[go: up one dir, main page]

WO2014074985A1 - Procédé et traitement pour la lixiviation améliorée de minéraux sulfureux de cuivre contenant de la chalcopyrite - Google Patents

Procédé et traitement pour la lixiviation améliorée de minéraux sulfureux de cuivre contenant de la chalcopyrite Download PDF

Info

Publication number
WO2014074985A1
WO2014074985A1 PCT/US2013/069433 US2013069433W WO2014074985A1 WO 2014074985 A1 WO2014074985 A1 WO 2014074985A1 US 2013069433 W US2013069433 W US 2013069433W WO 2014074985 A1 WO2014074985 A1 WO 2014074985A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
tank
microwave
copper
pyrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2013/069433
Other languages
English (en)
Inventor
David J. Chaiko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FLSmidth AS
Original Assignee
FLSmidth AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FLSmidth AS filed Critical FLSmidth AS
Priority to US14/417,850 priority Critical patent/US20150211092A1/en
Publication of WO2014074985A1 publication Critical patent/WO2014074985A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/04Heavy metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/08Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates to methods and systems for leaching metals from metal sulfide ores and concentrates and more particularly to methods and systems for microwave controlled formation of iron sulfides during leaching of metal values from sulfide ores and concentrates.
  • Chalcopyrite is the primary copper-containing mineral found in the majority of the copper sulfide ores of commercial interest.
  • Other copper-containing ore minerals of commercial interest include chalcocite (Cu 2 S), bornite (Cu 5 FeS 4 ), covellite (CuS), digenite (Cu 2 S), enargite (Cu 3 AsS 4 ), tennantite (Cu 12 As 4 S 13 ), and tetrahedrite (Cu 12 Sb 4 S 13 ).
  • Copper sulfide ores aside from containing a variety of copper-containing minerals, will also contain a wide variety of gangue minerals including, but not limited to, silicates, pyrite (FeS 2 ) and pyrrhotite (FeS).
  • gangue minerals including, but not limited to, silicates, pyrite (FeS 2 ) and pyrrhotite (FeS).
  • flotation In the processing of metal sulfide ores, flotation is commonly and successfully used to effect a separation of the metal values from the gangue.
  • separation of individual metal sulfides from each other can be a challenge, and the separation of copper-bearing sulfide minerals from pyrite by flotation remains a technical problem. It would be desirable to recover the copper by hydrometallurgical processes, such as leaching, without effecting a chemical or physical change in gangue minerals like pyrite.
  • a method for selectively leaching chalcopyrite includes using pyrite as a catalyst for improving copper recoveries and increasing chalcopyrite dissolution rates.
  • the leaching is carried out in acidic ferric/ferrous sulfate solutions containing dissolved oxygen under redox conditions whereby the pyrite is not significantly oxidized.
  • the overall mineral dissolution reaction which is the sum of the anodic and cathodic half-cell reactions, can be described as:
  • the oxidative dissolution process is optimally carried out at temperatures which are below the melting point of elemental sulfur (S°), which is about 110 to 120 °C and at redox potentials which minimize the degree of sulfide oxidation to sulfate.
  • elemental sulfur
  • the reaction temperatures must be sufficiently high to produce rapid leaching of copper.
  • prior art methods specify an optimum leach temperature of about 70-90 °C.
  • FIG. 1 is a Pourbaix Diagram (Eh vs. pH) for the system of species comprising FeS 2 , lOOg H 2 S0 4 /L, in water at 80 °C, wherein the redox potential (Eh) scale is measured in volts (i.e., standard hydrogen electrode (SHE) reference), and all species concentrations are expressed as activities;
  • FIG. 2 shows a prior method of galvanic conduction between pyrite and chalcopyrite
  • FIG. 3 shows a galvanic connection between pyrite and chalcopyrite using methods according to some embodiments of the invention
  • FIG. 4 shows galvanic interactions which occur using methods described herein
  • FIG. 5 shows a device for exposing copper sulfide-containing slurry to microwave irradiation according to one embodiment
  • FIG. 6 shows a device for exposing copper sulfide-containing slurry to microwave irradiation according to yet another embodiment
  • FIG. 7 shows a device for exposing copper sulfide-containing slurry to microwave irradiation according to yet another embodiment
  • FIG. 8 shows a device for exposing copper sulfide-containing slurry to microwave irradiation according to further embodiments
  • FIGS. 9-14 schematically illustrate various microwave signal profiles which may be used to irradiate copper sulfide-containing slurry according to some embodiments.
  • the resistivity of elemental sulfur is about 10 15 ⁇ -m, while that of FeS 2 is about 3 x 10 - " 2
  • microwave irradiation is used to promote the formation of a crystalline FeS 2 coating on the surface of the elemental sulfur layer to maintain galvanic contact between the catalyst and the sulfide mineral.
  • the presence of a pyrite coating on the elemental sulfur layer thereby decreases the surface electrical resistivity of the sulfur coating by a factor of about 10 17 ⁇ -m.
  • the leaching of chalcopyrite, and other copper sulfides is done under dissolution conditions wherein pyrite is thermodynamically stable.
  • reaction overpotential refers to the voltage difference that exists between the thermodynamically determined potential and the potential at which a reaction is experimentally observable. In a galvanic cell, this means that the anodic surface is less negative (i.e., a lower electron activity) than thermodynamically expected due to electrochemical inefficiencies, and therefore more energy is required to drive the reaction.
  • Elemental sulfur, polysulfides, and Fe 2+ /Fe 3+ are all known constituents resulting from chalcopyrite dissolution in acidic ferric sulfate solutions.
  • Prior art teaches that elemental sulfur can be produced by the oxidation of sulfide by ferric ion in the presence of oxygen:
  • FeS is an amorphous phase and would not be electrically conductive, and hence would not be expected to aid in the dissolution of chalcopyrite through galvanic effects.
  • the formation of nano-scale and micro-scale FeS 2 crystallites on the surface of the elemental sulfur layers provides a mechanism for maintaining electron conduction across the elemental sulfur surface.
  • the present invention provides for the rapid dissolution of chalcopyrite by subjecting a leach slurry to microwave irradiation under typical leach conditions (i.e., temperature, pH and Eh), wherein pyrite is in the thermodynamically stable iron-sulfur phase.
  • typical leach conditions i.e., temperature, pH and Eh
  • microwave irradiation advantageously reduces the timescale of formation from days or weeks to minutes. It will be understood by those skilled in the art, that any microwave frequency and/or field intensity which produces the best intended results is within the scope of the present invention, and only routine
  • An added advantage of the present invention is the increased deportment of at least a portion of the iron and sulfur generated from chalcopyrite dissolution as FeS 2 . This catalyzed reaction thereby reduces the amount of catalytic pyrite that must be added from external sources.
  • An additional advantage of the present invention is that the pyrite which is produced during the microwave irradiation comprises a very high surface area. This high surface area makes the pyrite a more efficient catalyst for the reduction of Fe 3+ during chalcopyrite dissolution than catalysts taught in the prior art.
  • the microwave irradiation is applied in such a way as to prevent excessive heating of the leach slurry and thereby prevent the generation of temperatures that would result in the melting of the S° layers surrounding the leaching chalcopyrite particles.
  • the power of the microwave device should be limited so as to prevent temperatures of the slurry from approaching 110 degrees C.
  • the intensity of the incident irradiation energy and/or the frequency of the microwaves may be varied as a function of time or applied intermittently as indicated in FIGS. 9-14.
  • the microwaves may be pulsed at predetermined intervals, patterns, durations, or may be emitted and applied to slurry haphazardly. Other microwave frequencies which are only inefficiently absorbed by water may be used to reduce undesired heating of the mineral slurry.
  • cooling of the slurry can be provided to maintain the slurry temperature below the melting point of elemental sulfur. Pre-cooling of slurry (prior to leaching and/or microwave irradiation) may be done using one or more heat exchangers. Alternatively, cooling of slurry 115, 125, 135, 145 may be facilitated during leaching and/or microwave irradiation process through the use of internal cooling rods, fins, pipes, or other forms of heat exchangers. The aforementioned cooling devices may be positioned within, around, or adjacent to a tank 114, 124, 134, 144, or may otherwise be operatively connected to a leaching device 110, 120, 130, 140.
  • a microwave frequency between about 1.6 and about 30 GHz may be utilized, wherein the intensity of the microwave is selected to be high enough to transform amorphous FeS 2 to stable crystalline phase FeS 2 , but low enough to avoid generating a sulfur plasma phase in the elemental sulfur layer which forms around the chalcopyrite particles during dissolution.
  • any microwave frequency and intensity may be used to irradiate a copper- sulfate containing slurry alone or in combination with other microwave frequencies and intensities, so long as the following is satisfied: FeS 2(amorphous) * FeS 2(crystalline) wherein the following reactions do not occur: FeS 2 ⁇ FeS + S (plasma) S * S (plasma)
  • microwaves used may incorporate intensities between 0.2 to 200 kW-s per gram of slurry, for example, between 2 and 30 kW-s per gram, so long as the above is satisfied. Higher and lower intensities are also envisaged.
  • X-ray diffraction patterns can be used to differentiate between the amorphousFeS 2 and the crystal phases of FeS 2 . Electrical conductivity measurements show that crystalline FeS 2 has much better electrical conductivity properties than amorphous FeS 2 or elemental sulfur (S°). By converting amorphous FeS 2 to a stable crystalline phase, electron transfer between the pyrite and chalcopyrite is improved, which aids in the dissolution of chalcopyrite through the galvanic effect.
  • the shaded area between pH 0 and pH 3.5 which is bounded by borders A, B, and C represents conditions where FeS 2 is typically in the thermodynamically stable iron- sulfur phase and where FeS 2 formation is not inhibited by iron hydrolysis reactions. It will be understood that the boundaries may shift according to leach solution compositional effects such as reactant concentrations, product concentrations, and temperature.
  • the shaded area between pH 2.5 and 3.5 represents regions where leaching reactions may begin to shut down and Fe3 + may precipitate.
  • FIG. 2 shows a prior method of galvanic conduction between pyrite and chalcopyrite. In this case the galvanic conduction occurs between pyrite inclusions within the chalcopyrite particles. It will be understood that not all chalcopyrite particles will contain pyrite inclusions, hence catalytic improvement is not optimal and will vary by particle size and between ore bodies in an unpredictable fashion.
  • FIG. 3 shows a galvanic conduction between pyrite and chalcopyrite using in-situ-formed pyrite via microwave irradiation according to some embodiments of the invention.
  • the large- scale pyrite particles originate from the ore and the particle size distribution is comparable to the particle size distribution of the copper-containing mineral particles. Electron conduction between the copper sulfide particles and the large-scale pyrite particles is enabled when they make physical contact and there is a conductive coating on the elemental sulfur layer
  • the electron conduction within the surface conductive coating is promoted by the low electrical resistance of the pyrite nano-scale and micro-scale pyrite particles comprising the conductive surface coating.
  • FIG. 4 further shows galvanic interactions which occur using methods described herein.
  • the microwave- generated pyrite crystallites form a conductive path between the chalcopyrite particle and the pyrite catalyst particles during the momentary periods wherein the pyrite catalyst particles make physically contact with the elemental sulfur layer surrounding the chalcopyrite particles. It will be understood that the microwave- generated pyrite crystallites also possess catalytic ability.
  • the large surface area of the crystallites therefore accelerates the dissolution of the chalcopyrite particles by two separate mechanisms: a) increasing the surface electrical conduction of the S° surface layers surrounding the copper-containing particles, and b) and providing additional surface area for the catalyzed reduction of ferrous ion.
  • the device 110 shown comprises a pressurized or unpressurized tank 114 configured to hold copper sulfide-containing slurry 115 which is stirred or agitated. Agitation may be provided using an impeller 118 and a rotating drive shaft 119 or equivalent means.
  • the impeller may also function to distribute microwave energy through the tank via reflector means provided on the impeller.
  • the impeller may comprise a polished stainless steel material or the like or otherwise provided with a reflective material to produce reflected microwaves 112b.
  • One or more microwave devices 112 may be provided at various locations within or adjacent to the tank 114. For instance, as shown, two microwave devices 112 may be provided above air-exposed slurry 115. Each microwave device 112 provides microwaves 112a which penetrate partially into or completely through the slurry 115.
  • FIG. 6 shows a device 120 for exposing copper sulfide-containing slurry 125 to microwave irradiation 121a, 122a, 123a according to yet another embodiment.
  • the device 120 shown comprises a pressurized or unpressurized tank 124 configured to hold copper sulfide- containing slurry 125 which is stirred or agitated. Agitation may be provided using an impeller 128 and a rotating drive shaft 129 or equivalent means.
  • the impeller may also function to distribute one or more reflected microwaves 121b, 122b, 123b through the tank as previously discussed.
  • or more microwave devices 121, 122, 123 may be provided at various locations within or adjacent to the tank 124.
  • a medium frequency microwave device 122 may be provided above air-exposed slurry 125, a low frequency microwave device 123 may be provided in a slip stream area 124c of the tank 124, and a high frequency microwave device 121 may be provided to a side area of the tank 124.
  • slip stream area 124c may comprise a separate external tank operatively connected to the tank 124, it may alternatively form a chamber which is integral with tank 124 as shown.
  • One or more false bottoms, interior chambers, dividing walls, or baffles 124a may define the slip stream area 124c.
  • the dividing walls and baffles 124a may be fashioned from materials that allow them to function as wave guides, thereby directing the microwaves in a fashion to maximize their absorption in the slurry.
  • the one or more false bottoms, interior chambers, dividing walls, or baffles 124a may comprise a stainless steel reflective surface.
  • Each microwave device 121, 122, 123 provides microwaves 121a, 122a, 123a which penetrate partially into or completely through the slurry 125.
  • one or more windows 126 of a passive/transmissive material may be utilized to form one or more portions of the tank 124. In this manner, microwaves 121a, 122a, 123a may be efficiently transmitted through the tank 124.
  • Examples of microwave permeable materials may include, but are not limited to: microwave transmissive PTFE
  • polytetrafluoroethylene glass, polyethylene, polypropylene, nylons, thermoplastic epoxies, copolymers of PTFE and polyolefins, glass-fiber reinforced polymers and plastics, nylon, hybrids and composites thereof, and other materials having very low dielectric constants and resilience to acidic compositions.
  • FIG. 7 shows another device 130 for exposing copper sulfide-containing slurry 135 to microwave irradiation 131a, 132a, 133a.
  • the device 130 may be a vertically- oriented column tank 134 as shown.
  • the tank 134 may be open air or configured for pressurization.
  • the tank 134 may also be configured with control or manual valves (not shown) and be utilized in continuous or batch leaching systems.
  • the tank 134 may have an inlet 137a on an upper, middle, or lower portion of the tank 134 and may have an outlet 137b on an upper, middle, or lower portion of the tank 134. In the particular embodiment shown an upper inlet 137a is used in combination with a lower outlet 137b.
  • the slurry 135 cascades down the column and out the outlet 137b.
  • Residence time within the tank 134 may be increased with transversely- extending baffles (not shown) to create a tortuous path for the slurry 135.
  • Agitators or fluidized beds may also be incorporated with the tank 135.
  • a bottom portion of the tank 134 may comprise an inlet 137a and a fluidized bed, and an upper portion of the tank 134 may comprise an outlet 137b, wherein the slurry flows upward around one or more lamellas, screens, or baffles.
  • One or more microwave devices 131, 132, 133 may be provided at various locations within or adjacent to the tank 134.
  • a low frequency microwave device 133, a medium frequency microwave device 132, and a high frequency microwave device 131 may be provided to a top portion of the tank 134 as shown, or the one or more microwave devices may be placed near upper portions of the tank 134.
  • one or more microwave devices 131, 132, 133 may be provided at various locations along the height of the tank 134.
  • Each microwave device 131, 132, 133 provides microwaves 131a, 132a, 133a which penetrate partially into or completely through the slurry 135.
  • the microwaves may be redistributed as reflected microwaves 131b, 132b, 133b throughout the tank 134 via one or more reflectors 139.
  • one or more windows 136 of a passive/transmissive material may be utilized to form one or more portions of the tank 134.
  • microwaves 131a, 132a, 133a may be efficiently transmitted through the tank 134 to the slurry 135. While a single microwave permeable window 136 is shown, multiple windows 136 may be strategically located at various portions the tank 134.
  • the one or more reflectors may be replaced with a tank having inner surfaces which are configured to reflect and/or guide microwaves throughout the slurry 135 contained within the tank 134.
  • FIG. 8 shows a device 140 for exposing copper sulfide-containing slurry 145 to microwave irradiation 141a, 142a, 143a according to further embodiments.
  • the device 140 may be a horizontally-oriented leach tank 144 with baffles 148 as shown.
  • the baffles 148 are used to control slurry 145 flow and function as microwave guides to direct the microwave irradiation 141a, 142a, 143a to maximize the beneficial effects derived from in situ pyrite formation.
  • the baffles 148 may comprise one or more reflectors 149 or reflective surfaces thereon to guide microwaves.
  • the tank 144 may be open air or configured for pressurization.
  • the tank 144 may also be configured with control or manual valves (not shown) and be utilized in continuous or batch leaching systems.
  • the tank 144 may have an inlet 147a located at one portion of the tank 144 and may have an outlet 147b on another portion of the tank 144.
  • an upper inlet 147a located at a first end of the tank 144 is used in combination with a lower outlet 147b located at an end of the tank 144 opposite to said first end.
  • the slurry 145 flows horizontally through the tank 144 and out the outlet 147b. Residence time within the tank 144 may be increased with longitudinal or transversely-extending baffles to create a tortuous path for the slurry 145.
  • the agitators may also be incorporated with the tank 145.
  • the agitators are capable of reflecting and dispersing reflected microwaves 141b, 142b, 143b through the slurry 145 contained within the tank 144.
  • One or more microwave devices 141, 142, 143 may be provided at various locations within or adjacent to the tank 144. For instance, as shown, a low frequency microwave device 143, a medium frequency microwave device 142, and a high frequency microwave device 141 may be provided along lower portions of the tank 144 as shown. Alternatively, while not shown, the one or more microwave devices 141, 142, 143 may be provided at various side or upper regions of the tank 144.
  • each microwave device 141, 142, 143 may be staggered along the length of the tank 144 such that some alternate between upper and lower portions of the tank, thereby intermittently irradiating the slurry 145 as it traverses through the tank 145.
  • Each microwave device 141, 142, 143 provides microwaves 141a, 142a, 143a which penetrate partially into or completely through the slurry 145.
  • one or more windows 146 of a passive/transmissive material may be utilized to form one or more portions of the tank 144.
  • microwaves 141a, 142a, 143a may be efficiently transmitted through the tank 144 to the slurry 145.
  • One or more reflective surfaces or baffles may be provided to reflect and guide the microwaves throughout the slurry contained within the tank and its various chambers.
  • the reflective baffles also serve to direct the flow of the slurry throughout the tank to increase the residence time of the slurry within the tank and to control the microwave absorption by the reactants leading to more efficient production of pyrite particles.
  • FIGS. 9-14 schematically illustrate various methods of irradiating copper- sulfide containing slurry.
  • Microwaves may be saw tooth, triangular (FIG. 9), square, or sinusoidal (FIG 10). Multiple in-phase microwaves with similar frequency but different intensities may be applied to a slurry as suggested in FIG. 11. Multiple out-of-phase microwaves with different intensities and or wavelengths may be applied to copper sulfide containing slurries as suggested in FIG. 12.
  • Microwaves may be activated at specific intervals thereby intermittently irradiating a slurry as graphically suggested in FIG. 13. As shown in FIG. 14, in some embodiments, microwave signals may vary uniquely as a function of time.
  • Patterns of changing frequency, intensity, and duration may be utilized for different compositions within the copper sulfide containing slurry.
  • the exact irradiation dosage may be computer controlled by applying, internally, one or more temperature, pH, or voltage sensors to the devices 110, 120, 130, 140 described. In this manner, the galvanic process may be continually monitored and adjusted according to real-time process conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention concerne un procédé de lixiviation d'une suspension de minéral sulfureux cuprifère contenant de la chalcopyrite. Le procédé comporte les étapes suivantes : l'utilisation d'une suspension contenant des particules de chalcopyrite, l'exposition de la suspension à une solution de lixiviation acide et la lixiviation chimique du cuivre de la suspension dans la solution de lixiviation acide en présence de rayonnement micro-ondes. Le rayonnement micro-ondes de la suspension a lieu dans des conditions de traitement dans lesquelles de la pyrite cristalline peut être formée in situ sur les surfaces des particules de chalcopyrite. La pyrite cristalline peut être formée sur les surfaces des particules de chalcopyrite à partir de la pyrite de phase amorphe. Le cuivre lixivié est récupéré de ladite solution de lixiviation acide. L'invention concerne également un dispositif pour lixivier de façon plus efficace une suspension de minéral sulfureux cuprifère contenant de la chalcopyrite.
PCT/US2013/069433 2012-11-12 2013-11-11 Procédé et traitement pour la lixiviation améliorée de minéraux sulfureux de cuivre contenant de la chalcopyrite Ceased WO2014074985A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/417,850 US20150211092A1 (en) 2012-11-12 2013-11-11 Method and process for the enhanced leaching of copper sulfide minerals containing chalcopyrite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261725206P 2012-11-12 2012-11-12
US61/725,206 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014074985A1 true WO2014074985A1 (fr) 2014-05-15

Family

ID=50685220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/069433 Ceased WO2014074985A1 (fr) 2012-11-12 2013-11-11 Procédé et traitement pour la lixiviation améliorée de minéraux sulfureux de cuivre contenant de la chalcopyrite

Country Status (2)

Country Link
US (1) US20150211092A1 (fr)
WO (1) WO2014074985A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081908A1 (fr) * 2014-11-20 2016-05-26 Flsmidth A/S Système d'activation et procédé destinés à améliorer la récupération de métaux pendant une lixiviation atmosphérique de sulfures métalliques
WO2018161652A1 (fr) * 2017-03-09 2018-09-13 昆明理工大学 Procédé de recyclage combinant valorisation et métallurgie et destiné à un minerai d'oxyde de cuivre à inclusions solides
CN108642284A (zh) * 2018-04-08 2018-10-12 广东省资源综合利用研究所 一种从废石化催化剂回收有价金属的方法
US10407753B2 (en) * 2014-12-19 2019-09-10 Flsmidth A/S Methods for rapidly leaching chalcopyrite
EP3865597A1 (fr) * 2019-12-17 2021-08-18 Umicore Procédé de séparation de métaux nobles à partir d'un alliage métallique à base de co, et/ou de cu
US11898221B2 (en) 2017-05-17 2024-02-13 Flsmidth A/S Activation system and method for enhancing metal recovery during atmospheric leaching of metal sulfides

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368563A (zh) * 2015-10-30 2018-08-03 技术资源有限公司 堆浸
PE20200436A1 (es) 2017-04-06 2020-02-28 Tech Resources Pty Ltd Lixiviacion de minerales que contienen cobre
CN108300854B (zh) * 2018-04-10 2023-09-22 铜仁学院 一种浸出软锰矿的微波反应装置以及应用方法
CL2018002460A1 (es) * 2018-08-28 2018-12-14 Platinum Group Chile Spa Sistema y método para solubilizar en un medio acuoso elementos contenidos en un concentrado mineral del tipo sulfuro
CN111549220B (zh) * 2020-04-09 2022-02-18 中国恩菲工程技术有限公司 低品位金属硫化矿提取有价金属的方法
NL2031328B1 (en) 2022-03-18 2023-09-29 Univ Wageningen Process for the generation of hydrogen sulfide in the presence of pyrite as catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678172B2 (en) * 2002-05-31 2010-03-16 Technological Resources Pty Ltd Microwave treatment of ores
US7846233B2 (en) * 2004-06-03 2010-12-07 The University Of British Columbia Leaching process for copper concentrates
US7850759B2 (en) * 2006-06-14 2010-12-14 American Biotech Labs, Llc Metal extraction from various chalcogenide minerals through interaction with separate electric fields and magnetic fields supplied by electromagnetic energy
WO2012000090A1 (fr) * 2010-07-02 2012-01-05 The University Of British Columbia Procédé de lixiviation pour concentrés de cuivre contenant de la chalcopyrite
US20120043314A1 (en) * 2009-04-15 2012-02-23 Phoenix Environmental Reclamation System and method for recovering minerals
US20120103827A1 (en) * 2009-06-26 2012-05-03 Outotec Oyj Method for leaching chalcopyrite concentration
WO2012098783A1 (fr) * 2011-01-20 2012-07-26 Jx日鉱日石金属株式会社 Procédé de lixiviation du cuivre à partir d'un minerai de sulfure de cuivre

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678172B2 (en) * 2002-05-31 2010-03-16 Technological Resources Pty Ltd Microwave treatment of ores
US7846233B2 (en) * 2004-06-03 2010-12-07 The University Of British Columbia Leaching process for copper concentrates
US7850759B2 (en) * 2006-06-14 2010-12-14 American Biotech Labs, Llc Metal extraction from various chalcogenide minerals through interaction with separate electric fields and magnetic fields supplied by electromagnetic energy
US20120043314A1 (en) * 2009-04-15 2012-02-23 Phoenix Environmental Reclamation System and method for recovering minerals
US20120103827A1 (en) * 2009-06-26 2012-05-03 Outotec Oyj Method for leaching chalcopyrite concentration
WO2012000090A1 (fr) * 2010-07-02 2012-01-05 The University Of British Columbia Procédé de lixiviation pour concentrés de cuivre contenant de la chalcopyrite
WO2012098783A1 (fr) * 2011-01-20 2012-07-26 Jx日鉱日石金属株式会社 Procédé de lixiviation du cuivre à partir d'un minerai de sulfure de cuivre

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081908A1 (fr) * 2014-11-20 2016-05-26 Flsmidth A/S Système d'activation et procédé destinés à améliorer la récupération de métaux pendant une lixiviation atmosphérique de sulfures métalliques
US10781501B2 (en) 2014-11-20 2020-09-22 Flsmidth A/S Activation system and method for enhancing metal recovery during atmospheric leaching of metal sulfides
US10407753B2 (en) * 2014-12-19 2019-09-10 Flsmidth A/S Methods for rapidly leaching chalcopyrite
WO2018161652A1 (fr) * 2017-03-09 2018-09-13 昆明理工大学 Procédé de recyclage combinant valorisation et métallurgie et destiné à un minerai d'oxyde de cuivre à inclusions solides
US11898221B2 (en) 2017-05-17 2024-02-13 Flsmidth A/S Activation system and method for enhancing metal recovery during atmospheric leaching of metal sulfides
CN108642284A (zh) * 2018-04-08 2018-10-12 广东省资源综合利用研究所 一种从废石化催化剂回收有价金属的方法
EP3865597A1 (fr) * 2019-12-17 2021-08-18 Umicore Procédé de séparation de métaux nobles à partir d'un alliage métallique à base de co, et/ou de cu

Also Published As

Publication number Publication date
US20150211092A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US20150211092A1 (en) Method and process for the enhanced leaching of copper sulfide minerals containing chalcopyrite
Jin et al. Sustainable electrochemical extraction of metal resources from waste streams: from removal to recovery
KR100243922B1 (ko) 광석으로부터 금속을 제조하기 위한 공정
Awe et al. Electrowinning of antimony from model sulphide alkaline solutions
US20170152162A1 (en) Electrochemical Liquid Treatment Apparatus
US20040168909A1 (en) Three-dimensional flow-through electrode and electrochemical cell
Gorgievski et al. Copper electrowinning from acid mine drainage: A case study from the closed mine “Cerovo”
Sirés et al. Electro-Fenton process: fundamentals and reactivity
Olvera et al. Electrochemical dissolution of fresh and passivated chalcopyrite electrodes. Effect of pyrite on the reduction of Fe3+ ions and transport processes within the passive film
Choubey et al. Conversion of chalcopyrite to copper oxide in hypochlorite solution for selective leaching of copper in dilute sulfuric acid solution
Yang et al. Mixed potential plays a key role in leaching of chalcopyrite: Experimental and theoretical analysis
Cheang et al. Removal of cobalt from ammonium chloride solutions using a batch cell through an electrogenerative process
WO2016027158A1 (fr) Lixiviation de minéraux
Kadhim et al. Nickel removal from simulated wastewater using a novel bio-electrochemical cell with packed bed rotating cylinder cathode
JPH01503369A (ja) 流体、特に廃水の電解処理方法および装置
Che et al. A facile and environmentally friendly approach for lead recovery from lead sulfate residue via mechanochemical reduction: phase transformation and reaction mechanism
JP2013155416A (ja) 黄銅鉱を含む硫化銅鉱からの銅の浸出方法
Abdel-Aziz Production of copper powder from wastewater containing CuSO4 and alcoholic additives in a modified stirred tank reactor by cementation
WO2013095824A1 (fr) Ensemble cathode de surface élevée, système comprenant l'ensemble et procédé d'utilisation de celui-ci
Demirkıran Copper cementation with zinc recovered from spent zinc–carbon batteries and dissolution of cement copper in hydrochloric acid solutions
Raju et al. Electrochemical recovery of silver from waste aqueous Ag (I)/Ag (II) redox mediator solution used in mediated electro oxidation process
JP4169367B2 (ja) 電気化学システム
Tan et al. Influence of flow rates on the electrogenerative Co2+ recovery at a reticulated vitreous carbon cathode
US20100012502A1 (en) Process for recovery of metal-containing values from minerals and ores
WO2025246114A1 (fr) Système de traitement et procédé de récupération de métaux de grande valeur à partir d'eaux usées industrielles acides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14417850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852858

Country of ref document: EP

Kind code of ref document: A1