[go: up one dir, main page]

WO2013129606A1 - ランニングフォーム診断システムおよびランニングフォームを得点化する方法 - Google Patents

ランニングフォーム診断システムおよびランニングフォームを得点化する方法 Download PDF

Info

Publication number
WO2013129606A1
WO2013129606A1 PCT/JP2013/055517 JP2013055517W WO2013129606A1 WO 2013129606 A1 WO2013129606 A1 WO 2013129606A1 JP 2013055517 W JP2013055517 W JP 2013055517W WO 2013129606 A1 WO2013129606 A1 WO 2013129606A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
running
score
running form
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2013/055517
Other languages
English (en)
French (fr)
Inventor
良信 渡辺
大田 泰之
大輔 古川
陽平 吉田
直樹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuno Corp
Original Assignee
Mizuno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuno Corp filed Critical Mizuno Corp
Priority to ES13755578.5T priority Critical patent/ES2611196T3/es
Priority to US14/116,971 priority patent/US9452341B2/en
Priority to CA2834833A priority patent/CA2834833C/en
Priority to EP13755578.5A priority patent/EP2695645B1/en
Priority to CN201380001601.8A priority patent/CN103596626B/zh
Priority to AU2013226907A priority patent/AU2013226907B2/en
Priority to KR1020137029410A priority patent/KR101488130B1/ko
Priority to BR112013031203A priority patent/BR112013031203A2/pt
Priority to JP2013522020A priority patent/JP5314224B1/ja
Publication of WO2013129606A1 publication Critical patent/WO2013129606A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/1124Determining motor skills
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/10Athletes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique
    • A61B5/1127Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient; User input means
    • A61B5/742Details of notification to user or communication with user or patient; User input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient; User input means
    • A61B5/742Details of notification to user or communication with user or patient; User input means using visual displays
    • A61B5/744Displaying an avatar, e.g. an animated cartoon character
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B5/00Apparatus for jumping
    • A63B5/02High-jumping posts
    • A63B5/04Ropes or similar devices therefor

Definitions

  • This disclosure relates to technology for automatically diagnosing runners' running forms.
  • Patent Document 1 discloses an apparatus for evaluating the beauty of walking.
  • the apparatus measures a foot pressure distribution during walking of the subject using a pressure sensor, and obtains a foot pressure center locus of the subject based on the measurement result.
  • the device scores the beauty of the walking of the subject by comparing the foot pressure center locus of the subject thus obtained with the parameters of the foot pressure center locus as a model set in advance. To do.
  • Patent Document 2 discloses an apparatus for analyzing a walking state of a pedestrian.
  • the apparatus converts a walking motion of a pedestrian into data by constructing a three-dimensional human model from a plurality of captured images. Then, the walking state of the pedestrian is analyzed by comparing the walking motion of the pedestrian converted into data and the walking motion of a healthy person registered in the dictionary data.
  • each of the conventional devices as described above compares the measurement data of the subject with specific data, and evaluates the behavior of the subject based on the result of the comparison.
  • the evaluation result varies greatly depending on how the data used for comparison is selected. Therefore, there is a need for a technique that suppresses variations in evaluation results.
  • the present disclosure has been made to solve the above-described conventional problems, and its purpose is to automatically score a runner's running form on the basis of a standard equivalent to judgment by an expert. It is to provide a running form diagnostic system that can.
  • a running form diagnosis system that scores the running form of the subject.
  • the running form diagnosis system stores an arithmetic expression representing a correlation between physical motion information extracted from information related to running of a plurality of test runners and an evaluation given by an expert to each run of the plurality of test runners.
  • a storage device configured to, an interface for accepting input of information related to the subject's running, and a processor configured to output a score for the subject's running form based on the information input to the interface With.
  • the processor is configured to extract the subject's body motion information from the information related to the subject's running input to the interface, and calculate the score for the subject's running form by applying the extracted body motion information to the arithmetic expression Has been.
  • the arithmetic expression uses the evaluation of two or more items given by the expert for the test runner as an explanatory variable, and the comprehensive evaluation given by the expert for the test runner as an objective variable.
  • the two or more items used in the first regression equation are an evaluation of a predetermined number of items given by an expert for the test runner and an expert for the test runner.
  • the comprehensive evaluation given by is statistically processed, and is specified from a predetermined number of items.
  • the physical motion information of the test runner used in the second regression equation is obtained by statistically processing the specific number of physical motion information and the evaluation of two or more items. Identified among the characteristics of the item.
  • the arithmetic expression is a multiple regression equation obtained by performing multiple regression analysis using a plurality of body movement information of the test runner as explanatory variables and a comprehensive evaluation given by an expert to the test runner as an objective variable. including.
  • the arithmetic expression is a plurality of regression formulas obtained by performing regression analysis using a plurality of body movement information of the test runner as explanatory variables and a comprehensive evaluation given by an expert to the test runner as an objective variable.
  • the processor calculates a score for the running form of the subject based on a plurality of comprehensive evaluations obtained from a plurality of regression equations.
  • the body motion information of the subject calculates an elbow joint angle obtained by calculating an angle with respect to the upper arm of the subject, a segment angle of each of the forearm and the upper arm of the subject, and an angle with respect to the upper leg of the subject. At least one of the knee joint angle obtained by this, or the segment angle of each of the lower leg and upper leg of the subject.
  • the running form diagnosis system further includes an imaging device coupled to the interface for imaging the subject's video.
  • the interface is configured to accept input of a subject's video.
  • the processor extracts the subject's elbow joint angle or at least one of the subject's forearm and upper arm segment angles, markers attached to the subject's shoulder, elbow and wrist joints in the image If these angles are extracted based on the position of the image of the subject and at least one of the knee joint angle of the subject or the segment angle of each of the lower leg and upper leg of the subject is extracted, These angles are extracted based on the positions of the images of the markers attached to the hip joint, knee joint and ankle joint.
  • the running form diagnosis system further includes an inertial sensor attached to the subject.
  • the interface is configured to accept an input of a detection result of the inertial sensor.
  • the processor is configured to extract body motion information of the subject based on the detection result of the inertial sensor.
  • the storage device is configured to store the advice information about the travel in association with each of the previously divided scores.
  • the processor is configured to output advice information associated with the score calculated for the subject.
  • the arithmetic expression is a body motion information extracted from information related to running of the plurality of test runners, physical characteristics of the plurality of test runners, and a total given by an expert to each run of the plurality of test runners. It further represents the correlation with the evaluation.
  • the interface is further configured to accept an input of a subject's physical characteristics.
  • the processor is configured to calculate a score for the running form of the subject by applying the body movement information and the body characteristics of the subject to the arithmetic expression.
  • a method for scoring a subject's running form which is executed by a computer.
  • the computer stores an arithmetic expression representing a correlation between the body movement information extracted from the information related to the running of the plurality of test runners and the comprehensive evaluation given by the expert to each running of the plurality of test runners.
  • a storage device and an interface for accepting input of information related to the traveling of the subject.
  • the computer extracts the physical motion information of the subject from the information related to the subject's running input to the interface, and the computer applies the extracted physical motion information to the arithmetic expression to calculate the running form of the subject. Calculating a score.
  • the arithmetic expression is a regression using the evaluation of two or more items given by the expert for the test runner as an explanatory variable and the score given by the expert for the test runner as an objective variable.
  • Regression analysis using the first regression equation obtained by the analysis and the body movement information of the test runner as explanatory variables, and each of the evaluations of two or more items given by experts to the test runner as objective variables And a second regression equation obtained by performing.
  • the arithmetic expression is a multiple regression equation obtained by performing multiple regression analysis using a plurality of body movement information of the test runner as explanatory variables and a comprehensive evaluation given by an expert to the test runner as an objective variable. including.
  • the arithmetic expression is a plurality of regressions obtained by performing regression analysis using each of the plurality of body movement information of the test runner as explanatory variables and a comprehensive evaluation given by an expert to the test runner as an objective variable.
  • the computer calculating the score for the subject's running form includes calculating the score for the subject's running form based on a plurality of comprehensive evaluations obtained from a plurality of regression equations.
  • FIG. 19 is a diagram illustrating a modification of the hardware configuration of the information processing apparatus. It is a figure which shows the modification of the function structure of information processing apparatus. It is a figure which shows an example of a function structure of information processing apparatus in case an arithmetic expression is produced
  • FIG. 1 is a diagram showing a configuration of a running form diagnosis system 100.
  • the running form diagnosis system 100 includes a treadmill 10, a photographing system 20 that photographs a subject A to which a marker 90 is attached, and a running of the subject A based on an image of the subject A traveling.
  • An information processing device 30 for scoring the form and an output device 40 for outputting a diagnosis result of the running form of the subject A are provided.
  • the subject A wears the marker 90 at each of the six locations on the right side (shoulder, elbow, wrist, thigh root, knee, ankle), for example.
  • the information processing apparatus 30 acquires the physical characteristics of the subject A, and extracts the body movement information of the subject A from the data of the video that the subject A travels. Then, the information processing apparatus 30 calculates the running form score of the subject based on the body characteristics and / or body movement information.
  • the running form diagnosis system includes at least an information processing device 30.
  • the photographing system 20 can be configured by a system that includes, for example, two high-speed cameras and can use motion capture technology.
  • the information processing apparatus 30 includes a CPU (Central Processing Unit), a storage device, software, and the like, and is configured by, for example, a PC (personal computer). A detailed configuration of the information processing apparatus 30 will be described later.
  • the output device 40 is configured by, for example, a monitor or printer that visually outputs information. Note that the output device 40 may output the diagnosis result in a form other than vision such as sound or in a combination of two or more output forms such as audiovisual information.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 30.
  • the information processing apparatus 30 includes a CPU 300, a graphic controller 310, a VRAM (Video RAM (Random Access Memory)) 312, an I / O (input / output) controller 316, interfaces 324 and 332, a communication device (interface) 326, a main memory 328, a BIOS (Basic Input Output System) 330, a USB (Universal Serial Bus) board 336, and a bus line 338.
  • a CPU 300 a graphic controller 310, a VRAM (Video RAM (Random Access Memory)) 312, an I / O (input / output) controller 316, interfaces 324 and 332, a communication device (interface) 326, a main memory 328, a BIOS (Basic Input Output System) 330, a USB (Universal Serial Bus) board 336, and a bus line 338.
  • VRAM Video RAM (Random Access Memory)
  • I / O input / output controller
  • the BIOS 330 stores a boot program executed by the CPU 300 when the information processing apparatus 30 is started up, a program depending on the hardware of the information processing apparatus 30, and the like.
  • Storage devices such as the hard disk 318, the optical disk drive 322, and the semiconductor memory 320 are connected to the I / O controller 316.
  • the interface 324 is a device for inputting information to the information processing device 30 such as a touch panel and a keyboard.
  • the interface 332 is an example of an interface for inputting video data from the imaging system 20 to the information processing apparatus 30.
  • the graphic controller 310 is an example of an information output interface from the information processing device 30 to the output device 40, and uses a VRAM 312.
  • the information processing apparatus 30 further includes a wireless unit 334 and a Bluetooth (registered trademark) module 314.
  • the information processing apparatus 30 can perform wireless communication with an external device via the wireless unit 334. Further, the information processing apparatus 30 can communicate with an external device by the Bluetooth method (an example of a short-range wireless communication method) by using the Bluetooth module 314.
  • optical disk drive 322 examples include a CD-ROM (Compact Disc-ROM (Read Only Memory)) drive, a DVD (Digital Versatile Disc) -ROM drive, a DVD-RAM drive, and a BD (Blu-ray Disk) -ROM drive.
  • the optical disc 400 is a recording medium having a format corresponding to the optical disc drive 322.
  • the CPU 300 reads a program or data from the optical disc 400 using the optical disc drive 322.
  • the CPU 300 can load the read program or data into the main memory 328 via the I / O controller 316 and can install the program or data in the hard disk 318.
  • the communication device 326 is a device mounted on the information processing apparatus 30 to communicate with other devices such as a LAN (Local Area Network) card.
  • LAN Local Area Network
  • the CPU 300 can execute a program stored in the optical disc 400 or a recording medium (memory card or the like) and provided to the user.
  • the CPU 300 may execute a program stored in a recording medium other than the optical disc 400, or may execute a program downloaded via the communication device 326.
  • FIG. 3 is a flowchart showing the operation of the running form diagnosis system 100.
  • step S201 user information such as the height, weight, sex, or monthly practice amount of the subject A is input to the information processing apparatus 30.
  • CPU 300 accepts input of user information.
  • the imaging system 20 captures an image of the subject A wearing the marker 90 and traveling on the treadmill 10 for a predetermined time (step S202).
  • the moving image data generated by shooting is output to the information processing device 30.
  • the information processing apparatus 30 extracts biomechanics data (body motion information) such as joint angles and angular velocities from the video data sent from the imaging system 20 (step S203).
  • the CPU 300 treats video data from when the subject A's right foot is grounded to the next time the right foot is grounded as data for one cycle.
  • the CPU 300 extracts biomechanics data from each of a plurality of cycles and calculates an average value thereof. The type of biomechanics data will be described later.
  • the information processing apparatus 30 calculates the running form score of the subject by applying the user characteristics (the biomechanics data and / or physical characteristics of the subject extracted in step S203) to a given arithmetic expression.
  • a given arithmetic expression is statistically processed, for example, by evaluation points given to multiple runners' run forms in the past by multiple experts (evaluators) and biomechanics data of the multiple runners. Is derived.
  • the information processing apparatus 30 creates an output sheet on which the running form score and the advice information of the running form are posted, and displays the output sheet on the output apparatus 40 (step S205). With this display, a series of operations of the running form diagnosis system 100 is completed.
  • FIG. 4 is a block diagram illustrating a functional configuration of the information processing apparatus 30.
  • the information processing apparatus 30 includes a user information input unit 31, a data storage unit 32, a physical information extraction unit 33, an arithmetic expression generation unit 34, an arithmetic expression storage unit 34A, and a score calculation.
  • the user information input unit 31 is an interface that accepts input of user information such as the subject's height, weight, treadmill speed, and monthly practice amount, and includes a keyboard and a touch panel.
  • Various types of input information are stored in the data storage unit 32.
  • the data storage unit 32 stores output data creation data such as an evaluation comment on a running form by an expert and advice information on form improvement points.
  • the score calculation unit 35 and the output data creation unit 36 appropriately use information accumulated in the data storage unit 32.
  • the body information extraction unit 33 extracts biomechanics data such as a joint angle and a joint angular velocity from the traveling image of the subject A transmitted from the imaging system 20 via the interface (interface 332 in FIG. 2). As shown in FIG. 4, the body information extraction unit 33 includes an image processing unit 33a and a biomechanics data extraction unit 33b.
  • the image processing unit 33a obtains a three-dimensional coordinate value related to the motion of the subject A by measuring the position of the marker in the traveling video of the subject A sent from the imaging system 20.
  • the image processing unit 33a is realized, for example, when the CPU 300 executes software that performs motion capture processing.
  • the three-dimensional coordinate value information extracted by the image processing unit 33a is sent to the biomechanics data extraction unit 33b.
  • the biomechanics data extraction unit 33b extracts the biomechanics data of the subject A from the three-dimensional coordinate value information output from the image processing unit 33a. More specifically, the biomechanics data extraction unit 33b calculates the joint angle and joint angular velocity of the subject A from the three-dimensional coordinate value information output from the image processing unit 33a. The biomechanics data extraction unit 33b calculates the segment angle (segment angular velocity) projected on each plane of the absolute coordinate system by applying each joint angle (joint angular velocity) to a given conversion formula.
  • the biomechanics data extraction unit 33b further calculates processing data for each of the joint angle, joint angular velocity, segment angle, and segment angular velocity.
  • the processed data includes a maximum value, a minimum value, and / or a difference between the maximum value and the minimum value (hereinafter also referred to as “maximum value ⁇ minimum value”).
  • the processing data may include a joint angle and an angular velocity at an arbitrary time when the time from the contact of one foot of the subject to the separation is standardized.
  • the biomechanics data extraction unit 33b is realized, for example, when the CPU 300 executes a given program.
  • the biomechanics data may include joint angles, joint angular velocities, segment angles, segment angular velocities, and processing data thereof as described above.
  • the extracted biomechanics data is output from the biomechanics data extraction unit 33b to the score calculation unit 35.
  • the arithmetic expression generation unit 34 generates the above-described arithmetic expression. Information for specifying the generated arithmetic expression is stored in the arithmetic expression storage unit 34A.
  • the arithmetic expression generation unit 34 is realized, for example, when the CPU 300 executes a given program. The generation of the arithmetic expression by the arithmetic expression generator 34 will be described later with reference to FIG.
  • the score calculation unit 35 reads out the calculation formula generated by the calculation formula generation unit 34 from the calculation formula storage unit 34A. And the score calculating part 35 calculates a test subject's running form score by applying the biomechanics data output from the biomechanics data extraction part 33b to the said calculation formula.
  • the calculation of the running form score by the score calculation unit 35 corresponds to step S204 in FIG.
  • the score calculation unit 35 is realized, for example, when the CPU 300 executes a given program.
  • the score calculation unit 35 outputs the calculated running form score to the output data creation unit 36.
  • the output data creation unit 36 combines the calculated running form score with the running image of the subject A cut out by the image processing unit 33a, the running advice data stored in the data storage unit 32, and the like. Generate results.
  • the diagnosis result is displayed on the output device 40 as an output sheet.
  • the diagnosis result may be printed out as necessary.
  • the output data creation unit 36 is realized, for example, when the CPU 300 executes a given program.
  • the process in which the output data creation unit 36 causes the output device 40 or the like to output the diagnosis result corresponds to the process in step S205 in FIG.
  • the diagnosis result may include information on running shoes and clothing suitable for the subject's running form.
  • optimal running shoe characteristic information and specific product information corresponding to the running form score and the subject's physical movement information may be stored in advance as a data table, for example.
  • the output data creation unit 36 performs the above-described data based on the user information input to the user information input unit 31, the finally obtained running form score of the subject, and / or the physical motion information of the subject.
  • the table can be read out and the optimal running shoe information can be selected and added to the diagnostic results.
  • the data table may include information for specifying running wear corresponding to the running form score, the body motion information of the subject, and the like. In this case, the running form diagnosis system can present optimal running wear information to the subject as the diagnosis result.
  • the biomechanics data obtained from the video of the test runner and the run of the test runner by a plurality of experts are given.
  • An arithmetic expression is prepared based on the correlation with the running form score.
  • the subject's biomechanics data extracted from the image of the subject's travel is applied to the arithmetic expression, whereby the running form score of the subject is calculated.
  • the arithmetic expression is generated based on a judgment index common to a plurality of experts.
  • the test runner means a data collection runner for calculating the running form score of the subject. That is, in the present embodiment, an arithmetic expression is generated based on the running of the test runner, and the running form score of the subject is calculated by using the arithmetic expression.
  • the arithmetic expression generation unit 34 when generating an arithmetic expression, assigns an expert scoring for the video data of a plurality of test runners and a running form of the plurality of test runners Load data and.
  • step S401 An image of a test runner for data collection traveling on a treadmill is prepared.
  • videos of test runners for multiple people are prepared.
  • the video is shot by the shooting system 20, for example.
  • the number of test runners is represented by “M”.
  • the M test runners are preferably selected so that the characteristics, such as skills, sex, and age of the M people are distributed as widely as possible.
  • it is preferable that all test runner images are taken under the same conditions.
  • the video of each test runner may include those taken from at least the right side and the back side of the subject.
  • step S401 video data of M test runners is loaded.
  • the scoring data loaded in step S401 will be described.
  • Each of a plurality of experts gives a running form score for each test runner while viewing the running images of the M test runners.
  • the scoring data includes information specifying the running form score given here. For convenience of explanation, the number of experts is represented by “N”.
  • scoring data of N experts for each of the M test runners is prepared.
  • the prepared N expert scoring data for each of the M test runners is loaded.
  • As a scoring expert multiple researchers and coaches specializing in running and sports biomechanics can be envisaged.
  • the arithmetic expression generation unit 34 may further load the user information of each test runner and extract the body characteristics of each test runner from the user information.
  • the physical characteristics include information (for example, BMI) generated by processing the user information in addition to the user information input to the user information input unit 31.
  • FIG. 6 is a diagram for explaining a BMI calculation method. As shown in FIG. 6, the BMI is calculated based on the runner's height and weight.
  • step S402 the arithmetic expression generation unit 34 extracts biomechanics data of each test runner from the video data loaded in step S401.
  • the arithmetic expression generation unit 34 can extract biomechanics data using the functions of the image processing unit 33a and the biomechanics data extraction unit 33b.
  • FIGS. 7 to 13 are diagrams for explaining examples of biomechanics data.
  • FIGS. 7 to 13 schematically shows the appearance of the runner included in the video data.
  • FIG. 7 shows the appearance of the runner at two different timings.
  • a reference line for acquiring biomechanics data is indicated by a broken line.
  • the arithmetic expression generation unit 34 specifies the position of the limb of the runner based on the position of the marker 90 (see FIG. 1) in the video, and defines each reference line.
  • Each runner wears the markers 90 at, for example, six places on the right side (shoulder, elbow, wrist, thigh root, knee, and ankle).
  • FIG. 7 shows an example of a video taken behind the runner.
  • FIGS. 8 to 13 show examples of images taken from the right side of the runner. 7 to 13, a plus sign (+) is shown on one side with respect to the reference line, and a minus sign (+) is shown on the other side. These signs indicate the relationship between the position of the problematic part in each figure in the limbs of the runner and the sign (positive or negative) of the value of biomechanics data extracted based on each figure .
  • “Max” represents the maximum value of the angle on the “+” side with respect to the reference line.
  • Min represents the minimum value of the angle on the “ ⁇ ” side with respect to the reference line (the maximum value of the absolute value on the “ ⁇ ” side).
  • MaxMin represents the difference in angle between “Max” and “Min”.
  • FIG. 7 is a diagram for explaining “thigh angle (rear) MaxMin” which is an example of biomechanics data.
  • the “thigh angle (rear) MaxMin” is extracted based on the angle of the thigh with respect to the reference line. More specifically, the arithmetic expression generation unit 34 extracts, from the video data, the maximum value and the minimum value of the thigh angle of each cycle within a certain time with respect to the reference line, The respective average values of the minimum values are calculated, and the difference between the average value of the maximum values and the average value of the minimum values is calculated, thereby obtaining “thigh angle (rear) MaxMin”.
  • FIG. 8 is a diagram for explaining “forearm angle (side) MaxMin” which is an example of biomechanics data.
  • “Forearm angle (side) MaxMin” is extracted based on the angle of the forearm with respect to the reference line. More specifically, the arithmetic expression generation unit 34 extracts, from the video data, the maximum value and the minimum value of the forearm angle of each cycle within a predetermined time with respect to the reference line, and the extracted maximum values for a plurality of cycles The average value of each minimum value is calculated, and the difference between the average value of the maximum value and the average value of the minimum value is calculated, thereby obtaining “forearm angle (side) MaxMin”.
  • FIG. 9 is a diagram for explaining “upper arm angle (side) Max” which is an example of biomechanics data.
  • “Upper arm angle (side) Max” is extracted based on the angle of the upper arm with respect to the reference line. More specifically, the arithmetic expression generation unit 34 extracts the maximum value of the angle of the upper arm of each cycle within a certain time with respect to the reference line from the video data, and calculates the average value of the extracted maximum values for a plurality of cycles. As a result, “upper arm angle (side) Max” is acquired.
  • FIG. 10 is a diagram for explaining the “lower leg angle difference ⁇ thigh angle difference”, which is an example of biomechanics data.
  • the arithmetic expression generation unit 34 acquires the maximum value and minimum value of the lower leg angle of each cycle within a predetermined time from the video data, calculates the average value of the acquired maximum value and minimum value, and calculates the average value and minimum value of the maximum value. The difference between the average values is calculated. Further, the arithmetic expression generation unit 34 acquires the maximum value and the minimum value of the thigh angle of each cycle within a predetermined time from the video data, calculates the average value of the acquired maximum value and minimum value, and calculates the average value of the maximum values And the difference between the average values of the minimum values. Then, by calculating the difference between the average value difference for the lower leg angle and the average value difference for the thigh angle, “lower leg angle difference ⁇ thigh angle difference” is acquired.
  • FIG. 11 is a diagram for explaining “thigh angular velocity (lateral) Min” which is an example of biomechanics data.
  • the arithmetic expression generation unit 34 extracts the angular velocity of the thigh of each cycle from the video data, calculates the minimum value of the angular velocity, and calculates the average value of the minimum values for a plurality of cycles. Way) Min ”.
  • FIG. 12 is a diagram for explaining “crus angular velocity (ground contact)” which is an example of biomechanics data.
  • the arithmetic expression generation unit 34 extracts, from the video data, the angular velocity of the lower leg when the right foot of each cycle within a predetermined time contacts the ground, and calculates the average value of the extracted angular velocity of the lower leg of the plurality of cycles. Acquire lower leg angular velocity (ground contact) ”.
  • FIG. 13 is a diagram for explaining “crut angle (side) Min” which is an example of biomechanics data.
  • the arithmetic expression generation unit 34 extracts the minimum value of the lower leg angle of each cycle within a certain time from the video data, and calculates the average value of the extracted lower leg angles of the plurality of cycles, thereby obtaining the “lower leg angle (lateral ) Min ”.
  • FIG. 14 is a diagram illustrating an example of time-series data of forearm angles.
  • the biomechanics data extraction unit 33 generates time series data of forearm angles based on the trajectory of the marker 90 in the running image.
  • the broken line indicates the timing of right foot contact.
  • FIG. 14 shows data for 12 seconds.
  • the data includes data for 13 cycles.
  • the arithmetic expression generator 34 extracts the data shown in FIG. 14 from the video data, and further extracts the maximum value and the minimum value of the forearm angle of each cycle.
  • the arithmetic expression generation unit 34 calculates the average value of the maximum values and the minimum value of the acquired multiple cycles, and calculates the difference between these average values, thereby calculating the “forearm angle (side) MaxMin”. To get.
  • the maximum value of the forearm angle of the thirteenth cycle is indicated by “Max”
  • the minimum value is indicated by “Min”
  • the difference between them is indicated by “Max ⁇ Min”.
  • the arithmetic expression generation unit 34 has a characteristic highly correlated with the running form score given to the test runner from the user characteristics in step S403.
  • “User characteristics” includes the physical characteristics (eg, BMI) of each runner and the biomechanics data described with reference to FIGS.
  • the arithmetic expression generation unit 34 determines the characteristics of the test runner (“BMI”, “thigh angle (rear) MaxMin”, “forearm angle (side) MaxMin”, “upper arm angle (side) Max”, “lower leg angle difference ⁇ thigh angle difference”.
  • a characteristic having a high correlation with the running form score assigned to the test runner is extracted. Extraction of a characteristic having a high correlation is realized, for example, by extracting a characteristic having a correlation function value equal to or greater than a specific value.
  • step S404 the arithmetic expression generation unit 34 performs a single regression analysis to generate a regression expression representing the relationship between each characteristic and the running form score.
  • each characteristic extracted in step S403 is an explanatory variable
  • the running form score is an objective variable.
  • FIG. 15 is a diagram illustrating an example of the regression equation generated in step S404.
  • FIG. 15 shows “BMI”, “thigh angle (backward) MaxMin”, “forearm angle (side) MaxMin”, “upper arm angle (side) Max”, “lower leg angle difference ⁇ thigh angle difference”, and “thigh angular velocity (side) Min”.
  • the regression equations for each of the above are shown as equations (1) to (6).
  • N1 and “N2” in Formula (1), “I1” and “I2” in Formula (2), “J1” and “J2” in Formula (3), “K1 in Formula (4)” ”And“ K2 ”,“ L1 ”and“ L2 ”in Equation (5), and“ M1 ”and“ M2 ”in Equation (6) are coefficients used in each regression equation.
  • “Score1” to “Score6” indicate the calculation results of Expressions (1) to (6), respectively.
  • the generation of the arithmetic expression may be performed by the score calculation unit 35.
  • the score calculation unit 35 uses the physical characteristics extracted from the test runner biomechanics data extracted by the physical information extraction unit 33 and / or the test runner user information input to the user information input unit 31, as described above.
  • An arithmetic expression is generated by executing the same processing as the processing in the arithmetic expression generation unit 34.
  • the arithmetic expression generation unit 34 outputs an instruction to the score calculation unit 35 as to how to process biomechanics data and body characteristics for generation of the arithmetic expression.
  • the score calculation unit 35 calculates the running form score of the subject in step S204. More specifically, the score calculation unit 35 extracts the characteristics of the subject necessary for the expressions (1) to (6) from the user information of the subject and the running video.
  • the extracted subject characteristics include subject physical characteristics and biomechanics data. How the physical information extraction unit 33 (the image processing unit 33a and the biomechanics data extraction unit 33b) extracts biomechanics data from the subject's running video will be described with reference to FIGS. 5 to 14, for example. Since it is described in the same manner as the extraction of the test runner biomechanics data by the arithmetic expression generation unit 34, the description is not repeated here.
  • the score calculation unit 35 applies the extracted characteristics of the subject to the equations (1) to (6).
  • the running form score of the subject is preliminarily calculated as “Score1” to “Score6”.
  • the score calculating part 35 acquires a test subject's running form score by calculating the average value of the preliminarily calculated running form score according to the following formula (av.).
  • the value of the variable i changes between “1” and “6”.
  • the acquired running form score is output as a diagnosis result in step S205 (see FIG. 3).
  • the arithmetic expression includes mathematical expressions (expressions (1) to (6)) using six characteristics, and mathematical expressions (expression (av.)) For calculating the average value of the running form scores that are preliminarily calculated by these mathematical expressions. ).
  • the six characteristics are "BMI”, "thigh angle (back) MaxMin”, “forearm angle (side) MaxMin”, “upper arm angle (side) Max”, “lower leg angle difference-thigh angle difference”, “thigh angular velocity (side)” Min ”,“ lower leg angular velocity (ground contact) ”and“ lower leg angle (side) Min ”.
  • the characteristics of the runners (test runners and subjects) used for calculating the running form score shown in the equations (1) to (6) are merely examples. These characteristics are examples of those selected as having a high correlation with the running form score given to the test runner, and the number and type thereof are shown in Equations (1) to (6). It is not limited to things.
  • the characteristics of the runner used for calculating the running form score include body characteristics (for example, “BMI”) and biomechanics data.
  • the characteristic of the runner used for calculating the running form score may include only biomechanics data.
  • FIG. 17 is a diagram showing the correlation between the running form score calculated according to the present embodiment (running form score calculated from the evaluation score) and the running form score given by an expert for 35 test runners. It is.
  • the vertical axis of the graph in FIG. 17 indicates the value of the overall running form evaluation given by the expert to each test runner.
  • the horizontal axis of the graph represents the running form total score (calculated from the evaluation score) calculated using the equations (1) to (6) and the equation (av.) Based on the running images of each test runner. Shows the value of the running form score.
  • the determination coefficient (square of the multiple correlation coefficient) of the score calculated from the running form score given by the expert and the evaluation score based on the result shown in FIG. 17 was “0.74”. Thereby, it can be said that the method for calculating the running form score according to the present embodiment can provide a score close to the running form score given by the expert in the evaluation result.
  • the calculation formula of this modified example includes a mathematical expression (first regression formula) that associates an evaluation item having a high correlation with the running form score and the running form score, a characteristic of the runner having a high correlation with the evaluation item, and the evaluation item. And a mathematical formula (second regression formula) for associating. These mathematical expressions are generated using the physical characteristics and / or running images of the test runner.
  • the running form score is calculated by extracting the user characteristics necessary for the second regression equation from the body characteristics and / or running images of the subject and applying the extracted user characteristics to the second regression equation. Calculating the value of the “highly correlated evaluation item” and applying the calculated value of the “highly correlated evaluation item” to the first regression equation.
  • FIG. 18 is a flowchart of generation of an arithmetic expression in this modification.
  • arithmetic expression generation unit 34 loads questionnaire scoring data and running images of M test runners for the running of M test runners by N experts (step S501).
  • the arithmetic expression generation unit 34 also accepts input of physical information including the height and weight of each test runner.
  • the scoring data includes an overall running form score for the run of the test runner (“Comprehensive Evaluation” in FIG. 22) and two or more skill factors that are points of view for evaluating the run ( The score of “skill factor 1” to “skill factor n” in FIG. 22 is included.
  • Each of the two or more skill factors may be labeled as “skill factor Fn” in the following description.
  • the arithmetic expression generation unit 34 performs statistical analysis on the scoring data of each skill factor, and skill factors that constitute a comprehensive evaluation of the running form (degree of achievement with respect to the ideal running running form) by an expert.
  • Fn is specified (step S502). More specifically, the arithmetic expression generation unit 34 divides the skill factor Fn into a group of a plurality of elements (factors), for example, by performing a factor analysis on scoring items (skill factors and comprehensive evaluation) of a questionnaire by an expert. .
  • the arithmetic expression generation unit 34 specifies the correlation between the factor extracted in the grouping and the comprehensive evaluation. Then, the arithmetic expression generation unit 34 identifies a representative factor from the skill factors Fn included in each factor.
  • the arithmetic expression generation unit 34 acquires a skill factor Fn constituting the comprehensive evaluation as the identified representative factor. Thereby, it can link by skill factor Fn which identified comprehensive evaluation of the running form. “Composing” the comprehensive evaluation means “significantly affecting” the comprehensive evaluation.
  • the arithmetic expression generation unit 34 calculates biomechanics data of each test runner from the three-dimensional coordinate information obtained from the running video of each test runner (step S503).
  • the arithmetic expression generation unit 34 can extract biomechanics data using the functions of the image processing unit 33a and the biomechanics data extraction unit 33b. Since how the biomechanics data is extracted will be described in the same manner as described above with reference to FIGS. 6 to 13, the description thereof will not be repeated.
  • the arithmetic expression generation unit 34 correlates each of the user characteristics (extracted biomechanics data and body characteristics) and the skill factor Fn specified in step S502 (skill factor Fn constituting the comprehensive evaluation).
  • the user characteristics extracted here are described as parameters Xn (X1, X2,... Xn) as appropriate in the following description.
  • step S505 the arithmetic expression generation unit 34 uses the score of the skill factor Fn constituting the overall evaluation (score described in the questionnaire) given by the expert as an objective variable, and extracts the extracted user characteristic Xn.
  • Regression formula f2 (No. 2) for predicting the score of skill factor Fn constituting the overall evaluation from user characteristics Xn (body characteristics and biomechanics parameters) by multiple regression analysis with (body characteristics and biomechanics parameters) as explanatory variables 2 regression equation).
  • a single regression equation or a multiple regression equation is used as the regression equation f2.
  • the arithmetic expression generation unit 34 performs multiple regression analysis in step S505, thereby calculating a multiple regression expression f1 for calculating a comprehensive evaluation (running form score) using the skill factor Fn constituting the comprehensive evaluation. (First regression equation) is created.
  • comprehensive evaluation is set as an objective variable
  • the score of skill factor Fn constituting the comprehensive evaluation is set as an explanatory variable.
  • the “calculation formula” for calculating the running form score of the subject includes a multiple regression formula f2 and a multiple regression formula f1.
  • the user characteristics are related to the running form score (overall evaluation) by the multiple regression equation f2 and the multiple regression equation f1.
  • the score calculation unit 35 acquires the value of “highly correlated evaluation item” by applying the user characteristic generated as described above to the multiple regression equation f2 in step S205.
  • the running form score is calculated by applying the value of “highly correlated evaluation item” to the multiple regression equation f1.
  • the value included in the evaluation may be displayed after normalization with a desired score scale.
  • FIG. 19 shows a series of flows for calculating the running form score described above.
  • FIG. 19 shows an example in which skill factors F3 and F6 are acquired from skill factors Fn as skill factors constituting the comprehensive evaluation.
  • skill factors F3 and F6 are acquired from skill factors Fn as skill factors constituting the comprehensive evaluation.
  • user characteristics X1 to X3 having a high correlation with the skill factor F3 and user characteristics X4 to X8 having a high correlation with the skill factor F6 are extracted from the plurality of user characteristics.
  • the scores of skill factors F3 and F6 are obtained using regression equation f1.
  • the running form score (overall evaluation) is obtained using the regression formula f2.
  • the extracted parameter Xn as shown in FIG. 20 is used to obtain a score for the individual evaluation item (In) of the running form, and the individual evaluation item (In). May be used to obtain the score of the skill factor Fn constituting the overall evaluation, and further, the score of the skill factor Fn may be used to obtain the overall evaluation. Any item that can be derived using the parameter Xn used to calculate the skill factor Fn constituting the comprehensive evaluation can be set as the individual evaluation item (In).
  • FIG. 20 A series of flows for calculating the comprehensive evaluation and the score of the individual evaluation item (In) are shown in FIG.
  • skill factors F3 and F6 are acquired from skill factors Fn as skill factors constituting the comprehensive evaluation, and user characteristics X1 to X3 having a high correlation with skill factor F3 and user characteristics having a high correlation with skill factor F6
  • a case where X4 to X8 are extracted from a plurality of user characteristics is shown.
  • an individual evaluation item I1 that can be associated with the parameters X1 and X2 and an individual evaluation item I2 that can be associated with the parameter X3 are set, and skills are determined based on the scores of the individual evaluation items I1 and I2.
  • a score for factor F3 is calculated.
  • an individual evaluation item I3 that can be associated with the parameter X4 an individual evaluation item I4 that can be associated with the parameters X5 and X6, and an individual evaluation item I5 that can be associated with the parameters X7 and X8 are set.
  • the score of the skill factor F6 is calculated based on these individual evaluation items I3 to I5.
  • an overall score is calculated based on the scores of skill factors F3 and F6.
  • the scores for the individual evaluation items I1 to I5 are obtained using the regression equation f3, the scores for the skill factors F3 and F6 are obtained using the regression equation f4, and the running form score (total score) is obtained using the regression equation f5. It is done.
  • the individual evaluation items can be scored based on the evaluation result of the expert, thereby making it possible to perform the form diagnosis of the subject in more detail.
  • a multiple regression equation for obtaining a running form score directly from the motion information can also be generated.
  • a series of flows for calculating the running form score of the subject in this way is shown in FIG.
  • the following equation (X) is an example of the multiple regression equation.
  • the number of body movement information used for the multiple regression analysis is “3”, but this is an example, and the present invention is not limited to this.
  • the running form evaluation formulas (multiple regression formulas f2 and f1) are stored in a storage area (not shown) in the calculation formula generation unit 34 and set in the score calculation unit 35 in the subsequent stage.
  • the score calculation unit 35 selects predetermined physical characteristics and biomechanics parameters Xn from the biomechanics data of the subject A output from the biomechanics data extraction unit 33b, and uses them as a running form evaluation formula (multiple regression formula f2). , F1) are sequentially applied to calculate the running form score of the subject A (step S506).
  • FIG. 22 is a diagram showing an outline of a questionnaire sheet distributed to experts. On the questionnaire form, an area for entering the scoring results for each skill factor ("skill factor 1" to “skill factor n” in FIG. 22) and an area for entering the overall evaluation (running form score) ( "Comprehensive evaluation" in FIG. 22
  • Treadmill Nihon Kohden Co., Ltd.
  • Photography system Library, Giganet image input system GE60W (2-camera specification)
  • Analysis software Library Inc., 3D video measurement software Move-tr / 3D (including 2D software), CaptureEx (SP)
  • six markers 90 were respectively attached to the right six points (shoulder, elbow, wrist, thigh root, knee, ankle) of the subject.
  • the calculation formula (running form evaluation formula) was determined according to the following process. First, running images of 20 runners (test runners) with different running levels were prepared. Then, 12 prominent experts created scoring data for each test runner by viewing the running images of 20 test runners.
  • FIG. 23 is a diagram showing a specific example of a questionnaire sheet distributed to each expert.
  • the skill factors were scored in 7 stages, but in this analysis, it is desirable to normalize, and this example uses the average and standard deviation of M data from N experts. Then, the skill factor of 8 items and comprehensive evaluation may be converted into 70 ⁇ 15 points, respectively.
  • each skill factor when representing each skill factor itself, enclose each skill factor name in double quotes (eg, “safety”, “live feeling”), and when representing the score of each skill factor, The word “score” is attached to the end of each skill factor (eg “safety score”, “dynamic feeling score”).
  • the running form score (comprehensive evaluation given by experts) can be mainly formed by “safety score” and “dynamic feeling score” as follows: I understood.
  • FIG. 24 is a diagram plotting the factor loadings of each skill factor against the factors extracted by factor analysis.
  • FIG. 25 is a diagram in which the factor scores of 20 runners are plotted.
  • FIG. 26 is a diagram showing a correlation between the factor score of the extracted factor and “overall evaluation”.
  • each skill factor has a first group consisting of “motion feeling” and “speed feeling”, “comprehensive evaluation”, “beauty”. It was found that it can be classified into a second group consisting of “feeling”, “rhythmic feeling”, “relaxing”, “smooth” and “balance”, and a third group consisting of “safety”.
  • the ideal running form is based on the two axes of factor 1 (factor related to safety) and factor 2 (factor related to dynamic feeling). It can be classified as.
  • factor 1 factor related to safety
  • factor 2 factor related to dynamic feeling
  • safety score was extracted from factor 1 as the representative variable. Further, from Factor 2, “dynamic score” was extracted as the representative variable. As a result, the overall evaluation of the running form was expressed by “safety score” + “dynamic feeling score”.
  • the user characteristics are narrowed down by simple correlation analysis and principal component analysis for a group of data obtained by adding the subject's BMI and floor reaction force data to these biomechanics data, so that the “safety score” and “ User characteristics (parameters) that are highly correlated with each of the “dynamic score” were extracted. This refinement for extracting user characteristics was performed while avoiding multicollinearity.
  • biomechanics data used here is extracted (calculated) as described with reference to FIGS.
  • Extraction (calculation) of biomechanics data requires at least six markers. More specifically, the six markers are attached to the shoulder joint, elbow joint, wrist joint, hip joint, knee joint, and ankle joint of the runner.
  • the upper arm and forearm angle information can be obtained from the shoulder joint, elbow joint and wrist joint markers, and the thigh and lower leg angle information can be obtained from the hip joint, knee joint and ankle markers. Can do.
  • FIG. 27 is a diagram showing an example of a set of mathematical formulas used for calculating the running form score in this embodiment.
  • FIG. 27 shows Expressions (7) to (14).
  • equation (9) is a regression equation for calculating the “safety score” using the values calculated by equation (7) and equation (8).
  • Equation (13) is a regression equation for calculating the “dynamism score” using the values calculated by equations (10) to (12).
  • Equation (14) is a regression equation for calculating a total score using the “safety score” in equation (9) and the “liveness score” in equation (13).
  • FIG. 28 shows the physical characteristics and biomechanics parameters extracted as described above, individual evaluation items (for determining skill factors), skill factors calculated using the individual evaluation items, and skill factors. It is a figure which shows the relationship with the running form score calculated by this.
  • the scores of the calculated five individual evaluation items (“Safety”, “Relax”, “Positioning”, “Ride”, “Swing”) are calculated.
  • the score of the skill factor “safety score” and “dynamic feeling score” is calculated.
  • the total score (running form score) is calculated by the equation (14).
  • the score of skill factors and the total score obtained as described above are posted on the output sheet as evaluation results together with expert advice prepared in advance according to each score distribution.
  • the advice comment is selected as follows, for example. In other words, each skill factor score and overall score is divided into 86 points or more, 85 points to 76 points, 75 points to 66 points, 65 points to 56 points, 55 points or less, and advice for runners in each scoring zone Is preset.
  • the content of advice to be set is determined based on, for example, the content of interviews with experts.
  • the output data creation unit 36 selects an advice comment corresponding to the score of the subject from the data storage unit 32 or the like and places it on the output sheet.
  • the mode of division (the range of the score in each category) is not limited to the above-described one, and other modes may be adopted.
  • FIG. 29 to FIG. 31 are diagrams showing the relationship between the scores calculated by the running form diagnosis system according to the present embodiment and the expert scores for each runner for 35 runners.
  • FIG. 29 shows the relationship regarding the score of the skill factor “safety”.
  • FIG. 30 shows the relationship regarding the score of the skill factor “dynamic feeling”.
  • FIG. 31 shows the relationship regarding the running form score.
  • the “safety score”, “liveness score”, and “overall evaluation” have a high correlation between the score by the running form diagnosis system according to the present example and the expert's evaluation. showed that.
  • the coefficient of determination between the score given by the expert and the calculated score was 0.84.
  • the effectiveness of the accuracy of the evaluation of the running form diagnosis system according to the present example was confirmed.
  • the evaluation accuracy in the modification is higher than the evaluation accuracy in the embodiment.
  • the output sheet includes a sheet 510 shown in FIG. 32 and a sheet 520 shown in FIG.
  • the sheet 510 includes a column 110 indicating a subject's profile, a column 120 indicating a score such as a running form score given to the subject's running, a column 130 indicating advice to the subject, and an image of the subject's running form.
  • a column 140 indicating a practice plan proposed to the subject, and a column 160 indicating information such as shoes recommended for the subject to purchase.
  • the output data creation unit 36 generates information to be posted in the column 110 based on the information input to the user information input unit 31.
  • the column 120 includes columns 121 to 125 for displaying the scores of each of the five evaluation items shown in FIG. 28, and a column 126 for displaying the running form score.
  • Each of the columns 121 to 125 includes a column for displaying an advice comment corresponding to the score of each evaluation item. More specifically, the column 121 includes columns 121A and 121B.
  • the column 122 includes columns 122A and 122B.
  • the column 123 includes columns 123A and 123B.
  • the column 124 includes columns 124A and 124B.
  • the column 125 includes columns 125A and 125B.
  • the data storage unit 32 stores advice comments regarding the scores of evaluation items in association with the scores divided in advance.
  • the output data creation unit 36 selects an advice comment corresponding to the score of each evaluation item from the advice comments stored in the data storage unit 32 and displays it in each of the columns 121 to 125.
  • the column 121A displays an advice comment corresponding to the score of the evaluation item “Safety” whose score is displayed in the column 121.
  • the advice comment that is displayed is, for example, “If the burden on the body increases, it may lead to running problems. Due to “BMI, skeletal, muscular strength, running habit”, etc., the legs will be shaken from side to side while running, which will be a burden on the hip joint and knee. If you need to lose weight, run at a slower pace and continue. If you shake left and right, be careful of the landing position and toe direction. ].
  • the data storage unit 32 stores points that should be noted by the subject in association with the scores that have been classified in advance for the scores of each evaluation item.
  • the column 121B displays the points associated with the score shown in the column 121.
  • the contents displayed in the column 121B are, for example, [landing position and toe orientation] [muscle training around the abdominal muscles and hips] [diet] [select appropriate shoes and supporters for the O leg X leg]. .
  • the contents of the evaluation are stored in the data storage unit 32 in association with each of the scores divided in advance for each evaluation item.
  • the evaluation includes, for example, messages “good”, “standard”, and “careful” in order from the one corresponding to the high score.
  • a column 130 is a column 131 that displays a comment on the evaluation item corresponding to the highest score among the scores shown in the columns 121 to 125, and a column 132 that displays a comment on the evaluation item corresponding to the lowest score. Including.
  • comments about the evaluation item “Swing” are displayed. The comment is, for example, “From the result of the Swing item, you have kicked out at a good time and have made a good swing to the landing. Let's aim for further improvement by being aware of putting out the knee quickly.” is there.
  • a column 132 displays a comment of the evaluation item “Safety”. The displayed comment is, for example, “Slightly fluctuating left and right from the result of the Safety item and it is unstable. Try to improve by weight management, training, etc.”.
  • “form advice” and “training advice” are displayed based on the evaluation item having the lowest score.
  • Each of “form advice” and “training advice” includes an image of a person in order to present the content of the advice more specifically.
  • the “form advice” includes columns 133A to 133C for displaying specific messages.
  • “Training advice” includes columns 134A and 134B including specific messages.
  • the column 130 further includes a column 135 for displaying a notice that the advice shown in the “form advice” and the “training advice” is merely an example of the advice to be considered.
  • a column 140 includes images 141A to 141D showing the running form of the subject and images 142A to 142D showing the running form of the model runner.
  • the output data creation unit 36 acquires the images 141A to 141D from the running video of the subject photographed by the photographing system 20.
  • the images 142A to 142D are stored in the data storage unit 32.
  • Images 141A and 142A are images at the time of landing.
  • the images 141B and 142B are weighted images.
  • Images 141C and 142C are images at the time of takeoff.
  • Images 141 ⁇ / b> D and 142 ⁇ / b> D are images when the angle with respect to the vertical direction of the lower knee (lower leg) in the running is maximized.
  • Columns 143A to 143D display messages indicating points to be checked by the runner at each of the above four time points.
  • the column 150 shows information such as the prediction time of the full marathon calculated based on the running form score of the subject. Note that the column 150 includes a column 151 that displays a message indicating that the predicted time or the like displayed in the column 150 is an approximate guide.
  • the column 160 includes a column 161 that indicates a landing pattern assumed for the subject, a column 162 that indicates a measurement result of the pitch and stride of the subject, and a column 163 that displays information on shoes recommended for the subject to purchase.
  • the information on the shoes presented in the column 163 is approximate, and in order to know more specific information about the shoes suitable for the subject, it is possible to actually try the shoes.
  • FIG. 34 shows a schematic configuration of a modified example of the running form diagnosis system.
  • changes to the system shown in FIG. 1 in the running form diagnosis system according to the present modification will be mainly described.
  • a subject running on the treadmill 10 is equipped with an inertial sensor 91.
  • the subject wears the inertial sensor 91 at two positions sandwiching the joint whose joint angle is desired to be measured. More specifically, the subject uses inertial sensors on each of the right arm or left arm, forearm, thigh, and lower leg to measure the angle of the upper arm, forearm, thigh, and lower leg. 91 is attached.
  • the 34 includes an information processing device 30A instead of the information processing device 30 of the system shown in FIG.
  • the information processing apparatus 30A acquires the measurement result of the inertial sensor 91.
  • Inertial sensor 91 transmits the measurement result to information processing apparatus 30A, for example, by wireless communication.
  • the information processing device 30A calculates the running form score of the subject by using the measurement result acquired from the inertial sensor 91, and outputs the running form score to the output device 40.
  • the output device 40 outputs the running form score.
  • the information processing apparatus 30A calculates angle information and / or angular velocity of the upper arm, the forearm, the thigh, and the lower leg based on the measurement result of the inertial sensor 91.
  • the inertial sensor 91 for example, an inertial measurement unit (Internal Measurement Unit) manufactured by Seiko Epson Corporation having both functions of a gyro sensor and an accelerometer is employed.
  • the inertial sensor 91 can measure the angular velocity and acceleration for each of the three axis directions and output the measured angular velocity and acceleration to the information processing apparatus 30A.
  • FIG. 35 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 30A.
  • the communication device 326 of the information processing device 30 ⁇ / b> A receives the measurement result transmitted from the inertial sensor 91.
  • the CPU 300 calculates the running form score of the subject by processing the received measurement result.
  • FIG. 36 is a diagram illustrating an example of a functional configuration of the information processing apparatus 30A.
  • information processing apparatus 30A includes a sensor information input unit 50 that receives input of information from inertial sensor 91.
  • the sensor information input unit 50 is configured by a communication device 326, for example.
  • the biomechanics data extraction unit 51 extracts biomechanics data of the subject from the measurement result of the inertial sensor 91.
  • the biomechanics data extraction unit 51 is realized, for example, when the CPU 300 executes a given program.
  • the score calculation unit 35 of the information processing apparatus 30A calculates the test subject's running form score by applying the biomechanics data and / or physical information of the subject to the calculation formula generated by the calculation formula generation unit 34.
  • the biomechanics data of the test runner is used to generate an arithmetic expression used in the information processing apparatus 30A.
  • the biomechanics data of the test runner may be extracted from the measurement result of the inertial sensor 91 or extracted from the video imaged by the imaging system 20 as described with reference to FIG. It may be.
  • the running form diagnosis system 200 described with reference to FIGS. 34 to 36 extracts the biomechanics data of the subject from the measurement result of the inertial sensor 91.
  • the imaging system 20 measures the subject from a plurality of angles. For this reason, it is predicted that the scale of the configuration of the apparatus will increase.
  • the running form diagnosis system 200 calculates the running form score of the subject, the imaging system 20 as shown in FIG. 1 is not required. For this reason, in the running form diagnosis system 200, it is possible to reduce the size of the device necessary for calculating the score of the subject. Therefore, if an arithmetic expression is registered in advance in the information processing apparatus 30A, the subject can obtain a score for his running form even at home, for example.
  • FIG. 37 is a diagram illustrating functions of the information processing device 30B when the arithmetic expression is generated by an external device.
  • the information processing device 30 ⁇ / b> B is yet another modification of the information processing device 30.
  • information processing apparatus 30B information for specifying an arithmetic expression is stored in arithmetic expression storage 34A.
  • the score calculation unit 35 reads the calculation formula stored in the calculation formula storage unit 34A.
  • the score calculation unit 35 evaluates the running form based on the extracted user characteristics (physical characteristics and / or biomechanics parameters) as well as the total score. You may calculate the score of an item. More specifically, the arithmetic expression storage unit 34A may store information for specifying an arithmetic expression for calculating points of each skill factor based on physical characteristics or biomechanics parameters. The calculation formula for each skill factor is, for example, when the physical characteristics or biomechanics data of the test runner is used as the explanatory variable, and the points of each skill factor given by the expert for the test runner are used as the objective variable Is derived by regression analysis.
  • the score calculation unit 35 applies the parameter Xn (physical characteristics and / or biomechanics data) of the subject extracted in step S504 in FIG. 18 to the calculation formula for each skill factor, so that Calculate points.
  • the calculated points may be added to the diagnosis result as shown in FIG.
  • the running form diagnosis system generates an arithmetic expression for evaluating the running form based on the correlation between the runner's form evaluation by a plurality of experts and the runner's biomechanics data. And a running form diagnostic system scores a running form by applying a test subject's characteristic to the said computing equation. Thereby, the evaluation of the running form by the expert who has been assumed to be tacit knowledge is revealed in the form of a score through the arithmetic expression.
  • the arithmetic expression is created based on the evaluation of a plurality of experts. Thus, the subject is automatically given a score for the running form. Furthermore, the score which does not deviate extremely from the evaluation by a plurality of coaches and experts can be given to the subject.
  • the running form diagnosis system is useful in that a user's running form can be automatically scored based on a standard equivalent to the judgment of an expert.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Geometry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

ランニングフォーム診断システムおよびランニングフォームを得点化する方法
 本開示は、ランナーの走行フォームを自動的に診断する技術に関する。
 従来、ランニングやウォーキング、あるいはゴルフなどのフォームの診断は、専門のトレーナーやコーチの目視による個別判断により行われるのが一般的である。一方で、近年においては、そのようなフォーム診断を自動的に行う各種の診断システムが提案されている。
 例えば、特開2002-233517号公報(特許文献1)は、歩行の美しさを評価する装置を開示している。当該装置は、圧力センサを用いて被験者の歩行中の足圧分布を計測し、この計測結果に基づいて当該被験者の足圧中心軌跡を求める。そして、当該装置は、このように求めた被験者の足圧中心軌跡と、あらかじめ設定しておいたお手本となる足圧中心軌跡のパラメータとを比較することにより、被験者の歩行の美しさを点数化する。
 特開2010-017447号公報(特許文献2)は、歩行者の歩行状態を分析する装置を開示している。当該装置は、複数の撮像画像から3次元人物モデルを構築することにより、歩行者の歩行動作をデータ化する。そして、データ化された歩行者の歩行動作と、辞書データに登録されている健常な人物の歩行動作とを比較することにより、歩行者の歩行状態を分析する。
特開2002-233517号公報 特開2010-017447号公報
 しかしながら、上記したような従来の装置は、いずれも、被験者の測定データと特定のデータとを比較し、当該比較の結果に基づいて被験者の動作の評価を行うものである。このような装置では、比較に利用されるデータがどのように選択されるかによって、評価結果が大きく異なるという問題がある。したがって、評価結果のばらつきを抑制する技術が求められている。
 また、従来の装置において比較に利用されるデータは、専門家の判断基準が厳格に反映されたものではない場合がある。このような場合、当該データを利用して得られた評価の結果が、実際に専門家によって評価された診断結果と比べて、正確性に欠けるという問題もある。したがって、診断結果の正確性が保たれる技術が必要とされている。
 本開示は、上記された従来の課題を解決するためになされたものであり、その目的は、専門家による判断と同等の基準に基づいて、ランナーのランニングフォームを自動的に得点化することのできるランニングフォーム診断システムを提供することである。
 ある局面に従うと、被験者のランニングフォームを得点化するランニングフォーム診断システムが提供される。ランニングフォーム診断システムは、複数のテストランナーの走行に関する情報から抽出された身体動作情報と当該複数のテストランナーのそれぞれの走行に対して専門家が付与した評価との相関関係を表す演算式を記憶するように構成された記憶装置と、被験者の走行に関する情報の入力を受け付けるためのインターフェイスと、インターフェイスに入力された情報に基づいて、被験者のランニングフォームについての得点を出力するように構成されたプロセッサとを備える。プロセッサは、インターフェイスに入力された被験者の走行に関する情報から被験者の身体動作情報を抽出し、当該抽出した身体動作情報を演算式に適用することにより被験者のランニングフォームについての得点を算出するように構成されている。
 好ましくは、演算式は、テストランナーの走行に対して専門家によって付与された2以上の項目の評価を説明変数とし、テストランナーの走行に対して専門家によって付与された総合評価を目的変数として回帰分析を行うことにより得られる第1の回帰式と、テストランナーの身体動作情報を説明変数とし、テストランナーに対して専門家によって付与された2以上の項目の評価のそれぞれを目的変数として回帰分析を行うことにより得られる第2の回帰式とを含む。
 好ましくは、第1の回帰式に利用される2以上の項目は、テストランナーの走行に対して専門家によって付与された予め定められた数の項目の評価とテストランナーの走行に対して専門家が付与した総合評価とが統計的に処理されることによって、予め定められた数の項目の中から特定される。
 さらに好ましくは、第2の回帰式に使用されるテストランナーの身体動作情報は、特定の数の身体動作情報と2以上の項目の評価とが統計的に処理されることによって、特定の数の項目の特性の中から特定される。
 好ましくは、演算式は、テストランナーの複数の身体動作情報を説明変数とし、テストランナーに対して専門家が付与した総合評価を目的変数とした重回帰分析を行うことにより得られる重回帰式とを含む。
 好ましくは、演算式は、テストランナーの複数の身体動作情報を説明変数とし、テストランナーに対して専門家が付与した総合評価を目的変数とした、回帰分析を行うことにより得られる複数の回帰式を含む。プロセッサは、複数の回帰式より得られる複数の総合評価に基づいて被験者のランニングフォームについての得点を算出する。 好ましくは、被験者の身体動作情報は、被験者の前腕の上腕に対する角度を算出することによって得られる肘関節角度、被験者の前腕と上腕のそれぞれのセグメント角度、被験者の下腿の上腿に対する角度を算出することによって得られる膝関節角度、または、被験者の下腿と上腿のそれぞれのセグメント角度の少なくともいずれかを含む。
 好ましくは、ランニングフォーム診断システムは、インターフェイスに結合され、被験者の映像を撮影するための撮影装置をさらに備える。インターフェイスは、被験者の映像の入力を受け付けるように構成されている。プロセッサは、被験者の肘関節角度、または、被験者の前腕と上腕のそれぞれのセグメント角度の少なくともいずれかを抽出する場合、映像の中の、被験者の肩関節と肘関節と手関節に取り付けられたマーカーの画像の位置に基づいて、これらの角度を抽出し、被験者の膝関節角度、または、被験者の下腿と上腿のそれぞれのセグメント角度の少なくともいずれかを抽出する場合、映像の中の、被験者の股関節と膝関節と足関節に取り付けられたマーカーの画像の位置に基づいて、これらの角度を抽出するように構成されている。
 好ましくは、ランニングフォーム診断システムは、被験者に取り付けられる慣性センサをさらに備える。インターフェイスは、慣性センサの検出結果の入力を受け付けるように構成されている。プロセッサは、慣性センサの検出結果に基づいて、被験者の身体動作情報を抽出するように構成されるように構成されている。
 好ましくは、記憶装置は、走行についてのアドバイス情報を、予め区分された得点のそれぞれに関連付けて記憶するように構成されている。プロセッサは、被験者に対して算出した得点に関連付けられているアドバイス情報を出力するように構成されている。
 好ましくは、演算式は、複数のテストランナーの走行に関する情報から抽出された身体動作情報および複数のテストランナーの身体特性と、当該複数のテストランナーのそれぞれの走行に対して専門家が付与した総合評価との相関関係をさらに表す。インターフェイスは、さらに、被験者の身体特性の入力を受け付けるように構成されている。プロセッサは、被験者の身体動作情報および身体特性を演算式に適用することにより、被験者のランニングフォームについての得点を算出するように構成されている。
 他の局面に従うと、コンピュータによって実行される、被験者のランニングフォームを得点化する方法が提供される。コンピュータは、複数のテストランナーの走行に関する情報から抽出された身体動作情報と当該複数のテストランナーのそれぞれの走行に対して専門家が付与した総合評価との相関関係を表す演算式を記憶するように構成された記憶装置と、被験者の走行に関する情報の入力を受け付けるインターフェイスとを備える。方法は、コンピュータが、インターフェイスに入力された被験者の走行に関する情報から被験者の身体動作情報を抽出することと、コンピュータが、抽出した身体動作情報を演算式に適用することにより、被験者のランニングフォームについての得点を算出することを備える。
 好ましくは、演算式は、テストランナーの走行に対して専門家によって付与された2以上の項目の評価を説明変数とし、テストランナーの走行に対して専門家によって付与された得点を目的変数として回帰分析を行うことにより得られる第1の回帰式と、テストランナーの身体動作情報を説明変数とし、テストランナーに対して専門家によって付与された2以上の項目の評価のそれぞれを目的変数として回帰分析を行うことにより得られる第2の回帰式とを含む。
 好ましくは、演算式は、テストランナーの複数の身体動作情報を説明変数とし、テストランナーに対して専門家が付与した総合評価を目的変数とした重回帰分析を行うことにより得られる重回帰式とを含む。
 好ましくは、演算式は、テストランナーの複数の身体動作情報のそれぞれを説明変数とし、テストランナーに対して専門家が付与した総合評価を目的変数とした回帰分析を行うことにより得られる複数の回帰式を含む。コンピュータが被験者のランニングフォームについての得点を算出することは、複数の回帰式より得られる複数の総合評価に基づいて被験者のランニングフォームについての得点を算出することを含む。
 この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
ランニングフォーム診断システムの構成を示す図である。 情報処理装置のハードウェア構成の一例を示す図である。 ランニングフォーム診断システムの動作を示すフローチャートである。 情報処理装置の機能的な構成を示すブロック図である。 演算式の生成のフローチャートである。 BMI(Body Math Index)の算出方法を説明するための図である。 バイオメカニクスデータの一例である「大腿角度(後方)MaxMin」を説明するための図である。 バイオメカニクスデータの一例である「前腕角度(側方)MaxMin」を説明するための図である。 バイオメカニクスデータの一例である「上腕角度(側方)Max」を説明するための図である。 バイオメカニクスデータの一例である「下腿角度差-大腿角度差」を説明するための図である。 バイオメカニクスデータの一例である「大腿角速度(側方)Min」を説明するための図である。 バイオメカニクスデータの一例である「下腿角速度(接地)」を説明するための図である。 バイオメカニクスデータの一例である「下腿角度(側方)Min」を説明するための図である。 前腕角度報の時系列データの一例を示す図である。 生成される回帰式の一例を示す図である。 演算式を利用したランニングフォーム得点の算出の概要を説明するための図である。 算出されたランニングフォーム得点と、専門家によって付与されたランニングフォーム得点との相関を示す図である。 図5を参照して説明された演算式の生成の変形例のフローチャートである。 ランニングフォーム得点の算出の流れの一例を示す図である。 ランニングフォーム得点の算出の流れの他の例を示す図である。 ランニングフォーム得点の算出の流れのさらに他の例を示す図である。 専門家に配布されるアンケート用紙の概要の一例を示す図である。 専門家に配布されるアンケート用紙の具体例を示す図である。 因子分析により抽出された因子に対する各スキル要因の因子負荷量をプロットした図である。 20人のランナーの因子得点をプロットした図である。 抽出された因子の因子得点と、“総合評価”との相関関係を示す図である。 ランニングフォーム得点の算出に利用される数式の組の一例を示す図である。 身体特性およびバイオメカニクスパラメータと、評価項目と、評価項目を用いて算出されるスキル要因と、スキル要因を用いて算出されるランニングフォーム得点との関係を示す図である。 スキル要因「安全」についての、算出された得点と専門家から付与された得点との関係を示す図である。 スキル要因「躍動感」についての、算出された得点と専門家から付与された得点との関係を示す図である。 算出されたランニングフォーム得点と専門家から付与されたランニングフォーム得点との関係を示す図である。 アウトプットシートの具体例を示す図である。 アウトプットシートの具体例を示す図である。 ランニングフォーム診断システムの変形例の概略構成を示す図である。 情報処理装置のハードウェア構成の変形例を示す図である。 情報処理装置の機能構成の変形例を示す図である。 演算式が外部機器で生成される場合の、情報処理装置の機能構成の一例を示す図である。
 以下、ランニングフォーム診断システムの実施の形態について、図面を参照しつつ説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返されない。
 [ランニングフォーム診断システムの構成]
 ランニングフォーム診断システムの一実施の形態を含むシステムの構成の一例を説明する。図1は、ランニングフォーム診断システム100の構成を示す図である。
 図1に示されるように、ランニングフォーム診断システム100は、トレッドミル10と、マーカー90を取り付けられた被験者Aを撮影する撮影システム20と、被験者Aが走行する映像に基づいて当該被験者Aのランニングフォームを得点化する情報処理装置30と、被験者Aのランニングフォームの診断結果を出力する出力装置40とを備える。被験者Aは、たとえば、右側6箇所(肩、肘、手首、太腿付け根、膝、足首)のそれぞれにマーカー90を装着する。情報処理装置30は、被験者Aの身体特性を取得し、また、被験者Aが走行する映像のデータから当該被験者Aの身体動作情報を抽出する。そして、情報処理装置30は、身体特性および/または身体動作情報に基づいて、被験者のランニングフォーム得点を算出する。ランニングフォーム診断システムは、少なくとも情報処理装置30を含む。
 撮影システム20は、図1に示されるように、たとえば2台のハイスピードカメラを含み、モーションキャプチャ技術を利用できるシステムによって構成することができる。情報処理装置30は、CPU(Central Processing Unit)、記憶装置、およびソフトウェア等を含み、たとえばPC(パーソナルコンピュータ)により構成される。情報処理装置30の詳細な構成は、後述される。出力装置40は、たとえば、視覚的に情報を出力するモニタやプリンタにより構成される。なお、出力装置40は、音声など視覚以外の態様で、または、視聴覚情報のように2以上の出力態様の組み合わせで、診断結果を出力しても良い。
 [情報処理装置30のハードウェア構成]
 図2を参照して、情報処理装置30のハードウェア構成の一例を説明する。図2は、情報処理装置30のハードウェア構成の一例を示す図である。
 情報処理装置30は、CPU300、グラフィック・コントローラ310、VRAM(Video RAM(Random Access Memory))312、I/O(入力/出力)コントローラ316、インターフェイス324,332、通信機器(インターフェイス)326、メインメモリ328、BIOS(Basic Input Output System)330、USB(Universal Serial Bus)ボード336、および、バスライン338を備える。
 BIOS330は、情報処理装置30の起動時にCPU300が実行するブートプログラムや、情報処理装置30のハードウェアに依存するプログラム等を格納する。ハード・ディスク318、光ディスクドライブ322、および、半導体メモリ320等の記憶装置は、I/Oコントローラ316に接続される。インターフェイス324は、たとえばタッチパネルやキーボード等の、情報処理装置30に対して情報を入力するための装置である。
 インターフェイス332は、撮影システム20から情報処理装置30への映像データの入力のインターフェイスの一例である。グラフィック・コントローラ310は、情報処理装置30から出力装置40への情報出力のインターフェイスの一例であり、VRAM312を利用する。
 情報処理装置30は、さらに、無線部334とBluetooth(登録商標)モジュール314とを含む。情報処理装置30は、無線部334を介して、外部機器と無線通信をすることができる。また、情報処理装置30は、Bluetoothモジュール314を利用することにより、Bluetooth方式(近距離無線通信方式の一例)で外部機器と通信できる。
 光ディスクドライブ322としては、例えば、CD-ROM(Compact Disc - ROM(Read Only Memory))ドライブ、DVD(Digital Versatile Disc)-ROMドライブ、DVD-RAMドライブ、BD(Blu-ray Disk)-ROMドライブが採用される。光ディスク400は、光ディスクドライブ322に対応した形式の記録媒体である。CPU300は、光ディスクドライブ322を利用して光ディスク400からプログラムまたはデータを読み取る。CPU300は、読み取ったプログラムまたはデータを、I/Oコントローラ316を介して、メインメモリ328にロードでき、また、ハード・ディスク318にインストールできる。通信機器326は、LAN(Local Area Network)カード等の、他の機器と通信するために情報処理装置30に搭載される機器である。
 CPU300は、光ディスク400または記録媒体(メモリカード等)に格納されてユーザーに提供され得るプログラムを実行可能である。CPU300は、光ディスク400以外の記録媒体に格納されたプログラムを実行しても良く、通信機器326を介してダウンロードされるプログラムを実行しても良い。
 [ランニングフォーム診断システムの全体動作]
 以下に、図1~図3を参照して、ランニングフォーム診断システム100の動作を説明する。図3は、ランニングフォーム診断システム100の動作を示すフローチャートである。
 まず、ステップS201において、被験者Aの身長、体重、性別、あるいは月間練習量などのユーザー情報が、情報処理装置30に入力される。CPU300は、ユーザー情報の入力を受け付ける。
 次に、撮影システム20が、マーカー90を装着してトレッドミル10上を一定時間走行する被験者Aを撮影する(ステップS202)。撮影により生成された動画データは、情報処理装置30に出力される。
 次に、情報処理装置30が、撮影システム20より送出される映像データから、関節角度や角速度等のバイオメカニクスデータ(身体動作情報)を抽出する(ステップS203)。CPU300は、被験者Aの右足が接地してから次に右足が接地するまでの映像データを1サイクル分のデータとして扱う。ステップS203では、CPU300は、たとえば、複数のサイクルのそれぞれからバイオメカニクスデータを抽出し、それらの平均値を算出する。バイオメカニクスデータの種類については、後述する。
 次に、情報処理装置30は、ユーザーの特性(ステップS203で抽出された被験者のバイオメカニクスデータおよび/または身体特性)を所与の演算式に適用することによって、当該被験者のランニングフォーム得点を算出する(ステップS204)。所与の演算式は、たとえば、過去に複数の専門家(評価者)によって複数のランナーのランニングフォームに対して与えられた評価点と、当該複数のランナーのバイオメカニクスデータとが統計的に処理されることによって、導き出される。
 そして、情報処理装置30は、ランニングフォーム得点と共に、ランニングフォームのアドバイス情報などを掲載したアウトプットシートを作成し、出力装置40に表示する(ステップS205)。当該表示により、ランニングフォーム診断システム100の一連の動作が終了する。
 [情報処理装置の機能]
 図4を参照して、情報処理装置30の機能的構成を説明する。図4は、情報処理装置30の機能的な構成を示すブロック図である。図4に示されるように、情報処理装置30は、ユーザー情報入力部31と、データ格納部32と、身体情報抽出部33と、演算式生成部34と、演算式格納部34Aと、得点演算部35と、アウトプットデータ作成部36とを備える。
 ユーザー情報入力部31は、被験者の身長、体重、トレッドミル速度、月間練習量などのユーザー情報の入力を受け付けるインターフェイスであり、キーボードや、タッチパネル等で構成される。入力された各種の情報はデータ格納部32に蓄積される。データ格納部32には、各種の演算データが格納される他に、専門家によるランニングフォームの評価コメントやフォーム改善点のアドバイス情報などの、アウトプットデータ作成用データが格納されている。得点演算部35およびアウトプットデータ作成部36は、データ格納部32に蓄積された情報を適宜利用する。
 身体情報抽出部33は、撮影システム20よりインターフェイス(図2のインターフェイス332)を介して伝送される被験者Aの走行映像から、関節角度や関節角速度などのバイオメカニクスデータを抽出する。図4に示されるように、身体情報抽出部33は、画像処理部33aと、バイオメカニクスデータ抽出部33bとを含む。
 画像処理部33aは、撮影システム20より送られる被験者Aの走行映像中のマーカーの位置を計測することにより、被験者Aの動作に関する3次元座標値を求める。画像処理部33aは、たとえば、CPU300がモーションキャプチャ処理を行うソフトウェアを実行することにより実現される。画像処理部33aで抽出された3次元座標値情報は、バイオメカニクスデータ抽出部33bに送られる。
 バイオメカニクスデータ抽出部33bは、画像処理部33aより出力される3次元座標値情報から被験者Aのバイオメカニクスデータを抽出する。より具体的には、バイオメカニクスデータ抽出部33bは、画像処理部33aより出力される3次元座標値情報から被験者Aの関節角度および関節角速度を算出する。また、バイオメカニクスデータ抽出部33bは、各関節角度(関節角速度)を所与の変換式に適用することにより、絶対座標系の各平面へ投影したセグメント角度(セグメント角速度)を算出する。
 バイオメカニクスデータ抽出部33bは、さらに、関節角度、関節角速度、セグメント角度、セグメント角速度のそれぞれについての加工データを算出する。加工データは、最大値、最小値、および/または、最大値と最小値の差(以下、「最大値-最小値」とも標記する)を含む。加工データは、被験者の一方の足の接地から離地までの時間を規格化したときの、任意の時刻における関節角度や角速度を含む場合もある。
 バイオメカニクスデータ抽出部33bは、たとえば、CPU300が所与のプログラムを実行することによって実現される。本実施の形態では、バイオメカニクスデータは、上記したような、関節角度、関節角速度、セグメント角度、および、セグメント角速度、ならびに、これらの加工データを含み得る。抽出されたバイオメカニクスデータは、バイオメカニクスデータ抽出部33bから得点演算部35に出力される。
 演算式生成部34は、上記した演算式を生成する。生成された演算式を特定する情報は、演算式格納部34Aに格納される。演算式生成部34は、たとえば、CPU300が所与のプログラムを実行することによって実現される。演算式生成部34による演算式の生成については、図5を参照して後述する。
 得点演算部35は、演算式生成部34によって生成された演算式を、演算式格納部34Aから読み出す。そして、得点演算部35は、バイオメカニクスデータ抽出部33bから出力されたバイオメカニクスデータを当該演算式に適用することにより、被験者のランニングフォーム得点を算出する。得点演算部35によるランニングフォーム得点の算出は、図3のステップS204に相当する。得点演算部35は、たとえば、CPU300が所与のプログラムを実行することによって実現される。
 得点演算部35は、算出されたランニングフォーム得点をアウトプットデータ作成部36に出力する。アウトプットデータ作成部36は、算出されたランニングフォーム得点を、画像処理部33aにおいて切り出された被験者Aのランニング画像や、データ格納部32に格納されているランニングアドバイスデータなどと組み合わせることにより、診断結果を生成する。診断結果は、アウトプットシートとして、出力装置40上に表示される。診断結果は、必要に応じてプリントアウトされる場合がある。アウトプットデータ作成部36は、たとえば、CPU300が所与のプログラムを実行することによって実現される。アウトプットデータ作成部36が、出力装置40等に診断結果を出力させる処理は、図3のステップS205の処理に相当する。
 なお、診断結果は、アドバイス情報のほかに、被験者のランニングフォームに適したランニングシューズやウェアに関する情報を含む場合がある。すなわち、データ格納部32には、ランニングフォーム得点や被験者の身体動作情報に対応した、最適なランニングシューズの特性情報や具体的な商品情報が、たとえばデータテーブルとして、予め格納されていても良い。そして、アウトプットデータ作成部36は、ユーザー情報入力部31に入力されたユーザー情報、最終的に得られた被験者のランニングフォーム得点、および/または、被験者の身体動作情報に基づいて、上述したデータテーブルを読み出し、最適なランニングシューズ情報を選択して、診断結果に加えることができる。また、ランニングフォーム得点や被験者の身体動作情報などに対応したランニングウェアを特定する情報が、上記データテーブルに含まれる場合がある。この場合、ランニングフォーム診断システムは、診断結果として、被験者に、最適なランニングウェアの情報を提示することができる。
 以上のように、本実施の形態に従ったランニングフォーム診断システムによれば、テストランナーが走行した映像から得られたバイオメカニクスデータと、複数の専門家による当該テストランナーの走行に対して付与されたランニングフォーム得点との相関に基づいて、演算式が準備される。そして、被験者の走行した映像から抽出された当該被験者のバイオメカニクスデータが上記演算式に適用されることにより、当該被験者のランニングフォーム得点が算出される。上記演算式は、複数の専門家に共通する判断指標に基づいて、生成される。これにより、本実施の形態では、被験者の走行に対して、複数の専門家の判断指標に基づいて算出されたランニングフォーム得点が付与されることになる。したがって、付与されるランニングフォーム得点の正確性を向上できる。
 本実施の形態において、テストランナーとは、被験者のランニングフォーム得点の算出のためのデータ収集用ランナーを意味する。つまり、本実施の形態では、テストランナーの走行に基づいて演算式が生成され、当該演算式が利用されることにより、被験者のランニングフォーム得点が算出される。
 [演算式の生成]
 得点演算部35が被験者のランニングフォーム得点の算出に利用する演算式は、演算式生成部34によって生成される。ここで、図5を参照して、演算式の生成について説明する。以下、当該演算式の生成について、図5を参照して説明する。図5は、演算式の生成のフローチャートである。
 図5を参照して、演算式の生成の際に、演算式生成部34は、ステップS401で、複数のテストランナーの走行の映像データと、当該複数のテストランナーのランニングフォームに対する専門家の採点データとをロードする。
 ステップS401でロードされる映像データについて説明する。ステップS401に対する事前準備として、トレッドミルを走行するデータ収集用のテストランナーの映像が準備される。ここでは、複数人分のテストランナーの映像が準備される。当該映像は、たとえば撮影システム20によって撮影される。説明の便宜のため、テストランナーの数が「M」で表わされる。M人のテストランナーは、当該M人のスキルや性別、年齢などの特性が出来る限り幅広く分布するように選択されることが好ましい。また、全てのテストランナーの映像は、同一の条件下で撮影されたものが好ましい。たとえば、各テストランナーの映像は、少なくとも被験者の右側、および後側から撮影したものを含み得る。ステップS401では、M人分のテストランナーの映像データがロードされる。
 ステップS401でロードされる採点データについて説明する。複数の専門家のそれぞれが、上記のM人のテストランナーのランニング映像を見ながら、それぞれのテストランナーのランニングフォーム得点を付与する。採点データは、ここで付与されたランニングフォーム得点を特定する情報を含む。説明の便宜のため、専門家の数が「N」で表わされる。ステップS401に対する事前準備として、M人のテストランナーのそれぞれに対するN人の専門家の採点データが準備される。ステップS401では、準備された、M人のテストランナーのそれぞれに対するN人の専門家の採点データがロードされる。得点付けをする専門家としては、ランニングやスポーツバイオメカニクスを専門とする複数の研究者やコーチなどを想定することができる。
 ステップS401において、演算式生成部34は、さらに、各テストランナーのユーザー情報をロードし、当該ユーザー情報から、各テストランナーの身体特性を抽出しても良い。身体特性は、ユーザー情報入力部31に入力されたユーザー情報に加えて、当該ユーザー情報が加工されることによって生成された情報(たとえば、BMI)を含む。図6は、BMIの算出方法を説明するための図である。図6に示されるように、BMIは、ランナーの、身長(Height)と体重(Weight)とに基づいて算出される。
 ステップS402で、演算式生成部34は、ステップS401でロードした映像データから、各テストランナーのバイオメカニクスデータを抽出する。演算式生成部34は、画像処理部33aおよびバイオメカニクスデータ抽出部33bの機能を利用して、バイオメカニクスデータを抽出することができる。
 図7~図13を参照して、バイオメカニズムデータの具体例を説明する。図7~図13は、バイオメカニクスデータの例を説明するための図である。図7~図13のそれぞれには、映像データに含まれるランナーの姿が模式的に示されている。なお、図7には、2つの異なるタイミングにおけるランナーの姿が示されている。図7~図13の各図には、バイオメカニクスデータを取得するための基準線が破線で示されている。演算式生成部34は、たとえば、映像中のマーカー90(図1参照)の位置に基づいて、ランナーの四肢の位置を特定し、また、各基準線を定義する。各ランナーは、たとえば、右側6箇所(肩、肘、手首、太腿付け根、膝、足首)にマーカー90を装着する。
 図7には、ランナーを後方した撮影した映像の一例が示されている。図8~図13には、ランナーを右側方から撮影した映像の一例が示されている。図7~図13には、基準線に対する一方側にプラスの符号(+)が示され、他方側にマイナスの符号(+)が示されている。これらの符号は、ランナーの四肢の中の各図において問題となる部位の位置と、各図に基づいて抽出されるバイオメカニクスデータの値の符号(正か負か)との関係を示している。以降のバイオメカニクスデータの説明において、「Max」は、基準線に対する「+」側の角度の最大値を表す。「Min」は、基準線に対する「-」側の角度の最小値(「-」側の絶対値の最大値)を表す。「MaxMin」は、「Max」と「Min」の角度の差異を表す。
 図7は、バイオメカニクスデータの一例である「大腿角度(後方)MaxMin」を説明するための図である。「大腿角度(後方)MaxMin」は、基準線に対する大腿の角度に基づいて抽出される。より具体的には、演算式生成部34は、映像データから、基準線に対する一定時間内の各サイクルの大腿の角度の最大値と最小値とを抽出し、抽出した複数サイクル分の最大値と最小値のそれぞれの平均値を算出し、最大値の平均値と最小値の平均値の差分を算出することにより、「大腿角度(後方)MaxMin」を取得する。
 図8は、バイオメカニクスデータの一例である「前腕角度(側方)MaxMin」を説明するための図である。「前腕角度(側方)MaxMin」は、基準線に対する前腕の角度に基づいて抽出される。より具体的には、演算式生成部34は、映像データから、基準線に対する一定時間内の各サイクルの前腕の角度の最大値と最小値とを抽出し、抽出した複数サイクル分の最大値と最小値のそれぞれの平均値を算出し、最大値の平均値と最小値の平均値の差分を算出することにより、「前腕角度(側方)MaxMin」を取得する。
 図9は、バイオメカニクスデータの一例である「上腕角度(側方)Max」を説明するための図である。「上腕角度(側方)Max」は、基準線に対する上腕の角度に基づいて抽出される。より具体的には、演算式生成部34は、映像データから、基準線に対する一定時間内の各サイクルの上腕の角度の最大値を抽出し、抽出した複数サイクル分の最大値の平均値を算出することにより、「上腕角度(側方)Max」を取得する。
 図10は、バイオメカニクスデータの一例である「下腿角度差-大腿角度差」を説明するための図である。演算式生成部34は、映像データから一定時間内の各サイクルの下腿角度の最大値と最小値を取得し、取得した最大値と最小値の平均値を算出し、最大値の平均値と最小値の平均値の差分を算出する。また、演算式生成部34は、映像データから一定時間内の各サイクルの大腿角度の最大値と最小値を取得し、取得した最大値と最小値の平均値を算出し、最大値の平均値と最小値の平均値の差分を算出する。そして、下腿角度についての平均値の差分と大腿角度についての平均値の差分との差分を算出することにより、「下腿角度差-大腿角度差」を取得する。
 図11は、バイオメカニクスデータの一例である「大腿角速度(側方)Min」を説明するための図である。演算式生成部34は、映像データから、各サイクルの大腿の角速度を抽出し、当該角速度の最小値を算出し、複数サイクル分の最小値の平均値を算出することにより、「大腿角速度(側方)Min」を取得する。
 図12は、バイオメカニクスデータの一例である「下腿角速度(接地)」を説明するための図である。演算式生成部34は、映像データから、一定時間内の各サイクルの右足が接地するときの下腿の角速度を抽出し、抽出された複数サイクルの下腿の角速度の平均値を算出することにより、「下腿角速度(接地)」を取得する。
 図13は、バイオメカニクスデータの一例である「下腿角度(側方)Min」を説明するための図である。演算式生成部34は、映像データから、一定時間内の各サイクルの下腿角度の最小値を抽出し、抽出された複数サイクルの下腿角度の平均値を算出することにより、「下腿角度(側方)Min」を取得する。
 図14を参照して、バイオメカニクスデータの具体例を説明する。図14は、前腕角度の時系列データの一例を示す図である。バイオメカニクスデータ抽出部33は、走行映像におけるマーカー90の軌跡に基づいて、前腕角度の時系列データを生成する。図14において、破線は右足接地のタイミングを示す。図14では、12秒間のデータが示されている。当該データは、13サイクル分のデータを含む。演算式生成部34は、映像データから、図14に示されたデータを抽出し、さらに、各サイクルの前腕角度の最大値と最小値とを抽出する。そして、演算式生成部34は、取得した複数サイクルの最大値の平均値と最小値の平均値を算出し、これらの平均値の差分を算出することにより上記「前腕角度(側方)MaxMin」を取得する。なお、図14では、13番目のサイクルの、前腕角度の最大値が「Max」で示され、最小値が「Min」で示され、これらの差分が「Max-Min」で示されている。
 図5に戻って、ステップS402でバイオメカニクスデータを抽出した後、演算式生成部34は、ステップS403で、ユーザー特性の中から、テストランナーに対して付与されたランニングフォーム得点と相関の高い特性を抽出する。「ユーザー特性」は、各ランナーの身体特性(たとえば、BMI)と、図7~図14を参照して説明されたバイオメカニクスデータとを含む。演算式生成部34は、テストランナーの特性(「BMI」「大腿角度(後方)MaxMin」「前腕角度(側方)MaxMin」「上腕角度(側方)Max」「下腿角度差-大腿角度差」「大腿角速度(側方)Min」「下腿角速度(接地)」「下腿角度(側方)Min」)のうち、テストランナーに付与されたランニングフォーム得点との相関が高い特性を抽出する。相関が高い特性の抽出は、たとえば、相関関数の値が特定の値以上となった特性を抽出することによって実現される。
 次に、演算式生成部34は、ステップS404で、単回帰分析を行うことにより、各特性とランニングフォーム得点との関係を表す回帰式を生成する。当該単回帰分析では、ステップS403で抽出された特性のそれぞれが説明変数とされ、ランニングフォーム得点が目的変数とされる。
 図15は、ステップS404で生成される回帰式の一例を示す図である。図15は、「BMI」「大腿角度(後方)MaxMin」「前腕角度(側方)MaxMin」「上腕角度(側方)Max」「下腿角度差-大腿角度差」「大腿角速度(側方)Min」のそれぞれについての回帰式を、式(1)~式(6)として示す。式(1)中の「N1」と「N2」、式(2)中の「I1」と「I2」、式(3)中の「J1」と「J2」、式(4)中の「K1」と「K2」、式(5)中の「L1」と「L2」、および、式(6)中の「M1」「M2」は、各回帰式で使用される係数である。「Score1」~「Score6」は、それぞれ、式(1)~式(6)の算出結果を示す。
 なお、演算式の生成(ステップS401~ステップS404)は、得点演算部35によって行われても良い。得点演算部35は、身体情報抽出部33において抽出されたテストランナーのバイオメカニクスデータおよび/またはユーザー情報入力部31に入力されたテストランナーのユーザー情報から抽出される身体特性を利用して、上述の演算式生成部34における処理と同様の処理を実行することにより、演算式を生成する。この場合、演算式生成部34は、得点演算部35に対して、演算式の生成のためにバイオメカニクスデータと身体特性とをどのように処理するかについて、指示を出力する。
 [ランニングフォーム得点の算出]
 得点演算部35は、図3を参照して説明したように、ステップS204で、被験者のランニングフォーム得点を算出する。より具体的には、得点演算部35は、被験者のユーザー情報と走行映像とから、式(1)~式(6)に必要な被験者の特性を抽出する。抽出される被験者の特性は、被験者の身体特性とバイオメカニクスデータとを含む。身体情報抽出部33(画像処理部33aおよびバイオメカニクスデータ抽出部33b)が被験者の走行映像からバイオメカニクスデータをどのように抽出するかについては、たとえば、図5~図14を参照して説明されたような、演算式生成部34によるテストランナーのバイオメカニクスデータの抽出と同様に説明されるため、ここでは説明を繰り返さない。
 そして、得点演算部35は、抽出された被験者の特性を式(1)~式(6)のそれぞれに適用する。これにより、「Score1」~「Score6」として、予備的に被験者のランニングフォーム得点が算出される。そして、得点演算部35は、次の式(av.)に従って、予備的に算出されたランニングフォーム得点の平均値を算出することにより、被験者のランニングフォーム得点を取得する。式(av.)において、変数iの値は、「1」から「6」までの間で変化する。取得されたランニングフォーム得点は、ステップS205(図3参照)において、診断結果として出力される。
 (ランニングフォーム得点)=(ΣScorei)/6・・・(av.)
 [小括]
 図16を参照して、本実施の形態におけるランニングフォーム得点の算出を説明する。被験者のランニングフォーム得点を算出するために、テストランナーの走行映像とテストランナーの走行に対して専門家から付与されたランニングフォーム得点とに基づいて、演算式が生成される。
 演算式は、6つの特性を利用する数式(式(1)~式(6))と、これらの数式によって予備的に算出されるランニングフォーム得点の平均値を算出する数式(式(av.))とを含む。6つの特性は、「BMI」「大腿角度(後方)MaxMin」「前腕角度(側方)MaxMin」「上腕角度(側方)Max」「下腿角度差-大腿角度差」「大腿角速度(側方)Min」「下腿角速度(接地)」および「下腿角度(側方)Min」である。なお、式(1)~式(6)に示された、ランニングフォーム得点の算出に利用されるランナー(テストランナーおよび被験者)の特性は、単なる例示である。これらの特性は、テストランナーに対して付与されたランニングフォーム得点と相関が高いものとして選択されたものの一例であって、その数および種類は、式(1)~式(6)に示されたものに限定されない。
 本実施の形態では、ランニングフォーム得点の算出に利用されるランナーの特性は、身体特性(たとえば、「BMI」)とバイオメカニクスデータとを含む。なお、ランニングフォーム得点の算出に利用されるランナーの特性は、バイオメカニクスデータのみを含むこともある。
 図17は、35人のテストランナーに対する、本実施の形態に従って算出されたランニングフォーム得点(評価スコアから算出されたランニングフォーム得点)と、専門家によって付与されたランニングフォーム得点との相関を示す図である。図17のグラフの縦軸は、各テストランナーに対して専門家から付与されたランニングフォーム総合評価の値を示す。当該グラフの横軸は、各テストランナーの走行の映像に基づいて、式(1)~式(6)および式(av.)を用いて算出されたランニングフォーム総合得点(評価スコアから算出されたランニングフォーム得点)の値を示す。
 図17に示された結果に基づく、専門家から付与されたランニングフォーム得点と評価スコアから算出されたスコアの決定係数(重相関係数の2乗)は、「0.74」であった。これにより、本実施の形態に従ったランニングフォーム得点の算出方法は、評価結果において、専門家から付与されたランニングフォーム得点に近い得点を提供することができると言える。
 [変形例]
 ランニングフォーム得点の算出に利用される演算式と当該演算式を利用したランニングフォーム得点の算出との変形例を説明する。以下の記述では、主に、本変形例における、図1等に示されたランニングフォーム診断システムに対する変更点のみが説明される。
 この変形例では、専門家は、テストランナーの走行に対して、ランニングフォーム得点に加えて、2以上の項目についての評価を付与する。この変形例の演算式は、ランニングフォーム得点と相関の高い評価項目とランニングフォーム得点とを関連付ける数式(第1の回帰式)と、当該評価項目との相関の高いランナーの特性と当該評価項目とを関連付ける数式(第2の回帰式)とを含む。これらの数式は、テストランナーの身体特性および/または走行映像を利用されて、生成される。
 この変形例におけるランニングフォーム得点の算出は、被験者の身体特性および/または走行映像から第2の回帰式に必要なユーザー特性を抽出することと、抽出されたユーザー特性を第2の回帰式に適用することにより「相関の高い評価項目」の値を算出すること、および、算出された「相関の高い評価項目」の値を第1の回帰式に適用することを含む。
 図18は、本変形例における演算式の生成のフローチャートである。
 図18を参照して、演算式生成部34は、N人の専門家によるM人のテストランナーの走行に対するアンケートの採点データおよびM人のテストランナーの走行映像をロードする(ステップS501)。また、ステップS501で、演算式生成部34は、各テストランナーの身長、体重を含む身体情報の入力も受け付ける。採点データは、図22を参照して後述するように、テストランナーの走行に対する総合的なランニングフォーム得点(図22の「総合評価」)と、走行を評価する観点である2以上のスキル要因(図22の「スキル要因1」~「スキル要因n」)の得点とを含む。2以上のスキル要因のそれぞれは、以降の説明において「スキル要因Fn」と標記される場合がある。
 次に、演算式生成部34は、各スキル要因の採点データについて統計的な解析を行い、専門家によるランニングフォームの総合評価(理想的な走りのランニングフォームに対する達成の度合い)を構成するスキル要因Fnを特定する(ステップS502)。より具体的には、演算式生成部34は、例えば、専門家によるアンケートの採点項目(スキル要因と総合評価)を因子分析することで、スキル要因Fnを複数の要素(因子)のグループに分ける。次に、演算式生成部34は、当該グループ分けにおいて抽出された因子と総合評価との相関関係を特定する。そして、演算式生成部34は、各因子に含まれるスキル要因Fnの中から代表的因子を特定する。演算式生成部34は、特定された代表的因子として、総合評価を構成するスキル要因Fnを取得する。これにより、ランニングフォームの総合評価を特定したスキル要因Fnにより関連付けることができる。総合評価を「構成する」とは、総合評価に与える「影響が大きい」ことを意味する。
 次に、演算式生成部34は、各テストランナーのランニング映像より得られる3次元座標情報から、各テストランナーのバイオメカニクスデータを算出する(ステップS503)。演算式生成部34は、画像処理部33aおよびバイオメカニクスデータ抽出部33bの機能を利用して、バイオメカニクスデータを抽出することができる。バイオメカニクスデータがどのように抽出されるかについては、図6~図13を参照した上記説明と同様に説明されるため、その説明は繰り返さない。
 次に、演算式生成部34は、ユーザー特性(抽出されたバイオメカニクスデータと身体特性)と、ステップS502で特定されたスキル要因Fn(総合評価を構成するスキル要因Fn)とのそれぞれについての相関行列を求めることにより、当該総合評価を構成するスキル要因Fnと相関の高いユーザー特性を抽出する(ステップS504)。ここで抽出されたユーザー特性は、以降の説明では、適宜パラメータXn(X1、X2・・・Xn)と記述される。
 次に、演算式生成部34は、ステップS505で、専門家によって付与された、総合評価を構成するスキル要因Fnの得点(アンケートに記載された得点)を目的変数とし、抽出されたユーザー特性Xn(身体特性とバイオメカニクスパラメータ)を説明変数とした重回帰分析により、総合評価を構成するスキル要因Fnの得点をユーザー特性Xn(身体特性とバイオメカニクスパラメータ)より予測するための回帰式f2(第2の回帰式)を作成する。回帰式f2としては、単回帰式または重回帰式が用いられる。さらに、演算式生成部34は、ステップS505で、重回帰分析を行うことにより、総合評価(ランニングフォーム得点)を、総合評価を構成するスキル要因Fnを利用して算出するための重回帰式f1(第1の回帰式)を作成する。当該重回帰分析では、総合評価が目的変数とされ、総合評価を構成するスキル要因Fnの得点が説明変数とされる。
 本変形例では、被験者のランニングフォーム得点を算出するための「演算式」は、重回帰式f2と重回帰式f1を含む。重回帰式f2と重回帰式f1により、ユーザー特性が、ランニングフォーム得点(総合評価)に関連付けられる。
 本変形例において、得点演算部35は、ステップS205において、上記のように生成されたユーザー特性を重回帰式f2に適用することによって「相関の高い評価項目」の値を取得し、さらに、「相関の高い評価項目」の当該値を重回帰式f1に適用することによって、ランニングフォーム得点を算出する。
 なお、アンケートに記載された評価が多段階評価によって採点される場合は、当該評価に含まれる値が、所望の得点スケールで正規化した後で、表示されてもよい。
 上述したランニングフォーム得点を算出する一連の流れは、図19に示される。図19では、スキル要因F3およびF6が、総合評価を構成するスキル要因としてスキル要因Fnの中から取得された例が示されている。また、当該例では、スキル要因F3と相関の高いユーザー特性X1~X3、及びスキル要因F6と相関の高いユーザー特性X4~X8が、複数のユーザー特性の中から抽出されている。スキル要因F3及びF6の得点は、回帰式f1を用いて求められる。ランニングフォーム得点(総合評価)は、回帰式f2を用いて求められる。
 また、その他の例としては、図20に示されるように抽出されたパラメータXnが利用されて、ランニングフォームの個別評価項目(In)の得点が一旦求められ、また、この個別評価項目(In)の得点が利用されて、総合評価を構成するスキル要因Fnのスコアが求められ、さらに、このスキル要因Fnのスコアを利用されて、総合評価が求められる場合もあり得る。総合評価を構成するスキル要因Fnを算出するために使用されるパラメータXnを用いて導き出すことのできる任意の項目が、個別評価項目(In)として設定され得る。
 総合評価と個別評価項目(In)の得点とを算出する一連の流れは、図20に示される。図20では、総合評価を構成するスキル要因としてスキル要因F3およびF6がスキル要因Fnの中から取得され、スキル要因F3と相関の高いユーザー特性X1~X3と、スキル要因F6と相関の高いユーザー特性X4~X8とが、複数のユーザー特性の中から抽出されたケースが示されている。
 さらに、図20の例では、パラメータX1とX2に関連付けることのできる個別評価項目I1と、パラメータX3に関連付けることのできる個別評価項目I2が設定され、個別評価項目I1およびI2の得点に基づいてスキル要因F3の得点が算出される。同様に、パラメータX4に関連付けることのできる個別評価項目I3と、パラメータX5およびX6に関連付けることのできる個別評価項目I4と、パラメータX7とX8に関連付けることのできる個別評価項目I5と、が設定され、これらの個別評価項目I3~I5に基づいてスキル要因F6の得点が算出される。そして、スキル要因F3及びF6の得点に基づいて総合得点が算出される。
 個別評価項目I1~I5の得点は回帰式f3を用いて求められ、スキル要因F3及びF6の得点は回帰式f4を用いて求められ、ランニングフォーム得点(総合得点)は回帰式f5を用いて求められる。
 このように、ランニングフォームの総合評価点に加えて、個別評価項目についても専門家の評価結果をもとに得点化することで、より詳細に被験者のフォーム診断を行うことが可能となる。
 また、複数のテストランナーのバイオメカニクスデータ(身体動作情報)を説明変数とし、当該複数のテストランナーの走行に対して専門家が付与した総合評価を目的変数とした重回帰分析により、被験者の身体動作情報から直接的にランニングフォーム得点を求めるための重回帰式を生成することもできる。このように被験者のランニングフォーム得点を算出する一連の流れは、図21に示される。また、次の式(X)は、当該重回帰式の一例である。
 総合得点=N1+N2×大腿角度(後方)MaxMin
      +N3×上腕角度(側方)MaxMin
      +N4×前腕角度(側方)MaxMin  …(X)
 図21に示された例では、重回帰分析に利用される3種類の身体動作情報が、X1,X2,X3として示されている。当該重回帰式では、当該3種類の身体動作情報の具体例として、「大腿角度(後方)MaxMin」「上腕角度(側方)MaxMin」「前腕角度(側方)MaxMin」が採用されている。
 なお、図21および式(X)に示された例では、重回帰分析に利用される身体動作情報の数は「3」とされているが、これは一例であってこれに限定されない。
 本変形例においても、図4に示された機能ブロック図が適用される。ランニングフォーム評価式(重回帰式f2、f1)は、演算式生成部34内の記憶領域(図示せず)に格納され、後段の得点演算部35に設定される。得点演算部35は、バイオメカニクスデータ抽出部33bより出力される被験者Aのバイオメカニクスデータの中から、所定の身体特性とバイオメカニクスパラメータXnを選択し、これをランニングフォーム評価式(重回帰式f2、f1)に順次当てはめて、被験者Aのランニングフォーム得点を算出する(ステップS506)。
 図22を参照して、本変形例において利用されるアンケートの内容を説明する。図22は、専門家に配布されるアンケート用紙の概要を示す図である。アンケート用紙には、各スキル要因についての採点結果を記入するための領域(図22の「スキル要因1」~「スキル要因n」)と、総合評価(ランニングフォーム得点)を記入するための領域(図22の「総合評価」)とを含む。
 [実施例]
 以下、変形例の実施例を説明する。ランニングフォーム診断システムの基本構成は、図1に示した通りである。使用されたトレッドミル、撮影システム、解析ソフトは、以下の通りである。
 トレッドミル:日本光電株式会社製
 撮影システム:株式会社ライブラリー、ギガネット画像入力システムGE60W(2カメラ仕様)
 解析ソフト:株式会社ライブラリー、3次元動画計測ソフトMove-tr/3D(2次元ソフト含む)、CaptureEx(SP)
 また、6つのマーカー90は、被験者の右側6箇所(肩、肘、手首、太腿付け根、膝、足首)にそれぞれ装着された。
 演算式(ランニングフォーム評価式)は、以下のプロセスに従って決定された。
 まず、ランニングレベルの異なる20名のランナー(テストランナー)の走行映像が準備された。そして、12名の著名な専門家が、20名のテストランナーの走行映像を見ることにより、各テストランナーの採点データを作成した。図23は、各専門家に配布されたアンケート用紙の具体例を示す図である。
 図23に示されるように、本実施例では、“スピード感”、“美しさ”、“安全”、“リズム感”、“リラックス”、“躍動感”、“スムーズ”、および“バランス”の8項目をスキル要因として挙げ、7段階で採点評価が行われた。また“総合評価”として、ランニングフォームの具体的な得点を記入する欄が設けられた。
 アンケートにおいては、スキル要因を7段階で採点評価を行ったが、この分析においては正規化することが望ましく、N人の専門家によるM人のデータの平均と標準偏差を用いて、本実施例では、8項目のスキル要因と総合評価をそれぞれ、70±15点などと換算してもよい。
 なお、以降の説明では、各スキル要因そのものを表すときは、各スキル要因名を二重引用符で囲み(例:“安全”、“躍動感”)、各スキル要因の得点を表す場合は、各スキル要因の末尾に「スコア」の文字を添付している(例:“安全スコア”、“躍動感スコア”)。
 回答後のアンケートの採点結果を因子分析した結果、ランニングフォーム得点(専門家によって付与される総合評価)は、以下の通り“安全スコア”と“躍動感スコア”とよって主に形成されることが分かった。
 図24は、因子分析により抽出された因子に対する各スキル要因の因子負荷量をプロットした図である。図25は、20人のランナーのそれぞれの因子得点をプロットした図である。また、図26は、抽出された因子の因子得点と、“総合評価”との相関関係を示す図である。
 アンケート評価項目を因子分析した結果、因子1と因子2の2つの因子が抽出された。各スキル要因の因子負荷量をプロットしたところ、図24に示されるように、各スキル要因は、“躍動感”、および“スピード感”よりなる第1のグループと、“総合評価”、“美しさ”、“リズム感”、“リラックス”、“スムーズ”、および“バランス”よりなる第2のグループと、“安全”よりなる第3のグループとに分類できることが分かった。
 また、図25に示されるように、各スキル要因の因子得点をプロットした結果、理想のランニングフォームは、因子1(安全性に関する因子)と、因子2(躍動感に関する因子)の二軸を基準として分類され得ることが分かった。因子1および因子2と、“総合評価“との相関関係を調べたところ、図26に示されるように、専門家によるランニングフォームの総合評価は、因子1+因子2(因子1と因子2が組み合わせられたスコア)で表されることが分かった。
 そして、図24に示されるように、因子1からは、その代表変数として“安全スコア”が抽出された。また、因子2からは、その代表変数として“躍動感スコア”が抽出された。これにより、ランニングフォームの総合評価は、“安全スコア”+“躍動感スコア”によって表された。
 次に、“安全スコア”および“躍動感スコア”のそれぞれの要因となるユーザー特性(身体特性および/またはバイオメカニクスパラメータ)が抽出された。
 まず、20名のテストランナーの走行映像より、左右の股関節、膝関節、足関節、胸鎖関節、肩関節、および肘関節と、体幹、および首の合計14の関節について、計36項目の関節角度が算出された。さらに、身体セグメント(大腿、下腿、体幹、上胴、下胴、上腕、前腕、足部、肩)の絶対座標系各平面への投影角が、身体セグメント角度として算出された。そして、これらのバイオメカニクスデータに、被験者のBMIと床反力データとを加えた一群のデータについての、単相関分析および主成分分析により、ユーザー特性が絞り込まれることにより、“安全スコア”および“躍動感スコア”のそれぞれと相関の高いユーザー特性(パラメータ)が抽出された。このユーザー特性の抽出のための絞り込みは、多重共線性が回避されながら、実行された。
 上記の処理の結果、“安全スコア”と相関の高いユーザー特性として、身体特性の一つである「BMI」と、バイオメカニクスデータの中の「大腿角度(後方)MaxMin」および「前腕角度(側方)MaxMin」の、合計3つの要素が抽出された。また、“躍動感スコア”と相関の高いユーザー特性として、バイオメカニクスデータの中から、「上腕角度(側方)Max」、「大腿角速度側方Min」、「下腿角度(側方)Min」、「下腿角度差-大腿角度差」、および「下腿角速度(接地)」の合計5つの要素が抽出された。
 “安全スコア”および“躍動感スコア”に関して抽出された身体特性とバイオメカニクスパラメータは、図6~図13を参照して説明されたものである。ここで利用されるバイオメカニクスデータは、図6~図13を参照して説明したように抽出(算出)される。バイオメカニクスデータの抽出(算出)には、少なくとも、6個のマーカーが必要とされる。6個のマーカーは、より具体的には、ランナーの、肩関節、肘関節、手関節、股関節、膝関節、足関節に装着される。これら、肩関節、肘関節、および手関節のマーカーにより、上腕、および前腕の角度情報を得ることができ、また股関節、膝関節、足関節のマーカーにより、大腿、および下腿の角度情報を得ることができる。
 次に、重回帰分析により、抽出されたユーザー特性(身体特性とバイオメカニクスデータ)から評価項目“安全スコア”および“躍動感スコア”を表す式が構築された。これよりランニングフォームの評価点(総合評価)を求める重回帰式を求められたことになる。本実施例においては、総合評価に加えて、ランニングフォームの個別評価項目ごとの点数(個別評価得点)が表示される。各個別評価項目は、抽出されたユーザー特性(身体特性とバイオメカニクスパラメータ)に基づいて算出された。そして、算出された各個別評価得点に基づいて、総合評価が算出された。
 図27は、本実施例においてランニングフォーム得点の算出に利用される数式の組の一例を示す図である。図27には、式(7)~式(14)が示されている。
 評価項目“安全スコア”に関しては、「BMI」「大腿角度(後方)MaxMin」、「前腕角度(側方)MaxMin」を説明変数とし、“各個別評価得点”を目的変数として重回帰分析が行われた。上記3つのパラメータを用いて導き出すことのできる個別評価項目のスコアを算出する式は、図27の式(7)および式(8)に示されるように特定された。特定された個別評価項目の名称(Safety、Relax)は、対応するスキル要因などを考慮して任意に設定されたものである。
 同様に、評価項目“躍動感スコア”に関する「上腕角度(側方)Max」、「大腿角速度側方Min」、「下腿角度(側方)Min」、「下腿角度差-大腿角度差」、および「下腿角速度(接地)」を説明変数として定義することのできる個別評価項目のスコアを算出する式は、図27の式(10)~式(13)に示されるように特定された。
 図27において、式(9)は、式(7)および式(8)によって算出される値を用いて“安全スコア”を算出するための回帰式である。式(13)は、式(10)~式(12)によって算出される値を用いて“躍動感スコア”を算出するための回帰式である。式(14)は、式(9)の“安全スコア”および式(13)の“躍動感スコア”を用いて総合得点を算出するための回帰式である。
 図28は、上記のように抽出された身体特性およびバイオメカニクスパラメータと、(スキル要因を決定するための)個別評価項目と、個別評価項目を用いて算出されるスキル要因と、スキル要因を用いて算出されるランニングフォーム得点との関係を示す図である。
 図28に示されたスキル要因とランニングフォーム得点との関係においては、算出された5つの個別評価項目(“Safety”,“Relax”,“Positioning”,“Ride”,“Swing”)のスコアを用いて、スキル要因“安全スコア”および“躍動感スコア”の得点が算出される。そして、スキル要因“安全スコア”および“躍動感スコア”を用いて、式(14)により総合得点(ランニングフォーム得点)が算出される。
 以上のように求められたスキル要因の得点および総合得点は、それぞれの得点分布に応じて予め準備しておいた専門家のアドバイスコメントと共に、評価結果として、アウトプットシートに掲載される。アドバイスコメントは、たとえば、以下のように選択される。すなわち、スキル要因の得点および総合得点のそれぞれを、86点以上、85点~76点、75点~66点、65点~56点、55点以下、に区分けし、各得点ゾーンのランナーに対するアドバイスが予め設定される。設定されるアドバイスの内容は、たとえば、専門家へのヒアリングの内容に基づいて決定される。アウトプットデータ作成部36は、被験者の得点に応じたアドバイスコメントをデータ格納部32等から選択し、アウトプットシートに掲載する。なお、区分けの態様(各区分における点数の範囲)は、上述のものに限られず、他の態様が採用されても良い。
 図29~図31は、35名のランナーを、本実施例によるランニングフォーム診断システムによって算出された得点と、各ランナーに対する専門家の得点との関係を示す図である。図29は、スキル要因「安全」の得点についての関係を示す。図30は、スキル要因「躍動感」の得点についての関係を示す。図31は、ランニングフォーム得点についての関係を示す。
 図29~図31から理解されるように、“安全スコア”、“躍動感スコア”、および“総合評価”ともに、本実施例によるランニングフォーム診断システムによる得点と、専門家の評価とは高い相関を示した。たとえば、ランニングフーム得点についての関係において、専門家から付与された得点と算出された得点との決定係数は、0.84であった。これにより、本実施例によるランニングフォーム診断システムの評価の精度の有効性が確認された。また、図17と図31の結果が比較されることにより、変形例における評価の精度は、実施の形態における評価の精度よりも高いことが確認された。
 [アウトプットシートの具体例]
 次に、出力装置40が出力するアウトプットシートの具体例を説明する。図32および図33は、アウトプットシートの具体例を示す図である。
 アウトプットシートは、図32に示されるシート510と、図33に示されるシート520とを含む。シート510は、被験者のプロフィールを示す欄110と、被験者の走行に対して付与されたランニングフォーム得点等の得点を示す欄120と、被験者に対するアドバイスを示す欄130と、被験者のランニングフォームの画像を示す欄140と、被験者に対して提案される練習計画を示す欄150と、被験者に購入が勧められるシューズ等の情報を示す欄160とを含む。アウトプットデータ作成部36は、ユーザー情報入力部31に入力された情報等に基づいて、欄110に掲載する情報を生成する。
 欄120は、図28に示された5つの評価項目のそれぞれの得点を表示するための欄121~125と、ランニングフォーム得点を表示するための欄126とを含む。欄121~125のそれぞれは、各評価項目の得点に応じたアドバイスコメントを表示するための欄を含む。より具体的には、欄121は、欄121A,121Bを含む。欄122は、欄122A,122Bを含む。欄123は、欄123A,123Bを含む。欄124は、欄124A,124Bを含む。欄125は、欄125A,125Bを含む。データ格納部32は、評価項目の得点について、予め区分された得点のそれぞれに関連付けて、アドバイスコメントを格納している。アウトプットデータ作成部36は、データ格納部32に格納されているアドバイスコメントから、各評価項目の得点に対応するアドバイスコメントを選択して、欄121~125のそれぞれに表示させる。
 欄121Aは、欄121に得点を表示された評価項目“Safety”の得点に対応するアドバイスコメントを表示する。表示されるアドバイスコメントは、たとえば、『体への負担が大きくなるとランニング障害に繋がる可能性があります。「BMI・骨格・筋力・走り方のクセ」などから、走行中に脚が左右にブレてしまい股関節や膝への負担になります。減量が必要な場合はゆっくりなペースで走り、継続するようにしましょう。左右にブレる方は着地の位置とつま先の向きに注意しましょう。』である。データ格納部32は、さらに、各評価項目の得点について、予め区分された得点のそれぞれに関連付けて、被験者が注意すべきポイントを格納している。欄121Bは、欄121に示された得点に関連付けられたポイントを表示する。欄121Bに表示される内容は、たとえば、[着地の位置とつま先の向き][腹筋やお尻周りの筋トレ][ダイエット][O脚X脚の方は適切なシューズやサポータ選び]である。
 欄121~125のそれぞれに表示された得点の下には、各得点に応じた評価が示されている。評価の内容は、各評価項目について、予め区分された得点のそれぞれに関連付けられて、データ格納部32に格納されている。当該評価は、たとえば、高い得点に対応するものから順に、「良い」「標準的」「注意が必要です」というメッセージを含む。
 欄130は、欄121~125に示された得点のうち、最も高い得点に対応する評価項目についてのコメントを表示する欄131と、最も低い得点に対応する評価項目についてのコメントを表示する欄132とを含む。欄131には、評価項目“Swing”についてのコメントが表示されている。当該コメントは、たとえば、「Swing項目の結果から、良いタイミングで蹴り出しており、着地までよいスイングができています。素早く膝を前に出すことを意識し更なる向上を目指しましょう。」である。欄132は、評価項目“Safety”のコメントを表示する。表示されるコメントは、たとえば、「Safety項目の結果から、左右のふらつきが少しみられ不安定です。体重管理、トレーニング等によって改善するよう心がけましょう。」である。
 欄130には、得点が最も低かった評価項目に基づいて、「フォームアドバイス」と「トレーニングアドバイス」とが表示されている。「フォームアドバイス」と「トレーニングアドバイス」のそれぞれは、アドバイスの内容をより具体的に提示するために、人物の像を含む。さらに、「フォームアドバイス」は、具体的なメッセージを表示する欄133A~133Cを含む。「トレーニングアドバイス」は、具体的なメッセージを含む欄134A,134Bを含む。欄130は、さらに、「フォームアドバイス」と「トレーニングアドバイス」に示されたアドバイスが、考慮されるアドバイスの単なる一例に過ぎない旨の注意書きを表示する欄135を含む。
 図33を参照して、欄140は、被験者のランニングフォームを示す画像141A~141Dと、お手本となるランナーのランニングフォームを示す画像142A~142Dとを含む。アウトプットデータ作成部36は、撮影システム20によって撮影された被験者の走行映像から、画像141A~141Dを取得する。画像142A~142Dは、データ格納部32に格納されている。画像141A,142Aは、着地時の画像である。画像141B,142Bは、加重時の画像である。画像141C,142Cは、離地時の画像である。画像141D,142Dは、走行において膝下の(下腿)の垂直方向に対する角度が最大になるときの画像である。欄143A~143Dは、上記した4つの時点のそれぞれにおいて、ランナーが確認するべきポイントを示すメッセージを表示する。
 欄150は、被験者のランニングフォーム得点等に基づいて算出される、フルマラソンの予測タイム等の情報を示す。なお、欄150は、欄150に表示された予測タイム等が、おおよその目安であることを示すメッセージを表示する欄151を含む。
 欄160は、被験者について想定される着地パターンを示す欄161と、被験者のピッチおよびストライドの計測結果を示す欄162と、被験者に購入が勧められるシューズの情報を表示する欄163とを含む。また、欄160は、欄163において提示されたシューズの情報は概略的なものであること、および、被験者に合ったシューズについてのより具体的な情報を知るためには実際にシューズを試すことが勧められることを示すメッセージを示す欄164を含む。
 [慣性センサの計測に基づくバイオメカニクスデータの抽出]
 図34を参照して、ランニングフォーム診断システムの変形例について説明する。図34は、ランニングフォーム診断システムの変形例の概略構成を示す。以下の説明では、本変形例に従ったランニングフォーム診断システムにおける、図1に示されたシステムに対する変更点が、主に説明される。
 図34に示されるように、ランニングフォーム診断システム200では、トレッドミル10上を走行する被験者は、慣性センサ91を装着している。被験者は、関節角度を計測したい関節を挟む二箇所に、慣性センサ91を装着する。より具体的には、被験者は、上腕、前腕、大腿、および、下腿の角度等の計測のために、右側または左側の上腕部と前腕部と大腿部と下腿部のそれぞれに、慣性センサ91を装着する。
 図34に示されたシステムは、図1に示されたシステムの情報処理装置30の代わりに、情報処理装置30Aを含む。情報処理装置30Aは、慣性センサ91の計測結果を取得する。慣性センサ91は、たとえば無線通信によって、情報処理装置30Aに計測結果を送信する。情報処理装置30Aは、慣性センサ91から取得した計測結果を利用することにより、被験者のランニングフォーム得点を算出して、出力装置40へ出力する。出力装置40は、ランニングフォーム得点を出力する。
 情報処理装置30Aは、慣性センサ91の計測結果に基づいて、上腕、前腕、大腿、および、下腿の、角度情報および/または角速度を算出する。慣性センサ91としては、たとえば、ジャイロセンサおよび加速度計の双方の機能を有する、セイコーエプソン社製の慣性計測ユニット(Inertial Measurement Unit)が採用される。慣性センサ91は、3軸方向のそれぞれについて、角速度と加速度とを計測し、情報処理装置30Aに出力し得る。
 図35は、情報処理装置30Aのハードウェア構成の一例を示す図である。図35に示されるように、情報処理装置30Aの通信機器326は、慣性センサ91から送信される計測結果を受信する。CPU300は、受信された計測結果を処理することにより、被験者のランニングフォーム得点を算出する。
 図36は、情報処理装置30Aの機能構成の一例を示す図である。図36を参照して、情報処理装置30Aは、慣性センサ91からの情報の入力を受け付けるセンサ情報入力部50を含む。センサ情報入力部50は、たとえば、通信機器326によって構成される。バイオメカニクスデータ抽出部51は、慣性センサ91の計測結果から、被験者のバイオメカニクスデータを抽出する。バイオメカニクスデータ抽出部51は、たとえば、CPU300が所与のプログラムを実行することによって実現される。
 情報処理装置30Aの得点演算部35は、被験者のバイオメカニクスデータおよび/または身体情報を、演算式生成部34によって生成された演算式に適用することにより、被験者のランニングフォーム得点を算出する。
 情報処理装置30Aにおいて利用される演算式の生成には、テストランナーのバイオメカニクスデータが利用される。テストランナーのバイオメカニクスデータは、慣性センサ91の計測結果から抽出されたものであっても良いし、図1を参照して説明したように、撮影システム20によって撮影された映像から抽出されたものであっても良い。
 図34~図36を参照して説明されたランニングフォーム診断システム200は、被験者のバイオメカニクスデータを、慣性センサ91の計測結果から抽出する。撮影システム20は、複数の角度から被験者を測定する。このため、装置の構成の規模が大きくなることが予測される。ランニングフォーム診断システム200は、被験者のランニングフォーム得点を算出する場合、図1に示されたような撮影システム20は必要とされない。このため、ランニングフォーム診断システム200では、被験者の得点を算出するのに必要な装置の小型化が可能である。したがって、情報処理装置30Aにおいて予め演算式が登録されていれば、被験者は、たとえば自宅でも、自己のランニングフォームに対する得点を取得できる。
 [他の変形例]
 ランニングフォーム診断システムでは、情報処理装置30の演算式生成部34によって演算式が生成されたが、情報処理装置30の外部機器において演算式生成部34と同様の処理により演算式が生成されても良い。図37は、演算式が外部機器で生成される場合の、情報処理装置30Bの機能を示す図である。情報処理装置30Bは、情報処理装置30のさらに他の変形例である。
 図37を参照して、情報処理装置30Bでは、演算式を特定する情報が、演算式格納部34Aに格納される。得点演算部35は、ランニングフォームを算出するときには、演算式格納部34Aに格納された演算式を読み込む。
 実施の形態、実施例、および、変形例のそれぞれにおいて、得点演算部35は、総合得点だけでなく、抽出されたユーザー特性(身体特性および/またはバイオメカニクスパラメータ)に基づいて、ランニングフォームの評価項目の得点を算出してもよい。より具体的には、演算式格納部34Aには、身体特性またはバイオメカニクスパラメータに基づいて、各スキル要因のポイントを算出するための演算式を特定する情報が格納されていても良い。各スキル要因についての当該演算式は、たとえば、テストランナーの身体特性またはバイオメカニクスデータを説明変数とし、テストランナーの走行に対して専門家から付与された各スキル要因のポイントを目的変数とした場合の、回帰分析によって導出される。得点演算部35は、図18のステップS504において抽出された、被験者のパラメータXn(身体特性および/またはバイオメカニクスデータ)を、各スキル要因についての演算式に適用することにより、各スキル要因についてのポイントを算出する。算出されたポイントは、図32に示されたように、診断結果に加えられても良い。ランニングフォーム得点に加えて、個別項目についてのポイントが提示されることにより、個別項目についても専門家の評価を提示でき、これにより、より詳細に被験者のフォーム診断を行うことが可能となる。
 本開示によるランニングフォーム診断システムは、複数の専門家によるランナーのフォームの評価と、ランナーのバイオメカニクスデータとの相関に基づいて、ランニングフォームを評価するための演算式を生成する。そして、ランニングフォーム診断システムは、被験者の特性を当該演算式に適用することにより、ランニングフォームを得点化する。これにより、暗黙知とされていた専門家によるランニングフォームの評価が、演算式を介して、得点という形で顕在化される。演算式は、複数の専門家の評価に基づいて作成される。したがって、被験者は、自動的にランニングフォームに対する得点を与えられる。さらに、被験者に対して、複数のコーチや専門家による評価と極端に乖離することのない得点を付与することができる。
 この発明を詳細に説明し示してきたが、これは例示のためのみであって、限定ととってはならず、発明の範囲は添付の請求の範囲によって解釈されることが明らかに理解されるであろう。
 本開示によるランニングフォーム診断システムによれば、専門家の判断と同等の基準に基づいて、ユーザーのランニングフォームを自動的に得点化できる点において有用である。
 10 トレッドミル、20 撮影システム、30,30A,30B 情報処理装置、31 ユーザー情報入力部、32 データ格納部、33 身体情報抽出部、33a 画像処理部、33b バイオメカニクスデータ抽出部、34 演算式生成部、34A 演算式格納部、35 得点演算部、36 アウトプットデータ作成部、40 出力装置、50 センサ情報入力部、90 マーカー、91 慣性センサ、100,200 ランニングフォーム診断システム。

Claims (15)

  1.  被験者のランニングフォームを得点化するランニングフォーム診断システムであって、
     複数のテストランナーの走行に関する情報から抽出された身体動作情報と当該複数のテストランナーのそれぞれの走行に対して専門家が付与した評価との相関関係を表す演算式を記憶するように構成された記憶装置と、
     被験者の走行に関する情報の入力を受け付けるためのインターフェイスと、
     前記インターフェイスに入力された情報に基づいて、前記被験者のランニングフォームについての得点を出力するように構成されたプロセッサとを備え、
     前記プロセッサは、
      前記インターフェイスに入力された前記被験者の走行に関する情報から前記被験者の身体動作情報を抽出し、
      当該抽出した身体動作情報を前記演算式に適用することにより前記被験者のランニングフォームについての得点を算出するように構成されている、ランニングフォーム診断システム。
  2.  前記演算式は、
      前記テストランナーの走行に対して前記専門家によって付与された2以上の項目の評価を説明変数とし、前記テストランナーの走行に対して前記専門家によって付与された総合評価を目的変数として回帰分析を行うことにより得られる第1の回帰式と、
      前記テストランナーの身体動作情報を説明変数とし、前記テストランナーに対して前記専門家によって付与された前記2以上の項目の評価のそれぞれを目的変数として回帰分析を行うことにより得られる第2の回帰式とを含む、請求項1に記載のランニングフォーム診断システム。
  3.  前記第1の回帰式に利用される前記2以上の項目は、前記テストランナーの走行に対して前記専門家によって付与された予め定められた数の項目の評価と前記テストランナーの走行に対して前記専門家が付与した総合評価とが統計的に処理されることによって、前記予め定められた数の項目の中から特定される、請求項2に記載のランニングフォーム診断システム。
  4.  前記第2の回帰式に使用される前記テストランナーの身体動作情報は、特定の数の身体動作情報と前記2以上の項目の評価とが統計的に処理されることによって、前記特定の数の項目の特性の中から特定される、請求項3に記載のランニングフォーム診断システム。
  5.  前記演算式は、前記テストランナーの複数の身体動作情報を説明変数とし、前記テストランナーに対して前記専門家が付与した総合評価を目的変数とした重回帰分析を行うことにより得られる重回帰式とを含む、請求項1に記載のランニングフォーム診断システム。
  6.  前記演算式は、前記テストランナーの複数の身体動作情報のそれぞれを説明変数とし、前記テストランナーに対して前記専門家が付与した総合評価を目的変数とした回帰分析を行うことにより得られる複数の回帰式を含み、
     前記プロセッサは、前記複数の回帰式より得られる複数の総合評価に基づいて前記被験者のランニングフォームについての得点を算出する、請求項1に記載のランニングフォーム診断システム。
  7.  前記被験者の身体動作情報は、前記被験者の前腕の上腕に対する角度を算出することによって得られる肘関節角度、前記被験者の前腕と上腕のそれぞれのセグメント角度、前記被験者の下腿の上腿に対する角度を算出することによって得られる膝関節角度、または、前記被験者の下腿と上腿のそれぞれのセグメント角度の少なくともいずれかを含む、請求項1~請求項6のいずれか1項に記載のランニングフォーム診断システム。
  8.  前記インターフェイスに結合され、前記被験者の映像を撮影するための撮影装置をさらに備え、
     前記インターフェイスは、前記被験者の映像の入力を受け付けるように構成されており、
     前記プロセッサは、
      前記被験者の肘関節角度、または、前記被験者の前腕と上腕のそれぞれのセグメント角度の少なくともいずれかを抽出する場合、前記映像の中の、前記被験者の肩関節と肘関節と手関節に取り付けられたマーカーの画像の位置に基づいて、これらの角度を抽出し、
      前記被験者の膝関節角度、または、前記被験者の下腿と上腿のそれぞれのセグメント角度の少なくともいずれかを抽出する場合、前記映像の中の、前記被験者の股関節と膝関節と足関節に取り付けられたマーカーの画像の位置に基づいて、これらの角度を抽出するように構成されている、請求項7に記載のランニングフォーム診断システム。
  9.  前記被験者に取り付けられる慣性センサをさらに備え、
     前記インターフェイスは、前記慣性センサの検出結果の入力を受け付けるように構成されており、
     前記プロセッサは、前記慣性センサの検出結果に基づいて、前記被験者の身体動作情報を抽出するように構成されるように構成されている、請求項7に記載のランニングフォーム診断システム。
  10.  前記記憶装置は、走行についてのアドバイス情報を、予め区分された得点のそれぞれに関連付けて記憶するように構成されており、
     前記プロセッサは、前記被験者に対して算出した得点に関連付けられている前記アドバイス情報を出力するように構成されている、請求項1~請求項9のいずれか1項に記載のランニングフォーム診断システム。
  11.  前記演算式は、複数のテストランナーの走行に関する情報から抽出された身体動作情報および前記複数のテストランナーの身体特性と、当該複数のテストランナーのそれぞれの走行に対して専門家が付与した総合評価との相関関係をさらに表し、
     前記インターフェイスは、さらに、前記被験者の身体特性の入力を受け付けるように構成されており、
     前記プロセッサは、前記被験者の身体動作情報および身体特性を前記演算式に適用することにより、前記被験者のランニングフォームについての得点を算出するように構成されている、請求項1~請求項10のいずれか1項に記載のランニングフォーム診断システム。
  12.  コンピュータによって実行される、被験者のランニングフォームを得点化する方法であって、
     前記コンピュータは、
      複数のテストランナーの走行に関する情報から抽出された身体動作情報と当該複数のテストランナーのそれぞれの走行に対して専門家が付与した評価との相関関係を表す演算式を記憶するように構成された記憶装置と、
      被験者の走行に関する情報の入力を受け付けるインターフェイスとを備え、
     前記コンピュータが、前記インターフェイスに入力された前記被験者の走行に関する情報から前記被験者の身体動作情報を抽出することと、
     前記コンピュータが、前記抽出した身体動作情報を前記演算式に適用することにより、前記被験者のランニングフォームについての得点を算出することを備える、方法。
  13.  前記演算式は、
      前記テストランナーの走行に対して前記専門家によって付与された2以上の項目の評価を説明変数とし、前記テストランナーの走行に対して前記専門家によって付与された得点を目的変数として回帰分析を行うことにより得られる第1の回帰式と、
      前記テストランナーの身体動作情報を説明変数とし、前記テストランナーに対して前記専門家によって付与された前記2以上の項目の評価のそれぞれを目的変数として回帰分析を行うことにより得られる第2の回帰式とを含む、請求項12に記載の方法。
  14.  前記演算式は、前記テストランナーの複数の身体動作情報を説明変数とし、前記テストランナーに対して前記専門家が付与した総合評価を目的変数とした重回帰分析を行うことにより得られる重回帰式とを含む、請求項12に記載の方法。
  15.  前記演算式は、前記テストランナーの複数の身体動作情報のそれぞれを説明変数とし、前記テストランナーに対して前記専門家が付与した総合評価を目的変数とした回帰分析を行うことにより得られる複数の回帰式を含み、
     前記コンピュータが前記被験者のランニングフォームについての得点を算出することは、前記複数の回帰式より得られる複数の総合評価に基づいて前記被験者のランニングフォームについての得点を算出することを含む、請求項12に記載の方法。
PCT/JP2013/055517 2012-02-29 2013-02-28 ランニングフォーム診断システムおよびランニングフォームを得点化する方法 Ceased WO2013129606A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES13755578.5T ES2611196T3 (es) 2012-02-29 2013-02-28 Sistema de diagnóstico de la forma de correr y procedimiento de puntuación de la forma de correr
US14/116,971 US9452341B2 (en) 2012-02-29 2013-02-28 Running form diagnosis system and method for scoring running form
CA2834833A CA2834833C (en) 2012-02-29 2013-02-28 Running form diagnostic system and method for scoring running form
EP13755578.5A EP2695645B1 (en) 2012-02-29 2013-02-28 Running form diagnostic system and method for scoring running form
CN201380001601.8A CN103596626B (zh) 2012-02-29 2013-02-28 跑步方式诊断系统以及跑步方式的打分方法
AU2013226907A AU2013226907B2 (en) 2012-02-29 2013-02-28 Running form diagnostic system and method for scoring running form
KR1020137029410A KR101488130B1 (ko) 2012-02-29 2013-02-28 러닝 폼 진단 시스템 및 러닝 폼을 득점화하는 방법
BR112013031203A BR112013031203A2 (pt) 2012-02-29 2013-02-28 sistema de diagnóstico da forma de correr e método para pontuar uma forma de correr
JP2013522020A JP5314224B1 (ja) 2012-02-29 2013-02-28 ランニングフォーム診断システムおよびランニングフォームを得点化する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012044622 2012-02-29
JP2012-044622 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013129606A1 true WO2013129606A1 (ja) 2013-09-06

Family

ID=49082797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055517 Ceased WO2013129606A1 (ja) 2012-02-29 2013-02-28 ランニングフォーム診断システムおよびランニングフォームを得点化する方法

Country Status (10)

Country Link
US (1) US9452341B2 (ja)
EP (1) EP2695645B1 (ja)
JP (1) JP5314224B1 (ja)
KR (1) KR101488130B1 (ja)
CN (1) CN103596626B (ja)
AU (1) AU2013226907B2 (ja)
BR (1) BR112013031203A2 (ja)
CA (1) CA2834833C (ja)
ES (1) ES2611196T3 (ja)
WO (1) WO2013129606A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119833A (ja) * 2013-12-24 2015-07-02 カシオ計算機株式会社 運動支援システム及び運動支援方法、運動支援プログラム
JP2015205133A (ja) * 2014-04-23 2015-11-19 株式会社タニタ 運動機能測定装置、方法、及びプログラム
JP2016034478A (ja) * 2014-07-31 2016-03-17 セイコーエプソン株式会社 運動解析方法、運動解析装置、運動解析システム、運動解析プログラム、身体活動補助方法、身体活動補助装置及び身体活動補助プログラム
JP2016083063A (ja) * 2014-10-23 2016-05-19 国立大学法人 筑波大学 評価値算出プログラム、評価値算出方法、情報処理装置
WO2016132668A1 (ja) * 2015-02-16 2016-08-25 セイコーエプソン株式会社 トレーニング管理システム、トレーニング管理方法、トレーニング管理プログラム、およびトレーニング管理装置
KR101708178B1 (ko) * 2015-12-24 2017-02-20 김창수 스크린 등산 훈련 및 측정 시스템
WO2017069115A1 (ja) * 2015-10-21 2017-04-27 国立大学法人 筑波大学 評価情報提供システムおよび評価情報提供方法
JP2018069035A (ja) * 2016-10-27 2018-05-10 株式会社アシックス 歩行解析システム及び方法
JP2018108339A (ja) * 2016-09-27 2018-07-12 アディダス アーゲー ロボティックトレーニングシステムおよび方法
JPWO2017130339A1 (ja) * 2016-01-27 2018-11-22 株式会社ジンズ 情報処理方法、情報処理装置及びプログラム
JP2019005340A (ja) * 2017-06-27 2019-01-17 株式会社東芝 判定装置、判定システム、及び判定プログラム
JP2019036150A (ja) * 2017-08-17 2019-03-07 株式会社富士通エフサス 分類装置、分類方法および分類プログラム
WO2019082376A1 (ja) 2017-10-27 2019-05-02 株式会社アシックス 動作状態評価システム、動作状態評価装置、動作状態評価サーバ、動作状態評価方法、および動作状態評価プログラム
DE112018001710T5 (de) 2017-03-29 2019-12-24 Honda Motor Co., Ltd. Gehhilfssystem, Gehhilfsverfahren und Gehhilfsprogramm
JP2020141806A (ja) * 2019-03-05 2020-09-10 株式会社Sportip 運動評価システム
WO2021054399A1 (ja) * 2019-09-20 2021-03-25 日本電気株式会社 情報生成装置、情報生成方法、及び、記録媒体
JP2021145894A (ja) * 2020-03-19 2021-09-27 カシオ計算機株式会社 運動支援装置、運動支援方法及びプログラム
US11308599B2 (en) 2019-03-28 2022-04-19 Mizuno Corporation Method for processing information, information processor, and information processing program
JPWO2022137496A1 (ja) * 2020-12-25 2022-06-30
JPWO2022137498A1 (ja) * 2020-12-25 2022-06-30
WO2023100565A1 (ja) * 2021-11-30 2023-06-08 リオモ インク ランニングフォーム評価システム、プログラム及び方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180001126A1 (en) * 2010-11-18 2018-01-04 Slacteq Llc Balance measurement systems and methods thereof
US20170291065A1 (en) * 2016-04-08 2017-10-12 Slacteq Llc Balance measurement systems and methods thereof
WO2014042121A1 (ja) * 2012-09-12 2014-03-20 独立行政法人産業技術総合研究所 動作評価装置及びそのプログラム
JP2015011480A (ja) * 2013-06-27 2015-01-19 カシオ計算機株式会社 画像生成装置、画像生成方法及びプログラム
JP2016034482A (ja) * 2014-07-31 2016-03-17 セイコーエプソン株式会社 運動解析装置、運動解析方法、運動解析プログラム及び運動解析システム
JP2016036681A (ja) * 2014-08-11 2016-03-22 セイコーエプソン株式会社 運動解析方法、運動解析装置、運動解析システム及びプログラム
US20170084154A1 (en) * 2015-09-23 2017-03-23 Ali Kord Posture Monitor
KR101782897B1 (ko) * 2015-10-27 2017-09-28 김창수 가상 전투 환경을 통한 개인별 전투 역량 측정 시스템
CN108079521A (zh) * 2016-11-21 2018-05-29 风跑体育发展(深圳)有限公司 一种跑步测试方法及系统
CN108090394A (zh) * 2016-11-21 2018-05-29 风跑体育发展(深圳)有限公司 一种跑步动作自动跟踪方法及其系统
CN106621281A (zh) * 2016-12-21 2017-05-10 中国航天科工集团第四研究院指挥自动化技术研发与应用中心 一种便携式训练评价系统
WO2018126271A1 (en) * 2016-12-30 2018-07-05 Physmodo, Inc. Integrated goniometry system and method for use of same
JP6834553B2 (ja) * 2017-02-09 2021-02-24 セイコーエプソン株式会社 運動解析システム、運動解析装置、運動解析プログラム及び運動解析方法
KR101880693B1 (ko) * 2017-02-28 2018-07-23 경희대학교 산학협력단 인체의 동작 정보를 이용하여 푸시오프 각도를 계산하는 장치 및 방법
IT201700046512A1 (it) * 2017-04-28 2018-10-28 Univ Degli Studi Padova Metodo ed apparato per rilevare parametri biomeccanici e funzionali del ginocchio
CN110622212B (zh) * 2017-05-15 2022-11-18 富士通株式会社 表演显示方法以及表演显示装置
KR101940713B1 (ko) * 2017-10-11 2019-01-21 (주)코아팀즈 선회이동장치의 보행제어방법
CN108784708A (zh) * 2018-04-03 2018-11-13 长江师范学院 一种基于大数据的人体运动综合分析系统
CN110404243A (zh) * 2018-04-26 2019-11-05 北京新海樱科技有限公司 一种基于体态测量的康复方法及康复系统
JP6781200B2 (ja) * 2018-06-05 2020-11-04 美津濃株式会社 運動支援システムおよびプログラム
CN109009142B (zh) * 2018-07-06 2021-04-20 歌尔科技有限公司 跑步姿势判定方法、系统、智能穿戴设备及存储介质
US11557215B2 (en) * 2018-08-07 2023-01-17 Physera, Inc. Classification of musculoskeletal form using machine learning model
CN112188864A (zh) * 2018-10-31 2021-01-05 华为技术有限公司 一种运动指标评估方法及装置
CN109701229A (zh) * 2019-01-28 2019-05-03 重庆勤鸟圈科技有限公司 用户健身运动完成度评估系统
CN111259716A (zh) * 2019-10-17 2020-06-09 浙江工业大学 基于计算机视觉的人体跑步姿势识别分析方法及装置
CN111863190B (zh) * 2020-07-29 2024-03-15 重庆勤鸟圈科技有限公司 定制化运动装备及运动方案生成系统
CN112998695B (zh) * 2021-02-03 2023-05-02 上海橙捷健康科技有限公司 一种跟骨角度定量与压力跑步机的数据整合方法及系统
CN113181620A (zh) * 2021-04-28 2021-07-30 上海松鼠课堂人工智能科技有限公司 基于虚拟现实的体育测评方法与系统
KR102763223B1 (ko) * 2021-09-07 2025-02-07 주식회사 디랙스 보디빌딩 대회의 온라인 운영 방법 및 그 시스템
US20240024735A1 (en) * 2022-07-20 2024-01-25 Michelle Rubio Treadmill with Running Form Detection Device
CN116269347B (zh) * 2023-03-13 2025-09-26 北京宇能天地科技有限公司 后摆动作类型的确定方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233517A (ja) 2001-02-09 2002-08-20 Nippon Telegr & Teleph Corp <Ntt> 歩行の美しさ評価装置および方法
JP2002253718A (ja) * 2001-02-28 2002-09-10 Konami Co Ltd トレーニング評価装置、トレーニング評価方法およびトレーニング評価プログラム
JP2009297295A (ja) * 2008-06-13 2009-12-24 Kao Corp 肌のなめらかさの評価方法
JP2010017447A (ja) 2008-07-14 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> 歩行動作分析装置、歩行動作分析方法、歩行動作分析プログラムおよびその記録媒体
JP2012024275A (ja) * 2010-07-22 2012-02-09 Omron Healthcare Co Ltd 歩行姿勢判定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056671A (en) * 1997-12-19 2000-05-02 Marmer; Keith S. Functional capacity assessment system and method
CN2726530Y (zh) 2003-12-22 2005-09-21 孙飙 灵敏素质象限跳测试与评价系统
JP2008528195A (ja) 2005-01-26 2008-07-31 ベントレー・キネティクス・インコーポレーテッド 運動動作の分析及び指示のための方法及びシステム
US9155487B2 (en) * 2005-12-21 2015-10-13 Michael Linderman Method and apparatus for biometric analysis using EEG and EMG signals
US7717826B2 (en) * 2007-03-21 2010-05-18 Ut-Battelle, Llc Electrical signature analysis to quantify human and animal performance on fitness and therapy equipment such as a treadmill
US8175326B2 (en) * 2008-02-29 2012-05-08 Fred Siegel Automated scoring system for athletics
JP5459636B2 (ja) 2009-08-24 2014-04-02 株式会社センス・イット・スマート 支援システム及び支援方法
EP2585835A1 (en) 2010-06-22 2013-05-01 Stephen J. McGregor Method of monitoring human body movement
CN201928342U (zh) 2010-12-02 2011-08-10 上海华勤通讯技术有限公司 能纠正跑步姿势的手机
EP2649588A4 (en) 2010-12-07 2014-04-16 Movement Training Systems Llc SYSTEMS AND METHODS FOR PERFORMANCE LEARNING
US20120231840A1 (en) * 2011-03-08 2012-09-13 Bank Of America Corporation Providing information regarding sports movements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233517A (ja) 2001-02-09 2002-08-20 Nippon Telegr & Teleph Corp <Ntt> 歩行の美しさ評価装置および方法
JP2002253718A (ja) * 2001-02-28 2002-09-10 Konami Co Ltd トレーニング評価装置、トレーニング評価方法およびトレーニング評価プログラム
JP2009297295A (ja) * 2008-06-13 2009-12-24 Kao Corp 肌のなめらかさの評価方法
JP2010017447A (ja) 2008-07-14 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> 歩行動作分析装置、歩行動作分析方法、歩行動作分析プログラムおよびその記録媒体
JP2012024275A (ja) * 2010-07-22 2012-02-09 Omron Healthcare Co Ltd 歩行姿勢判定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2695645A4 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119833A (ja) * 2013-12-24 2015-07-02 カシオ計算機株式会社 運動支援システム及び運動支援方法、運動支援プログラム
JP2015205133A (ja) * 2014-04-23 2015-11-19 株式会社タニタ 運動機能測定装置、方法、及びプログラム
JP2016034478A (ja) * 2014-07-31 2016-03-17 セイコーエプソン株式会社 運動解析方法、運動解析装置、運動解析システム、運動解析プログラム、身体活動補助方法、身体活動補助装置及び身体活動補助プログラム
JP2016083063A (ja) * 2014-10-23 2016-05-19 国立大学法人 筑波大学 評価値算出プログラム、評価値算出方法、情報処理装置
WO2016132668A1 (ja) * 2015-02-16 2016-08-25 セイコーエプソン株式会社 トレーニング管理システム、トレーニング管理方法、トレーニング管理プログラム、およびトレーニング管理装置
US10460451B2 (en) 2015-10-21 2019-10-29 University Of Tsukuba Evaluation information provision system and evaluation information provision method
WO2017069115A1 (ja) * 2015-10-21 2017-04-27 国立大学法人 筑波大学 評価情報提供システムおよび評価情報提供方法
JP2017077403A (ja) * 2015-10-21 2017-04-27 国立大学法人 筑波大学 評価情報提供システムおよび評価情報提供方法
KR101708178B1 (ko) * 2015-12-24 2017-02-20 김창수 스크린 등산 훈련 및 측정 시스템
JPWO2017130339A1 (ja) * 2016-01-27 2018-11-22 株式会社ジンズ 情報処理方法、情報処理装置及びプログラム
JP2018108339A (ja) * 2016-09-27 2018-07-12 アディダス アーゲー ロボティックトレーニングシステムおよび方法
JP2018069035A (ja) * 2016-10-27 2018-05-10 株式会社アシックス 歩行解析システム及び方法
US11571141B2 (en) 2017-03-29 2023-02-07 Honda Motor Co., Ltd. Walking support system, walking support method, and walking support program
DE112018001710T5 (de) 2017-03-29 2019-12-24 Honda Motor Co., Ltd. Gehhilfssystem, Gehhilfsverfahren und Gehhilfsprogramm
JP2019005340A (ja) * 2017-06-27 2019-01-17 株式会社東芝 判定装置、判定システム、及び判定プログラム
JP2019036150A (ja) * 2017-08-17 2019-03-07 株式会社富士通エフサス 分類装置、分類方法および分類プログラム
JP6994870B2 (ja) 2017-08-17 2022-01-14 株式会社富士通エフサス 分類装置、分類方法および分類プログラム
JPWO2019082376A1 (ja) * 2017-10-27 2020-04-23 株式会社アシックス 動作状態評価システム、動作状態評価装置、動作状態評価サーバ、動作状態評価方法、および動作状態評価プログラム
WO2019082376A1 (ja) 2017-10-27 2019-05-02 株式会社アシックス 動作状態評価システム、動作状態評価装置、動作状態評価サーバ、動作状態評価方法、および動作状態評価プログラム
JP2020141806A (ja) * 2019-03-05 2020-09-10 株式会社Sportip 運動評価システム
JP7008342B2 (ja) 2019-03-05 2022-01-25 株式会社Sportip 運動評価システム
US11308599B2 (en) 2019-03-28 2022-04-19 Mizuno Corporation Method for processing information, information processor, and information processing program
WO2021054399A1 (ja) * 2019-09-20 2021-03-25 日本電気株式会社 情報生成装置、情報生成方法、及び、記録媒体
JP2021145894A (ja) * 2020-03-19 2021-09-27 カシオ計算機株式会社 運動支援装置、運動支援方法及びプログラム
JP7014249B2 (ja) 2020-03-19 2022-02-01 カシオ計算機株式会社 運動支援装置、運動支援方法及びプログラム
WO2022137498A1 (ja) * 2020-12-25 2022-06-30 株式会社アシックス 運動動作分析システム、運動動作分析方法および運動動作分析プログラム
JPWO2022137498A1 (ja) * 2020-12-25 2022-06-30
WO2022137496A1 (ja) * 2020-12-25 2022-06-30 株式会社アシックス 運動動作分析システム、運動動作分析方法および運動動作分析プログラム
JPWO2022137496A1 (ja) * 2020-12-25 2022-06-30
CN116568376A (zh) * 2020-12-25 2023-08-08 株式会社爱世克私 运动动作分析系统、运动动作分析方法及运动动作分析程序
JP7487344B2 (ja) 2020-12-25 2024-05-20 株式会社アシックス 運動動作分析システム、運動動作分析方法および運動動作分析プログラム
JP7487345B2 (ja) 2020-12-25 2024-05-20 株式会社アシックス 運動動作分析システム、運動動作分析方法および運動動作分析プログラム
CN116568376B (zh) * 2020-12-25 2025-10-14 株式会社爱世克私 运动动作分析系统、方法及计算机可读存储介质
WO2023100565A1 (ja) * 2021-11-30 2023-06-08 リオモ インク ランニングフォーム評価システム、プログラム及び方法

Also Published As

Publication number Publication date
EP2695645A4 (en) 2015-01-14
BR112013031203A2 (pt) 2017-01-31
US20140148931A1 (en) 2014-05-29
KR20140012743A (ko) 2014-02-03
US9452341B2 (en) 2016-09-27
JPWO2013129606A1 (ja) 2015-07-30
AU2013226907B2 (en) 2015-10-29
KR101488130B1 (ko) 2015-01-29
CN103596626A (zh) 2014-02-19
CA2834833C (en) 2016-07-05
EP2695645B1 (en) 2016-10-19
ES2611196T3 (es) 2017-05-05
CA2834833A1 (en) 2013-09-06
EP2695645A1 (en) 2014-02-12
CN103596626B (zh) 2015-11-25
JP5314224B1 (ja) 2013-10-16
AU2013226907A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5314224B1 (ja) ランニングフォーム診断システムおよびランニングフォームを得点化する方法
Velloso et al. Qualitative activity recognition of weight lifting exercises
Grewal et al. Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: a randomized controlled trial
JP2023540286A (ja) ユーザー動作を識別する方法及びシステム
JP4590010B1 (ja) 動作解析装置、および動作解析方法
JP6127873B2 (ja) 歩行特徴の解析方法
JP6844284B2 (ja) 歩容の評価方法
JP2016144598A (ja) 運動機能診断装置及び方法、並びにプログラム
Wang et al. Analysis of mechanical damage in dance training under artificial intelligence behavior constraints
JP2018187284A (ja) 運動状態診断システムおよび運動状態診断プログラム
US20230178233A1 (en) Biomechanics assessment system and biomechanical sensing device and biomechanical assessment platform thereof
TWI681360B (zh) 應用於巴金森氏病的復健監控系統及其方法
Wang et al. Evaluation of effects of balance training from using wobble board-based exergaming system by MSE and MMSE techniques
JP2018038753A (ja) 歩行分析方法及び歩行分析装置
JP6552875B2 (ja) 移動運動解析装置、方法及びプログラム
JP7465842B2 (ja) 作業支援システム
EP4464245A1 (en) Posture estimating device, posture estimating system, and posture estimating method
KR102885697B1 (ko) 메타버스 서비스를 이용한 운동 관리 시스템
JP2021099666A (ja) 学習モデルの生成方法
KR102403472B1 (ko) 인지장애 재활훈련 판단 장치 및 방법
Zhang et al. Walking stability by age a feature analysis based on a fourteen-linkage model
Reinker Real-time simulation and evaluation of data from wearable smart-devices to prevent musculoskeletal signs of aging
Kalra Human Factors in Sports, Performance and Wellness
JP2025187660A (ja) 評価装置、評価プログラム、評価方法
KR20210074972A (ko) 인지장애 재활훈련 판단 장치 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013522020

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2834833

Country of ref document: CA

Ref document number: 2013226907

Country of ref document: AU

Date of ref document: 20130228

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013755578

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013755578

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137029410

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013031203

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14116971

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112013031203

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131204