳一郎 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Publication of WO2014084382A1 publication Critical patent/WO2014084382A1/ja
Priority to US14/726,158 priority Critical patent/US9811907B2/en
Anticipated expiration legal-status Critical
Priority to US15/715,793 priority patent/US10748285B2/en
Priority to US16/929,392 priority patent/US11481901B2/en
Priority to US17/939,014 priority patent/US12437405B2/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/100764D tomography; Time-sequential 3D tomography
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • Embodiments described herein relate generally to a medical image processing apparatus.
  • ischemic heart disease blood flow to the myocardium is inhibited due to occlusion or stenosis of the coronary arteries, and the blood supply is insufficient or interrupted, resulting in damage to the heart.
  • Symptoms include pain and pressure mainly in the front chest and sometimes in the left arm and back.
  • the treatment methods for patients with ischemic heart disease are roughly classified into three types: bypass surgery, PCI (catheter surgery), and drug therapy.
  • PCI is a treatment method for forcibly expanding a blood vessel by directly inserting a treatment device having a thin tubular structure into a blood vessel that is obstructed or stenotic.
  • Pharmacological therapy is a treatment that improves heart ischemia and prevents thrombus formation.
  • FFR Fractional Flow Reserve
  • Evaluation of the degree of progression of stenosis is generally performed by inserting a pressure wire directly into a blood vessel.
  • the pressure wire is inserted as shown in FIG. 23 and measures pressures P in and P out before and after the constriction.
  • FFR is defined by P out / P in , and if this value is lower than 0.8, the doctor selects PCI as the treatment method, and if this value is higher than 0.8, the doctor sets the drug therapy as the treatment method. select.
  • PCI the treatment method
  • FFR estimation method the measurement of the pressures P in and P out using a pressure wire is invasive, a non-invasive measurement method and an FFR estimation method are desired.
  • a simulation-based FFR estimation method using fluid analysis is devised.
  • the existing simulation is a simulation using a 3D image.
  • CFD Computer Fluid Dynamics
  • FFR is estimated (calculated) using the Naviestokes equation.
  • the causal relationship between the ischemic myocardium and the stenosis to be treated and the risk assessment have not been performed, that is, the FFR is appropriately reflected in the causal relationship and risk assessment between the ischemic myocardium and the stenosis to be treated.
  • the decision as to which stenosis should be treated with the highest priority largely depends on the doctor's empirical rules. For this reason, there is an inconvenience that a human error may occur such as unnecessary treatment or oversight.
  • the purpose is to provide a medical image processing apparatus that can reduce the possibility of human error.
  • the medical image processing apparatus extracts a plurality of coronary arteries depicted in data of images of a plurality of time phases related to the heart, and extracts at least one stenosis site depicted in each of the extracted coronary arteries.
  • a first extraction unit a calculation unit for calculating a pressure difference between the extracted coronary arteries based on the extracted tissue blood flow volumes of the plurality of coronary arteries, and a second unit for extracting the ischemic region depicted in the image
  • a responsible blood vessel of the ischemic region is identified by querying an extraction unit and a dominant map that associates the extracted ischemic region with each extracted coronary artery and the dominant region;
  • a display control unit for displaying on those having a.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a medical image processing system including a medical image processing apparatus according to a first embodiment. It is a schematic diagram which shows an example of the territory map memorize
  • FIG. 1 is a schematic diagram illustrating a configuration example of a medical image processing system including a medical image processing apparatus according to the first embodiment, and FIG. 2 illustrates a territory map stored in a territory map storage unit according to the first embodiment.
  • a medical image processing system 1 shown in FIG. 1 includes a medical image processing apparatus 10, a CT (Computed Tomography) apparatus 20, and a PACS (Picture Archiving and Communication System) 30, for example, a LAN (Local Area Network) or a public electronic communication line. It is the system connected so that communication was possible via the networks 40, such as. For this reason, the medical image processing apparatus 10 is provided with a communication interface 103 that enables communication with the CT apparatus 20 and the PACS 50.
  • the medical image processing apparatus 10 includes an image storage unit 101, a territory map storage unit 102, a communication interface 103, a control unit 104, a cardiac region extraction unit 105, a myocardial analysis unit 106, a coronary artery analysis unit 107, and a responsibility.
  • a blood vessel specifying unit 108, an FFR calculating unit 109, a responsible stenosis specifying unit 110, a marker generating unit 111, and a display unit 112 are provided.
  • functions of the respective units 101 to 112 constituting the medical image processing apparatus 10 will be described in detail.
  • the image storage unit 101 includes time-series three-dimensional contrast CT image data (hereinafter referred to as a plurality of time phases) related to a chest region including the heart of the subject as a processed image transmitted from the CT apparatus 20 or the PACS 50 under the control unit 104. , Simply a volume data).
  • the territory map storage unit 102 is a storage device that stores a territory map (hereinafter referred to as a control map) that defines a relationship between a coronary artery and a control region in which nutrition is supplied by each coronary artery.
  • a territory map hereinafter referred to as a control map
  • the heart region extraction unit 105 extracts a heart region from the volume data by a heart contour extraction process or the like.
  • the myocardial analyzer 106 extracts a myocardial region from the heart region extracted by the heart region extracting unit 105 by threshold processing using a CT value corresponding to the contrast agent concentration.
  • the myocardial analysis unit 106 generates myocardial perfusion analysis, that is, generates a time concentration curve for the contrast agent for each pixel or each region in the extracted myocardial region, and for each pixel or each region based on the time concentration curve. The amount of blood flow that moves during the period from the inflow of the contrast agent to the outflow is calculated.
  • a nonionic contrast agent can be injected into a patient, and organ perfusion information can be depicted from changes in CT values. Therefore, in CT perfusion analysis, for example, a temporal change of a CT image (volume data) composed of 512 ⁇ 512 pixels can be measured from a change in CT value in each pixel, and a blood flow rate or the like can be quantified. . In this way, one color map representing organ perfusion information (for example, blood flow) is generated from a plurality of time-phase CT images.
  • the myocardial analyzer 106 identifies an ischemic region by threshold processing from the calculated spatial distribution of blood flow.
  • the coronary artery analyzing unit 107 extracts a plurality of coronary arteries from the heart region extracted by the heart region extracting unit 105, and further extracts at least one stenosis site from each extracted coronary artery. Specifically, the coronary artery analysis unit 107 analyzes the anatomical structure and plaque characteristics of the coronary artery along the coronary artery blood vessel core line and the inner wall of the blood vessel, and extracts volume data related to the coronary artery. A stenosis site located on the inner wall of the coronary artery is extracted. Specific examples of the plaque properties include lipid amount, serum cholesterol concentration, hardness, calcification degree, fibrous coating (Thin-cap) thickness, and FFR value (in this embodiment, the FFR value is And the like are calculated by the FFR calculation unit 109).
  • the responsible blood vessel specifying unit 108 inherently takes responsibility for supplying nutrients to the ischemic region by inquiring the control map stored in the territory map storage unit 102 for the ischemic region specified by the myocardial analysis unit 106. Identify the blood vessels you have (hereinafter referred to as responsible blood vessels).
  • the FFR calculation unit 109 calculates the FFR value corresponding to each stenosis site extracted by the coronary artery analysis unit 107 on a simulation basis. Specifically, first, the FFR calculation unit 109 performs, for each stenosis site extracted by the coronary artery analysis unit 107, at least one position downstream of each stenosis site based on the color map generated by the myocardial analysis unit 106. A tissue blood flow and a tissue blood flow are calculated at at least one position upstream of each stenosis site.
  • the FFR calculation unit 109 calculates the FFR value at each position including at least the stenosis site by dividing the calculated tissue blood flow downstream of the stenosis site by the calculated tissue blood flow upstream of the stenosis site.
  • the FFR calculation unit 109 calculates the FFR value by the calculation method as described above, but the FFR value calculation method is not limited to this, and corresponds to each stenosis site. If the calculated FFR value can be calculated, it can be appropriately applied as a method for calculating the FFR value used in the FFR calculation unit 109.
  • the responsible stenosis specifying unit 110 is a stenosis site (hereinafter referred to as responsible stenosis) located on the inner wall of the responsible blood vessel specified by the responsible blood vessel specifying unit 108 among the stenosis sites extracted by the coronary artery analyzing unit 107, that is, Among the stenosis candidates, a stenosis site whose FFR value is less than the threshold is specified as a responsible stenosis.
  • the marker generating unit 111 is extracted by the responsible blood vessel identified by the responsible blood vessel identifying unit 108, the responsible stenosis identified by the responsible stenosis identifying unit 110, the FFR value calculated by the FFR calculating unit 109, and the coronary artery analyzing unit 107. Marker data representing the candidate responsible stenosis is generated. These markers are displayed on the display unit 112 by being superimposed on a three-dimensional image generated by rendering or the like from volume data or a two-dimensional image generated by cross-section transformation (Multi-PlanarPlanReconstruction). Note that the image on which the marker generated from the marker generation unit 111 is superimposed is not limited to an image derived from the volume data obtained by the CT apparatus 20, and may be an image acquired from another modality such as an X-ray diagnostic apparatus. May be.
  • control unit 104 when receiving the input of time-series volume data over a plurality of time phases related to the chest region from the CT apparatus 20 or the PACS 50 via the communication interface 103, the control unit 104 receives the input volume data from the image storage unit. Write to 101 (step S1).
  • the heart region extraction unit 105 reads volume data of a specific time phase with relatively few pulsations under the control unit 104 from the image storage unit 101 as a processed image, and extracts a heart region from the volume data (step). S2).
  • the coronary artery analysis unit 107 executes a coronary artery analysis process for the heart region extracted by the heart region extraction unit 105 (steps S3 and S4). Specifically, the coronary artery analysis unit 107 analyzes the anatomical structure and plaque characteristics of the coronary artery along the coronary vascular core line and the inner wall of the blood vessel, and extracts the stenosis portion located on the coronary artery and the inner wall of the coronary artery To do. Thereafter, as shown in FIGS. 4A and 4B, for example, the coronary artery analysis unit 107 superimposes the anatomical structure of the coronary artery on the heart morphological image to form a three-dimensional image g1 or a two-dimensional image g2.
  • the timing at which the images g1 and g2 shown in FIGS. 4A and 4B are displayed on the display unit 112 can be arbitrarily set by the operator, that is, they may be displayed during the processing. , It may be displayed together with the processing result.
  • the myocardial analysis unit 106 extracts a myocardial region from the heart region extracted by the heart region extracting unit 105 by threshold processing using a CT value corresponding to the contrast agent concentration (step S5).
  • the myocardial analyzer 106 executes CT perfusion analysis processing only for the extracted myocardium (steps S6, S7, S8). Specifically, the myocardial analyzer 106 generates a time concentration curve related to a contrast agent for each pixel or each local area in the extracted myocardial region based on time-series volume data. Thereafter, the myocardial analyzer 106 calculates the blood flow volume that moves during the period from the inflow of the contrast medium to the outflow for each pixel or each region based on these time density curves. Thereby, for example, as shown in FIG. 5, a color map g3 indicating the spatial distribution of the blood flow is generated. Then, the myocardial analysis unit 106 identifies a region less than the predetermined blood flow as an ischemic region based on the generated color map g3, that is, the calculated spatial distribution of blood flow.
  • the responsible blood vessel specifying unit 108 refers to the control map stored in the territory map storage unit 102 for the ischemic region specified by the myocardial analysis unit 106, as shown in FIG. A responsible blood vessel is specified (step S9).
  • the FFR calculation unit 109 downstream of each stenosis site based on the color map g3 generated by the myocardial analysis unit 106. And the tissue blood flow upstream of each stenosis site are calculated. Then, the FFR calculation unit 109 calculates the FFR value at each position including at least the stenosis site by dividing the calculated tissue blood flow downstream of the stenosis site by the calculated tissue blood flow upstream of the stenosis site ( Step S10).
  • the responsible stenosis specifying unit 110 specifies a stenosis site where the FFR value calculated by the FFR calculating unit 109 is less than the threshold value as the responsible stenosis (step S11).
  • the display unit 112 displays the responsible blood vessel, the responsible stenosis, and the marker representing the FFR value generated by the marker generating unit 111 as a three-dimensional image g4 or two-dimensional image derived from the volume data.
  • the image is superimposed and displayed on the image g5 (step S12).
  • the heart region extraction unit 105 the myocardial analysis unit 106, and the coronary artery analysis unit 107 that can extract the heart region, myocardial region, coronary artery, and stenosis from the volume data obtained by the CT apparatus 20, and the myocardial analysis.
  • Responsible blood vessel identifying unit 108 that identifies the responsible blood vessel based on the processing result by the unit 106
  • Responsible stenosis identifying unit that identifies the responsible stenosis based on the processing results by the coronary artery analyzing unit 107, the responsible blood vessel identifying unit 108, and the FFR calculating unit 109 110 and a display unit 112 that superimposes and displays a responsible blood vessel or responsible stenosis marker on a volume data-derived 3D image or 2D image, for example, as shown in FIG.
  • the correspondence with the community can be visually shown to the doctor, which reduces the possibility of human error. Rukoto can.
  • the FFR calculation unit 109 calculates the FFR value on a simulation basis, that is, without using an invasive material such as a pressure wire, it is possible to reduce the burden on the patient during the examination.
  • FIGS. 6 and 7 are shown as examples of images displayed on the display unit 112.
  • the images displayed on the display unit 112 are not limited to these, and for example, FIGS. 8A and 8B.
  • Images g6 and g7 as shown in FIG. 8A and 8B show an example of images g6 and g7 in which priorities of treatments for stenotic sites are ranked based on the FFR values calculated by the FFR calculation unit 109, and the processing results are superimposed as markers.
  • the stenosis part (circle) which shows a stenosis part is large, so that a treatment priority is high.
  • FIG. 8A shows an example of an image g6 in which a bar graph indicating the analysis result of the plaque property by the coronary artery analysis unit 107 is superimposed as a marker in addition to the priority.
  • blood properties or the like may be further superimposed on the image g6 shown in FIG. 8A as a marker.
  • the priority of the treatment of the stenosis site is ranked over the plurality of responsible blood vessels, and then an image in which the processing results are superimposed as a marker can be displayed on the display unit 112.
  • the medical image processing apparatus 10 determines whether or not another arterial region protrudes from a part of a region to be supplied by a certain artery when the responsible blood vessel reference unit 108 makes a reference to the control map. If it is detected that another arterial region is overhanging, it can be suggested that there is a possibility of blood supply by the collateral blood vessel.
  • the reliability of the FFR value decreases when a collateral blood vessel exists, for example, as shown in FIG. 9, by displaying an image g8 suggesting the presence of a collateral blood vessel on the display unit 112, more human error The possibility of this can be reduced.
  • the diameter and length of the cross section of the responsible stenosis are measured from the two-dimensional image derived from the volume data. Based on this measurement result, an optimal catheter / stent size can be suggested. Specifically, for example, as shown in FIG. 10, by displaying an image g9 suggesting an optimal catheter / stent size on the display unit 112, the possibility of human error can be further reduced.
  • the thickness of the myocardium is measured from the volume data, and this measurement is performed. Based on the result, it is possible to add a setting such that the blood vessel corresponding to the dominant region of the myocardium that is necrotic is not identified as the responsible blood vessel.
  • a responsible blood vessel or responsible stenosis is selected from an input interface (not shown) such as a mouse, a keyboard, or a touch panel.
  • an input interface such as a mouse, a keyboard, or a touch panel.
  • FIG. 11 is a schematic diagram illustrating a configuration example of a medical image processing system including a medical image processing apparatus according to the second embodiment.
  • a medical image processing system 1 shown in FIG. 11 includes a medical image processing apparatus 10, a CT (Computed Tomography) apparatus 20, an MRI (Magnetic Resonance Imaging) apparatus 30, a nuclear medicine diagnostic apparatus 40, and a PACS (Picture Archiving and Communication System) 50.
  • a medical image processing apparatus 10 is provided with a communication interface 103 that enables communication with the CT apparatus 20, the MRI apparatus 30, the nuclear medicine diagnosis apparatus 40, and the PACS 50.
  • the medical image processing apparatus 10 includes an image storage unit 101, a territory map storage unit 102, a communication interface 103, a control unit 104, a cardiac region extraction unit 105, a myocardial analysis unit 106, a coronary artery analysis unit 107, and a responsibility.
  • a blood vessel specifying unit 108, an FFR calculating unit 109, a marker generating unit 111, and a display unit 111 are provided. Only the configuration different from the medical image processing apparatus 1 shown in the first embodiment will be described below.
  • the image storage unit 101 stores time-series three-dimensional contrast CT image data over a plurality of time phases related to the chest region including the heart of the subject as a processed image transmitted from the CT apparatus 20 or the PACS 50 under the control unit 104. Storage device.
  • the territory map storage unit 102 is a storage device that stores a territory map that defines the relationship between the coronary arteries and the territory where nutrition is supplied by each coronary artery.
  • the heart region extraction unit 105 extracts a heart region from the volume data by a heart contour extraction process or the like.
  • the myocardial analyzer 106 extracts a myocardial region from the heart region extracted by the heart region extracting unit 105 by threshold processing using a CT value corresponding to the contrast agent concentration.
  • the myocardial analysis unit 106 also performs a necrotic myocardial region, i.e., myocardial infarction among the extracted myocardial regions by delayed contrast imaging (late gadolinium enhancement) by the MRI device 30, sugar metabolism measurement by the nuclear medicine diagnostic device 40, or the like.
  • the myocardial infarction region that contributes to is identified.
  • the myocardial analysis unit 106 calculates myocardial perfusion analysis, that is, the amount of blood flow that moves during the period from the inflow of the contrast medium to the outflow for each pixel or local area in the extracted myocardial region.
  • myocardial perfusion analysis for example, a temporal change of a CT image (volume data) composed of 512 ⁇ 512 pixels can be measured from a change in CT value in each pixel, and a blood flow rate or the like can be quantified. .
  • one color map representing organ perfusion information (for example, blood flow) is generated from a plurality of time-phase CT images.
  • the myocardial analysis unit 106 not only specifies the myocardial infarction region, but also can specify a blood flow reduction site, that is, an ischemic region by threshold processing from the spatial distribution of the calculated blood flow.
  • the coronary artery analyzing unit 107 extracts a plurality of coronary arteries from the heart region extracted by the heart region extracting unit 105, and further extracts at least one stenosis site from each extracted coronary artery. Specifically, the coronary artery analysis unit 107 analyzes the anatomical structure and plaque characteristics of the coronary artery along the coronary artery blood vessel core line and the inner wall of the blood vessel, and extracts volume data related to the coronary artery. A stenosis site located on the inner wall of the coronary artery is extracted.
  • the plaque properties include lipid amount, serum cholesterol concentration, hardness, calcification, and thickness of fibrous coating (Thin-cap).
  • the responsible blood vessel specifying unit 108 inherently assumes the nutrition supply responsibility to the myocardial infarction region by inquiring the control map stored in the territory map storage unit 102 for the myocardial infarction region specified by the myocardial analysis unit 106.
  • a blood vessel (hereinafter referred to as an infarct responsible blood vessel) is specified.
  • the responsible blood vessel specifying unit 108 performs the territory map storage unit 102 for the ischemic region specified by the myocardial analysis unit 106.
  • the blood vessel that is inherently responsible for supplying nutrients to the ischemic region (hereinafter, referred to as ischemic responsible blood vessel) is identified by querying the control map stored in FIG.
  • the FFR calculation unit 109 calculates FFR values related to a plurality of positions including at least a stenosis site on each coronary artery extracted by the coronary artery analysis unit 107 on a simulation basis. Specifically, the FFR calculation unit 109 first determines the tissue blood flow rate and the stenosis site in the coronary artery at at least one position downstream of the stenosis site in the coronary artery based on the color map generated by the myocardial analysis unit 106. Tissue blood flow rate is calculated at at least one position upstream of.
  • the FFR calculation unit 109 calculates the FFR value at each position including at least the stenosis site by dividing the calculated tissue blood flow downstream of the stenosis site by the calculated tissue blood flow upstream of the stenosis site.
  • the FFR value corresponding to one stenosis site in the coronary artery is calculated, for example, when the FFR value of the entire coronary artery is calculated, the upstream of the stenosis site located most upstream in the coronary artery The tissue blood flow volume is fixed as a reference value, and the tissue blood flow volume at other multiple locations (provided that the FFR calculation unit 109 calculates the tissue blood flow volume at multiple locations within the coronary artery) is a variable.
  • the FFR calculation unit 109 can calculate the FFR values corresponding to the plurality of locations, that is, the FFR values of the entire coronary artery.
  • the marker generating unit 111 generates data of a marker (mark) representing the infarct responsible blood vessel (or ischemic responsible blood vessel) specified by the responsible blood vessel specifying unit 108 or the FFR value calculated by the FFR calculating unit 109. These markers are displayed on the display unit 111 by being superimposed on a three-dimensional image generated by rendering or the like from volume data or a two-dimensional image generated by cross-section transformation (Multi-PlanarPlanReconstruction). Note that the image on which the marker generated from the marker generation unit 111 is superimposed is not limited to an image derived from the volume data obtained by the CT apparatus 20, and may be an image acquired from another modality such as an X-ray diagnostic apparatus. May be.
  • time series volume data over a plurality of time phases related to the chest region from the CT apparatus 20 or the PACS 50 is stored in the image storage unit 101 in advance.
  • the heart region extraction unit 105 reads volume data of a specific time phase with relatively few pulsations under the control unit 104 from the image storage unit 101 as a processed image, and already extracts the heart region from the volume data. Suppose you are.
  • the coronary artery analysis unit 107 executes a coronary artery analysis process for the heart region extracted by the heart region extraction unit 105 (step S21). Specifically, the coronary artery analysis unit 107 analyzes the anatomical structure and plaque characteristics of the coronary artery along the coronary vascular core line and the inner wall of the blood vessel, and extracts the stenosis portion located on the coronary artery and the inner wall of the coronary artery To do.
  • the myocardial analyzer 106 extracts a myocardial region from the heart region extracted by the heart region extracting unit 105 by threshold processing using a CT value corresponding to the contrast agent concentration. After that, the myocardial analysis unit 106 performs the delayed contrast imaging by the MRI apparatus 30, the sugar metabolism measurement by the nuclear medicine diagnosis apparatus 40, and the like, and the myocardial infarction that contributes to the myocardial infarction. An area is specified (steps S22, S23, S24).
  • the responsible blood vessel specifying unit 108 is extracted by the coronary artery analyzing unit 107 by referring to the dominant map stored in the territory map storage unit 102 for the myocardial infarction region specified by the myocardial analyzing unit 106.
  • An infarct responsible blood vessel is identified from each coronary artery (step S25).
  • the marker generating unit 111 generates marker data representing the infarct responsible blood vessel specified by the responsible blood vessel specifying unit 108 (step S26). Specifically, the marker generator 111 generates a marker m1 representing the contour of the infarct responsible blood vessel, for example, as shown in FIG.
  • the FFR calculation unit 109 calculates the FFR value of the entire coronary artery for each coronary artery extracted by the coronary artery analysis unit 107 (step S27).
  • the marker generator 111 generates a marker representing the FFR value corresponding to each coronary artery calculated by the FFR calculator 109 (step S28). Specifically, for example, as shown in FIG. 14, the marker generating unit 111 generates a marker m2 representing a transition of the FFR value of each coronary artery.
  • the display unit 111 generates a marker m1 representing the infarct responsible blood vessel generated by the marker generating unit 111 and a marker m2 representing the transition of the FFR value of each coronary artery from the volume data 2
  • the two-dimensional image g1 is superimposed and displayed (step S29).
  • the image displayed by the display unit 111 is not limited to the two-dimensional image g1, but for example, as shown in FIG. 16, a marker is added to a three-dimensional image g2 derived from volume data or an image acquired from another modality. A superimposed image may be used.
  • the responsible blood vessel specifying unit 108 specifies the infarct responsible blood vessel.
  • the medical image processing apparatus 10 specifies the ischemic region by myocardial perfusion analysis by the CT apparatus 20 or the MRI apparatus 30, SPECT examination by the nuclear medicine diagnosis apparatus 40, and the like (steps S22 ′, S23 ′, S24 ′), specifying the ischemic responsible blood vessel from the specified ischemic region (step S25 ′), and generating a marker representing the specified ischemic responsible blood vessel (step S26 ′). It operates in the same way.
  • the heart region extraction unit 105, the myocardial analysis unit 106, and the coronary artery analysis that can extract the heart region, the myocardial region, the coronary artery, the stenosis site, and the myocardial infarction region from the volume data obtained by the CT apparatus 20.
  • Unit 107, responsible blood vessel specifying unit 108 for identifying the infarct responsible blood vessel based on the processing result by the myocardial analysis unit 106, the infarct responsible blood vessel, and a marker representing the FFR value calculated by the FFR calculating unit 109 are derived from the volume data.
  • the configuration including the display unit 111 that superimposes and displays the two-dimensional image or the three-dimensional image is provided to the doctor that the reliability of the FFR value of the portion where the marker representing the infarct responsible blood vessel is superimposed and displayed is low. be able to.
  • the FFR calculation unit 109 calculates the FFR value on a simulation basis, that is, without using an invasive material such as a pressure wire, it is possible to reduce the burden on the patient during the examination.
  • the medical image processing apparatus 10 shown in the second embodiment is added with a function of determining whether a stenosis site in a coronary artery is a treatment target stenosis or a non-treatment stenosis.
  • steps S21 to S28 are the same as those in the above-described second embodiment, and thus detailed description thereof is omitted here.
  • the processes in steps S30 to S36 are mainly described below.
  • the coronary artery analysis unit 107 determines, for each stenosis site extracted in step S21, whether or not the stenosis site is a stenosis located in the infarct responsible blood vessel (step S30).
  • step S30 If the result of the determination in step S30 indicates that the stenosis is located in the infarct responsible blood vessel (Yes in step S30), the myocardial analysis unit 106 is within the myocardial infarction region identified in the process in step S24. It is determined whether or not there is a surviving myocardium (step S31). Specifically, the myocardial analyzer 106 determines whether or not the myocardial infarction region has reached half the thickness of the myocardium from delayed contrast imaging by the MRI apparatus 30 and the result of the determination has reached. If the result indicates that there is no living myocardium, if the result of the determination indicates no, it is considered that there is a living myocardium. If the result of the determination in step S31 indicates NO (No in step S31), the process proceeds to step S35 described later.
  • the marker generating unit 111 includes a marker indicating the infarct responsible blood vessel having the surviving myocardium and a marker indicating the treatment target stenosis. Is generated (step S32). Specifically, for example, as shown in FIG. 19, the marker generating unit 111 generates a marker m3 that represents the contour of the infarct responsible blood vessel having a living myocardium and a marker m4 that represents the treatment target stenosis.
  • the coronary artery analysis unit 107 determines that the stenosis site is included in the FFR value of each coronary artery calculated in the process of step S27. It is determined whether or not the corresponding FFR value is equal to or less than a threshold value (step S33).
  • step S34 the marker generating unit 111 generates a marker representing the treatment target stenosis (step S34). That is, the marker generator 111 generates a marker corresponding to the marker m4 shown in FIG.
  • step S35 the marker generating unit 111 generates a marker indicating treatment non-target stenosis. Specifically, for example, as shown in FIG. 19, the marker generating unit 111 generates a marker m5 representing non-target stenosis.
  • the display unit 111 displays a marker m1 representing the infarct responsible blood vessel generated by the marker generating unit 111, a marker m2 representing the transition of the FFR value of each coronary artery, a marker m3 representing the infarct responsible blood vessel having a living myocardium, and a treatment target stenosis. And a marker m5 representing non-target stenosis are superimposed and displayed on the three-dimensional image g3 derived from the volume data (step S36).
  • the image displayed by the display unit 111 is not limited to the three-dimensional image g3, but may be a two-dimensional image derived from volume data, or an image in which a marker is superimposed on an image acquired from another modality. .
  • the marker m3 is preferentially displayed.
  • myocardial analysis for determining whether or not there is a living myocardium in the myocardial infarction region, and whether the stenotic site in the coronary artery is a treatment target stenosis or a non-treatment stenosis 106 and coronary artery analysis unit 107, a marker representing an infarct responsible blood vessel having a surviving myocardium, a marker representing treatment target stenosis, and a marker representing treatment non-target stenosis in a three-dimensional image or two-dimensional image derived from volume data
  • the configuration including the display unit 111 that displays the images in a superimposed manner.
  • doctors can determine whether the reliability of the FFR value is low, whether there is a surviving myocardium, and whether the stenotic site is a stenosis suitable for treatment. Therefore, the possibility of human error can be reduced.
  • DESCRIPTION OF SYMBOLS 1 ... Medical image processing system, 10 ... Medical image processing apparatus, 20 ... CT apparatus, 30 ... PACS, 40 ... Network, 101 ... Image storage part, 102 ... Territory map storage part, 103 ... Communication interface, 104 ... Control part, DESCRIPTION OF SYMBOLS 105 ... Heart region extraction part, 106 ... Myocardial analysis part, 107 ... Coronary artery analysis part, 108 ... responsible blood vessel specification part, 109 ... FFR calculation part, 110 ... responsible stenosis specification part, 111 ... Marker generation part, 112 ... Display part.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Human Computer Interaction (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Cardiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

 ヒューマンエラーの可能性を低減し得る医用画像処理装置を提供すること。 心臓に関する複数時相の画像のデータに描出された複数の冠動脈を抽出し、当該抽出された各冠動脈に描出された少なくとも1つの狭窄部位を抽出する第1抽出ユニットと、前記抽出された複数の冠動脈の組織血流量に基づいて、前記抽出された各冠動脈の圧較差を計算する計算ユニットと、前記画像に描出された虚血領域を抽出する第2抽出ユニットと、前記抽出された虚血領域を前記抽出された各冠動脈と支配域とを関係付ける支配マップに照会することにより当該虚血領域の責任血管を特定し、前記特定された責任血管内の狭窄部位に対応した前記圧較差に基づいて責任狭窄を特定する特定ユニットと、前記特定された責任狭窄が描出された画像を、当該責任狭窄を示す情報と共に表示ユニットに表示させる表示制御ユニットと、を具備する医用画像処理装置である。

Description

医用画像処理装置
 本発明の実施形態は、医用画像処理装置に関する。
 一般に、虚血性心疾患では、冠動脈の閉塞や狭窄等により、心筋への血流が阻害され、血液の供給が不足もしくは途絶えることにより、心臓に障害が生じる。症状としては、主に前胸部、時に左腕や背中に痛みや圧迫感を感じる。虚血性心疾患の患者に対しての治療法は、大きく分けると、バイパス手術、PCI(カテーテル手術)、薬物療法の3つに分類される。
 バイパス手術は、図20に示すように、狭くなっていたり閉塞していたりする血管に対して他の血管を繋げることにより、その血管を介して虚血となっている部位により多くの血液が流れるようにしてやる治療法である。
 PCIは、図21,図22に示すように、細い管状構造の治療器具を閉塞や狭窄を起こしている血管に直接挿入して強制的に血管を広げる治療法である。
 薬物療法は、心臓の虚血を改善したり、血栓ができるのを予防したりする治療法である。
 医師がこれら3つの治療法のうちのどの治療法を選択するかの指標として、FFR(Fractional Flow Reserve)がある。
 狭窄の進行度の評価は、一般的に、プレッシャーワイヤーを直接血管に挿入して行う。プレッシャーワイヤーは、図23に示すように挿入され、狭窄部の前後の圧力Pin,Poutを計測する。
 ここで、FFRはPout/Pinで定義され、この値が0.8より低いと医師はPCIを治療法として選択し、この値が0.8より高いと医師は薬物療法を治療法として選択する。しかしながら、プレッシャーワイヤーを用いた圧力Pin,Poutの計測は侵襲的であるため、非侵襲的な計測法及びFFRの推定法が望まれている。
 そこで、近年、流体解析を用いたシミュレーションベースのFFRの推定法が考案されている。既存のシミュレーションは3D画像を用いてのシミュレーションである。このようなシミュレーションベースのFFRの推定法の基本概念としては、モダリティから取得される血管の形状と、血液等のもつ粘性値等の物理パラメータとをインプットとして、例えばCFD(Computational Fluid Dynamics)で用いられるナビエストークスの式を用いてFFRを推定(計算)する。
 このような3Dシミュレーションでの問題点は多大な計算時間を要することである。そのため、FFRを用いて治療法を選択するまでにも時間を要し、一刻を争うときには不向きであるという不都合が生じる。そこで、改善策として、3D画像を用いてのシミュレーションを2D近似することで、シミュレーションに要する時間を大幅に削減する手法がある。
 これによりFFRをシミュレーションベースで素早く計算することが可能となり、医師はFFRをより有効的な指標として用いることができる。
WO10/098444 特開2007-151881号公報
Journal of Cardiovascular Computed Tomography-Min et al.-2011
 しかしながら、現在、虚血心筋と治療すべき狭窄部との因果関係やリスク評価を行えていない、つまり、虚血心筋と治療すべき狭窄部との因果関係やリスク評価にFFRを適切に反映させることができておらず、どの狭窄部を最優先に治療すべきか等の判断は医師の経験則に依る所が大きい。このため、不要な治療や見落とし等、ヒューマンエラーが発生する恐れがあるという不都合がある。
 また、例えば心筋梗塞に寄与する冠動脈では血流量及び圧力が低下するため、上記したFFRは見かけ上高くなる。このため、心筋梗塞といった重大な症状を引き起こしているにも関わらず、FFRが見かけ上高い。この様な場合においても、症状の見落としや治療法の選択ミス等、ヒューマンエラーが発生する恐れがあるという不都合がある。
 目的は、ヒューマンエラーの可能性を低減し得る医用画像処理装置を提供することである。
 本実施形態に係る医用画像処理装置は、心臓に関する複数時相の画像のデータに描出された複数の冠動脈を抽出し、当該抽出された各冠動脈に描出された少なくとも1つの狭窄部位を抽出する第1抽出ユニットと、前記抽出された複数の冠動脈の組織血流量に基づいて、前記抽出された各冠動脈の圧較差を計算する計算ユニットと、前記画像に描出された虚血領域を抽出する第2抽出ユニットと、前記抽出された虚血領域を前記抽出された各冠動脈と支配域とを関係付ける支配マップに照会することにより当該虚血領域の責任血管を特定し、前記特定された責任血管内の狭窄部位に対応した前記圧較差に基づいて責任狭窄を特定する特定ユニットと、前記特定された責任狭窄が描出された画像を、当該責任狭窄を示す情報と共に表示ユニットに表示させる表示制御ユニットと、を具備するものである。
第1の実施形態に係る医用画像処理装置を含む医用画像処理システムの構成例を示す模式図である。 第1の実施形態に係るテリトリーマップ記憶部に記憶されるテリトリーマップの一例を示す模式図である。 第1の実施形態に係る医用画像処理装置の動作の一例を示すフローチャートである。 第1の実施形態に係る冠動脈解析部による解析結果の一例を示す模式図である。 第1の実施形態に係る心筋解析部による解析結果の一例を示す模式図である。 同実施形態に係る表示部により表示される責任血管の3次元画像の一例を示す模式図である。 第1の実施形態に係る表示部により表示される責任血管の2次元画像の一例を示す模式図である。 第1の実施形態に係る表示部により表示される責任血管の2次元画像であって、治療の優先度を示唆する2次元画像の一例を示す模式図である。 第1の実施形態に係る表示部により表示される責任血管の2次元画像であって、治療の優先度を示唆する2次元画像の一例を示す模式図である。 第1の実施形態に係る表示部により表示される責任血管の2次元画像であって、側副血管の存在を示唆する2次元画像の一例を示す模式図である。 第1の実施形態に係る表示部により表示される責任血管の2次元画像であって、カテーテル・ステントのサイズを示唆する2次元画像の一例を示す模式図である。 第2の実施形態に係る医用画像処理装置を含む医用画像システムの構成例を示す模式図である。 第2の実施形態に係る医用画像処理装置の動作の一例を示すフローチャートである。 第2の実施形態に係るマーカ発生部により発生させる梗塞責任血管の輪郭を表すマーカの一例を示す模式図である。 第2の実施形態に係るマーカ発生部により発生させるFFR値の遷移を表すマーカの一例を示す模式図である。 第2の実施形態に係る表示部により表示される梗塞責任血管の2次元画像の一例を示す模式図である。 第2の実施形態に係る表示部により表示される梗塞責任血管の3次元画像の一例を示す模式図である。 第2の実施形態に係る医用画像処理装置の別の動作の一例を示すフローチャートである。 第3の実施形態に係る医用画像処理装置の動作の一例を示すフローチャートである。 第3の実施形態に係る表示部により表示される梗塞責任血管の3次元画像の一例を示す模式図である。 バイパス手術の原理を説明するための模式図である。 血管狭窄に対するカテーテル手術の原理を説明するための模式図である。 バルーンカテーテル手術の原理を説明するための模式図である。 冠動脈へのプレッシャーワイヤーの挿入法を説明するための模式図である。
 [第1の実施形態]
 図1は、第1の実施形態に係る医用画像処理装置を含む医用画像処理システムの構成例を示す模式図であり、図2は同実施形態に係るテリトリーマップ記憶部に記憶されるテリトリーマップの一例を示す模式図である。図1に示す医用画像処理システム1は、医用画像処理装置10と、CT(Computed Tomography)装置20及びPACS(Picture Archiving and Communication System)30とが、例えばLAN(Local Area Network)や公衆電子通信回線等のネットワーク40を介して通信可能に接続されたシステムである。このため、医用画像処理装置10には、CT装置20及びPACS50との通信を可能にする通信インターフェース103が設けられている。
 医用画像処理装置10は、図1に示すように、画像記憶部101、テリトリーマップ記憶部102、通信インターフェース103、制御部104、心臓領域抽出部105、心筋解析部106、冠動脈解析部107、責任血管特定部108、FFR計算部109、責任狭窄特定部110、マーカ発生部111及び表示部112を備えている。以下に、医用画像処理装置10を構成する各部101乃至112の機能について詳細に説明する。
 画像記憶部101は、制御部104の下でCT装置20又はPACS50から送信された処理画像としての当該被検体の心臓を含む胸部領域に関する複数時相にわたる時系列の3次元造影CT画像データ(以下、単にボリュームデータと表記)を記憶する記憶装置である。
 テリトリーマップ記憶部102は、図2に示すように、冠動脈と各冠動脈により栄養供給がなされる支配域との関係を定義するテリトリーマップ(以下、支配マップと表記)を記憶する記憶装置である。
 心臓領域抽出部105は、ボリュームデータから心輪郭抽出処理等により心臓領域を抽出する。
 心筋解析部106は、造影剤濃度に対応するCT値による閾値処理等により、心臓領域抽出部105により抽出された心臓領域から心筋領域を抽出する。また、心筋解析部106は、心筋パフュージョン解析、つまり、抽出した心筋領域内の画素毎又は局所毎に造影剤に関する時間濃度曲線を生成し、その時間濃度曲線に基づいて画素毎又は局所毎に造影剤が流入してから流出するまでの期間に移動する血流の量を算出する。
 例えば、CT装置を用いた撮影では非イオン性造影剤を患者へ注入し、CT値の変化から臓器の灌流情報を描出することができる。このため、CTパフュージョン解析では、例えば、512×512ピクセルで構成されたCT画像(ボリュームデータ)の経時変化を各画素におけるCT値の変化から測定し、血流量等を数値化することができる。このようにして、複数時相のCT画像から臓器の灌流情報(例えば、血流量)を表す1枚のカラーマップが生成される。
 更に、心筋解析部106は、算出した血流量の空間分布から閾値処理により虚血領域を特定する。
 冠動脈解析部107は、心臓領域抽出部105により抽出された心臓領域から複数の冠動脈を抽出し、更に、当該抽出した各冠動脈から少なくとも1つの狭窄部位を抽出する。具体的には、冠動脈解析部107は、冠動脈の血管芯線や血管内壁等に沿って、冠動脈の解剖学的構造やプラーク性状の分析を行い、冠動脈に関するボリュームデータを抽出する、つまり、冠動脈ならびにその冠動脈の内壁に位置する狭窄部位を抽出する。なお、プラーク性状の具体例としては、脂質量、血清コレステロール濃度、硬さ、石灰化度、繊維性被膜(Thin-cap)の厚さ、及びFFR値(但し、本実施形態では、FFR値はFFR計算部109により算出されるものとする)等が挙げられる。
 責任血管特定部108は、心筋解析部106により特定された虚血領域に対して、テリトリーマップ記憶部102に記憶された支配マップを照会することにより、虚血領域へ本来的に栄養供給責任を有している血管(以下、責任血管と表記)を特定する。
 FFR計算部109は、冠動脈解析部107により抽出された各狭窄部位に対応するFFRの値をシミュレーションベースで計算する。具体的には、まずFFR計算部109は、冠動脈解析部107により抽出された狭窄部位毎に、心筋解析部106により生成されたカラーマップに基づいて、各狭窄部位の下流の少なくとも一つの位置において組織血流量と、各狭窄部位の上流の少なくとも一つの位置において組織血流量とを算出する。そして、FFR計算部109は、算出した狭窄部位の下流の組織血流量を、算出した狭窄部位の上流の組織血流量で除算することで、少なくとも狭窄部位を含む各位置におけるFFR値を算出する。なお、本実施形態では、FFR計算部109は、上記のような計算手法によりFFR値を算出するものとしたが、FFR値の計算手法はこれに限定されるものでなく、各狭窄部位に対応したFFR値を算出可能であれば、FFR計算部109で用いるFFR値の計算手法として適宜適用可能である。
 責任狭窄特定部110は、冠動脈解析部107により抽出された狭窄部位のうち、責任血管特定部108により特定された責任血管の内壁に位置する狭窄部位(以下、責任狭窄と表記)、つまり、責任狭窄候補の中からFFR値が閾値未満である狭窄部位を責任狭窄として特定する。
 マーカ発生部111は、責任血管特定部108により特定された責任血管や、責任狭窄特定部110により特定された責任狭窄、FFR計算部109により算出されたFFR値、ならびに冠動脈解析部107により抽出された責任狭窄候補等を表すマーカのデータを発生する。これらマーカは、ボリュームデータからレンダリング等により生成された3次元画像や、断面変換(Multi-Planar Reconstruction)により生成された2次元画像に重畳させて、表示部112に表示される。なお、マーカ発生部111から発生したマーカを重畳させる画像としては、CT装置20によるボリュームデータに由来する画像には限定されず、例えばX線診断装置等、他のモダリティから取得される画像であってもよい。
 ここで、本実施形態に係る医用画像処理装置10の動作の一例について、図2,図4乃至図7の模式図と、図3に示すフローチャートとを参照しながら説明する。
 始めに、制御部104は、通信インターフェース103を介して、CT装置20又はPACS50から胸部領域に関する複数時相にわたる時系列のボリュームデータの入力を受け付けると、当該入力を受け付けたボリュームデータを画像記憶部101に書込む(ステップS1)。
 続いて、心臓領域抽出部105は、制御部104の下で拍動が比較的少ない特定時相のボリュームデータを処理画像として画像記憶部101から読出し、当該ボリュームデータから心臓領域を抽出する(ステップS2)。
 次に、冠動脈解析部107は、心臓領域抽出部105により抽出された心臓領域を対象にして冠動脈解析処理を実行する(ステップS3,S4)。具体的には、冠動脈解析部107は、冠動脈の血管芯線や血管内壁等に沿って、冠動脈の解剖学的構造やプラーク性状の分析を行い、冠動脈ならびにその冠動脈の内壁に位置する狭窄部位を抽出する。その後、冠動脈解析部107は、例えば、図4(a),図4(b)に示すように、冠動脈の解剖学的構造を心臓形態画像に重畳させて3次元画像g1又は2次元画像g2として表示部112に表示させる。なお、図4(a),図4(b)に示す画像g1,g2を表示部112に表示させるタイミングは、操作者が任意に設定可能である、つまり、処理途中に表示させてもよいし、処理結果と共に表示させてもよい。
 続いて、心筋解析部106は、造影剤濃度に対応するCT値による閾値処理により、心臓領域抽出部105により抽出された心臓領域から心筋領域を抽出する(ステップS5)。
 次に、心筋解析部106は、抽出した心筋に限定してCTパフュージョン解析処理を実行する(ステップS6,S7,S8)。具体的には、心筋解析部106は、時系列のボリュームデータに基づいて、抽出した心筋領域内の画素毎又は局所毎に造影剤に関する時間濃度曲線を生成する。その後、心筋解析部106は、それら時間濃度曲線に基づいて画素毎又は局所毎に造影剤が流入してから流出するまでの期間に移動する血流量を算出する。これにより、例えば図5に示すように、血流量の空間分布を示すカラーマップg3が生成される。そして、心筋解析部106は、生成したカラーマップg3、つまり、算出した血流量の空間分布に基づいて、所定の血流量未満の領域を虚血領域として特定する。
 続いて、責任血管特定部108は、心筋解析部106により特定された虚血領域に対して、図2に示すように、テリトリーマップ記憶部102に記憶されている支配マップを照会することにより、責任血管を特定する(ステップS9)。
 次に、FFR計算部109は、責任血管特定部108により特定された責任血管の内壁に位置する狭窄部位毎に、心筋解析部106により生成されたカラーマップg3に基づいて、各狭窄部位の下流の組織血流量と、各狭窄部位の上流の組織血流量とを算出する。そして、FFR計算部109は、算出した狭窄部位の下流の組織血流量を、算出した狭窄部位の上流の組織血流量で除算することで、少なくとも狭窄部位を含む各位置におけるFFR値を算出する(ステップS10)。
 続いて、責任狭窄特定部110は、FFR計算部109により算出されたFFR値が閾値未満である狭窄部位を責任狭窄として特定する(ステップS11)。
 しかる後、表示部112は、例えば図6,7に示すように、マーカ発生部111により発生した責任血管、責任狭窄、ならびにFFR値を表すマーカをボリュームデータに由来した3次元画像g4又は2次元画像g5に重畳させて表示する(ステップS12)。
 以上説明した一実施形態によれば、CT装置20によるボリュームデータから心臓領域、心筋領域、冠動脈及び狭窄部位を抽出可能な心臓領域抽出部105、心筋解析部106及び冠動脈解析部107と、心筋解析部106による処理結果に基づいて責任血管を特定する責任血管特定部108と、冠動脈解析部107、責任血管特定部108及びFFR計算部109による処理結果に基づいて責任狭窄を特定する責任狭窄特定部110と、責任血管や責任狭窄に関するマーカをボリュームデータに由来した3次元画像又は2次元画像に重畳表示させる表示部112とを備えた構成により、例えば、図6に示すように、責任狭窄と支配域との対応関係を医師に対して視覚的に示すことができる、ひいては、ヒューマンエラーの可能性を低減させることができる。
 また、本実施形態では、FFR計算部109がシミュレーションベースでFFR値を算出する、つまり、プレッシャーワイヤー等、侵襲性をもつものを用いないため、検査時に患者にかかる負担を低減させることができる。
 なお、本実施形態では、表示部112が表示する画像の一例として図6,7を示したが、表示部112が表示する画像はこれらに限定されるものでなく、例えば、図8A,図8Bに示すような画像g6,g7が表示されるとしてもよい。図8A,図8Bは、FFR計算部109により算出されたFFR値に基づいて、狭窄部位の治療の優先度を順位付し、この処理結果をマーカとして重畳した画像g6,g7の一例を示す。ここでは、治療の優先度が高い狭窄部位ほど狭窄部位を示すマーカ(丸印)が大きくなっている。また、図8Aでは、優先度の他に、冠動脈解析部107によるプラーク性状の分析結果を示す棒グラフをマーカとして重畳した画像g6の一例を示す。なお、図8Aに示す画像g6には、プラーク性状の分析結果の他に、血液の性質等をマーカとして更に重畳させてもよい。また、責任血管が複数存在する場合、複数の責任血管にわたって狭窄部位の治療の優先度を順位付した後に、この処理結果をマーカとして重畳した画像を表示部112に表示させることもできる。
 また、本実施形態に係る医用画像処理装置10によれば、責任血管特定部108による支配マップ照会時に、ある動脈が供給すべき領域の一部に対して別の動脈の領域が張り出しているか否かを検出し、別の動脈の領域が張り出していることが検出された場合に、側副血管による血液供給の可能性があることを示唆することもできる。一般に、側副血管が存在するとFFR値の信頼性は低下するため、例えば、図9に示すように、側副血管の存在を示唆する画像g8を表示部112に表示させることで、よりヒューマンエラーの可能性を低減させることができる。
 更に、本実施形態に係る医用画像処理装置10によれば、責任狭窄特定部110により責任狭窄を特定した後に、ボリュームデータに由来する2次元画像から責任狭窄の断面の径や長さを測定し、この測定結果に基づいて最適なカテーテル・ステントのサイズを示唆することもできる。具体的には、例えば、図10に示すように、最適なカテーテル・ステントのサイズを示唆する画像g9を表示部112に表示させることで、よりヒューマンエラーの可能性を低減させることができる。
 また、本実施形態に係る医用画像処理装置10によれば、心筋解析部106により虚血領域が複数個所存在する旨が示された場合に、ボリュームデータから心筋の厚み等を測定し、この測定結果に基づいて壊死している心筋の支配領域に対応する血管は責任血管として特定しないといった設定を付加することも可能である。
 更に、本実施形態に係る医用画像処理装置10によれば、表示部112により所望の3次元画像を表示したときに、マウスやキーボード、タッチパネル等の図示しない入力インターフェースから責任血管や責任狭窄を選択する旨の入力を受け付けると、当該選択された責任血管や責任狭窄が観察しやすい角度に3次元画像を自動で回転させることも可能である。
 [第2の実施形態]
 図11は第2の実施形態に係る医用画像処理装置を含む医用画像処理システムの構成例を示す模式図である。図11に示す医用画像処理システム1は、医用画像処理装置10と、CT(Computed Tomography)装置20、MRI(Magnetic Resonance Imaging)装置30、核医学診断装置40及びPACS(Picture Archiving and Communication System)50とが、例えばLAN(Local Area Network)や公衆電子通信回線等のネットワーク60を介して通信可能に接続されたシステムである。このため、医用画像処理装置10には、CT装置20、MRI装置30、核医学診断装置40及びPACS50との通信を可能にする通信インターフェース103が設けられている。
 医用画像処理装置10は、図11に示すように、画像記憶部101、テリトリーマップ記憶部102、通信インターフェース103、制御部104、心臓領域抽出部105、心筋解析部106、冠動脈解析部107、責任血管特定部108、FFR計算部109、マーカ発生部111及び表示部111を備えている。第1の実施形態で示した医用画像処理装置1と異なる構成についてのみ、以下説明する。
 画像記憶部101は、制御部104の下でCT装置20又はPACS50から送信された処理画像としての当該被検体の心臓を含む胸部領域に関する複数時相にわたる時系列の3次元造影CT画像データを記憶する記憶装置である。
 テリトリーマップ記憶部102は、図2に示すように、冠動脈と各冠動脈により栄養供給がなされる支配域との関係を定義するテリトリーマップを記憶する記憶装置である。
 心臓領域抽出部105は、ボリュームデータから心輪郭抽出処理等により心臓領域を抽出する。
 心筋解析部106は、造影剤濃度に対応するCT値による閾値処理等により、心臓領域抽出部105により抽出された心臓領域から心筋領域を抽出する。また、心筋解析部106は、MRI装置30による遅延造影(late gadolinium enhancement)や、核医学診断装置40による糖代謝測定等により、抽出した心筋領域のうち壊死している心筋領域、つまり、心筋梗塞に寄与する心筋梗塞領域を特定する。
 更に、心筋解析部106は、心筋パフュージョン解析、つまり、抽出した心筋領域内の画素毎又は局所毎に造影剤が流入してから流出するまでの期間に移動する血流の量を算出する。例えば、CT装置20を用いた撮影では非イオン性造影剤を患者へ注入し、CT値の変化から臓器の灌流情報を描出することができる。このため、CTパフュージョン解析では、例えば、512×512ピクセルで構成されたCT画像(ボリュームデータ)の経時変化を各画素におけるCT値の変化から測定し、血流量等を数値化することができる。このようにして、複数時相のCT画像から臓器の灌流情報(例えば、血流量)を表す1枚のカラーマップが生成される。
 即ち、心筋解析部106は心筋梗塞領域を特定するだけでなく、例えば、算出した血流量の空間分布から閾値処理により血流低下部位、つまり、虚血領域を特定することもできる。
 冠動脈解析部107は、心臓領域抽出部105により抽出された心臓領域から複数の冠動脈を抽出し、更に、当該抽出した各冠動脈から少なくとも1つの狭窄部位を抽出する。具体的には、冠動脈解析部107は、冠動脈の血管芯線や血管内壁等に沿って、冠動脈の解剖学的構造やプラーク性状の分析を行い、冠動脈に関するボリュームデータを抽出する、つまり、冠動脈ならびにその冠動脈の内壁に位置する狭窄部位を抽出する。なお、プラーク性状には、脂質量、血清コレステロール濃度、硬さ、石灰度及び繊維性被膜(Thin-cap)の厚さ等が含まれる。
 責任血管特定部108は、心筋解析部106により特定された心筋梗塞領域に対して、テリトリーマップ記憶部102に記憶された支配マップを照会することにより、心筋梗塞領域へ本来的に栄養供給責任を有している血管(以下、梗塞責任血管と表記)を特定する。
 なお、心筋解析部106により心筋梗塞領域に代えて虚血領域が特定されている場合、責任血管特定部108は、心筋解析部106により特定された虚血領域に対して、テリトリーマップ記憶部102に記憶された支配マップを照会することにより、虚血領域へ本来的に栄養供給責任を有している血管(以下、虚血責任血管と表記)を特定する。
 FFR計算部109は、冠動脈解析部107により抽出された各冠動脈上の狭窄部位を少なくとも含む複数の位置に関するFFR値をシミュレーションベースで計算する。具体的には、まずFFR計算部109は、心筋解析部106により生成されたカラーマップに基づいて、冠動脈内の狭窄部位の下流側の少なくとも一つの位置において組織血流量と、冠動脈内の狭窄部位の上流の少なくとも一つの位置において組織血流量とを算出する。そして、FFR計算部109は、算出した狭窄部位の下流の組織血流量を、算出した狭窄部位の上流の組織血流量で除算することで、少なくとも狭窄部位を含む各位置におけるFFR値を算出する。なお、ここでは、冠動脈内の1つの狭窄部位に対応したFFR値を算出する場合について説明したが、例えば、冠動脈全体のFFR値を算出する場合、冠動脈内の最も上流に位置する狭窄部位の上流の組織血流量を基準値として固定し、他の複数箇所の組織血流量(但し、FFR計算部109が冠動脈内の複数箇所の組織血流量を算出しているものとする)を変数とすることで、FFR計算部109は、当該複数箇所に対応したFFR値、つまり、冠動脈全体のFFR値を算出することができる。
 マーカ発生部111は、責任血管特定部108により特定された梗塞責任血管(又は、虚血責任血管)や、FFR計算部109により算出されたFFR値を表すマーカ(マーク)のデータを発生する。これらマーカは、ボリュームデータからレンダリング等により生成された3次元画像や、断面変換(Multi-Planar Reconstruction)により生成された2次元画像に重畳させて、表示部111に表示される。なお、マーカ発生部111から発生したマーカを重畳させる画像としては、CT装置20によるボリュームデータに由来する画像には限定されず、例えばX線診断装置等、他のモダリティから取得される画像であってもよい。
 ここで、本実施形態に係る医用画像処理装置10の動作の一例について、図2,図13乃至図16の模式図と、図12のフローチャートとを参照しながら説明する。
 但し、ここでは、画像記憶部101には、CT装置20又はPACS50からの胸部領域に関する複数時相にわたる時系列のボリュームデータが予め記憶されているものとする。また、ここでは、心臓領域抽出部105が、制御部104の下で拍動が比較的少ない特定時相のボリュームデータを処理画像として画像記憶部101から読出し、当該ボリュームデータから心臓領域を既に抽出しているものとする。
 始めに、冠動脈解析部107は、心臓領域抽出部105により抽出された心臓領域を対象にして冠動脈解析処理を実行する(ステップS21)。具体的には、冠動脈解析部107は、冠動脈の血管芯線や血管内壁等に沿って、冠動脈の解剖学的構造やプラーク性状の分析を行い、冠動脈ならびにその冠動脈の内壁に位置する狭窄部位を抽出する。
 続いて、心筋解析部106は、造影剤濃度に対応するCT値による閾値処理により、心臓領域抽出部105により抽出された心臓領域から心筋領域を抽出する。その後、心筋解析部106は、MRI装置30による遅延造影や、核医学診断装置40による糖代謝測定等により、抽出した心筋領域のうち壊死している心筋領域、つまり、心筋梗塞に寄与する心筋梗塞領域を特定する(ステップS22,S23,S24)。
 次に、責任血管特定部108は、心筋解析部106により特定された心筋梗塞領域に対して、テリトリーマップ記憶部102に記憶された支配マップを照会することにより、冠動脈解析部107により抽出された各冠動脈から梗塞責任血管を特定する(ステップS25)。
 続いて、マーカ発生部111は、責任血管特定部108により特定された梗塞責任血管を表すマーカのデータを発生させる(ステップS26)。具体的には、マーカ発生部111は、例えば図13に示すように、梗塞責任血管の輪郭を表すマーカm1を発生させる。
 次に、FFR計算部109は、冠動脈解析部107により抽出された冠動脈毎に、冠動脈全体のFFR値を算出する(ステップS27)。
 続いて、マーカ発生部111は、FFR計算部109により算出された各冠動脈に対応したFFR値を表すマーカを発生させる(ステップS28)。具体的には、マーカ発生部111は、例えば図14に示すように、各冠動脈のFFR値の遷移を表すマーカm2を発生させる。
 しかる後、表示部111は、例えば図15に示すように、マーカ発生部111により発生した梗塞責任血管を表すマーカm1と各冠動脈のFFR値の遷移を表すマーカm2とをボリュームデータに由来した2次元画像g1に重畳させて表示する(ステップS29)。なお、表示部111が表示する画像は、上記2次元画像g1だけでなく、例えば図16に示すように、ボリュームデータに由来した3次元画像g2や、他のモダリティから取得される画像にマーカを重畳させた画像であってもよい。
 なお、上記動作例の説明では、責任血管特定部108が梗塞責任血管を特定する場合について説明したが、例えば図17のフローチャートに示すように、責任血管特定部108が虚血責任血管を特定する場合においても、医用画像処理装置10は、CT装置20又はMRI装置30による心筋パフュージョン解析や、核医学診断装置40によるSPECT検査等により虚血領域を特定して(ステップS22’,S23’,S24’)、当該特定した虚血領域から虚血責任血管を特定し(ステップS25’)、当該特定した虚血責任血管を表すマーカを発生させる(ステップS26’)こと以外は、上記動作例と同様に動作する。
 以上説明した第2の実施形態によれば、CT装置20によるボリュームデータから心臓領域、心筋領域、冠動脈、狭窄部位及び心筋梗塞領域を抽出可能な心臓領域抽出部105、心筋解析部106及び冠動脈解析部107と、心筋解析部106による処理結果に基づいて梗塞責任血管を特定する責任血管特定部108と、梗塞責任血管や、FFR計算部109により算出されたFFR値を表すマーカをボリュームデータに由来した2次元画像又は3次元画像に重畳表示させる表示部111とを備えた構成により、梗塞責任血管を表すマーカが重畳表示された部分のFFR値の信頼度が低い旨を医師に対して提示することができる。
 また、本実施形態では、FFR計算部109がシミュレーションベースでFFR値を算出する、つまり、プレッシャーワイヤー等、侵襲性をもつものを用いないため、検査時に患者にかかる負担を低減させることができる。
 [第3の実施形態]
 次に、第3の実施形態に係る医用画像処理装置について、上記した図11を用いて説明する。本実施形態は、第2の実施形態に示す医用画像処理装置10に、冠動脈内の狭窄部位が治療対象狭窄であるか又は治療非対象狭窄であるかを判定する機能を付加したものである。なお、以下では、図18のフローチャートと図19の模式図とを参照しながら、第2の実施形態とは異なる機能についてのみ説明する。つまり、ステップS21乃至S28の処理は、上記した第2の実施形態と同様であるため、ここでは詳細な説明は省略し、以下では、ステップS30乃至S36の処理について主に説明する。
 冠動脈解析部107は、ステップS21の処理において抽出した狭窄部位毎に、当該狭窄部位が梗塞責任血管内に位置する狭窄であるか否かを判定する(ステップS30)。
 ステップS30の処理による判定の結果が梗塞責任血管内に位置する狭窄である旨を示す場合(ステップS30のYes)には、心筋解析部106は、ステップS24の処理において特定した心筋梗塞領域内に生存心筋が有るか否かを判定する(ステップS31)。具体的には、心筋解析部106は、MRI装置30による遅延造影等から当該心筋梗塞領域が心筋の厚さの半分にまで到達しているか否かを判定し、当該判定の結果が到達している旨を示す場合には生存心筋が無いとみなし、当該判定の結果が否を示す場合には生存心筋が有るとみなす。なお、ステップS31の処理による判定の結果が否を示す場合(ステップS31のNo)には、後述するステップS35の処理に進む。
 ステップS31の処理による判定の結果が生存心筋が有る旨を示す場合(ステップS31のYes)には、マーカ発生部111は、生存心筋が有る梗塞責任血管を表すマーカと治療対象狭窄を表すマーカとを発生させる(ステップS32)。具体的には、マーカ発生部111は、例えば図19に示すように、生存心筋が有る梗塞責任血管の輪郭を表すマーカm3と、治療対象狭窄を表すマーカm4とを発生させる。
 ここで、ステップS30の処理による判定の結果が否を示す場合(ステップS30のNo)には、冠動脈解析部107は、ステップS27の処理において算出された各冠動脈のFFR値のうち当該狭窄部位に対応したFFR値が閾値以下であるか否かを判定する(ステップS33)。
 ステップS33の処理による判定の結果が閾値以下である旨を示す場合(ステップS33のYes)には、マーカ発生部111は、治療対象狭窄を表すマーカを発生させる(ステップS34)。即ち、マーカ発生部111は、図19に示したマーカm4に相当するマーカを発生させる。
 ステップS33の処理による判定の結果が否を示す場合(ステップS33のNo)には、マーカ発生部111は、治療非対象狭窄を表すマーカを発生させる(ステップS35)。具体的には、マーカ発生部111は、例えば図19に示すように、治療非対象狭窄を表すマーカm5を発生させる。
 しかる後、表示部111は、マーカ発生部111により発生した梗塞責任血管を表すマーカm1、各冠動脈のFFR値の遷移を表すマーカm2、生存心筋が有る梗塞責任血管を表すマーカm3、治療対象狭窄を表すマーカm4、及び治療非対象狭窄を表すマーカm5をボリュームデータに由来した3次元画像g3に重畳させて表示する(ステップS36)。なお、表示部111が表示する画像は、上記3次元画像g3だけでなく、ボリュームデータに由来した2次元画像や、他のモダリティから取得される画像にマーカを重畳させた画像であってもよい。また、梗塞責任血管を表すマーカm1と生存心筋が有る梗塞責任血管を表すマーカm3との両方が画像上の同じ位置に重畳される場合、マーカm3が優先的に表示されるものとする。
 以上説明した第3の実施形態によれば、心筋梗塞領域に生存心筋が有るか否かや、冠動脈内の狭窄部位が治療対象狭窄であるか又は治療非対象狭窄であるかを判定する心筋解析部106及び冠動脈解析部107と、生存心筋が有る梗塞責任血管を表すマーカや、治療対象狭窄を表すマーカ、ならびに治療非対象狭窄を表すマーカをボリュームデータに由来した3次元画像や2次元画像に重畳表示させる表示部111とを備えた構成により、第1の実施形態に比べて、より多くの情報を医師に対して提示することができる。
 以上説明した第2及び第3の実施形態の少なくとも一方によれば、FFR値の信頼度が低い旨や、生存心筋の有無、ならびに狭窄部位が治療するに適した狭窄であるか否かを医師に対して提示することができるため、ヒューマンエラーの可能性を低減させることができる。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…医用画像処理システム、10…医用画像処理装置、20…CT装置、30…PACS、40…ネットワーク、101…画像記憶部、102…テリトリーマップ記憶部、103…通信インターフェース、104…制御部、105…心臓領域抽出部、106…心筋解析部、107…冠動脈解析部、108…責任血管特定部、109…FFR計算部、110…責任狭窄特定部、111…マーカ発生部、112…表示部。

Claims (9)

  1.  心臓に関する複数時相の画像のデータに描出された複数の冠動脈を抽出し、当該抽出された各冠動脈に描出された少なくとも1つの狭窄部位を抽出する第1抽出ユニットと、
     前記抽出された複数の冠動脈の組織血流量に基づいて、前記抽出された各冠動脈の圧較差を計算する計算ユニットと、
     前記画像に描出された虚血領域を抽出する第2抽出ユニットと、
     前記抽出された虚血領域を前記抽出された各冠動脈と支配域とを関係付ける支配マップに照会することにより当該虚血領域の責任血管を特定し、前記特定された責任血管内の狭窄部位に対応した前記圧較差に基づいて責任狭窄を特定する特定ユニットと、
     前記特定された責任狭窄が描出された画像を、当該責任狭窄を示す情報と共に表示ユニットに表示させる表示制御ユニットと、
     を具備する医用画像処理装置。
  2.  前記表示ユニットは、前記特定された責任狭窄が描出された画像を、当該責任狭窄に対応した圧較差と共に表示する請求項1に記載の医用画像処理装置。
  3.  前記表示ユニットは、前記特定された責任血管が描出された画像を、当該責任血管を示す情報と共に表示する請求項1に記載の医用画像処理装置。
  4.  前記特定ユニットは、前記抽出された虚血領域を前記支配マップに照会することにより当該虚血領域に側副血管が存在するか否かを特定し、
     前記表示制御ユニットは、前記虚血領域に側副血管が存在するか否かを示す情報を表示させる請求項1記載の医用画像処理装置。
  5.  前記抽出ユニットは、前記画像から心筋に関する組織血流画像を生成し、当該組織血流画像から前記虚血領域を抽出する請求項1記載の医用画像処理装置。
  6.  前記特定された責任血管内の狭窄部位に対応した圧較差に基づいて狭窄部位の治療の優先度を順位付する優先順位決定ユニットを更に具備し、
     前記表示ユニットは、前記決定された治療の優先度を示す情報を表示する請求項1に記載の医用画像処理装置。
  7.  前記第2の抽出ユニットは、前記虚血領域から心筋梗塞領域を抽出し、
     前記特定ユニットは、前記抽出された心筋梗塞領域を前記支配マップに照会することにより、前記各冠動脈から当該心筋梗塞領域の責任血管を特定し、
     前記表示ユニットは、前記特定された責任血管が描出された画像を、当該責任血管を示す情報と共に表示する請求項1記載の医用画像処理装置。
  8.  前記特定ユニットは、前記特定された責任狭窄のサイズに基づいて、当該責任狭窄の治療に用いるカテーテル及びステントの少なくとも一方を特定し、
     前記表示ユニットは、前記特定されたカテーテル及びステントの少なくとも一方を表示する請求項1記載の医用画像処理装置。
  9.  前記表示ユニットは、前記画像を、前記特定された責任狭窄の位置に応じて回転させて表示する請求項1記載の医用画像処理装置。
PCT/JP2013/082278 2012-11-30 2013-11-29 医用画像処理装置 Ceased WO2014084382A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/726,158 US9811907B2 (en) 2012-11-30 2015-05-29 Medical image processing apparatus and medical image processing method
US15/715,793 US10748285B2 (en) 2012-11-30 2017-09-26 Medical image processing apparatus and medical image processing method
US16/929,392 US11481901B2 (en) 2012-11-30 2020-07-15 Medical image processing apparatus and medical image processing method
US17/939,014 US12437405B2 (en) 2012-11-30 2022-09-07 Medical image processing apparatus and medical image processing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-263566 2012-11-30
JP2012263566 2012-11-30
JP2012263565 2012-11-30
JP2012-263565 2012-11-30
JP2013-248490 2013-11-29
JP2013248490A JP6334902B2 (ja) 2012-11-30 2013-11-29 医用画像処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/726,158 Continuation US9811907B2 (en) 2012-11-30 2015-05-29 Medical image processing apparatus and medical image processing method

Publications (1)

Publication Number Publication Date
WO2014084382A1 true WO2014084382A1 (ja) 2014-06-05

Family

ID=50828010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082278 Ceased WO2014084382A1 (ja) 2012-11-30 2013-11-29 医用画像処理装置

Country Status (3)

Country Link
US (4) US9811907B2 (ja)
JP (1) JP6334902B2 (ja)
WO (1) WO2014084382A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160007947A1 (en) * 2014-07-14 2016-01-14 Volcano Corporation Devices, Systems, and Methods for Improved Accuracy Model of Vessel Anatomy
JP2017189308A (ja) * 2016-04-12 2017-10-19 東芝メディカルシステムズ株式会社 医用画像処理装置、医用画像診断装置およびプログラム
GB2569427A (en) * 2017-10-13 2019-06-19 Optellum Ltd System, method and apparatus for assisting a determination of medical images

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10595807B2 (en) 2012-10-24 2020-03-24 Cathworks Ltd Calculating a fractional flow reserve
EP2943902B1 (en) 2012-10-24 2020-03-11 CathWorks Ltd. Automated measurement system and method for coronary artery disease scoring
US10210956B2 (en) 2012-10-24 2019-02-19 Cathworks Ltd. Diagnostically useful results in real time
JP6017284B2 (ja) 2012-11-30 2016-10-26 東芝メディカルシステムズ株式会社 医用画像診断装置
JP6305742B2 (ja) 2012-11-30 2018-04-04 キヤノンメディカルシステムズ株式会社 医用画像診断装置、表示方法
JP6139116B2 (ja) 2012-11-30 2017-05-31 東芝メディカルシステムズ株式会社 医用画像処理装置
JP6553147B2 (ja) * 2012-11-30 2019-07-31 キヤノンメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理方法
JP6334902B2 (ja) * 2012-11-30 2018-05-30 キヤノンメディカルシステムズ株式会社 医用画像処理装置
US10129658B2 (en) 2013-07-22 2018-11-13 Massachusetts Institute Of Technology Method and apparatus for recovering audio signals from images
EP3954298A3 (en) 2013-10-24 2022-03-16 Cathworks Ltd. Vascular characteristic determination with correspondence modeling of a vascular tree
JP6494942B2 (ja) * 2014-07-30 2019-04-03 キヤノンメディカルシステムズ株式会社 画像処理装置、及び、画像処理方法
US9195801B1 (en) 2014-08-05 2015-11-24 Heartflow, Inc. Systems and methods for treatment planning based on plaque progression and regression curves
EP3229688B1 (en) 2014-12-08 2020-10-28 Koninklijke Philips N.V. Device and method to recommend diagnostic procedure based on co-registered angiographic image and physiological information measured by intravascular device
JPWO2017047821A1 (ja) * 2015-09-18 2018-08-02 イービーエム株式会社 組織血管特性を可視化するための方法及びその装置
US10517678B2 (en) * 2015-10-02 2019-12-31 Heartflow, Inc. System and method for diagnosis and assessment of cardiovascular disease by comparing arterial supply capacity to end-organ demand
JP7036742B2 (ja) 2016-05-16 2022-03-15 キャスワークス リミテッド 血管評価システム
EP4241694A3 (en) 2016-05-16 2023-12-20 Cathworks Ltd. Selection of vascular paths from images
US10163209B2 (en) 2016-11-23 2018-12-25 Toshiba Medical Systems Corporation Medical image processing apparatus, medical image processing method, and X-ray CT apparatus
EP4393386A3 (en) 2017-01-23 2024-09-11 Shanghai United Imaging Healthcare Co., Ltd. Method and system for analyzing blood flow condition
JP6812815B2 (ja) * 2017-01-31 2021-01-13 株式会社島津製作所 X線撮影装置およびx線画像解析方法
US12089977B2 (en) 2017-03-24 2024-09-17 Pie Medical Imaging B.V. Method and system for assessing vessel obstruction based on machine learning
WO2018185040A1 (en) * 2017-04-06 2018-10-11 Koninklijke Philips N.V. Standardized coronary artery disease metric
JP7152192B2 (ja) * 2017-06-13 2022-10-12 キヤノンメディカルシステムズ株式会社 画像処理装置、医用画像診断装置及び画像処理プログラム
JP2019076526A (ja) 2017-10-25 2019-05-23 テルモ株式会社 治療方法
US10922897B2 (en) * 2018-01-15 2021-02-16 Canon Medical Systems Corporation Medical information processing apparatus, X-ray diagnostic system, and medical information processing method
JP7008522B2 (ja) 2018-02-01 2022-01-25 テルモ株式会社 医療システム
US10699407B2 (en) 2018-04-11 2020-06-30 Pie Medical Imaging B.V. Method and system for assessing vessel obstruction based on machine learning
JP7532402B2 (ja) 2019-04-01 2024-08-13 キャスワークス リミテッド 血管造影画像選択のための方法および装置
EP4555935A3 (en) 2019-09-23 2025-07-30 Cathworks Ltd. Methods, apparatus, and system for synchronization between a three-dimensional vascular model and an imaging device
WO2021117043A1 (en) * 2019-12-10 2021-06-17 Medhub Ltd Automatic stenosis detection
US12167924B2 (en) * 2019-12-25 2024-12-17 Canon Medical Systems Corporation Medical image processing apparatus, recording medium, and system
US12048575B2 (en) * 2020-03-10 2024-07-30 GE Precision Healthcare LLC Systems and methods for registration of angiographic projections with computed tomographic data
PL433612A1 (pl) * 2020-04-21 2021-10-25 Narodowy Instytut Kardiologii Stefana Kardynała Wyszyńskiego-Państwowy Instytut Badawczy Sposób określania obszaru niedokrwienia narządu, program komputerowy do określania obszaru niedokrwienia narządu oraz produkt programu komputerowego do określania obszaru niedokrwienia narządu
US12315076B1 (en) 2021-09-22 2025-05-27 Cathworks Ltd. Four-dimensional motion analysis of a patient's coronary arteries and myocardial wall
CN118985005A (zh) 2022-02-10 2024-11-19 凯思沃克斯有限公司 用于基于机器学习的传感器分析和血管树分割的系统和方法
US12446965B2 (en) 2023-08-09 2025-10-21 Cathworks Ltd. Enhanced user interface and crosstalk analysis for vascular index measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336844A (zh) * 2007-07-05 2009-01-07 株式会社东芝 医用图像处理装置以及医用图像诊断装置
JP2009273815A (ja) * 2008-05-19 2009-11-26 Toshiba Corp 医用画像処理装置、及び医用画像処理プログラム
JP2010104710A (ja) * 2008-10-31 2010-05-13 Toshiba Corp 医用画像処理装置
WO2012021307A2 (en) * 2010-08-12 2012-02-16 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US20120063663A1 (en) * 2010-09-15 2012-03-15 Toshiba Medical Systems Corporation Medical image processing apparatus and medical image processing method

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3453415B2 (ja) * 1992-12-22 2003-10-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 超音波エコーグラフィによる動脈の弾力性測定装置及び方法
US6080107A (en) * 1999-01-26 2000-06-27 Hewlett-Packard Company Methods for the use of contrast agents in ultrasonic imaging
US6792302B2 (en) * 2001-02-21 2004-09-14 Universite De Lausanne Method and apparatus for determining treatment for stroke
US7134994B2 (en) * 2002-05-20 2006-11-14 Volcano Corporation Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display
EP1509124A2 (en) * 2002-05-22 2005-03-02 Koninklijke Philips Electronics N.V. Medical viewing system and image processing for integrated visualisation of medical data
JP4346297B2 (ja) * 2002-10-22 2009-10-21 株式会社東芝 X線コンピュータ断層撮影装置、画像処理装置及び画像処理方法
US20070201737A1 (en) * 2003-11-26 2007-08-30 Wenli Cai System And Method For Vascular Visualization Using Planar Reformation Of Vascular Central Axis Surface With Biconvex Slab
US20070276214A1 (en) * 2003-11-26 2007-11-29 Dachille Frank C Systems and Methods for Automated Segmentation, Visualization and Analysis of Medical Images
US8010175B2 (en) * 2004-05-05 2011-08-30 Siemens Medical Solutions Usa, Inc. Patient-specific coronary territory mapping
WO2007002685A2 (en) * 2005-06-24 2007-01-04 Volcano Corporation Co-registration of graphical image data representing three-dimensional vascular features
JP2007151881A (ja) 2005-12-06 2007-06-21 Hitachi Medical Corp 血流動態解析装置
DE102006032990A1 (de) * 2006-07-17 2008-01-31 Siemens Ag Verfahren und Vorrichtung zur Bestimmung des räumlichen Verlaufs einer Gefäßachse in Volumendatensätzen der medizinischen Bildgebung
US20080133000A1 (en) * 2006-12-01 2008-06-05 Medtronic Vascular, Inc. Bifurcated Stent With Variable Length Branches
WO2009019640A2 (en) * 2007-08-03 2009-02-12 Koninklijke Philips Electronics N. V. Coupling the viewing direction of a blood vessel's cpr view with the viewing angle on this 3d tubular structure's rendered voxel volume and/or with the c-arm geometry of a 3d rotational angiography device's c-arm system
JP5094326B2 (ja) * 2007-10-18 2012-12-12 株式会社日立製作所 生体計測装置
JP5667448B2 (ja) * 2007-12-18 2015-02-12 コーニンクレッカ フィリップス エヌ ヴェ 人体構造的に方向づけられたecgデータ表示を使用した被疑冠状動脈の自動識別
US9826959B2 (en) * 2008-11-04 2017-11-28 Fujifilm Corporation Ultrasonic diagnostic device
WO2010098444A1 (ja) * 2009-02-26 2010-09-02 株式会社 日立メディコ 医用画像処理装置及び方法
EP2489011B1 (en) * 2009-10-14 2020-04-29 3Mensio Medical Imaging B.V. A method, a graphic user interface, a system and a computer program for optimizing workflow of a medical intervention
WO2011070467A1 (en) * 2009-12-10 2011-06-16 Koninklijke Philips Electronics N.V. Collateral blood flow assessment
US8526699B2 (en) * 2010-03-12 2013-09-03 Siemens Aktiengesellschaft Method and system for automatic detection and classification of coronary stenoses in cardiac CT volumes
WO2012166332A1 (en) * 2011-05-27 2012-12-06 Lightlab Imaging, Inc. Optical coherence tomography and pressure based systems and methods
US9314584B1 (en) * 2011-06-27 2016-04-19 Bayer Healthcare Llc Method and apparatus for fractional flow reserve measurements
US10648918B2 (en) * 2011-08-03 2020-05-12 Lightlab Imaging, Inc. Systems, methods and apparatus for determining a fractional flow reserve (FFR) based on the minimum lumen area (MLA) and the constant
US9974508B2 (en) * 2011-09-01 2018-05-22 Ghassan S. Kassab Non-invasive systems and methods for determining fractional flow reserve
US10537293B2 (en) * 2012-02-21 2020-01-21 Canon Medical Systems Corporation X-ray CT system, image display device, and image display method
US10034614B2 (en) * 2012-02-29 2018-07-31 General Electric Company Fractional flow reserve estimation
JP5748693B2 (ja) * 2012-03-13 2015-07-15 富士フイルム株式会社 画像処理装置および方法並びにプログラム
US8548778B1 (en) * 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
US20140086461A1 (en) * 2012-09-25 2014-03-27 The Johns Hopkins University Method and system for determining time-based index for blood circulation from angiographic imaging data
US9858387B2 (en) * 2013-01-15 2018-01-02 CathWorks, LTD. Vascular flow assessment
US10210956B2 (en) * 2012-10-24 2019-02-19 Cathworks Ltd. Diagnostically useful results in real time
JP6017284B2 (ja) * 2012-11-30 2016-10-26 東芝メディカルシステムズ株式会社 医用画像診断装置
JP6334902B2 (ja) * 2012-11-30 2018-05-30 キヤノンメディカルシステムズ株式会社 医用画像処理装置
JP6363095B2 (ja) * 2012-12-21 2018-07-25 ボルケーノ コーポレイション 処理システム及び該処理システムの作動方法
US9349220B2 (en) * 2013-03-12 2016-05-24 Kabushiki Kaisha Toshiba Curve correction in volume data sets
US9351698B2 (en) * 2013-03-12 2016-05-31 Lightlab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
US9865051B2 (en) * 2013-03-15 2018-01-09 Wake Forest University Health Sciences Vascular territory segmentation using mutual clustering information from image space and label space
US20150228115A1 (en) * 2014-02-10 2015-08-13 Kabushiki Kaisha Toshiba Medical-image processing apparatus and medical-image diagnostic apparatus
US10896530B2 (en) * 2016-10-04 2021-01-19 Canon Medical Systems Corporation Medical information processing apparatus and medical information processing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336844A (zh) * 2007-07-05 2009-01-07 株式会社东芝 医用图像处理装置以及医用图像诊断装置
US20090010519A1 (en) * 2007-07-05 2009-01-08 Kabushiki Kaisha Toshiba Medical image processing apparatus and medical image diagnosis apparatus
JP2009028515A (ja) * 2007-07-05 2009-02-12 Toshiba Corp 医用画像処理装置及び医用画像診断装置
US20120207371A1 (en) * 2007-07-05 2012-08-16 Kabushiki Kaisha Toshiba Medical image processing apparatus and medical image diagnosis apparatus
JP2009273815A (ja) * 2008-05-19 2009-11-26 Toshiba Corp 医用画像処理装置、及び医用画像処理プログラム
JP2010104710A (ja) * 2008-10-31 2010-05-13 Toshiba Corp 医用画像処理装置
US20120041739A1 (en) * 2010-08-12 2012-02-16 Heartflow, Inc. Method and System for Patient-Specific Modeling of Blood Flow
WO2012021307A2 (en) * 2010-08-12 2012-02-16 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
EP2499589A1 (en) * 2010-08-12 2012-09-19 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
JP2013534154A (ja) * 2010-08-12 2013-09-02 ハートフロー, インコーポレイテッド 患者固有の血流のモデリングのための方法およびシステム
US20120063663A1 (en) * 2010-09-15 2012-03-15 Toshiba Medical Systems Corporation Medical image processing apparatus and medical image processing method
EP2442276A1 (en) * 2010-09-15 2012-04-18 Kabushiki Kaisha Toshiba Medical image processing apparatus and medical image processing method
CN102415898A (zh) * 2010-09-15 2012-04-18 株式会社东芝 医用图像处理装置和医用图像处理方法
JP2012081254A (ja) * 2010-09-15 2012-04-26 Toshiba Corp 医用画像処理装置及び医用画像処理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160007947A1 (en) * 2014-07-14 2016-01-14 Volcano Corporation Devices, Systems, and Methods for Improved Accuracy Model of Vessel Anatomy
US10542954B2 (en) * 2014-07-14 2020-01-28 Volcano Corporation Devices, systems, and methods for improved accuracy model of vessel anatomy
US11553889B2 (en) 2014-07-14 2023-01-17 Philips Image Guided Therapy Corporation Devices, systems, and methods for improved accuracy model of vessel anatomy
JP2017189308A (ja) * 2016-04-12 2017-10-19 東芝メディカルシステムズ株式会社 医用画像処理装置、医用画像診断装置およびプログラム
GB2569427A (en) * 2017-10-13 2019-06-19 Optellum Ltd System, method and apparatus for assisting a determination of medical images
GB2569427B (en) * 2017-10-13 2021-12-15 Optellum Ltd System, method and apparatus for assisting a determination of medical images
US11594005B2 (en) 2017-10-13 2023-02-28 Optellum Limited System, method and apparatus for assisting a determination of medical images

Also Published As

Publication number Publication date
US11481901B2 (en) 2022-10-25
US20150262357A1 (en) 2015-09-17
JP6334902B2 (ja) 2018-05-30
US20180018771A1 (en) 2018-01-18
US10748285B2 (en) 2020-08-18
JP2014128650A (ja) 2014-07-10
US20200349708A1 (en) 2020-11-05
US9811907B2 (en) 2017-11-07
US12437405B2 (en) 2025-10-07
US20230017788A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP6334902B2 (ja) 医用画像処理装置
US12127816B2 (en) Medical image processing apparatus
JP7024023B2 (ja) 医用画像処理装置、医用画像処理システムおよび医用画像処理方法
JP6918912B2 (ja) 画像処理装置、画像処理方法、及びプログラム
EP3262539B1 (en) Method and apparatus for quantitative flow analysis
EP3281135B1 (en) System and method for vascular tree generation using patient-specific structural and functional data, and joint prior information
EP3169237B1 (en) Stenosis assessment
CN103957806B (zh) 医用图像处理装置
JP6362851B2 (ja) 血管解析装置、血管解析プログラム、及び血管解析装置の作動方法
US20160066795A1 (en) Stenosis therapy planning
JP5972768B2 (ja) 医用画像処理装置
JP6530043B2 (ja) 医用画像処理装置、医用画像処理方法および記録媒体
US8594765B2 (en) Method for providing an aid for use in the therapeutic treatment of a somatic subject
JP7041446B2 (ja) 医用画像処理方法、医用画像処理装置および医用画像処理システム
JP6751178B2 (ja) 医用画像処理装置、医用画像処理方法および記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859249

Country of ref document: EP

Kind code of ref document: A1