[go: up one dir, main page]

WO2014052613A2 - Procédés et compositions associées au séquençage de nouvelle génération et utilisables dans le cadre d'analyses génétiques portant sur les cancers liés à alk - Google Patents

Procédés et compositions associées au séquençage de nouvelle génération et utilisables dans le cadre d'analyses génétiques portant sur les cancers liés à alk Download PDF

Info

Publication number
WO2014052613A2
WO2014052613A2 PCT/US2013/061950 US2013061950W WO2014052613A2 WO 2014052613 A2 WO2014052613 A2 WO 2014052613A2 US 2013061950 W US2013061950 W US 2013061950W WO 2014052613 A2 WO2014052613 A2 WO 2014052613A2
Authority
WO
WIPO (PCT)
Prior art keywords
kinase inhibitor
alk
primers
primer sets
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2013/061950
Other languages
English (en)
Other versions
WO2014052613A3 (fr
Inventor
David R. Hout
Eric Dahlhauser
Adam Platt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Insight Genetics Inc
Original Assignee
Insight Genetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Insight Genetics Inc filed Critical Insight Genetics Inc
Priority to CA 2886397 priority Critical patent/CA2886397A1/fr
Priority to US14/431,430 priority patent/US20150240301A1/en
Publication of WO2014052613A2 publication Critical patent/WO2014052613A2/fr
Publication of WO2014052613A3 publication Critical patent/WO2014052613A3/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • ALK anaplastic lymphoma kinase
  • ALK small-molecule inhibitors are developed, also need is a clinically applicable diagnostic test to identify resistance mutations in the ALK kinase domain and therefore to guide the rational use of these small-molecule inhibitors for the treatment of ALK-drwen cancers that have lost their responsiveness to -generation inhibitor therapy.
  • optimal management of patients with tumors will require screening for de novo inhibitor resistance mutations by healthcare providers treating newly diagnosed patients in order to assess their inhibitor sensitivity and choose the best ALK inhibitor drug(s) for personalized therapy.
  • the methods, assays, and compositions disclosed herein relate to the field of detection or diagnosis of mutations that confer resistance to kinase inhibitors of a disease or condition such as cancer.
  • the kinase inhibitors or ALK kinase inhibitors are also disclosed herein.
  • methods and assays for assessing the susceptibility or risk for developing resistance to an inhibitor, wherein the disease or condition is a cancer associated with expression of the ALK gene It is understood and herein contemplated that the methods disclosed herein allow for rapid and sensitive detection of nucleic acid expression of mutations in ALK.
  • kinase inhibitor resistance panels comprising one or more primer sets from each of the genes selected from group of genes comprising KRAS, BRAF, EGFR, ALK, and KIT.
  • this invention in one aspect, relates to an ALK kinase inhibitor resistance panel.
  • the invention in one aspect, relates to an ALK kinase inhibitor resistance panel comprising one or more primer sets for detecting the presence of a mutation in a gene that will confer resistance to the ALK kinase inhibitor.
  • Figure 1 shows XALKORI®-resistance mutations identified in patient specimens.
  • the figure depicts the XALKORI®-resistance mutations in the ALK kinase domain identified to date in patient cancer specimens.
  • Ranges can be expressed herein as from “about” one particular value, and/or to
  • an “increase” can refer to any change that results in a larger amount of a composition or compound, such as an amplification product relative to a control.
  • an increase in the amount in amplification products can include but is not limited to a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 550%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, 2500%, 3000%, 3500%, 4000%, 4500%, or 5000% increase.
  • the detection an increase in expression or abundance of a DNA, mRNA, or protein relative to a control necessarily includes detection of the presence of the DNA, mRNA, or protein in situations where the DNA, mRNA, or protein is not present in the control.
  • tissue samples obtained directly from the subject can be obtained by any means known in the art including invasive and noninvasive techniques. It is also understood that methods of measurement can be direct or indirect. Examples of methods of obtaining or measuring a tissue sample can include but are not limited to tissue biopsy, tissue lavage, blood collection, aspiration, tissue swab, spinal tap, magnetic resonance imaging (MRI), Computed Tomography (CT) scan, Positron Emission Tomography (PET) scan, and X-ray (with and without contrast media).
  • MRI magnetic resonance imaging
  • CT Computed Tomography
  • PET Positron Emission Tomography
  • tissue can include, but is not limited to any grouping of one or more cells or analytes to be used in a an ex vivo or in vitro assays.
  • Such tissues include but are not limited to blood, saliva, sputum, lymph, cellular mass, and tissue collected from a biopsy.
  • kinase inhibitor resistance panels such as, for example, an ALK kinase inhibitor panel.
  • Kinase inhibitors are known in the art and have found use in the treatment of, amongst other things, the treatment of cancer.
  • cancers involving the overexpression or fusion of Analplastic Lymphoma Kinase can be treated through the use of a kinase inhibitor.
  • Kinase inhibitors are known in the art and include, but are not limited to crizotinib, afatinib, Axitinib, bevacizumab, Bosutinib, Cetuximab, Dasatinib, Erlotinib, Fostamati nib, Gefitinib, Imatinib, Lapatinib, Lenvatinib, Nilotinib, Panitumumab, Pazopanib, Pegaptanib, Ranibizumab, Ruxolitinib, Sorafenib,
  • kinase inhibitor resistance panels for detecting susceptibility or resistance to treatment in a subject to a kinase inhibitor comprising crizotinib, afatinib, Axitinib, bevacizumab, Bosutinib, Cetuximab, Dasatinib, Erlotinib, Fostamati nib, Gefitinib, Imatinib, Lapatinib, Lenvatinib, Nilotinib, Panitumumab, Pazopanib, Pegaptanib, Ranibizumab, Ruxolitinib, Sorafenib, Sunitinib, Trastuzumab, or Vemurafenib.
  • mutations in the ALK sequence and other genes can lead to kinase inhibitor resistance.
  • These mutations can comprise any of the mutations to ALK, KIT, BRAF, KRAS, or EGFR listed in Tables 2, 3, 4, 5, or 6.
  • kinase inhibitor panels comprising one or more primer sets that selectively hybridize and can be used to amplify one of the genes selected from group of genes comprising KRAS(SEQ ID NO: 7718), BRAF(SEQ ID NO: 7717), EGFR (SEQ ID NO: 7716), ALK (SEQ ID NO: 7714 and SEQ ID NO: 7717
  • the kinase inhibitor resistance panel disclosed herein can comprise one or more primer set(s) that hybridizes and amplifies nucleic acid from exon 1 (SEQ ID NOs: 4601-4880 and 7181-7230) exon 2 (SEQ ID NOs: 4881-5200 and 7231- 7326) or both exons 1 and 2 (SEQ ID NOs: 7327-7610) ofKRAS; exon 18 (SEQ ID NOs: 1641 - 1760 and 5819-5934), exon 19 (SEQ ID NOs : 1761 - 1880), exon 20 (SEQ ID NOs : 1881-2000 and 5934-6042), exon 21 (SEQ ID NOs: 2001-2120 and 6043-6150), exon 22 (SEQ ID NOs: 2121-2240, 2321-2360, and 2401-2440), exons 18 and 19 (SEQ ID NOs: 2241-2280), exons 18, 19, and 20 (SEQ ID NOs: 4601-4880 and 71
  • the disclosed kinase inhibitor resistant panels can comprise a single primer sets that hybridizes to a single gene, region, or exon of a gene selected from the group of genes comprising KRAS, BRAF, EGFR, ALK, and KIT (i.
  • a single primer sets for KRAS, BRAF, EGFR, ALK, or KIT multiple primer sets that hybridize to a single gene, region, or exon of a gene selected from the group of genes comprising KRAS, BRAF, EGFR, ALK, and KIT (i.e, one or more primer sets for KRAS, BRAF, EGFR, ALK, or KIT); multiple primer sets comprising a single primer set that specifically hybridize to a single gene, region, or exon for each of the genes comprising KRAS, BRAF, EGFR, ALK, and KIT (i.e, a single primer set for each oiKRAS, BRAF, EGFR, ALK, and/or KIT); or multiple primer sets comprising where in there is more than one primer set for each gene, region or exon for each of the genes selected from the group of genes comprising KRAS, BRAF, EGFR, ALK, and KIT (i.e, one or more primer sets for each oiKRA
  • the kinase inhibitor panel can comprise primer sets that recognize and specifically hybridize to a gene, region, or exon, of one or combination of the gene selected from the group consisting oiKRAS, BRAF, EGFR, ALK, and KIT.
  • the panel can comprise primer sets that hybridize to a gene, region, or exon oiKRAS, BRAF, EGFR, ALK, or KIT; KRAS and BRAF; KRAS and EGFR; KRAS and ALK; KRAS and KIT; BRAF and EGFR; BRAF and KIT; BRAF and ALK; EGFR and ALK; EGFR and KIT; ALK and KIT; KRAS, BRAF, and EGFR; KRAS, BRAF, and ALK; KRAS, BRAF, and KIT; KRAS, EGFR, and ALK; KRAS, EGFR, and KIT; KRAS, ALK, and KIT; BRAF, EGFR, and ALK; KRAS, EGFR, and KIT; KRAS, ALK, and KIT; BRAF, EGFR, and ALK, BRAF,
  • the primer or primer sets in the kinase inhibitor resistance panel can detect any of the mutations in Tables 2-6.
  • the primers or primer sets used in the inhibitor resistance panel can comprise one or more of the primers or primer sets listed in Tables 7-14 as disclosed herein and/or probes listed in Table 15 (i.e., SEQ ID NOs: 7611-7613).
  • the disclosed kinase inhibitor resistant panels in one aspect, contain primers or primer sets for the detection of mutations that confer kinase inhibitor resistance.
  • methods and assays for the detection of kinase inhibitor resistant forms of an ALK-rslatsd cancer are disclosed herein.
  • kinase inhibitor resistance such as, for example ALK kinase inhibitor resistance
  • a cancer such as a kinase related cancer (e.g., ALK-related cancers); conducting a high throughput sequencing (also known as next generation sequencing) reaction on the sample, wherein the presence of a mutation in the nucleic acid sequence of a gene associated with kinase inhibitor resistance indicates that that the cancer is resistant or will become resistant to a kinase inhibitor.
  • the mutation can be a nucleic acid mutation in ALK, EGFR, KRAS, BRAF, or KIT.
  • the mutation can be any mutation listed in Tables 2-6.
  • the disclosed methods and assays for detection of kinase inhibitor resistance can comprise performing next generation sequencing using a kinase inhibitor resistant panel as disclosed herein which comprises a primer or primer set that hybridizes and amplifies nucleic acid from exon 1 or 2 oiKRAS; exon 18, 19, 20, 21 or 22 oiEGFR; exon 8, 9, 10, 1 1, 12, 13, or 17 ⁇ ; exon 10, 11, 13, 14, or 15 oiBRAF, and/or exon 21 , 22, 23, 24, or 25 oiALK.
  • the primer or primer set can comprise any of the primers or primer sets disclosed in Tables 7-14.
  • exon 1 SEQ ID NOs: 4601-4880 and 7181-7230
  • exon 2 SEQ ID NOs: 4881-5200 and 7231- 7326
  • both exons 1 and 2 SEQ ID NOs: 7327-7610) oiKRAS
  • exon 18 SEQ ID NOs: 1641 - 1760 and 5819-5934
  • exon 19 SEQ ID NOs : 1761 - 1880
  • exon 20 SEQ ID NOs : 1881-2000 and 5934-6042
  • exon 21 SEQ ID NOs: 2001-2120 and 6043-6150
  • exon 22 SEQ ID NOs: 2121-2240, 2321-2360, and 2401-2440
  • exons 18 and 19 SEQ ID NOs: 2241-2280
  • exons 18, 19, and 20 SEQ ID NOs: 6151-6274
  • the disclosed methods can further comprise synthesizing cDNA from the nucleic acid extracted from a tissue sample before detection of a mutation in ALK, EGFR, KRAS, BRAF, or KIT.
  • a cancer such as a kinase related cancer (e.g., ALK-rolatsd cancers); synthesixing cDNA from the tissue sample, and conducting a high throughput sequencing (also known as next generation sequencing) reaction on the sample, wherein the presence of a mutation in the nucleic acid sequence of a gene associated with kinase inhibitor resistance indicates that that the cancer is resistant or will become resistant to a kinase inhibitor.
  • the subject of the disclosed methods can be a subject that has been previously diagnosed with a cancer including but not limited to inflammatory breast cancer, non-small cell lung carcinoma, esophageal squamous cell carcinoma, colorectal carcinoma, Inflammatory myofibroblastic tumor, familial and sporadic neuroblastoma.
  • the subject has been previously diagnosed with a cancer that results from ALK, ROS1, RET, DEPDC1 overexpression, dysregulation, or fusion.
  • nucleophosmin- ⁇ Z T NPM-ALK
  • 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase ATIC-ALK
  • CTC-ALK clathrin heavy chain-ALK
  • KIF5B-ALK Ran-binding protein 2-ALK
  • SEC31L1- ALK SEC31L1- ALK
  • tropomyosin ⁇ -. ⁇ ⁇ 3-.4 ⁇ 0, tropomyos -4-ALK
  • TRK-fused gene(Large) -ALK TG L -ALK
  • TRK-fused gene(Small) -ALK TSGs-ALK
  • CARS-ALK EML4- ⁇ ⁇
  • ATIC-ALK clathrin heavy chain-ALK
  • the present methods could not only be used to diagnose a kinase inhibitor resistant cancer , but diagnose the cancer itself as the subject with a kinase inhibitor resistant cancer would necessarily not only have a cancer, but have a kinase related cancer such as those disclosed herein .
  • kinase inhibitor resistance comprising obtaining a tissue sample from a subject with a cancer and conducting a high throughput sequencing (also known as next generation sequencing) reaction on the sample using one or more primer sets or primer panels with primer sets that specifically hybridizes to one or more of the genes selected from the group consisting of ALK, KRAS, EGFR, KIT, and BRAF, wherein the presence of a mutation in the nucleic acid sequence of a gene associated with kinase inhibitor resistance indicates that that the cancer is resistant or will become resistant to a kinase inhibitor.
  • a high throughput sequencing also known as next generation sequencing
  • At least one primer sets hybridizes and amplifies nucleic acid from exon 1 or 2 oiKRAS, wherein at least one primer sets hybridizes and amplifies nucleic acid from exon 18, 19, 20, 21 or 22 oiEGFR, wherein at least one primer sets hybridizes and amplifies nucleic acid from exon 21, 22, 23, 24, or 25 oiALK, wherein at least one primer sets hybridizes and amplifies nucleic acid from exon 8, 9, 10, 11, 12, 13, or 17 ⁇ , and/or wherein at least one primer sets hybridizes and amplifies nucleic acid from exon 10, 11, 13, 14, or 15 oiBRAF.
  • one or more KRAS hybridizing primers or primer sets comprise one or more of the primers of Tables 10 and/or 14 (SEQ ID NOs: 4601-5200 and 7181-7610); wherein one or more EGFR hybridizing primers or primer sets comprise one or more of the primers of Tables 8 and/or 12 (1641-2440 and 5819-6524); wherein one or more ALK hybridizing primers or primer sets comprise one or more of the primers of Tables 7 and/or 1 1 (SEQ ID NOs: 1-1640 and 5201-5818); wherein one or more KIT hybridizing primers or primer sets comprise one or more of the primers of Table 9 ( SEQ ID NOs: 2441-4600); and/or wherein one or more BRAF hybridizing primers or primer sets comprise one or more of the primers of Table 13 (SEQ ID NOs: 6525-7180).
  • kinase inhibitor resistance panel comprising 2, 3, 4, 5, 6, 7, 8, 9, 10, or more primer sets for one or more of the genes selected from group of genes comprising KRAS, BRAF, EGFR, ALK, and KIT.
  • the panel comprises one or more primer sets for 2, 3, 4, of all 5 of the genes selected from group of genes comprising KRAS, BRAF, EGFR, ALK, and KIT
  • the kinase inhibitor is selected from the group consisting of crizotinib, afatinib, Axitinib, bevacizumab, Bosutinib, Cetuximab, Dasatinib, Erlotinib, Fostamati nib, Gefitinib, Imatinib, Lapatinib, Lenvatinib, Nilotinib, Panitumumab, Pazopanib, Pegaptanib, Ranibizumab, Ruxolitinib, Sorafenib, Sunitinib, Trastuzumab, and Vemurafenib.
  • ALK small-molecule drug candidates abrogates related abnormal cell proliferation and promotes apoptosis in ALK-rslatsd tumor cell lines.
  • ALK small-molecule inhibitors not only possess marked antitumor activity against ⁇ Z T-related cancers but are also very well tolerated with no limiting target-associated toxicities. Therefore, such small molecules can be used to treat ALK-AnvQn cancers.
  • the presence of a mutation in one of the genes associated with an ALK- related cancer can confer resistance to treatment with a kinase inhibitor, such as an ALK kinase inhibitor. Nevertheless, knowledge of the presence of said mutation can still be useful to the practicing physician in assessing the suitability of a treatment or prescribing a particular treatment regimen.
  • a mutation in a gene which confers kinase inhibitor resistance such as, for example, ALK kinase inhibitor resistance
  • the presence of a mutation can inform the physician to discontinue the course of treatment with one kinase inhibitor due to detection of kinase inhibitor resistance and select a different kinase inhibitor to which the patient is not yet resistant.
  • methods and assays for assessing the suitability of an ALK inhibitor treatment for a cancer comprising performing high throughput sequencing on nucleic acid from a tissue sample from the subject; wherein the presence of a mutation in ALK, EGFR, BRAF, KRAS, or KIT indicates a cancer that comprises resistance to an ALK kinase inhibitor.
  • a tissue sample from a subject with a cancer such as a kinase related cancer (e.g., ALK-rslatsd cancers); detecting the presence of a mutation through sequencing or other nucleic acid detection technique for the presence of a mutation in the nucleic acid sequence of a gene associated with kinase inhibitor resistance indicates that that the cancer is resistant or will become resistant to a kinase inhibitor and therefore continued use of an inhibitor to which the cancer has become resistant or to which the cancer is already resistant should be discontinued in favor of a cancer to which resistance has not developed.
  • a cancer such as a kinase related cancer (e.g., ALK-rslatsd cancers)
  • detecting the presence of a mutation through sequencing or other nucleic acid detection technique for the presence of a mutation in the nucleic acid sequence of a gene associated with kinase inhibitor resistance indicates that that the cancer is resistant or will become resistant to a kinase inhibitor and therefore continued use of an inhibitor to which
  • any of the disclosed nucleic acid sequencing techniques disclosed herein can be used in these methods.
  • methods and assays assessing the suitability of an ALK kinase inhibitor treatment for an ALK related cancer in a subject comprising conducting high throughput sequencing (also known as next generation sequencing) on nucleic acid such as mRNA or DNA from a tissue sample from the subject; wherein the sequencing reaction reveals the nucleic acid sequence for one or more exons ⁇ , BRAF, KRAS, EGFR, and ALK; and wherein the presence of one or more mutations in KIT, BRAF, KRAS, EGFR, and/or ALK indicates the presence of kinase inhibitor resistance.
  • high throughput sequencing also known as next generation sequencing
  • the mutations can occur in any exon ⁇ , BRAF, KRAS, EGFR, and ALK.
  • the mutations can occur in and therefore the primers or primer sets can hybridize to exon 1 or 2 oiKRAS; exon 18, 19, 20, 21 r 22 of EGFR; exon 8, 9, 10, 1 1, 12, 13, or 17 ⁇ ; exon 10, 11, 13, 14, or 15 oiBRAF, and/or exon 21, 22, 23, 24, or 25 oiALK.
  • the mutation can comprise any one or more of the mutations listed in Tables 2-6. It is further understood that the disclosed methods and assays can further comprise any of the primers disclosed herein in Tables 7-14 or probes listed in Table 15 and utilize the multiplexing PCR techniques disclosed.
  • two or more of the disclosed primers and primer sets can comprise a primer panel can be used in methods and assays for the assessment of the suitability of a kinase inhibitor for the treatment of a subjects' cancer.
  • the primer panel comprises one or more primers that can detect a nucleic acid mutation in ALK, BRAF, EGFR, KRAS, or KIT.
  • the primers or primer sets that hybridizes and amplifies nucleic acid from exon 1 or 2 oiKRAS; exon 18, 19, 20, 21 or 22 oiEGFR; exon 8, 9, 10, 1 1, 12, 13, or 17 ⁇ ; exon 10, 1 1, 13, 14, or 15 oiBRAF, and/or exon 21, 22, 23, 24, or 25 oiALK.
  • the disclosed primer panel can comprise any primer or primer set which detects one or more of the mutations found in Tables 2-6.
  • the primer or primer set can comprise any of the primers or primer sets disclosed in Tables 7-14.
  • knowledge of kinase inhibitor resistant cancer can be used to screen for a drug that is not a kinase inhibitor.
  • a cancer such as a kinase related cancer (e.g., ALK- related cancers); conducting a high throughput sequencing (also known as next generation sequencing) reaction on the sample, wherein the presence of a mutation in the nucleic acid sequence of a gene, region, or exon associated with kinase inhibitor resistance indicates that that the subject has a cancer is resistant or will become resistant to a kinase inhibitor, and contacting a tissue sample from subject with a cancer with an agent; wherein an agent that inhibits or reduces the growth or development of a kinase inhibitor resistant cancer is not a kinase inhibitor.
  • the disclosed methods can further comprise the sue of the kinase inhibitor resistant panels disclosed herein or any of the primers, primer sets or probes disclosed herein.
  • the methods can also further comprise the treatment of a subject with a kinase inhibitor resistant cancer with an agent that is identified in the method as not being a kinase inhibitor or discontinuing treatment in a subject with kinase inhibitor resistant cancer with an agent that has been found to be a kinase inhibitor.
  • Methods of identifying subjects for participation in clinical trials to screen for new cancer treatments can be useful for establishing clinical trials to screen for drugs that can be used to treat individuals with kinase inhibitor resistant cancers.
  • a subject for screening for a drug that can treat a cancer in a subject with a kinase inhibitor resistant cancer for example ALK kinase inhibitor resistance
  • a cancer such as a kinase related cancer (e.g., ALK-related cancers); and conducting a high throughput sequencing (also known as next generation sequencing) reaction on the sample, wherein the presence of a mutation in the nucleic acid sequence of a gene, region, or exon associated with kinase inhibitor resistance indicates that that the subject has a cancer is resistant or will become resistant to a kinase inhibitor and the subject can be used in trials to screen for a drug to which a kinase inhibitor resistant subject will respond.
  • a kinase inhibitor resistant cancer for example ALK kinase inhibitor resistance
  • the mutation can be a nucleic acid mutation in ALK, EGFR, KRAS, BRAF, or KIT.
  • the mutation can be any mutation listed in Tables 2-6.
  • said methods can further comprise synthesizing cDNA from the tissue sample of the subject.
  • the disclosed methods can be used in conjunction with any of the kinase inhibitor resistant panels, primer sets, or probes disclosed herein.
  • the disclosed methods can be performed using a primer or primer set that hybridizes and amplifies nucleic acid from exon 1 or 2 oiKRAS; exon 18, 19, 20, 21 or 22 oiEGFR; exon 8, 9, 10, 1 1, 12, 13, or 17 ⁇ ; exon 10, 1 1, 13, 14, or 15 oiBRAF, and/or exon 21, 22, 23, 24, or 25 oiALK.
  • the primer or primer set can comprise any of the primers or primer sets disclosed in Tables 7-14.
  • exon 1 SEQ ID NOs: 4601-4880 and 7181-7230
  • exon 2 SEQ ID NOs: 4881- 5200 and 7231-7326
  • both exons 1 and 2 SEQ ID NOs: 7327-7610 ofKRAS
  • exon 18 SEQ ID NOs: 1641-1760 and 5819-5934
  • exon 19 SEQ ID NOs: 1761-1880
  • exon 20 SEQ ID NOs: 1881-2000 and 5934-6042
  • exon 21 SEQ ID NOs: 2001-2120 and 6043- 6150
  • exon 22 SEQ ID NOs: 2121-2240, 2321-2360, and 2401-2440
  • exons 18 and 19 SEQ ID NOs: 2241-2280
  • exons 18, 19, and 20 SEQ ID NOs: 6151-6274
  • the disclosed methods and assays relate to the detection or diagnosis of the presence of a kinase inhibitor resistance, such as, for example, ALK kinase inhibitor resistance, in a disease or condition such as a cancer and methods and assays for the determination of susceptibility or resistance to therapeutic treatment for a disease or condition such as a cancer in a subject comprising detecting the presence or measuring the expression level of nucleic acid (for example, DNA, mRNA, cDNA, RNA, etc) through the use of next generation sequencing (NGS) from a tissue sample from the subject; wherein the presence of a mutations in the nucleic acid code of the KIT, BRAF, KRAS, EGFR, or ALK gene or the ALK gene portion of an ALK fusion construct indicates the presence of a cancer that is resistant to a kinase inhibitor.
  • the cancer is associated with
  • the kinase inhibitor resistance panels disclosed herein can be used to perform said methods and the detection of one or more of the mutations in Tables 2-6 indicates the presence of kinase inhibitor resistance.
  • the disclosed methods can further comprise discontinuing use of a kinase inhibitor to treat a cancer in a subject that has been identified with a kinase inhibitor resistant cancer.
  • the disclosed methods can further comprise treating a subject with a kinase inhibitor resistant cancer with a chemotherapeutic that is not a kinase inhibitor.
  • a kinase inhibitor resistant cancer such as, for example, an ALK kinase inhibitor resistant cancer
  • a cancer such as a kinase related cancer (e.g., ALK-rslatsd cancers); conducting a high throughput sequencing (also known as next generation sequencing) reaction on the sample, wherein the presence of a mutation in the nucleic acid sequence of a gene, region, or exon associated with kinase inhibitor resistance indicates that that the subject has a cancer is resistant or will become resistant to a kinase inhibitor; and treating the subject with a chemotherapeutic that is not a kinase inhibitor.
  • a kinase inhibitor resistant cancer such as, for example, an ALK kinase inhibitor resistant cancer
  • Also disclosed are methods of treating a subject without a kinase inhibitor resistant cancer comprising obtaining a tissue sample from a subject with a cancer, such as a kinase related cancer (e.g., ALK-related cancers); conducting a high throughput sequencing (also known as next generation sequencing) reaction on the sample, wherein the absence of a mutation in the nucleic acid sequence of a gene, region, or exon associated with kinase inhibitor resistance indicates that that the subject does not have a cancer is resistant nor will become resistant to a kinase inhibitor; and treating the subject with a kinase inhibitor.
  • a cancer such as a kinase related cancer (e.g., ALK-related cancers)
  • a high throughput sequencing also known as next generation sequencing
  • ALK (SEQ ID NO: 7714 (Genbank Accession No. U62540 (human coding sequence)) is a receptor tyrosine kinase (RTK) of the insulin receptor superfamily encoded by the ALK gene and is normally expressed primarily in the central and peripheral nervous systems.
  • the I620aa ALK polypeptide comprises a 1030aa extracellular domain which includes a 26aa amino-terminal signal peptide sequence, and binding sites located between residues 391 and 401 for the ALK ligands pleiotrophin (PTN) and midkine (MK).
  • the ALK polypeptide comprises a kinase domain (residues 1 1 16-1383) which includes three tyrosines responsible for autophosphorylation within the activation loop at residues 1278, 1282, and 1283.
  • ALK amplification, overexpression, and mutations have been shown to constitutively activate the kinase catalytic function of the ALK protein, with the deregulated mutant ALK in turn activating downstream cellular signaling proteins in pathways that promote aberrant cell proliferation.
  • the mutations that result in dysregulated ALK kinase activity are associated with several types of cancers.
  • ALK fusions represent the most common mutation of this tyrosine kinase.
  • Such fusions include but are not limited to nucleophosmin- ⁇ Z T (NPM-ALK), 5-aminoimidazole- 4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC-ALK), clathrin heavy chain-ALK (CLTC-ALK), kinesin-1 heavy chain gsm-ALK (KIF 5B-ALK); Ran- binding protein 2-ALK (RANBP2-ALK), SEC3 I l-ALK, tropomyosin-3- ⁇ " (TPM3- ALK), tropomyosin ⁇ (TFM4-ALK), TRK-fused gene(Large) -ALK (TFG L -ALK),
  • TRK-fused gene(Small) -ALK (TFG S -ALK), CARS-ALK, LML4-ALK, 5-aminoimidazole-4- carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase-ALK (ATIC-ALK), ALO 17 -ALK, moesin- ⁇ Z T (MSN-ALK), non-muscle myosin heavy chain gsns-ALK (MYH9-ALK), and TRK-fused gene(Extra Large) -ALK (TFG XL -ALK).
  • TGF S -ALK TGF
  • CARS-ALK CARS-ALK
  • LML4-ALK 5-aminoimidazole-4- carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase-ALK
  • ATIC-ALK 5-aminoimidazole-4- carboxamide ribonucleotide
  • CLTC-ALK, RA BP2- ⁇ ⁇ , SEC3 -ALK, TFM3-ALK, and TFM4-ALK have been identified in IMTs.
  • TPMS-ALK, TPM4-ALK and CLTC-ALK fusions have been detected in both classical T- or null-cell lymphomas and IMT sarcomas, whereas CARS- ALK, RA BP2- ⁇ ⁇ , and SEC3 ILI-ALK occur in IMT.
  • CLTC-ALK and NFM-ALK also occur in B-cell plasmablastic/immunoblastic lymphomas.
  • the TPM4-ALK fusion occurs in esophageal squamous cell carcinomas, and the ALK fusion LML4-ALK , TFG-ALK and
  • Y T5B-ALK are found in non-small cell lung cancers. EML4-ALK has also recently been identified in both colorectal and breast carcinomas as well. ALK fusions are associated with several known cancer types. It is understood that one or more ALK fusions can be associated with a particular cancer.
  • ALK anaplastic large-cell lymphoma
  • neuroblastoma neuroblastoma
  • breast cancer breast cancer
  • ovarian cancer colorectal carcinoma
  • non-small cell lung carcinoma diffuse large B-cell lymphoma
  • esophageal squamous cell carcinoma anaplastic large-cell lymphoma
  • neuroblastoma inflammatory myofibroblastic tumors
  • malignant histiocytosis malignant histiocytosis
  • glioblastomas glioblastomas.
  • ALCL anaplastic large-cell lymphomas comprise -2.5% of all NHL; within the pediatric age group specifically, -13% of all NHL (30 - 40% of all childhood large-cell lymphomas) are of this type.
  • more than a third of patients suffer multiple relapses following chemotherapy, thus the 5-year disease-free survival of ALK-positive ALCL is only -40%.
  • ALK+ Diffuse large B-cell lymphoma In 2003, ALK fusions were shown to occur in a non-ALCL form of NHL with the description of CLTC-ALK or NPM-ALK in diffuse large B-cell lymphomas (ALK+ DLBCLs). Consistent with their B-lineage, these NHLs express cytoplasmic IgA and plasma cell markers, and possess an immunoblastic morphology. Translational research studies revealed the t(2; 17) and CLTC-ALK mRN A in the majority of these lymphomas, while immunolabeling confirmed granular ALK staining identical to that observed in CLTC-ALK-positive ALCL.
  • ALK+ DLBCLs occur predominately in adults; however, the t(2;5) and NPM-ALK mRNA in pediatric lymphomas are phenotypically identical to CLTC-ALK- positive adult B-NHLs. Approximately 0.5-1% of all DLBCL is thought to be ALK-positive.
  • DLBCLs caused by mutant ALK are important because patients with these lymphomas have outcomes that are much inferior to ALK-negative DLBCL patients following CHOP-based treatments; thus, ALK+ DLBCL patients should strongly be considered as candidates for ALK-targeted kinase inhibitor therapy.
  • ALK+ systemic histiocytosis ALK+ systemic histiocytosis. ALK fusions were described in 2008 in another hematopoietic neoplasm, systemic histiocytosis. Three cases of this previously
  • constitutively activated ALK fusions have been shown to be a causative mechanism in many cases, the genesis of subsets of various solid tumors in some instances, very common human tumors such as non-small cell lung cancer, colorectal and breast cancers has recently been demonstrated to be due to aberrantly activated ALK.
  • IMT inflammatory myofibroblastic tumor
  • ALK inflammatory myofibroblastic tumor
  • Many IMTs are indolent and can be cured by resection.
  • locally recurrent, invasive, and metastatic IMTs are not uncommon and current chemo- and radio-therapies are completely ineffective.
  • Disclosed herein is the involvement of chromosome 2p23 (the location of the ALK gene) in IMTs, as well as ALK gene rearrangement.
  • ALK immunoreactivity in 7 of 11 IMTs has been shown and TPM3-ALK and TPM4-ALK were identified in several cases. Additionally, two additional ALK fusions in IMT, CLTC- and RanBP2-ALK were identified. ALK fusions have also been examined by immunostaining in 73 IMTs, finding 60% (44 of the 73 cases) to be ALK-positive. Thus, ALK deregulation is of pathogenic importance in a majority of IMTs.
  • Non-small cell lung carcinoma Non-small cell lung carcinoma.
  • the role of ALK fusions in cancer expanded further with the description of the novel EML4-ALK chimeric protein in 5 of 75 (6.7%) Japanese non-small cell lung carcinoma patients.
  • Shortly thereafter, the existence of ALK fusions in lung cancer was corroborated by a different group who found 6 of 137 (4.4%) Chinese lung cancer patients to express ALK fusions (EML4-ALK, 3 pts; TFG-ALK, 1 pt; X-ALK.
  • ALK fusions occur predominately in patients with adenocarcinoma (although occasional ALK-positive NSCLCs of squamous or mixed histologies are observed), mostly in individuals with minimal/no smoking history, and 2) ALK abnormalities usually occur exclusive of other common genetic abnormalities (e.g., EGFR and KRAS mutations).
  • ALK abnormalities usually occur exclusive of other common genetic abnormalities (e.g., EGFR and KRAS mutations).
  • the exact percentage of NSCLCs caused by ALK fusions is not yet clear but estimates based on reports in the biomedical literature suggest a range of -5-10%.
  • Esophageal squamous cell carcinoma In 45 Egyptian patients, a proteomics approach identified proteins under or over-represented in esophageal squamous cell carcinomas (ESCCs); TPM4-ALK was among those proteins over-represented.
  • ESCCs esophageal squamous cell carcinomas
  • a second proteomics- based ESCC study - in this case, in Chinese patients - identified TPM4-ALK in these tumors as well.
  • ALK in familial and sporadic neuroblastoma Neuroblastoma is the most common extracranial solid tumor of childhood, and is derived from the developing neural crest. A small subset (-1-2%) of neuroblastomas exhibit a familial predisposition with an autosomal dominant inheritance. Most neuroblastoma patients have aggressive disease associated with survival probabilities ⁇ 40% despite intensive chemo- and radio-therapy, and the disease accounts for -15% of all childhood cancer mortality. ALK had previously been found to be constitutively activated also due to high-level over-expression as a result of gene amplification in a small number of neuroblastoma cell lines, in fact, ALK amplification occurs in -15% of neuroblastomas in addition to activating point mutations.
  • missense mutations in ALK have been confirmed as activating mutations that drive neuroblastoma growth; furthermore, incubation of neuroblastoma cell lines with ALK small-molecule inhibitors reveal those cells with ALK activation (but not cell lines with normal levels of expression of wild-type ALK) to exhibit robust cytotoxic responses.
  • Allele specific primers can be designed to target a mutation at a known location such that its signal can be preferentially amplified over wild-type DNA.
  • NGS Next Generation Sequencing
  • the methods and assays for detecting kinase inhibitor resistance or determining the susceptibility or developing kinase inhibitor resistance in an ALK-related cancer or determining the suitability of a particular kinase inhibitor for use in treating an ALK-related cancer in a subject can comprise the detection of any of the mutations in Tables 2-6. It is understood that the methods and assays can further comprise comparing the sequence to known kinase inhibitor resistance mutations list and determining what if any kinase inhibitors are affected by the mutation and altering or maintaining treatment as appropriate to utilize kinase inhibitors that are unaffected by the mutation.
  • primer panels for use in next generation sequencing for the determination of kinase inhibitor resistance comprising one or more primer sets from each ⁇ , BRAF, KRAS, EGFR, and ALK
  • the disclosed primer panels, methods, and assays can comprise one or more of the primers or primer sets listed in Tables 7-14.
  • Next Generation Sequencing techniques include, but are not limited to Massively Parallel Signature Sequencing (MPSS), Polony sequencing, pyrosequencing,
  • Reversible dye-terminator sequencing SOLiD sequencing, Ion semiconductor sequencing, DNA nanoball sequencing, Helioscope single molecule sequencing, Single molecule real time (SMRT) sequencing, Single molecule real time (RNAP) sequencing, and Nanopore DNA sequencing.
  • MPSS was a bead-based method that used a complex approach of adapter ligation followed by adapter decoding, reading the sequence in increments of four nucleotides; this method made it susceptible to sequence-specific bias or loss of specific sequences.
  • Polony sequencing combined an in vitro paired-tag library with emulsion PCR, an automated microscope, and ligation-based sequencing chemistry to sequence an E. coli genome at an accuracy of > 99.9999% and a cost approximately 1/10 that of Sanger sequencing.
  • a parallelized version of pyrosequencing the method amplifies DNA inside water droplets in an oil solution (emulsion PCR), with each droplet containing a single DNA template attached to a single primer-coated bead that then forms a clonal colony.
  • the sequencing machine contains many picolitre-volume wells each containing a single bead and sequencing enzymes. Pyrosequencing uses luciferase to generate light for detection of the individual nucleotides added to the nascent DNA, and the combined data are used to generate sequence read-outs. This technology provides intermediate read length and price per base compared to Sanger sequencing on one end and Solexa and SOLiD on the other.
  • a sequencing technology based on reversible dye-terminators DNA molecules are first attached to primers on a slide and amplified so that local clonal colonies are formed. Four types of reversible terminator bases (RT-bases) are added, and non-incorporated nucleotides are washed away. Unlike pyrosequencing, the DNA can only be extended one nucleotide at a time. A camera takes images of the fluorescently labeled nucleotides, then the dye along with the terminal 3' blocker is chemically removed from the DNA, allowing the next cycle.
  • RT-bases reversible terminator bases
  • SOLiD technology employs sequencing by ligation.
  • a pool of all possible oligonucleotides of a fixed length are labeled according to the sequenced position.
  • Oligonucleotides are annealed and ligated; the preferential ligation by DNA ligase for matching sequences results in a signal informative of the nucleotide at that position.
  • the DNA is amplified by emulsion PCR.
  • the resulting bead, each containing only copies of the same DNA molecule, are deposited on a glass slide. The result is sequences of quantities and lengths comparable to Illumina sequencing.
  • Ion semiconductor sequencing is based on using standard sequencing chemistry, but with a novel, semiconductor based detection system. This method of sequencing is based on the detection of hydrogen ions that are released during the polymerization of DNA, as opposed to the optical methods used in other sequencing systems.
  • a micro well containing a template DNA strand to be sequenced is flooded with a single type of nucleotide. If the introduced nucleotide is complementary to the leading template nucleotide it is incorporated into the growing complementary strand. This causes the release of a hydrogen ion that triggers a hypersensitive ion sensor, which indicates that a reaction has occurred. If homopolymer repeats are present in the template sequence multiple nucleotides will be incorporated in a single cycle. This leads to a corresponding number of released hydrogens and a proportionally higher electronic signal.
  • DNA nanoball sequencing is a type of high throughput sequencing technology used to determine the entire genomic sequence of an organism.
  • the method uses rolling circle replication to amplify small fragments of genomic DNA into DNA nanoballs. Unchained sequencing by ligation is then used to determine the nucleotide sequence. This method of DNA sequencing allows large numbers of DNA nanoballs to be sequenced per run.
  • Helicos's single-molecule sequencing uses DNA fragments with added polyA tail adapters, which are attached to the flow cell surface.
  • the next steps involve extension-based sequencing with cyclic washes of the flow cell with fluorescently labeled nucleotides (one nucleotide type at a time, as with the Sanger method).
  • the reads are performed by the Helioscope sequencer.
  • SMRT sequencing is based on the sequencing by synthesis approach.
  • the DNA is synthesized in zero-mode wave-guides (ZMWs) - small well-like containers with the capturing tools located at the bottom of the well.
  • ZMWs zero-mode wave-guides
  • the sequencing is performed with use of unmodified polymerase (attached to the ZMW bottom) and fluorescently labeled nucleotides flowing freely in the solution.
  • the wells are constructed in a way that only the fluorescence occurring by the bottom of the well is detected.
  • the fluorescent label is detached from the nucleotide at its incorporation into the DNA strand, leaving an unmodified DNA strand.
  • RNA polymerase Single molecule real time sequencing based on RNA polymerase (RNAP), which is attached to a polystyrene bead, with distal end of sequenced DNA is attached to another bead, with both beads being placed in optical traps.
  • RNAP motion during transcription brings the beads in closer and their relative distance changes, which can then be recorded at a single nucleotide resolution.
  • the sequence is deduced based on the four readouts with lowered concentrations of each of the four nucleotide types (similarly to Sangers method).
  • Nanopore sequencing is based on the readout of electrical signal occurring at nucleotides passing by alpha-hemolysin pores covalently bound with cyclodextrin.
  • the DNA passing through the nanopore changes its ion current. This change is dependent on the shape, size and length of the DNA sequence.
  • Each type of the nucleotide blocks the ion flow through the pore for a different period of time.
  • VisiGen Biotechnologies uses a specially engineered DNA polymerase.
  • This polymerase acts as a sensor - having incorporated a donor fluorescent dye by its active centre.
  • This donor dye acts by FRET (fluorescent resonant energy transfer), inducing fluorescence of differently labeled nucleotides.
  • FRET fluorescent resonant energy transfer
  • Sequencing by hybridization is a non-enzymatic method that uses a DNA microarray.
  • a single pool of DNA whose sequence is to be determined is fluorescently labeled and hybridized to an array containing known sequences. Strong hybridization signals from a given spot on the array identify its sequence in the DNA being sequenced.
  • Mass spectrometry may be used to determine mass differences between DNA fragments produced in chain-termination reactions.
  • SBS sequencing by synthesis
  • the SBS NGS platform uses a direct sequencing approach to produce a sequencing strategy with very a high precision, rapid pace and low cost.
  • SBS sequencing is initialized by fragmenting of the template DNA into fragments, amplification, annealing of DNA sequencing primers, and finally affixing as a high-density array of spots onto a glass chip.
  • the array of DNA fragments are sequenced by extending each fragment with modified nucleotides containing cleavable chemical moieties linked to fluorescent dyes capable of discriminating all four possible nucleotides.
  • the array is scanned continuously by a high-resolution electronic camera (Measure) to determine the fluorescent intensity of each base (A, C, G or T) that was newly incorporated into the extended DNA fragment. After the incorporation of each modified base the array is exposed to cleavage chemistry to break off the fluorescent dye and end cap allowing additional bases to be added. The process is then repeated until the fragment is completely sequenced or maximal read length has been achieved.
  • specific mRNAs can be detected using Northern blot analysis, nuclease protection assays (NPA), in situ hybridization (e.g., fluorescence in situ hybridization (FISH)), or reverse transcription- polymerase chain reaction (RT-PCR), and microarray.
  • NPA nuclease protection assays
  • FISH fluorescence in situ hybridization
  • RT-PCR reverse transcription- polymerase chain reaction
  • each of these techniques can be used to detect specific RNAs and to precisely determine their expression level.
  • Northern analysis is the only method that provides information about transcript size, whereas NPAs are the easiest way to simultaneously examine multiple messages.
  • In situ hybridization is used to localize expression of a particular gene within a tissue or cell type, and RT-PCR is the most sensitive method for detecting and quantitating gene expression.
  • RT-PCR allows for the detection of the RNA transcript of any gene, regardless of the scarcity of the starting material or relative abundance of the specific mRNA.
  • an RNA template is copied into a complementary DNA (cDNA) using a retroviral reverse transcriptase.
  • the cDNA is then amplified exponentially by PCR using a DNA polymerase.
  • the reverse transcription and PCR reactions can occur in the same or difference tubes.
  • RT-PCR is somewhat tolerant of degraded RNA. As long as the RNA is intact within the region spanned by the primers, the target will be amplified.
  • Relative quantitative RT-PCR involves amplifying an internal control
  • the internal control is used to normalize the samples. Once normalized, direct comparisons of relative abundance of a specific mRNA can be made across the samples. It is crucial to choose an internal control with a constant level of expression across all experimental samples (i.e., not affected by experimental treatment). Commonly used internal controls (e.g., GAPDH, ⁇ -actin, cyclophilin) often vary in expression and, therefore, may not be appropriate internal controls. Additionally, most common internal controls are expressed at much higher levels than the mRNA being studied. For relative RT-PCR results to be meaningful, all products of the PCR reaction must be analyzed in the linear range of amplification. This becomes difficult for transcripts of widely different levels of abundance.
  • RT-PCR is used for absolute quantitation. This technique involves designing, synthesizing, and accurately quantitating a competitor RNA that can be distinguished from the endogenous target by a small difference in size or sequence. Known amounts of the competitor RNA are added to experimental samples and RT-PCR is performed. Signals from the endogenous target are compared with signals from the competitor to determine the amount of target present in the sample.
  • Northern analysis is the easiest method for determining transcript size, and for identifying alternatively spliced transcripts and multigene family members. It can also be used to directly compare the relative abundance of a given message between all the samples on a blot.
  • the Northern blotting procedure is straightforward and provides opportunities to evaluate progress at various points (e.g., intactness of the RNA sample and how efficiently it has transferred to the membrane).
  • RNA samples are first separated by size via electrophoresis in an agarose gel under denaturing conditions. The RNA is then transferred to a membrane, crosslinked and hybridized with a labeled probe.
  • Nonisotopic or high specific activity radiolabeled probes can be used including random-primed, nick-translated, or PCR-generated DNA probes, in vitro transcribed RNA probes, and oligonucleotides. Additionally, sequences with only partial homology (e.g., cDNA from a different species or genomic DNA fragments that might contain an exon) may be used as probes.
  • the Nuclease Protection Assay (including both ribonuclease protection assays and SI nuclease assays) is a sensitive method for the detection and quantitation of specific mRNAs.
  • the basis of the NPA is solution hybridization of an antisense probe (radiolabeled or nonisotopic) to an RNA sample. After hybridization, single-stranded, unhybridized probe and RNA are degraded by nucleases. The remaining protected fragments are separated on an acrylamide gel. Solution hybridization is typically more efficient than membrane-based hybridization, and it can accommodate up to 100 ⁇ g of sample RNA, compared with the 20-30 ⁇ g maximum of blot hybridizations. NPAs are also less sensitive to RNA sample degradation than Northern analysis since cleavage is only detected in the region of overlap with the probe (probes are usually about 100-400 bases in length).
  • NPAs are the method of choice for the simultaneous detection of several RNA species. During solution hybridization and subsequent analysis, individual probe/target interactions are completely independent of one another. Thus, several RNA targets and appropriate controls can be assayed simultaneously (up to twelve have been used in the same reaction), provided that the individual probes are of different lengths. NPAs are also commonly used to precisely map mRNA termini and intron/exon junctions.
  • ISH In situ hybridization
  • ISH provides information about the location of mRNA within the tissue sample.
  • the procedure begins by fixing samples in neutral-buffered formalin, and embedding the tissue in paraffin. The samples are then sliced into thin sections and mounted onto microscope slides. (Alternatively, tissue can be sectioned frozen and post-fixed in paraformaldehyde.) After a series of washes to dewax and rehydrate the sections, a Proteinase K digestion is performed to increase probe accessibility, and a labeled probe is then hybridized to the sample sections. Radiolabeled probes are visualized with liquid film dried onto the slides, while non-isotopically labeled probes are conveniently detected with colorimetric or fluorescent reagents.
  • the methods, assays, and primer panels disclosed herein relate to the detection of nucleic acid variation that confer kinase inhibitor resistance in the form of, for example, point mutations and truncations of, KRAS, BRAF, KIT, EGFR, and/or ALK.
  • methods, assays, and use of the disclosed primer panels for diagnosing an anaplastic lymphoma kinase (ALK) related cancer in a subject is resistant to a kinase inhibitor comprise performing NGS which sequences DNA from a tissue sample from the subject.
  • high throughput sequencing methods also known as next generation sequencing methods
  • PCR a number of widely used procedures exist for detecting and determining the abundance of a particular DNA in a sample.
  • the technology of PCR permits amplification and subsequent detection of minute quantities of a target nucleic acid. Details of PCR are well described in the art, including, for example, U.S. Pat. Nos. 4,683, 195 to Mullis et al, 4,683,202 to Mullis and 4,965, 188 to Mullis et al.
  • oligonucleotide primers are annealed to the denatured strands of a target nucleic acid, and primer extension products are formed by the polymerization of deoxynucleoside triphosphates by a polymerase.
  • a typical PCR method involves repetitive cycles of template nucleic acid denaturation, primer annealing and extension of the annealed primers by the action of a thermostable polymerase. The process results in exponential amplification of the target nucleic acid, and thus allows the detection of targets existing in very low concentrations in a sample. It is understood and herein contemplated that there are variant PCR methods known in the art that may also be utilized in the disclosed methods, for example,
  • QPCR Quantitative PCR
  • microarrays real-time PCR
  • hot start PCR hot start PCR
  • nested PCR allele-specific PCR
  • Touchdown PCR PCR
  • An array is an orderly arrangement of samples, providing a medium for matching known and unknown DNA samples based on base-pairing rules and automating the process of identifying the unknowns.
  • An array experiment can make use of common assay systems such as microplates or standard blotting membranes, and can be created by hand or make use of robotics to deposit the sample.
  • arrays are described as macroarrays or microarrays, the difference being the size of the sample spots.
  • Macroarrays contain sample spot sizes of about 300 microns or larger and can be easily imaged by existing gel and blot scanners.
  • the sample spot sizes in microarray can be 300 microns or less, but typically less than 200 microns in diameter and these arrays usually contains ⁇ thousands of spots.
  • Microarrays require specialized robotics and/or imaging equipment that generally are not commercially available as a complete system. Terminologies that have been used in the literature to describe this technology include, but not limited to: biochip, DNA chip, DNA microarray, GENECHIP® (Affymetrix, Inc which refers to its high density,
  • oligonucleotide-based DNA arrays oligonucleotide-based DNA arrays
  • gene array oligonucleotide-based DNA arrays
  • DNA microarrays or DNA chips are fabricated by high-speed robotics, generally on glass or nylon substrates, for which probes with known identity are used to determine complementary binding, thus allowing massively parallel gene expression and gene discovery studies. An experiment with a single DNA chip can provide information on thousands of genes simultaneously. It is herein contemplated that the disclosed microarrays can be used to monitor gene expression, disease diagnosis, gene discovery, drug discovery (pharmacogenomics), and toxicological research or toxicogenomics.
  • Type I microarrays comprise a probe cDNA (500-5,000 bases long) that is immobilized to a solid surface such as glass using robot spotting and exposed to a set of targets either separately or in a mixture. This method is traditionally referred to as DNA microarray.
  • Type I microarrays localized multiple copies of one or more polynucleotide sequences, preferably copies of a single
  • polynucleotide sequence are immobilized on a plurality of defined regions of the substrate's surface.
  • a polynucleotide refers to a chain of nucleotides ranging from 5 to 10,000 nucleotides. These immobilized copies of a polynucleotide sequence are suitable for use as probes in hybridization experiments.
  • Typical dispensers include a micropipette delivering solution to the substrate with a robotic system to control the position of the micropipette with respect to the substrate. There can be a multiplicity of dispensers so that reagents can be delivered to the reaction regions simultaneously.
  • a microarray is formed by using ink-jet technology based on the piezoelectric effect, whereby a narrow tube containing a liquid of interest, such as oligonucleotide synthesis reagents, is encircled by an adapter. An electric charge sent across the adapter causes the adapter to expand at a different rate than the tube and forces a small drop of liquid onto a substrate.
  • a liquid of interest such as oligonucleotide synthesis reagents
  • Samples may be any sample containing polynucleotides (polynucleotide targets) of interest and obtained from any bodily fluid (blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations.
  • DNA or RNA can be isolated from the sample according to any of a number of methods well known to those of skill in the art. In one embodiment, total RNA is isolated using the TRIzol total RNA isolation reagent (Life Technologies, Inc., Rockville, Md.) and RNA is isolated using oligo d(T) column chromatography or glass beads. After hybridization and processing, the
  • hybridization signals obtained should reflect accurately the amounts of control target polynucleotide added to the sample.
  • the plurality of defined regions on the substrate can be arranged in a variety of formats.
  • the regions may be arranged perpendicular or in parallel to the length of the casing.
  • the targets do not have to be directly bound to the substrate, but rather can be bound to the substrate through a linker group.
  • the linker groups may typically vary from about 6 to 50 atoms long. Linker groups include ethylene glycol oligomers, diamines, diacids and the like. Reactive groups on the substrate surface react with one of the terminal portions of the linker to bind the linker to the substrate. The other terminal portion of the linker is then functionalized for binding the probes.
  • Sample polynucleotides may be labeled with one or more labeling moieties to allow for detection of hybridized probe/target polynucleotide complexes.
  • the labeling moieties can include compositions that can be detected by spectroscopic, photochemical, biochemical, bioelectronic, immunochemical, electrical, optical or chemical means.
  • labeling moieties include radioisotopes, such as JZ P, or JJ S, chemiluminescent compounds, labeled binding proteins, heavy metal atoms, spectroscopic markers, such as fluorescent markers and dyes, magnetic labels, linked enzymes, mass spectrometry tags, spin labels, electron transfer donors and acceptors, biotin, and the like.
  • Labeling can be carried out during an amplification reaction, such as polymerase chain reaction and in vitro or in vivo transcription reactions.
  • the labeling moiety can be incorporated after hybridization once a probe-target complex his formed.
  • biotin is first incorporated during an amplification step as described above. After the hybridization reaction, unbound nucleic acids are rinsed away so that the only biotin remaining bound to the substrate is that attached to target polynucleotides that are hybridized to the polynucleotide probes. Then, an avidin-conjugated fluorophore, such as avidin-phycoerythrin, that binds with high affinity to biotin is added.
  • avidin-conjugated fluorophore such as avidin-phycoerythrin
  • Hybridization causes a polynucleotide probe and a complementary target to form a stable duplex through base pairing.
  • Hybridization methods are well known to those skilled in the art.
  • Stringent conditions for hybridization can be defined by salt concentration, temperature, and other chemicals and conditions. Varying additional parameters, such as hybridization time, the concentration of detergent (sodium dodecyl sulfate, SDS) or solvent (formamide), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Additional variations on these conditions will be readily apparent to those skilled in the art.
  • the polynucleotide probes are labeled with a fluorescent label and measurement of levels and patterns of complex formation is accomplished by fluorescence microscopy, preferably confocal fluorescence microscopy.
  • An argon ion laser excites the fluorescent label, emissions are directed to a photomultiplier and the amount of emitted light detected and quantitated.
  • the detected signal should be proportional to the amount of probe/target polynucleotide complex at each position of the microarray.
  • the fluorescence microscope can be associated with a computer-driven scanner device to generate a quantitative two-dimensional image of hybridization intensities. The scanned image is examined to determine the abundance/expression level of each hybridized target polynucleotide.
  • polynucleotide targets from two or more different biological samples are labeled with two or more different fluorescent labels with different emission wavelengths. Fluorescent signals are detected separately with different photomultipliers set to detect specific wavelengths. The relative abundances/expression levels of the target polynucleotides in two or more samples is obtained.
  • microarray fluorescence intensities can be normalized to take into account variations in hybridization intensities when more than one microarray is used under similar test conditions.
  • individual polynucleotide probe/target complex hybridization intensities are normalized using the intensities derived from internal normalization controls contained on each microarray.
  • Type II microarrays comprise an array of oligonucleotides (20 ⁇ 80-mer oligos) or peptide nucleic acid (PNA) probes that is synthesized either in situ (on-chip) or by conventional synthesis followed by on-chip immobilization. The array is exposed to labeled sample DNA, hybridized, and the identity/abundance of complementary sequences are determined.
  • This method "historically” called DNA chips, was developed at Affymetrix, Inc. , which sells its photolithographically fabricated products under the GENECHIP® trademark.
  • Type II arrays for gene expression are simple: labeled cDNA or cRNA targets derived from the mRNA of an experimental sample are hybridized to nucleic acid probes attached to the solid support. By monitoring the amount of label associated with each DNA location, it is possible to infer the abundance of each mRNA species represented.
  • hybridization has been used for decades to detect and quantify nucleic acids, the combination of the miniaturization of the technology and the large and growing amounts of sequence information, have enormously expanded the scale at which gene expression can be studied.
  • Microarray manufacturing can begin with a 5 -inch square quartz wafer. Initially the quartz is washed to ensure uniform hydroxylation across its surface. Because quartz is naturally hydroxylated, it provides an excellent substrate for the attachment of chemicals, such as linker molecules, that are later used to position the probes on the arrays.
  • chemicals such as linker molecules
  • the wafer is placed in a bath of silane, which reacts with the hydroxyl groups of the quartz, and forms a matrix of covalently linked molecules.
  • the distance between these silane molecules determines the probes' packing density, allowing arrays to hold over 500,000 probe locations, or features, within a mere 1.28 square centimeters. Each of these features harbors millions of identical DNA molecules.
  • the silane film provides a uniform hydroxyl density to initiate probe assembly.
  • Linker molecules, attached to the silane matrix provide a surface that may be spatially activated by light. Probe synthesis occurs in parallel, resulting in the addition of an A, C, T, or G nucleotide to multiple growing chains simultaneously.
  • photolithographic masks carrying 18 to 20 square micron windows that correspond to the dimensions of individual features, are placed over the coated wafer. The windows are distributed over the mask based on the desired sequence of each probe.
  • ultraviolet light is shone over the mask in the first step of synthesis, the exposed linkers become deprotected and are available for nucleotide coupling.
  • a solution containing a single type of deoxynucleotide with a removable protection group is flushed over the wafer's surface.
  • the nucleotide attaches to the activated linkers, initiating the synthesis process.
  • oligonucleotide can be occupied by lof Nucleotides, resulting in an apparent need for 25 x 4, or 100, different masks per wafer, the synthesis process can be designed to significantly reduce this requirement.
  • Algorithms that help minimize mask usage calculate how to best coordinate probe growth by adjusting synthesis rates of individual probes and identifying situations when the same mask can be used multiple times.
  • Hybridization under particular pH, salt, and temperature conditions can be optimized by taking into account melting temperatures and using empirical rules that correlate with desired hybridization behaviors.
  • probes are selected from regions shared by multiple splice or polyadenylation variants. In other cases, unique probes that distinguish between variants are favored. Inter-probe distance is also factored into the selection process.
  • a different set of strategies is used to select probes for genotyping arrays that rely on multiple probes to interrogate individual nucleotides in a sequence.
  • the identity of a target base can be deduced using four identical probes that vary only in the target position, each containing one of the four possible bases.
  • the presence of a consensus sequence can be tested using one or two probes representing specific alleles.
  • arrays with many probes can be created to provide redundant information, resulting in unequivocal genotyping.
  • generic probes can be used in some applications to maximize flexibility.
  • Some probe arrays allow the separation and analysis of individual reaction products from complex mixtures, such as those used in some protocols to identify single nucleotide polymorphisms (SNPs).
  • Real-time PCR monitors the fluorescence emitted during the reaction as an indicator of amplicon production during each PCR cycle (i.e., in real time) as opposed to the endpoint detection.
  • the real-time progress of the reaction can be viewed in some systems.
  • Real-time PCR does not detect the size of the amplicon and thus does not allow the differentiation between DNA and cDNA amplification, however, it is not influenced by non-specific amplification unless SYBR Green is used.
  • Real-time PCR quantitation eliminates post-PCR processing of PCR products. This helps to increase throughput and reduce the chances of carryover contamination.
  • Real-time PCR also offers a wide dynamic range of up to 10 7 -fold.
  • Dynamic range of any assay determines how much target concentration can vary and still be quantified.
  • a wide dynamic range means that a wide range of ratios of target and normaliser can be assayed with equal sensitivity and specificity. It follows that the broader the dynamic range, the more accurate the quantitation.
  • a real-time RT- PCR reaction reduces the time needed for measuring the amount of amplicon by providing for the visualization of the amplicon as the amplification process is progressing.
  • the real-time PCR system is based on the detection and quantitation of a fluorescent reporter. This signal increases in direct proportion to the amount of PCR product in a reaction. By recording the amount of fluorescence emission at each cycle, it is possible to monitor the PCR reaction during exponential phase where the first significant increase in the amount of PCR product correlates to the initial amount of target template. The higher the starting copy number of the nucleic acid target, the sooner a significant increase in fluorescence is observed. A significant increase in fluorescence above the baseline value measured during the 3-15 cycles can indicate the detection of accumulated PCR product.
  • a fixed fluorescence threshold is set significantly above the baseline that can be altered by the operator.
  • the parameter CT threshold cycle is defined as the cycle number at which the fluorescence emission exceeds the fixed threshold.
  • hydrolysis probes include TaqMan probes, molecular beacons and scorpions. They use the fluorogenic 5' exonuclease activity of Taq polymerase to measure the amount of target sequences in cDNA samples.
  • TaqMan probes are designed to anneal to an internal region of a PCR product.
  • Molecular beacons also contain fluorescent (FAM, TAMRA, TET, ROX) and quenching dyes (typically DABCYL) at either end but they are designed to adopt a hairpin structure while free in solution to bring the fluorescent dye and the quencher in close proximity for FRET to occur. They have two arms with complementary sequences that form a very stable hybrid or stem. The close proximity of the reporter and the quencher in this hairpin configuration suppresses reporter fluorescence. When the beacon hybridises to the target during the annealing step, the reporter dye is separated from the quencher and the reporter fluoresces (FRET does not occur). Molecular beacons remain intact during PCR and must rebind to target every cycle for fluorescence emission. This will correlate to the amount of PCR product available.
  • All real-time PCR chemistries allow detection of multiple DNA species (multiplexing) by designing each probe/beacon with a spectrally unique fluor/quench pair as long as the platform is suitable for melting curve analysis if SYBR green is used.
  • multiplexing the target(s) and endogenous control can be amplified in single tube.
  • Scorpion probes sequence-specific priming and PCR product detection is achieved using a single oligonucleotide.
  • the Scorpion probe maintains a stem-loop configuration in the unhybridised state.
  • the fluorophore is attached to the 5' end and is quenched by a moiety coupled to the 3' end.
  • the 3' portion of the stem also contains sequence that is complementary to the extension product of the primer. This sequence is linked to the 5' end of a specific primer via a non-amplifiable monomer.
  • the specific probe sequence is able to bind to its complement within the extended amplicon thus opening up the hairpin loop. This prevents the fluorescence from being quenched and a signal is observed.
  • SYBR- green I or ethidium bromide a non-sequence specific fluorescent intercalating agent
  • SYBR green is a fluorogenic minor groove binding dye that exhibits little fluorescence when in solution but emits a strong fluorescent signal upon binding to double-stranded DNA.
  • Disadvantages of SYBR green-based real-time PCR include the requirement for extensive optimisation.
  • non-specific amplifications require follow-up assays (melting point curve or dissociation analysis) for amplicon identification.
  • the threshold cycle or the CT value is the cycle at which a significant increase in ARn is first detected (for definition of ARn, see below).
  • the threshold cycle is when the system begins to detect the increase in the signal associated with an exponential growth of PCR product during the log-linear phase. This phase provides the most useful information about the reaction (certainly more important than the end-point).
  • the slope of the log-linear phase is a reflection of the amplification efficiency.
  • the efficiency of the PCR should be 90 - 100% (3.6 > slope >3.1).
  • a number of variables can affect the efficiency of the PCR. These factors include length of the amplicon, secondary structure and primer quality.
  • the qRT-PCR should be further optimised or alternative amplicons designed.
  • the slope to be an indicator of real amplification (rather than signal drift), there has to be an inflection point. This is the point on the growth curve when the log-linear phase begins. It also represents the greatest rate of change along the growth curve. (Signal drift is characterised by gradual increase or decrease in fluorescence without amplification of the product.)
  • the important parameter for quantitation is the CT. The higher the initial amount of genomic DNA, the sooner accumulated product is detected in the PCR process, and the lower the CT value.
  • the threshold should be placed above any baseline activity and within the exponential increase phase (which looks linear in the log transformation).
  • CT cycle threshold
  • Multiplex TaqMan assays can be performed using multiple dyes with distinct emission wavelengths.
  • Available dyes for this purpose are FAM, TET, VIC and JOE (the most expensive).
  • TAMRA is reserved as the quencher on the probe and ROX as the passive reference.
  • FAM target
  • VIC endogenous control
  • JOE endogenous control
  • VIC endogenous control
  • the spectral compensation for the post run analysis should be turned on (on ABI 7700: Instrument/Diagnostics/Advanced Options/Miscellaneous). Activating spectral compensation improves dye spectral resolution.
  • the disclosed methods can further utilize nested PCR.
  • Nested PCR increases the specificity of DNA amplification, by reducing background due to non-specific amplification of DNA.
  • Two sets of primers are being used in two successive PCRs. In the first reaction, one pair of primers is used to generate DNA products, which besides the intended target, may still consist of non-specifically amplified DNA fragments.
  • the product(s) are then used in a second PCR with a set of primers whose binding sites are completely or partially different from and located 3' of each of the primers used in the first reaction.
  • Nested PCR is often more successful in specifically amplifying long DNA fragments than conventional PCR, but it requires more detailed knowledge of the target sequences.
  • Primers and Probes The disclosed methods and assays can use primers and probes.
  • primers are a subset of probes which are capable of supporting some type of enzymatic manipulation and which can hybridize with a target nucleic acid such that the enzymatic manipulation can occur.
  • a primer can be made from any combination of nucleotides or nucleotide derivatives or analogs available in the art which do not interfere with the enzymatic manipulation.
  • probes are molecules capable of interacting with a target nucleic acid, typically in a sequence specific manner, for example through hybridization.
  • the hybridization of nucleic acids is well understood in the art and discussed herein.
  • a probe can be made from any combination of nucleotides or nucleotide derivatives or analogs available in the art.
  • primers and probes which include the use of primers and probes, as well as, the disclosed primer panels all of which are capable of interacting with the disclosed nucleic acids such as ALK (SEQ ID NO: 1), BRAF, EGFR, KIT, or KRAS or their complement.
  • ALK SEQ ID NO: 1
  • BRAF BRAF
  • EGFR EGFR
  • KIT KRAS
  • any of the primers or primer sets from Table 7-14 can be used in the disclosed primer panels or any of the methods and assays disclosed herein.
  • the primers are used to support nucleic acid extension reactions, nucleic acid replication reactions, and/or nucleic acid amplification reactions.
  • the primers will be capable of being extended in a sequence specific manner.
  • Extension of a primer in a sequence specific manner includes any methods wherein the sequence and/or composition of the nucleic acid molecule to which the primer is hybridized or otherwise associated directs or influences the composition or sequence of the product produced by the extension of the primer.
  • Extension of the primer in a sequence specific manner therefore includes, but is not limited to, PCR, DNA sequencing, DNA extension, DNA polymerization, RNA transcription, or reverse transcription. Techniques and conditions that amplify the primer in a sequence specific manner are disclosed.
  • the primers are used for the DNA amplification reactions, such as PCR or direct sequencing.
  • the primers can also be extended using non-enzymatic techniques, where for example, the nucleotides or oligonucleotides used to extend the primer are modified such that they will chemically react to extend the primer in a sequence specific manner.
  • the disclosed primers hybridize with the disclosed nucleic acids or region of the nucleic acids or they hybridize with the complement of the nucleic acids or complement of a region of the nucleic acids.
  • one or more primers can be used to create extension products from and templated by a first nucleic acid.
  • the size of the primers or probes for interaction with the nucleic acids can be any size that supports the desired enzymatic manipulation of the primer, such as DNA amplification or the simple hybridization of the probe or primer.
  • a typical primer or probe would be at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
  • a primer or probe can be less than or equal to 6, 7, 8, 9, 10, 11, 12 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550,
  • the primers for the nucleic acid of interest typically will be used to produce extension products and/or other replicated or amplified products that contain a region of the nucleic acid of interest.
  • the size of the product can be such that the size can be accurately determined to within 3, or 2 or 1 nucleotides.
  • the product can be, for example, at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 650, 700, 750, 800, 850,
  • the product can be, for example, less than or equal to 20, 21,
  • multiplex PCR When multiple primer pairs are placed into a single reaction, this is referred to as “multiplex PCR.” It is understood and herein contemplated that any combination of two or more or three or more the forward and/or reverse primers disclosed herein can be used in the multiplex reaction.
  • Fluorescent change probes and fluorescent change primers refer to all probes and primers that involve a change in fluorescence intensity or wavelength based on a change in the form or conformation of the probe or primer and nucleic acid to be detected, assayed or replicated.
  • fluorescent change probes and primers include molecular beacons, Amplifluors, FRET probes, cleavable FRET probes, TaqMan probes, scorpion primers, fluorescent triplex oligos including but not limited to triplex molecular beacons or triplex FRET probes, fluorescent water-soluble conjugated polymers, PNA probes and QPNA probes.
  • Fluorescent change probes and primers can be classified according to their structure and/or function.
  • Fluorescent change probes include hairpin quenched probes, cleavage quenched probes, cleavage activated probes, and fluorescent activated probes.
  • Fluorescent change primers include stem quenched primers and hairpin quenched primers.
  • Hairpin quenched probes are probes that when not bound to a target sequence form a hairpin structure (and, typically, a loop) that brings a fluorescent label and a quenching moiety into proximity such that fluorescence from the label is quenched. When the probe binds to a target sequence, the stem is disrupted, the quenching moiety is no longer in proximity to the fluorescent label and fluorescence increases.
  • hairpin quenched probes are molecular beacons, fluorescent triplex oligos, triplex molecular beacons, triplex FRET probes, and QPNA probes.
  • Cleavage activated probes are probes where fluorescence is increased by cleavage of the probe.
  • Cleavage activated probes can include a fluorescent label and a quenching moiety in proximity such that fluorescence from the label is quenched.
  • the quenching moiety is no longer in proximity to the fluorescent label and fluorescence increases.
  • TaqMan probes are an example of cleavage activated probes.
  • Cleavage quenched probes are probes where fluorescence is decreased or altered by cleavage of the probe.
  • Cleavage quenched probes can include an acceptor fluorescent label and a donor moiety such that, when the acceptor and donor are in proximity, fluorescence resonance energy transfer from the donor to the acceptor causes the acceptor to fluoresce.
  • the probes are thus fluorescent, for example, when hybridized to a target sequence.
  • the donor moiety is no longer in proximity to the acceptor fluorescent label and fluorescence from the acceptor decreases.
  • the donor moiety is itself a fluorescent label, it can release energy as fluorescence (typically at a different wavelength than the fluorescence of the acceptor) when not in proximity to an acceptor.
  • the overall effect would then be a reduction of acceptor fluorescence and an increase in donor fluorescence.
  • Donor fluorescence in the case of cleavage quenched probes is equivalent to fluorescence generated by cleavage activated probes with the acceptor being the quenching moiety and the donor being the fluorescent label.
  • Cleavable FRET (fluorescence resonance energy transfer) probes are an example of cleavage quenched probes.
  • Fluorescent activated probes are probes or pairs of probes where fluorescence is increased or altered by hybridization of the probe to a target sequence.
  • Fluorescent activated probes can include an acceptor fluorescent label and a donor moiety such that, when the acceptor and donor are in proximity (when the probes are hybridized to a target sequence), fluorescence resonance energy transfer from the donor to the acceptor causes the acceptor to fluoresce.
  • Fluorescent activated probes are typically pairs of probes designed to hybridize to adjacent sequences such that the acceptor and donor are brought into proximity.
  • Fluorescent activated probes can also be single probes containing both a donor and acceptor where, when the probe is not hybridized to a target sequence, the donor and acceptor are not in proximity but where the donor and acceptor are brought into proximity when the probe hybridized to a target sequence. This can be accomplished, for example, by placing the donor and acceptor on opposite ends of the probe and placing target complement sequences at each end of the probe where the target complement sequences are complementary to adjacent sequences in a target sequence. If the donor moiety of a fluorescent activated probe is itself a fluorescent label, it can release energy as fluorescence (typically at a different wavelength than the fluorescence of the acceptor) when not in proximity to an acceptor (that is, when the probes are not hybridized to the target sequence). When the probes hybridize to a target sequence, the overall effect would then be a reduction of donor fluorescence and an increase in acceptor fluorescence.
  • FRET probes are an example of fluorescent activated probes.
  • Stem quenched primers are primers that when not hybridized to a complementary sequence form a stem structure (either an intramolecular stem structure or an intermolecular stem structure) that brings a fluorescent label and a quenching moiety into proximity such that fluorescence from the label is quenched.
  • stem quenched primers are used as primers for nucleic acid synthesis and thus become incorporated into the synthesized or amplified nucleic acid.
  • Examples of stem quenched primers are peptide nucleic acid quenched primers and hairpin quenched primers.
  • Peptide nucleic acid quenched primers are primers associated with a peptide nucleic acid quencher or a peptide nucleic acid fluor to form a stem structure.
  • the primer contains a fluorescent label or a quenching moiety and is associated with either a peptide nucleic acid quencher or a peptide nucleic acid fluor, respectively. This puts the fluorescent label in proximity to the quenching moiety. When the primer is replicated, the peptide nucleic acid is displaced, thus allowing the fluorescent label to produce a fluorescent signal.
  • Hairpin quenched primers are primers that when not hybridized to a complementary sequence form a hairpin structure (and, typically, a loop) that brings a fluorescent label and a quenching moiety into proximity such that fluorescence from the label is quenched. When the primer binds to a complementary sequence, the stem is disrupted; the quenching moiety is no longer in proximity to the fluorescent label and fluorescence increases. Hairpin quenched primers are typically used as primers for nucleic acid synthesis and thus become incorporated into the synthesized or amplified nucleic acid. Examples of hairpin quenched primers are Amplifluor primers and scorpion primers.
  • Cleavage activated primers are similar to cleavage activated probes except that they are primers that are incorporated into replicated strands and are then subsequently cleaved. Labels
  • labels can be directly incorporated into nucleotides and nucleic acids or can be coupled to detection molecules such as probes and primers.
  • a label is any molecule that can be associated with a nucleotide or nucleic acid, directly or indirectly, and which results in a measurable, detectable signal, either directly or indirectly.
  • labels for incorporation into nucleotides and nucleic acids or coupling to nucleic acid probes are known to those of skill in the art.
  • Examples of labels suitable for use in the disclosed method are radioactive isotopes, fluorescent molecules, phosphorescent molecules, enzymes, antibodies, and ligands. Fluorescent labels, especially in the context of fluorescent change probes and primers, are useful for real-time detection of amplification.
  • fluorescent labels include fluorescein isothiocyanate (FITC), 5,6-carboxymethyl fluorescein, Texas red, nitrobenz-2-oxa-l,3-diazol-4-yl ( BD), coumarin, dansyl chloride, rhodamine, amino-methyl coumarin (AMCA), Eosin, Erythrosin, BODIPY ® , CASCADE BLUE ® , OREGON GREEN ® , pyrene, lissamine, xanthenes, acridines, oxazines, phycoerythrin, macrocyclic chelates of lanthanide ions such as quantum dyeTM, fluorescent energy transfer dyes, such as thiazole orange-ethidium heterodimer, and the cyanine dyes Cy3, Cy3.5, Cy5, Cy5.5 and Cy7.
  • FITC fluorescein isothiocyanate
  • Texas red nitrobenz-2-oxa-l,3-
  • Examples of other specific fluorescent labels include 3-Hydroxypyrene 5,8,10-Tri Sulfonic acid, 5-Hydroxy Tryptamine (5-HT), Acid Fuchsin, Alizarin Complexon, Alizarin Red, Allophycocyanin, Aminocoumarin, Anthroyl Stearate, Astrazon Brilliant Red 4G, Astrazon Orange R, Astrazon Red 6B, Astrazon Yellow 7 GLL, Atabrine, Auramine, Aurophosphine, Aurophosphine G, BAO 9 (Bisaminophenyloxadiazole), BCECF, BerberineSulphate, Bisbenzamide, Blancophor FFG Solution, Blancophor SV, Bodipy Fl, Brilliant Sulpho flavin FF, Calcien Blue, Calcium Green, Calcofluor RW Solution, Calcofluor White, Calcophor White ABT Solution, Calcophor White Standard Solution, Carbostyryl, Cascade Yellow, Catecholamine, Chinacrine, Coriphosphine O, Coumarin
  • Leucophor WS LissamineRhodamine B200 (RD200), Lucifer Yellow CH, Lucifer Yellow VS, Magdala Red, Marina Blue, Maxilon Brilliant Flavin 10 GFF, Maxilon Brilliant Flavin 8 GFF, MPS (Methyl Green PyronineStilbene), Mithramycin, NBD Amine,
  • Nitrobenzoxadidole Noradrenaline, Nuclear Fast Red, Nuclear Yellow, Nylosan Brilliant Flavin E8G, Oxadiazole, Pacific Blue, Pararosaniline (Feulgen), Phorwite AR Solution, Phorwite BKL, Phorwite Rev, Phorwite RPA, Phosphine 3R, Phthalocyanine,
  • Phycoerythrin R Phycoerythrin B, PolyazaindacenePontochrome Blue Black, Porphyrin, Primuline, Procion Yellow, Pyronine, Pyronine B, Pyrozal Brilliant Flavin 7GF, Quinacrine Mustard, Rhodamine 123, Rhodamine 5 GLD, Rhodamine 6G, Rhodamine B, Rhodamine B 200, Rhodamine B Extra, Rhodamine BB, Rhodamine BG, Rhodamine WT, Serotonin, Sevron Brilliant Red 2B, Sevron Brilliant Red 4G, Sevron Brilliant Red B, Sevron Orange, Sevron Yellow L, SITS (Primuline), SITS (Stilbenelsothiosulphonic acid), Stilbene, Snarf 1, sulphoRhodamine B Can C, SulphoRhodamine G Extra, Tetracycline, Thiazine Red R, Thioflavin S, Thioflavin TCN, Thi
  • the absorption and emission maxima, respectively, for some of these fluors are: FITC (490 nm; 520 nm), Cy3 (554 nm; 568 nm), Cy3.5 (581 nm; 588 nm), Cy5 (652 nm: 672 nm), Cy5.5 (682 nm; 703 nm) and Cy7 (755 nm; 778 nm), thus allowing their simultaneous detection.
  • fluorescein dyes include 6-carboxyfluorescein (6-FAM), 2',4',1,4,-tetrachlorofluorescein (TET), 2',4',5',7',1,4-hexachlorofluorescein (HEX), 2',7'-dimethoxy-4', 5'-dichloro-6-carboxyrhodamine (JOE), 2'-chloro-5'-fluoro-7',8'- fused phenyl- l,4-dichloro-6-carboxyfluorescein (NED), and 2'-chloro-7'-phenyl-l,4- dichloro-6-carboxyfluorescein (VIC).
  • Fluorescent labels can be obtained from a variety of commercial sources, including Amersham Pharmacia Biotech, Piscataway, NJ; Molecular Probes, Eugene, OR; and Research Organics, Cleveland, Ohio.
  • Additional labels of interest include those that provide for signal only when the probe with which they are associated is specifically bound to a target molecule, where such labels include: "molecular beacons" as described in Tyagi& Kramer, Nature Biotechnology (1996) 14:303 and EP 0 070 685 B l.
  • Other labels of interest include those described in U.S. Pat. No. 5,563,037 which is incorporated herein by reference.
  • Labeled nucleotides are a form of label that can be directly incorporated into the amplification products during synthesis.
  • labels that can be incorporated into amplified nucleic acids include nucleotide analogs such as BrdUrd, aminoallyldeoxyuridine, 5-methylcytosine, bromouridine, and nucleotides modified with biotin or with suitable haptens such as digoxygenin.
  • Suitable fluorescence-labeled nucleotides are Fluorescein- isothiocyanate-dUTP, Cyanine-3-dUTP and Cyanine-5-dUTP.
  • nucleotide analog label for DNA is BrdUrd (bromodeoxyuridine, BrdUrd, BrdU, BUdR, Sigma- Aldrich Co).
  • nucleotide analogs for incorporation of label into DNA are AA-dUTP (aminoallyl-deoxyuridine triphosphate, Sigma-Aldrich Co.), and 5-methyl-dCTP (Roche Molecular Biochemicals).
  • AA-dUTP aminoallyl-deoxyuridine triphosphate
  • 5-methyl-dCTP Roche Molecular Biochemicals
  • nucleotide analog for incorporation of label into RNA is biotin- 16-UTP (biotin- 16-uridine-5'-triphosphate, Roche Molecular Biochemicals). Fluorescein, Cy3, and Cy5 can be linked to dUTP for direct labeling.
  • Cy3.5 and Cy7 are available as avidin or anti-digoxygenin conjugates for secondary detection of biotin- or digoxygenin-labeled probes.
  • Biotin can be detected using streptavidin-alkaline phosphatase conjugate (Tropix, Inc.), which is bound to the biotin and subsequently detected by chemiluminescence of suitable substrates (for example, chemiluminescent substrate CSPD: disodium, 3-(4-methoxyspiro-[l,2,- dioxetane-3-2'-(5'-chloro)tricyclo [3.3.1.1 3 ' 7 ]decane]-4-yl) phenyl phosphate; Tropix, Inc.).
  • suitable substrates for example, chemiluminescent substrate CSPD: disodium, 3-(4-methoxyspiro-[l,2,- dioxetane-3-2'-(5'-chloro)tricyclo [3.3.1.1 3 ' 7 ]decane]-4-yl
  • Labels can also be enzymes, such as alkaline phosphatase, soybean peroxidase, horseradish peroxidase and polymerases, that can be detected, for example, with chemical signal amplification or by using a substrate to the enzyme which produces light (for example, a chemiluminescent 1 ,2-dioxetane substrate) or fluorescent signal.
  • enzymes such as alkaline phosphatase, soybean peroxidase, horseradish peroxidase and polymerases
  • a substrate to the enzyme which produces light for example, a chemiluminescent 1 ,2-dioxetane substrate
  • fluorescent signal for example, a chemiluminescent 1 ,2-dioxetane substrate
  • Molecules that combine two or more of these labels are also considered labels. Any of the known labels can be used with the disclosed probes, tags, and method to label and detect nucleic acid amplified using the disclosed method. Methods for detecting and measuring signals generated by labels are also known to those of skill in the art. For example, radioactive isotopes can be detected by scintillation counting or direct visualization; fluorescent molecules can be detected with fluorescent spectrophotometers; phosphorescent molecules can be detected with a spectrophotometer or directly visualized with a camera; enzymes can be detected by detection or visualization of the product of a reaction catalyzed by the enzyme; antibodies can be detected by detecting a secondary label coupled to the antibody. As used herein, detection molecules are molecules which interact with amplified nucleic acid and to which one or more labels are coupled.
  • the disclosed methods, assays, and primer panels can be used to diagnose any disease where uncontrolled cellular proliferation occurs herein referred to as "cancer".
  • cancer A non-limiting list of different types of ALK related cancers is as follows: lymphomas (Hodgkins and non-Hodgkins), leukemias, carcinomas, carcinomas of solid tissues, squamous cell carcinomas, adenocarcinomas, sarcomas, gliomas, high grade gliomas, blastomas, neuroblastomas, plasmacytomas, histiocytomas, melanomas, adenomas, hypoxic tumours, myelomas, AIDS-related lymphomas or sarcomas, metastatic cancers, or cancers in general.
  • lymphomas Hodgkins and non-Hodgkins
  • leukemias carcinomas, carcinomas of solid tissues
  • squamous cell carcinomas adenocarcinomas
  • sarcomas gliomas
  • lymphoma B cell lymphoma (including diffuse large B-cell lymphoma), B-cell plasmablastic/immunoblastic lymphomas, T cell lymphoma (including T- or null-cell lymphomas), mycosis fungoides, Hodgkin's Disease, myeloid leukemia, bladder cancer, brain cancer, nervous system cancer, head and neck cancer, squamous cell carcinoma of head and neck, kidney cancer, lung cancers such as small cell lung cancer and non-small cell lung cancer, neuroblastoma/glioblastoma, , anaplastic large-cell lymphoma (ALCL), inflammatory myofibroblastic tumors, ovarian cancer, pancreatic cancer, prostate cancer, skin cancer, liver cancer, melanoma, malignant histiocytosis, squamous cell carcinomas of the mouth, throat, larynx, and lung, colon cancer, cervical cancer, cervical
  • the disclosed method and compositions make use of various nucleic acids.
  • any nucleic acid can be used in the disclosed method.
  • the disclosed nucleic acids of interest and the disclosed reference nucleic acids can be chosen based on the desired analysis and information that is to be obtained or assessed.
  • the disclosed methods also produce new and altered nucleic acids. The nature and structure of such nucleic acids will be established by the manner in which they are produced and manipulated in the methods.
  • extension products and hybridizing nucleic acids are produced in the disclosed methods.
  • hybridizing nucleic acids are hybrids of extension products and the second nucleic acid.
  • a nucleic acid of interest can be any nucleic acid to which the determination of the presence or absence of nucleotide variation is desired.
  • the nucleic acid of interest can comprise a sequence that corresponds to the wild-type sequence of the reference nucleic acid. It is further disclosed herein that the disclosed methods can be performed where the first nucleic acid is a reference nucleic acid and the second nucleic acid is a nucleic acid of interest or where the first nucleic acid is the nucleic acid of interest and the second nucleic acid is the reference nucleic acid.
  • a reference nucleic acid can be any nucleic acid against which a nucleic acid of interest is to be compared.
  • the reference nucleic acid has a known sequence (and/or is known to have a sequence of interest as a reference).
  • the reference sequence has a known or suspected close relationship to the nucleic acid of interest.
  • the reference sequence can be usefully chosen to be a sequence that is a homolog or close match to the nucleic acid of interest, such as a nucleic acid derived from the same gene or genetic element from the same or a related organism or individual.
  • the reference nucleic acid can comprise a wild-type sequence or alternatively can comprise a known mutation including, for example, a mutation the presence or absence of which is associated with a disease or resistance to therapeutic treatment.
  • the disclosed methods can be used to detect or diagnose the presence of known mutations in a nucleic acid of interest by comparing the nucleic acid of interest to a reference nucleic acid that comprises a wild-type sequence (i.e., is known not to possess the mutation) and examining for the presence or absence of variation in the nucleic acid of interest, where the absence of variation would indicate the absence of a mutation.
  • the reference nucleic acid can possess a known mutation.
  • the disclosed methods can be used to detect susceptibility for a disease or condition by comparing the nucleic acid of interest to a reference nucleic acid comprising a known mutation that indicates susceptibility for a disease and examining for the presence or absence of the mutation, wherein the presence of the mutation indicates a disease.
  • nucleotide variation refers to any change or difference in the nucleotide sequence of a nucleic acid of interest relative to the nucleotide sequence of a reference nucleic acid.
  • a nucleotide variation is said to occur when the sequences between the reference nucleic acid and the nucleic acid of interest (or its complement, as appropriate in context) differ.
  • a substitution of an adenine (A) to a guanine (G) at a particular position in a nucleic acid would be a nucleotide variation provided the reference nucleic acid comprised an A at the corresponding position.
  • nucleic acid determines whether or not a sequence is wild-type.
  • a nucleic acid with a known mutation is used as the reference nucleic acid
  • a nucleic acid not possessing the mutation would be considered to possess a nucleotide variation (relative to the reference nucleic acid).
  • nucleotide for a nucleotide. It is understood and contemplated herein that where reference is made to a type of base, this refers a base that in a nucleotide in a nucleic acid strand is capable of hybridizing (binding) to a defined set of one or more of the canonical bases.
  • nuclease-resistant nucleotides can be, for example, guanine (G), thymine (T), and cytosine (C).
  • G guanine
  • T thymine
  • C cytosine
  • modified or alternative base can be used in the disclosed methods and compositions, generally limited only by the capabilities of the enzymes used to use such bases.
  • Many modified and alternative nucleotides and bases are known, some of which are described below and elsewhere herein.
  • the type of base that such modified and alternative bases represent can be determined by the pattern of base pairing for that base as described herein. Thus for example, if the modified nucleotide was adenine, any analog, derivative, modified, or variant base that based pairs primarily with thymine would be considered the same type of base as adenine. In other words, so long as the analog, derivative, modified, or variant has the same pattern of base pairing as another base, it can be considered the same type of base. Modifications can made to the sugar or phosphate groups of a nucleotide. Generally such modifications will not change the base pairing pattern of the base.
  • the base pairing pattern of a nucleotide in a nucleic acid strand determines the type of base of the base in the nucleotide.
  • Modified nucleotides to be incorporated into extension products and to be selectively removed by the disclosed agents in the disclosed methods can be any modified nucleotide that functions as needed in the disclosed method as is described elsewhere herein. Modified nucleotides can also be produced in existing nucleic acid strands, such as extension products, by, for example, chemical modification, enzymatic modification, or a combination.
  • nuclease-resistant nucleotides Many types of nuclease-resistant nucleotides are known and can be used in the disclosed methods.
  • nucleotides have modified phosphate groups and/or modified sugar groups can be resistant to one or more nucleases.
  • Nuclease-resistance is defined herein as resistance to removal from a nucleic acid by any one or more nucleases.
  • nuclease resistance of a particular nucleotide can be defined in terms of a relevant nuclease.
  • the nuclease-resistant nucleotides need only be resistant to that particular nuclease.
  • useful nuclease-resistant nucleotides include thio-modified nucleotides and borano-modified nucleotides.
  • nucleotide is a molecule that contains a base moiety, a sugar moiety and a phosphate moiety. Nucleotides can be linked together through their phosphate moieties and sugar moieties creating an internucleoside linkage.
  • the base moiety of a nucleotide can be adenine-9-yl (adenine, A), cytosine- 1-yl (cytosine, C), guanine-9-yl (guanine, G), uracil- 1- yl (uracil, U), and thymin-l-yl (thymine, T).
  • the sugar moiety of a nucleotide is a ribose or a deoxyribose.
  • the phosphate moiety of a nucleotide is pentavalent phosphate.
  • a non- limiting example of a nucleotide would be 3'-AMP (3'-adenosine monophosphate) or 5'- GMP (5'-guanosine monophosphate).
  • a nucleotide analog is a nucleotide which contains some type of modification to either the base, sugar, or phosphate moieties. Modifications to the base moiety would include natural and synthetic modifications of A, C, G, and T/U as well as different purine or pyrimidine bases, such as uracil-5-yl ( ⁇ ), hypoxanthin-9-yl (inosine, I), and 2- aminoadenin-9-yl.
  • a modified base includes but is not limited to 5-methylcytosine (5-me- C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5- propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5 -uracil (pseudouracil), 4- thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and
  • nucleotide analogs such as 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5- propynylcytosine. 5-methylcytosine can increase the stability of duplex formation.
  • time base modifications can be combined with for example a sugar modification, such as 2'- O-methoxyethyl, to achieve unique properties such as increased duplex stability.
  • Nucleotide analogs can also include modifications of the sugar moiety.
  • Modifications to the sugar moiety would include natural modifications of the ribose and deoxy ribose as well as synthetic modifications.
  • Sugar modifications include but are not limited to the following modifications at the 2' position: OH; F; 0-, S-, or N-alkyl; 0-, S-, or N-alkenyl; 0-, S-or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted CI to CIO, alkyl or C2 to CIO alkenyl and alkynyl.
  • 2' sugar modifications also include but are not limited to -0[(CH2)n 0]m CH3, - 0(CH2)n 0CH3, -0(CH2)n NH2, -0(CH2)n CH3, -0(CH2)n -0NH2, and - 0(CH2)nON[(CH2)n CH3)]2, where n and m are from 1 to about 10.
  • modifications at the 2' position include but are not limited to: CI to CIO lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, CI, Br, CN, CF3, OCF3, SOCH3, S02 CH3, ON02, N02, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. Similar
  • modifications may also be made at other positions on the sugar, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Modified sugars would also include those that contain modifications at the bridging ring oxygen, such as CH2 and S. Nucleotide sugar analogs may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar.
  • Nucleotide analogs can also be modified at the phosphate moiety.
  • Modified phosphate moieties include but are not limited to those that can be modified so that the linkage between two nucleotides contains a phosphorothioate, chiral phosphorothioate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester, methyl and other alkyl phosphonates including 3'-alkylene phosphonate and chiral phosphonates, phosphinates, phosphoramidates including 3 '-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates.
  • these phosphate or modified phosphate linkage between two nucleotides can be through a 3'-5' linkage or a 2'-5' linkage, and the linkage can contain inverted polarity such as 3'-5' to 5'-3' or 2'-5' to 5'-2'.
  • Various salts, mixed salts and free acid forms are also included.
  • nucleotide analogs need only contain a single modification, but may also contain multiple modifications within one of the moieties or between different moieties.
  • Nucleotide substitutes are molecules having similar functional properties to nucleotides, but which do not contain a phosphate moiety, such as peptide nucleic acid (PNA). Nucleotide substitutes are molecules that will recognize nucleic acids in a Watson- Crick or Hoogsteen manner, but which are linked together through a moiety other than a phosphate moiety. Nucleotide substitutes are able to conform to a double helix type structure when interacting with the appropriate target nucleic acid.
  • PNA peptide nucleic acid
  • Nucleotide substitutes are nucleotides or nucleotide analogs that have had the phosphate moiety and/or sugar moieties replaced. Nucleotide substitutes do not contain a standard phosphorus atom. Substitutes for the phosphate can be for example, short chain alkyl or cycloalkylinternucleoside linkages, mixed heteroatom and alkyl or
  • cycloalkylinternucleoside linkages or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
  • These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones;
  • methyleneimino and methylenehydrazino backbones sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.
  • PNA aminoethylglycine
  • Such conjugates include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium l,2-di-0-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an ali
  • octadecylamine or hexylamino-carbonyl-oxycholesterol moiety octadecylamine or hexylamino-carbonyl-oxycholesterol moiety.
  • a Watson-Crick interaction is at least one interaction with the Watson-Crick face of a nucleotide, nucleotide analog, or nucleotide substitute.
  • the Watson-Crick face of a nucleotide, nucleotide analog, or nucleotide substitute includes the C2, Nl, and C6 positions of a purine based nucleotide, nucleotide analog, or nucleotide substitute and the C2, N3, C4 positions of a pyrimidine based nucleotide, nucleotide analog, or nucleotide substitute.
  • a Hoogsteen interaction is the interaction that takes place on the Hoogsteen face of a nucleotide or nucleotide analog, which is exposed in the major groove of duplex DNA.
  • the Hoogsteen face includes the N7 position and reactive groups (NH2 or O) at the C6 position of purine nucleotides.
  • hybridization typically means a sequence driven interaction between at least two nucleic acid molecules, such as a primer or a probe and a gene.
  • Sequence driven interaction means an interaction that occurs between two nucleotides or nucleotide analogs or nucleotide derivatives in a nucleotide specific manner. For example, G interacting with C or A interacting with T are sequence driven interactions. Typically sequence driven interactions occur on the Watson-Crick face or Hoogsteen face of the nucleotide.
  • the hybridization of two nucleic acids is affected by a number of conditions and parameters known to those of skill in the art. For example, the salt concentrations, pH, and temperature of the reaction all affect whether two nucleic acid molecules will hybridize. Parameters for selective hybridization between two nucleic acid molecules are well known to those of skill in the art. For example, in some embodiments selective
  • hybridization conditions can be defined as stringent hybridization conditions.
  • stringency of hybridization is controlled by both temperature and salt concentration of either or both of the hybridization and washing steps.
  • hybridization to achieve selective hybridization may involve hybridization in high ionic strength solution (6X SSC or 6X SSPE) at a temperature that is about 12-25°C below the Tm (the melting temperature at which half of the molecules dissociate from their hybridization partners) followed by washing at a combination of temperature and salt concentration chosen so that the washing temperature is about 5°C to 20°C below the Tm.
  • Tm the melting temperature at which half of the molecules dissociate from their hybridization partners
  • the temperature and salt conditions are readily determined empirically in preliminary experiments in which samples of reference DNA immobilized on filters are hybridized to a labeled nucleic acid of interest and then washed under conditions of different stringencies.
  • Hybridization temperatures are typically higher for DNA-RNA and RNA-RNA
  • a preferable stringent hybridization condition for a DNA:DNA hybridization can be at about 68°C (in aqueous solution) in 6X SSC or 6X SSPE followed by washing at 68°C.
  • Stringency of hybridization and washing if desired, can be reduced accordingly as the degree of complementarity desired is decreased, and further, depending upon the G-C or A-T richness of any area wherein variability is searched for.
  • stringency of hybridization and washing if desired, can be increased accordingly as homology desired is increased, and further, depending upon the G-C or A-T richness of any area wherein high homology is desired, all as known in the art.
  • selective hybridization conditions would be when at least about, 60, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 percent of the limiting nucleic acid is bound to the non-limiting nucleic acid.
  • the non-limiting primer is in for example, 10 or 100 or 1000 fold excess.
  • This type of assay can be performed at under conditions where both the limiting and non-limiting primer are for example, 10 fold or 100 fold or 1000 fold below their ka, or where only one of the nucleic acid molecules is 10 fold or 100 fold or 1000 fold or where one or both nucleic acid molecules are above their ka.
  • selective hybridization conditions would be when at least about, 60, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 percent of the primer is enzymatically manipulated under conditions which promote the enzymatic manipulation, for example if the enzymatic manipulation is DNA extension, then selective hybridization conditions would be when at least about 60, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
  • composition or method meets any one of these criteria for determining hybridization either collectively or singly it is a composition or method that is disclosed herein.
  • kits Disclosed herein are kits that are drawn to reagents that can be used in practicing the methods disclosed herein.
  • the kits can include any reagent or combination of reagents discussed herein or that would be understood to be required or beneficial in the practice of the disclosed methods.
  • the kits could include one or more primers from Tables 7-14 disclosed herein to perform the extension, replication and amplification reactions discussed in certain embodiments of the methods, as well as the buffers and enzymes required to use the primers as intended.
  • the kit can also include other necessary reagents to perform any of the next generation sequencing techniques disclosed herein.
  • the disclosed kits can include one or more of the probes listed in Table 15 in addition to or instead of one or more primers from Table 7-14.
  • kits can comprise at least one primer set to detect the presence of nucleic acid variation in each ⁇ , BRAF, KRAS, ALK, and EGFR.
  • the kits can comprise at least one primer or primer set for sequencing at least one of each of the KIT, BRAF, KRAS, ALK, and EGFR exons of Tables 1.
  • the kits can comprise at least one primer or primer set from each of Tables 7-14.
  • the kit can comprise a primer or primer set that will detect one or more of the specific mutations listed in Tables 2-6.
  • kits for performing a NGS sequencing reaction on a tissue sample to detect the presence of a mutation conferring kinase inhibitor resistance comprising at least one or more primer or primer set from each of Table 7-14.
  • kits for performing a NGS sequencing reaction on a tissue sample to detect the presence of a mutation conferring kinase inhibitor resistance comprising at least one or more primer or primer set capable of specifically hybridizing an amplifying any of the mutant sequences of KIT, BRAF, KRAS, ALK, and EGFR present in Tables 2-6.
  • kits can include such other reagents and material for performing the disclosed methods such as enzymes (e.g., polymerases), buffers, sterile water, and/or reaction tubes. Additionally the kits can also include modified nucleotides, nuclease-resistant nucleotides, and or labeled nucleotides. Additionally, the disclosed kits can include instructions for performing the methods disclosed herein and software for enable the calculation of the presence of a kinase inhibitor mutation (i.e., a mutation in KIT, BRAF, KRAS, EGFR, and/or ALK).
  • a kinase inhibitor mutation i.e., a mutation in KIT, BRAF, KRAS, EGFR, and/or ALK.
  • compositions disclosed herein and the compositions necessary to perform the disclosed methods can be made using any method known to those of skill in the art for that particular reagent or compound unless otherwise specifically noted.
  • the disclosed nucleic acids such as, the oligonucleotides to be used as primers can be made using standard chemical synthesis methods or can be produced using enzymatic methods or any other known method. Such methods can range from standard enzymatic digestion followed by nucleotide fragment isolation to purely synthetic methods, for example, by the cyanoethylphosphoramidite method using a Milligen or Beckman System lPlus DNA synthesizer (for example, Model 8700 automated synthesizer of Milligen- Biosearch, Burlington, MA or ABI Model 380B).
  • a Milligen or Beckman System lPlus DNA synthesizer for example, Model 8700 automated synthesizer of Milligen- Biosearch, Burlington, MA or ABI Model 380B.
  • Applicants have designed and developed a next generation sequencing panel to amplify and sequence one or more exons within ALK and other oncogenes implicated in driving tumorigenesis in the presence of crizotinib (i.e. ALK, BRAF, EGFR, KIT and K- RAS. See Table 1 for an overarching description of the exons targeted for sequencing in the panel and Tables 2-6 for a more detailed list of each mutation detected by the Insight ALK resistance ZDTM panel. Primer sequences used to amplify each gene segment are depicted in Tables 7-14.
  • Polymerase chain reaction is used to create amplicons that span the exonic regions mentioned above.
  • the design described here is agnostic to the NGS platform used to perform the actual sequencing, and thus multiple PCR strategies can match the size of the PCR fragments to the read-length of the sequencing platform being employed.
  • the PCR amplification can be done in a single-tube as a multiple reaction where all targets are covered at once. In the case of low coverage or ambiguous results, a single-plex PCR can be performed as a confirmatory step to ensure accurate mutation calling. This is also true in the case of highly-degraded samples where the template DNA has fragmented and large- amplicons cannot be extracted from the DNA that remains.
  • each PCR reaction consist of 95°C 15-min heat denaturation phase followed by 40 cycles of denaturation at 95°C for 15 sec and 55°C annealing for 30 sec and 72°C extension for 1 min and finally a 72°C final extension step for 5 minutes.
  • the Insight ALK resistance IDTM is designed to be able to produce fragments as short as 150 bases to as high as 5kb.
  • each amplicon can be matched to the output of long-read and middle-read technologies (150-1000 bases) or have large enough fragments (5kb) that can be effectively sheared, either sonically or enzymatically, to be compatible with short-read sequencers ( ⁇ 150 bases).
  • the ALK resistance IDTM takes advantage of the very high-throughput offered by modern sequencers to cover the regions of interest at very high coverage (depth > 5,000X) and thus enable the detection of rare variants only present in the sample at a frequency of 1% or less.
  • the sequence reads that are generated can be compared to a reference sequence examined for the presence of any of the mutations listed in Tables 2-6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
PCT/US2013/061950 2012-09-26 2013-09-26 Procédés et compositions associées au séquençage de nouvelle génération et utilisables dans le cadre d'analyses génétiques portant sur les cancers liés à alk Ceased WO2014052613A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA 2886397 CA2886397A1 (fr) 2012-09-26 2013-09-26 Procedes et compositions associees au sequencage de nouvelle generation et utilisables dans le cadre d'analyses genetiques portant sur les cancers lies a alk
US14/431,430 US20150240301A1 (en) 2012-10-05 2013-09-26 Methods and compositions relating to next generation sequencing for genetic testing in alk related cancers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261705825P 2012-09-26 2012-09-26
US61/705,825 2012-09-26
US201261710455P 2012-10-05 2012-10-05
US61/710,455 2012-10-05

Publications (2)

Publication Number Publication Date
WO2014052613A2 true WO2014052613A2 (fr) 2014-04-03
WO2014052613A3 WO2014052613A3 (fr) 2014-06-12

Family

ID=50389131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/061950 Ceased WO2014052613A2 (fr) 2012-09-26 2013-09-26 Procédés et compositions associées au séquençage de nouvelle génération et utilisables dans le cadre d'analyses génétiques portant sur les cancers liés à alk

Country Status (2)

Country Link
CA (1) CA2886397A1 (fr)
WO (1) WO2014052613A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008853A1 (fr) * 2014-07-14 2016-01-21 Universität Zürich Prorektorat Mnw Moyens et méthodes d'identification d'un patient atteint d'un cancer braf-positif comme personne ne répondant pas à un inhibiteur de braf et comme personne répondant à un inhibiteur de mapk/erk
CN111793675A (zh) * 2019-12-11 2020-10-20 杭州迪安医学检验中心有限公司 一种用于egfr基因18外显子g719x突变检测的核酸序列、试剂盒及其应用
US11040027B2 (en) 2017-01-17 2021-06-22 Heparegenix Gmbh Protein kinase inhibitors for promoting liver regeneration or reducing or preventing hepatocyte death
US11136584B2 (en) * 2015-11-04 2021-10-05 Duke University Splice-switching oligonucleotides and methods of use
WO2022226291A1 (fr) * 2021-04-22 2022-10-27 Dana-Farber Cancer Institute, Inc. Compositions et méthodes pour traiter le cancer
CN115704802A (zh) * 2021-08-11 2023-02-17 北京蛋白质组研究中心 一种血清蛋白在新型冠状病毒肺炎筛查和诊断中的应用
CN117844933A (zh) * 2024-03-07 2024-04-09 上海复迪生生命科学有限公司 一种肺部肿瘤相关基因变异检测用的多重pcr引物组及其用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9422814D0 (en) * 1994-11-11 1995-01-04 Medinnova Sf Chemical method
WO2007001868A1 (fr) * 2005-06-28 2007-01-04 Genentech, Inc. Mutations chez r-egf et kras
EP2118322A2 (fr) * 2007-03-13 2009-11-18 Amgen Inc. Mutations de k-ras et de b-raf et thérapie utilisant des anticorps anti-egfr
CN101381779B (zh) * 2008-10-21 2011-06-08 广州益善生物技术有限公司 kRas基因突变的检测探针、液相芯片及其检测方法
EP2496257A4 (fr) * 2009-11-05 2013-02-27 Cephalon Australia Pty Ltd Traitement d'un cancer caractérisé par la mutation des gènes kras ou braf
EP2499486A4 (fr) * 2009-11-13 2013-11-27 Infinity Pharmaceuticals Inc Compositions, kits, et procédés pour l'identification, l'évaluation, la prévention, et la thérapie d'un cancer
WO2011104695A2 (fr) * 2010-02-26 2011-09-01 GAMMAGENETICS Sàrl Détection de la mutation de kras dans l'exon 2 par rcp quantitative en temps réel spécifique aux allèles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008853A1 (fr) * 2014-07-14 2016-01-21 Universität Zürich Prorektorat Mnw Moyens et méthodes d'identification d'un patient atteint d'un cancer braf-positif comme personne ne répondant pas à un inhibiteur de braf et comme personne répondant à un inhibiteur de mapk/erk
EP3169797B1 (fr) 2014-07-14 2019-08-21 Universität Zürich Prorektorat MNW Moyens et procédés permettant d'identifier un patient ayant un cancer braf-positif comme étant non-répondeur à un inhibiteur de braf et répondeur à un inhibiteur mapk/erk
US11136584B2 (en) * 2015-11-04 2021-10-05 Duke University Splice-switching oligonucleotides and methods of use
US12071626B2 (en) 2015-11-04 2024-08-27 Duke University Splice-switching oligonucleotides and methods of use
US11040027B2 (en) 2017-01-17 2021-06-22 Heparegenix Gmbh Protein kinase inhibitors for promoting liver regeneration or reducing or preventing hepatocyte death
CN111793675A (zh) * 2019-12-11 2020-10-20 杭州迪安医学检验中心有限公司 一种用于egfr基因18外显子g719x突变检测的核酸序列、试剂盒及其应用
CN111793675B (zh) * 2019-12-11 2023-05-23 杭州迪安医学检验中心有限公司 一种用于egfr基因18外显子g719x突变检测的核酸序列、试剂盒及其应用
WO2022226291A1 (fr) * 2021-04-22 2022-10-27 Dana-Farber Cancer Institute, Inc. Compositions et méthodes pour traiter le cancer
CN115704802A (zh) * 2021-08-11 2023-02-17 北京蛋白质组研究中心 一种血清蛋白在新型冠状病毒肺炎筛查和诊断中的应用
CN117844933A (zh) * 2024-03-07 2024-04-09 上海复迪生生命科学有限公司 一种肺部肿瘤相关基因变异检测用的多重pcr引物组及其用途
CN117844933B (zh) * 2024-03-07 2024-06-11 上海复迪生生命科学有限公司 一种肺部肿瘤相关基因变异检测用的多重pcr引物组及其用途

Also Published As

Publication number Publication date
WO2014052613A3 (fr) 2014-06-12
CA2886397A1 (fr) 2014-04-03

Similar Documents

Publication Publication Date Title
AU2010248782B2 (en) Methods and compositions relating to fusions of ALK for diagnosing and treating cancer
WO2013119950A2 (fr) Procédés et compositions concernant des fusions de ros1 pour diagnostiquer et traiter le cancer
WO2014052613A2 (fr) Procédés et compositions associées au séquençage de nouvelle génération et utilisables dans le cadre d'analyses génétiques portant sur les cancers liés à alk
JP2010527241A (ja) 単一のヌクレオチドバリエーションについての核酸をスクリーニングする方法
JP2013081450A (ja) 多型検出用プローブ、多型検出方法、薬効判定方法及び多型検出用試薬キット
US20190144950A1 (en) Methods of detecting a mutated gene by multiplex digital pcr
US20150232940A1 (en) Methods and compositions relating to diagnosing and treating receptor tyrosine kinase related cancers
US9428812B2 (en) Kit comprising primers for amplifying ALK kinase domain nucleic acids
JP6153758B2 (ja) 多型検出用プローブ、多型検出方法、薬効判定方法及び多型検出用キット
US20180371542A1 (en) Opioid receptor blockade in treating alcohol use disorders
JP6205216B2 (ja) 変異検出用プローブ、変異検出方法、薬効判定方法及び変異検出用キット
JP5930825B2 (ja) Egfrエクソン19多型検出試験用試薬キット及びその用途
US20150240301A1 (en) Methods and compositions relating to next generation sequencing for genetic testing in alk related cancers
AU2017210516A1 (en) Highly sensitive methods for detecting BTK resistance mutations in RNA and DNA
WO2014026133A1 (fr) Méthodes et compositions associées à alk pour le diagnostic et le traitement de cancers du sein inflammatoires et d'autres cancers humains
WO2012146251A1 (fr) Procédé pour détecter des mutations en utilisant un système à trois amorces et des amplicons à fusion différentielle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840295

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2886397

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14431430

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13840295

Country of ref document: EP

Kind code of ref document: A2