WO2013129606A1 - ランニングフォーム診断システムおよびランニングフォームを得点化する方法 - Google Patents
ランニングフォーム診断システムおよびランニングフォームを得点化する方法 Download PDFInfo
- Publication number
- WO2013129606A1 WO2013129606A1 PCT/JP2013/055517 JP2013055517W WO2013129606A1 WO 2013129606 A1 WO2013129606 A1 WO 2013129606A1 JP 2013055517 W JP2013055517 W JP 2013055517W WO 2013129606 A1 WO2013129606 A1 WO 2013129606A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subject
- running
- score
- running form
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1121—Determining geometric values, e.g. centre of rotation or angular range of movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1124—Determining motor skills
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2503/00—Evaluating a particular growth phase or type of persons or animals
- A61B2503/10—Athletes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique
- A61B5/1127—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique using markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/742—Details of notification to user or communication with user or patient; User input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/742—Details of notification to user or communication with user or patient; User input means using visual displays
- A61B5/744—Displaying an avatar, e.g. an animated cartoon character
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2230/00—Measuring physiological parameters of the user
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B5/00—Apparatus for jumping
- A63B5/02—High-jumping posts
- A63B5/04—Ropes or similar devices therefor
Definitions
- This disclosure relates to technology for automatically diagnosing runners' running forms.
- Patent Document 1 discloses an apparatus for evaluating the beauty of walking.
- the apparatus measures a foot pressure distribution during walking of the subject using a pressure sensor, and obtains a foot pressure center locus of the subject based on the measurement result.
- the device scores the beauty of the walking of the subject by comparing the foot pressure center locus of the subject thus obtained with the parameters of the foot pressure center locus as a model set in advance. To do.
- Patent Document 2 discloses an apparatus for analyzing a walking state of a pedestrian.
- the apparatus converts a walking motion of a pedestrian into data by constructing a three-dimensional human model from a plurality of captured images. Then, the walking state of the pedestrian is analyzed by comparing the walking motion of the pedestrian converted into data and the walking motion of a healthy person registered in the dictionary data.
- each of the conventional devices as described above compares the measurement data of the subject with specific data, and evaluates the behavior of the subject based on the result of the comparison.
- the evaluation result varies greatly depending on how the data used for comparison is selected. Therefore, there is a need for a technique that suppresses variations in evaluation results.
- the present disclosure has been made to solve the above-described conventional problems, and its purpose is to automatically score a runner's running form on the basis of a standard equivalent to judgment by an expert. It is to provide a running form diagnostic system that can.
- a running form diagnosis system that scores the running form of the subject.
- the running form diagnosis system stores an arithmetic expression representing a correlation between physical motion information extracted from information related to running of a plurality of test runners and an evaluation given by an expert to each run of the plurality of test runners.
- a storage device configured to, an interface for accepting input of information related to the subject's running, and a processor configured to output a score for the subject's running form based on the information input to the interface With.
- the processor is configured to extract the subject's body motion information from the information related to the subject's running input to the interface, and calculate the score for the subject's running form by applying the extracted body motion information to the arithmetic expression Has been.
- the arithmetic expression uses the evaluation of two or more items given by the expert for the test runner as an explanatory variable, and the comprehensive evaluation given by the expert for the test runner as an objective variable.
- the two or more items used in the first regression equation are an evaluation of a predetermined number of items given by an expert for the test runner and an expert for the test runner.
- the comprehensive evaluation given by is statistically processed, and is specified from a predetermined number of items.
- the physical motion information of the test runner used in the second regression equation is obtained by statistically processing the specific number of physical motion information and the evaluation of two or more items. Identified among the characteristics of the item.
- the arithmetic expression is a multiple regression equation obtained by performing multiple regression analysis using a plurality of body movement information of the test runner as explanatory variables and a comprehensive evaluation given by an expert to the test runner as an objective variable. including.
- the arithmetic expression is a plurality of regression formulas obtained by performing regression analysis using a plurality of body movement information of the test runner as explanatory variables and a comprehensive evaluation given by an expert to the test runner as an objective variable.
- the processor calculates a score for the running form of the subject based on a plurality of comprehensive evaluations obtained from a plurality of regression equations.
- the body motion information of the subject calculates an elbow joint angle obtained by calculating an angle with respect to the upper arm of the subject, a segment angle of each of the forearm and the upper arm of the subject, and an angle with respect to the upper leg of the subject. At least one of the knee joint angle obtained by this, or the segment angle of each of the lower leg and upper leg of the subject.
- the running form diagnosis system further includes an imaging device coupled to the interface for imaging the subject's video.
- the interface is configured to accept input of a subject's video.
- the processor extracts the subject's elbow joint angle or at least one of the subject's forearm and upper arm segment angles, markers attached to the subject's shoulder, elbow and wrist joints in the image If these angles are extracted based on the position of the image of the subject and at least one of the knee joint angle of the subject or the segment angle of each of the lower leg and upper leg of the subject is extracted, These angles are extracted based on the positions of the images of the markers attached to the hip joint, knee joint and ankle joint.
- the running form diagnosis system further includes an inertial sensor attached to the subject.
- the interface is configured to accept an input of a detection result of the inertial sensor.
- the processor is configured to extract body motion information of the subject based on the detection result of the inertial sensor.
- the storage device is configured to store the advice information about the travel in association with each of the previously divided scores.
- the processor is configured to output advice information associated with the score calculated for the subject.
- the arithmetic expression is a body motion information extracted from information related to running of the plurality of test runners, physical characteristics of the plurality of test runners, and a total given by an expert to each run of the plurality of test runners. It further represents the correlation with the evaluation.
- the interface is further configured to accept an input of a subject's physical characteristics.
- the processor is configured to calculate a score for the running form of the subject by applying the body movement information and the body characteristics of the subject to the arithmetic expression.
- a method for scoring a subject's running form which is executed by a computer.
- the computer stores an arithmetic expression representing a correlation between the body movement information extracted from the information related to the running of the plurality of test runners and the comprehensive evaluation given by the expert to each running of the plurality of test runners.
- a storage device and an interface for accepting input of information related to the traveling of the subject.
- the computer extracts the physical motion information of the subject from the information related to the subject's running input to the interface, and the computer applies the extracted physical motion information to the arithmetic expression to calculate the running form of the subject. Calculating a score.
- the arithmetic expression is a regression using the evaluation of two or more items given by the expert for the test runner as an explanatory variable and the score given by the expert for the test runner as an objective variable.
- Regression analysis using the first regression equation obtained by the analysis and the body movement information of the test runner as explanatory variables, and each of the evaluations of two or more items given by experts to the test runner as objective variables And a second regression equation obtained by performing.
- the arithmetic expression is a multiple regression equation obtained by performing multiple regression analysis using a plurality of body movement information of the test runner as explanatory variables and a comprehensive evaluation given by an expert to the test runner as an objective variable. including.
- the arithmetic expression is a plurality of regressions obtained by performing regression analysis using each of the plurality of body movement information of the test runner as explanatory variables and a comprehensive evaluation given by an expert to the test runner as an objective variable.
- the computer calculating the score for the subject's running form includes calculating the score for the subject's running form based on a plurality of comprehensive evaluations obtained from a plurality of regression equations.
- FIG. 19 is a diagram illustrating a modification of the hardware configuration of the information processing apparatus. It is a figure which shows the modification of the function structure of information processing apparatus. It is a figure which shows an example of a function structure of information processing apparatus in case an arithmetic expression is produced
- FIG. 1 is a diagram showing a configuration of a running form diagnosis system 100.
- the running form diagnosis system 100 includes a treadmill 10, a photographing system 20 that photographs a subject A to which a marker 90 is attached, and a running of the subject A based on an image of the subject A traveling.
- An information processing device 30 for scoring the form and an output device 40 for outputting a diagnosis result of the running form of the subject A are provided.
- the subject A wears the marker 90 at each of the six locations on the right side (shoulder, elbow, wrist, thigh root, knee, ankle), for example.
- the information processing apparatus 30 acquires the physical characteristics of the subject A, and extracts the body movement information of the subject A from the data of the video that the subject A travels. Then, the information processing apparatus 30 calculates the running form score of the subject based on the body characteristics and / or body movement information.
- the running form diagnosis system includes at least an information processing device 30.
- the photographing system 20 can be configured by a system that includes, for example, two high-speed cameras and can use motion capture technology.
- the information processing apparatus 30 includes a CPU (Central Processing Unit), a storage device, software, and the like, and is configured by, for example, a PC (personal computer). A detailed configuration of the information processing apparatus 30 will be described later.
- the output device 40 is configured by, for example, a monitor or printer that visually outputs information. Note that the output device 40 may output the diagnosis result in a form other than vision such as sound or in a combination of two or more output forms such as audiovisual information.
- FIG. 2 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 30.
- the information processing apparatus 30 includes a CPU 300, a graphic controller 310, a VRAM (Video RAM (Random Access Memory)) 312, an I / O (input / output) controller 316, interfaces 324 and 332, a communication device (interface) 326, a main memory 328, a BIOS (Basic Input Output System) 330, a USB (Universal Serial Bus) board 336, and a bus line 338.
- a CPU 300 a graphic controller 310, a VRAM (Video RAM (Random Access Memory)) 312, an I / O (input / output) controller 316, interfaces 324 and 332, a communication device (interface) 326, a main memory 328, a BIOS (Basic Input Output System) 330, a USB (Universal Serial Bus) board 336, and a bus line 338.
- VRAM Video RAM (Random Access Memory)
- I / O input / output controller
- the BIOS 330 stores a boot program executed by the CPU 300 when the information processing apparatus 30 is started up, a program depending on the hardware of the information processing apparatus 30, and the like.
- Storage devices such as the hard disk 318, the optical disk drive 322, and the semiconductor memory 320 are connected to the I / O controller 316.
- the interface 324 is a device for inputting information to the information processing device 30 such as a touch panel and a keyboard.
- the interface 332 is an example of an interface for inputting video data from the imaging system 20 to the information processing apparatus 30.
- the graphic controller 310 is an example of an information output interface from the information processing device 30 to the output device 40, and uses a VRAM 312.
- the information processing apparatus 30 further includes a wireless unit 334 and a Bluetooth (registered trademark) module 314.
- the information processing apparatus 30 can perform wireless communication with an external device via the wireless unit 334. Further, the information processing apparatus 30 can communicate with an external device by the Bluetooth method (an example of a short-range wireless communication method) by using the Bluetooth module 314.
- optical disk drive 322 examples include a CD-ROM (Compact Disc-ROM (Read Only Memory)) drive, a DVD (Digital Versatile Disc) -ROM drive, a DVD-RAM drive, and a BD (Blu-ray Disk) -ROM drive.
- the optical disc 400 is a recording medium having a format corresponding to the optical disc drive 322.
- the CPU 300 reads a program or data from the optical disc 400 using the optical disc drive 322.
- the CPU 300 can load the read program or data into the main memory 328 via the I / O controller 316 and can install the program or data in the hard disk 318.
- the communication device 326 is a device mounted on the information processing apparatus 30 to communicate with other devices such as a LAN (Local Area Network) card.
- LAN Local Area Network
- the CPU 300 can execute a program stored in the optical disc 400 or a recording medium (memory card or the like) and provided to the user.
- the CPU 300 may execute a program stored in a recording medium other than the optical disc 400, or may execute a program downloaded via the communication device 326.
- FIG. 3 is a flowchart showing the operation of the running form diagnosis system 100.
- step S201 user information such as the height, weight, sex, or monthly practice amount of the subject A is input to the information processing apparatus 30.
- CPU 300 accepts input of user information.
- the imaging system 20 captures an image of the subject A wearing the marker 90 and traveling on the treadmill 10 for a predetermined time (step S202).
- the moving image data generated by shooting is output to the information processing device 30.
- the information processing apparatus 30 extracts biomechanics data (body motion information) such as joint angles and angular velocities from the video data sent from the imaging system 20 (step S203).
- the CPU 300 treats video data from when the subject A's right foot is grounded to the next time the right foot is grounded as data for one cycle.
- the CPU 300 extracts biomechanics data from each of a plurality of cycles and calculates an average value thereof. The type of biomechanics data will be described later.
- the information processing apparatus 30 calculates the running form score of the subject by applying the user characteristics (the biomechanics data and / or physical characteristics of the subject extracted in step S203) to a given arithmetic expression.
- a given arithmetic expression is statistically processed, for example, by evaluation points given to multiple runners' run forms in the past by multiple experts (evaluators) and biomechanics data of the multiple runners. Is derived.
- the information processing apparatus 30 creates an output sheet on which the running form score and the advice information of the running form are posted, and displays the output sheet on the output apparatus 40 (step S205). With this display, a series of operations of the running form diagnosis system 100 is completed.
- FIG. 4 is a block diagram illustrating a functional configuration of the information processing apparatus 30.
- the information processing apparatus 30 includes a user information input unit 31, a data storage unit 32, a physical information extraction unit 33, an arithmetic expression generation unit 34, an arithmetic expression storage unit 34A, and a score calculation.
- the user information input unit 31 is an interface that accepts input of user information such as the subject's height, weight, treadmill speed, and monthly practice amount, and includes a keyboard and a touch panel.
- Various types of input information are stored in the data storage unit 32.
- the data storage unit 32 stores output data creation data such as an evaluation comment on a running form by an expert and advice information on form improvement points.
- the score calculation unit 35 and the output data creation unit 36 appropriately use information accumulated in the data storage unit 32.
- the body information extraction unit 33 extracts biomechanics data such as a joint angle and a joint angular velocity from the traveling image of the subject A transmitted from the imaging system 20 via the interface (interface 332 in FIG. 2). As shown in FIG. 4, the body information extraction unit 33 includes an image processing unit 33a and a biomechanics data extraction unit 33b.
- the image processing unit 33a obtains a three-dimensional coordinate value related to the motion of the subject A by measuring the position of the marker in the traveling video of the subject A sent from the imaging system 20.
- the image processing unit 33a is realized, for example, when the CPU 300 executes software that performs motion capture processing.
- the three-dimensional coordinate value information extracted by the image processing unit 33a is sent to the biomechanics data extraction unit 33b.
- the biomechanics data extraction unit 33b extracts the biomechanics data of the subject A from the three-dimensional coordinate value information output from the image processing unit 33a. More specifically, the biomechanics data extraction unit 33b calculates the joint angle and joint angular velocity of the subject A from the three-dimensional coordinate value information output from the image processing unit 33a. The biomechanics data extraction unit 33b calculates the segment angle (segment angular velocity) projected on each plane of the absolute coordinate system by applying each joint angle (joint angular velocity) to a given conversion formula.
- the biomechanics data extraction unit 33b further calculates processing data for each of the joint angle, joint angular velocity, segment angle, and segment angular velocity.
- the processed data includes a maximum value, a minimum value, and / or a difference between the maximum value and the minimum value (hereinafter also referred to as “maximum value ⁇ minimum value”).
- the processing data may include a joint angle and an angular velocity at an arbitrary time when the time from the contact of one foot of the subject to the separation is standardized.
- the biomechanics data extraction unit 33b is realized, for example, when the CPU 300 executes a given program.
- the biomechanics data may include joint angles, joint angular velocities, segment angles, segment angular velocities, and processing data thereof as described above.
- the extracted biomechanics data is output from the biomechanics data extraction unit 33b to the score calculation unit 35.
- the arithmetic expression generation unit 34 generates the above-described arithmetic expression. Information for specifying the generated arithmetic expression is stored in the arithmetic expression storage unit 34A.
- the arithmetic expression generation unit 34 is realized, for example, when the CPU 300 executes a given program. The generation of the arithmetic expression by the arithmetic expression generator 34 will be described later with reference to FIG.
- the score calculation unit 35 reads out the calculation formula generated by the calculation formula generation unit 34 from the calculation formula storage unit 34A. And the score calculating part 35 calculates a test subject's running form score by applying the biomechanics data output from the biomechanics data extraction part 33b to the said calculation formula.
- the calculation of the running form score by the score calculation unit 35 corresponds to step S204 in FIG.
- the score calculation unit 35 is realized, for example, when the CPU 300 executes a given program.
- the score calculation unit 35 outputs the calculated running form score to the output data creation unit 36.
- the output data creation unit 36 combines the calculated running form score with the running image of the subject A cut out by the image processing unit 33a, the running advice data stored in the data storage unit 32, and the like. Generate results.
- the diagnosis result is displayed on the output device 40 as an output sheet.
- the diagnosis result may be printed out as necessary.
- the output data creation unit 36 is realized, for example, when the CPU 300 executes a given program.
- the process in which the output data creation unit 36 causes the output device 40 or the like to output the diagnosis result corresponds to the process in step S205 in FIG.
- the diagnosis result may include information on running shoes and clothing suitable for the subject's running form.
- optimal running shoe characteristic information and specific product information corresponding to the running form score and the subject's physical movement information may be stored in advance as a data table, for example.
- the output data creation unit 36 performs the above-described data based on the user information input to the user information input unit 31, the finally obtained running form score of the subject, and / or the physical motion information of the subject.
- the table can be read out and the optimal running shoe information can be selected and added to the diagnostic results.
- the data table may include information for specifying running wear corresponding to the running form score, the body motion information of the subject, and the like. In this case, the running form diagnosis system can present optimal running wear information to the subject as the diagnosis result.
- the biomechanics data obtained from the video of the test runner and the run of the test runner by a plurality of experts are given.
- An arithmetic expression is prepared based on the correlation with the running form score.
- the subject's biomechanics data extracted from the image of the subject's travel is applied to the arithmetic expression, whereby the running form score of the subject is calculated.
- the arithmetic expression is generated based on a judgment index common to a plurality of experts.
- the test runner means a data collection runner for calculating the running form score of the subject. That is, in the present embodiment, an arithmetic expression is generated based on the running of the test runner, and the running form score of the subject is calculated by using the arithmetic expression.
- the arithmetic expression generation unit 34 when generating an arithmetic expression, assigns an expert scoring for the video data of a plurality of test runners and a running form of the plurality of test runners Load data and.
- step S401 An image of a test runner for data collection traveling on a treadmill is prepared.
- videos of test runners for multiple people are prepared.
- the video is shot by the shooting system 20, for example.
- the number of test runners is represented by “M”.
- the M test runners are preferably selected so that the characteristics, such as skills, sex, and age of the M people are distributed as widely as possible.
- it is preferable that all test runner images are taken under the same conditions.
- the video of each test runner may include those taken from at least the right side and the back side of the subject.
- step S401 video data of M test runners is loaded.
- the scoring data loaded in step S401 will be described.
- Each of a plurality of experts gives a running form score for each test runner while viewing the running images of the M test runners.
- the scoring data includes information specifying the running form score given here. For convenience of explanation, the number of experts is represented by “N”.
- scoring data of N experts for each of the M test runners is prepared.
- the prepared N expert scoring data for each of the M test runners is loaded.
- As a scoring expert multiple researchers and coaches specializing in running and sports biomechanics can be envisaged.
- the arithmetic expression generation unit 34 may further load the user information of each test runner and extract the body characteristics of each test runner from the user information.
- the physical characteristics include information (for example, BMI) generated by processing the user information in addition to the user information input to the user information input unit 31.
- FIG. 6 is a diagram for explaining a BMI calculation method. As shown in FIG. 6, the BMI is calculated based on the runner's height and weight.
- step S402 the arithmetic expression generation unit 34 extracts biomechanics data of each test runner from the video data loaded in step S401.
- the arithmetic expression generation unit 34 can extract biomechanics data using the functions of the image processing unit 33a and the biomechanics data extraction unit 33b.
- FIGS. 7 to 13 are diagrams for explaining examples of biomechanics data.
- FIGS. 7 to 13 schematically shows the appearance of the runner included in the video data.
- FIG. 7 shows the appearance of the runner at two different timings.
- a reference line for acquiring biomechanics data is indicated by a broken line.
- the arithmetic expression generation unit 34 specifies the position of the limb of the runner based on the position of the marker 90 (see FIG. 1) in the video, and defines each reference line.
- Each runner wears the markers 90 at, for example, six places on the right side (shoulder, elbow, wrist, thigh root, knee, and ankle).
- FIG. 7 shows an example of a video taken behind the runner.
- FIGS. 8 to 13 show examples of images taken from the right side of the runner. 7 to 13, a plus sign (+) is shown on one side with respect to the reference line, and a minus sign (+) is shown on the other side. These signs indicate the relationship between the position of the problematic part in each figure in the limbs of the runner and the sign (positive or negative) of the value of biomechanics data extracted based on each figure .
- “Max” represents the maximum value of the angle on the “+” side with respect to the reference line.
- Min represents the minimum value of the angle on the “ ⁇ ” side with respect to the reference line (the maximum value of the absolute value on the “ ⁇ ” side).
- MaxMin represents the difference in angle between “Max” and “Min”.
- FIG. 7 is a diagram for explaining “thigh angle (rear) MaxMin” which is an example of biomechanics data.
- the “thigh angle (rear) MaxMin” is extracted based on the angle of the thigh with respect to the reference line. More specifically, the arithmetic expression generation unit 34 extracts, from the video data, the maximum value and the minimum value of the thigh angle of each cycle within a certain time with respect to the reference line, The respective average values of the minimum values are calculated, and the difference between the average value of the maximum values and the average value of the minimum values is calculated, thereby obtaining “thigh angle (rear) MaxMin”.
- FIG. 8 is a diagram for explaining “forearm angle (side) MaxMin” which is an example of biomechanics data.
- “Forearm angle (side) MaxMin” is extracted based on the angle of the forearm with respect to the reference line. More specifically, the arithmetic expression generation unit 34 extracts, from the video data, the maximum value and the minimum value of the forearm angle of each cycle within a predetermined time with respect to the reference line, and the extracted maximum values for a plurality of cycles The average value of each minimum value is calculated, and the difference between the average value of the maximum value and the average value of the minimum value is calculated, thereby obtaining “forearm angle (side) MaxMin”.
- FIG. 9 is a diagram for explaining “upper arm angle (side) Max” which is an example of biomechanics data.
- “Upper arm angle (side) Max” is extracted based on the angle of the upper arm with respect to the reference line. More specifically, the arithmetic expression generation unit 34 extracts the maximum value of the angle of the upper arm of each cycle within a certain time with respect to the reference line from the video data, and calculates the average value of the extracted maximum values for a plurality of cycles. As a result, “upper arm angle (side) Max” is acquired.
- FIG. 10 is a diagram for explaining the “lower leg angle difference ⁇ thigh angle difference”, which is an example of biomechanics data.
- the arithmetic expression generation unit 34 acquires the maximum value and minimum value of the lower leg angle of each cycle within a predetermined time from the video data, calculates the average value of the acquired maximum value and minimum value, and calculates the average value and minimum value of the maximum value. The difference between the average values is calculated. Further, the arithmetic expression generation unit 34 acquires the maximum value and the minimum value of the thigh angle of each cycle within a predetermined time from the video data, calculates the average value of the acquired maximum value and minimum value, and calculates the average value of the maximum values And the difference between the average values of the minimum values. Then, by calculating the difference between the average value difference for the lower leg angle and the average value difference for the thigh angle, “lower leg angle difference ⁇ thigh angle difference” is acquired.
- FIG. 11 is a diagram for explaining “thigh angular velocity (lateral) Min” which is an example of biomechanics data.
- the arithmetic expression generation unit 34 extracts the angular velocity of the thigh of each cycle from the video data, calculates the minimum value of the angular velocity, and calculates the average value of the minimum values for a plurality of cycles. Way) Min ”.
- FIG. 12 is a diagram for explaining “crus angular velocity (ground contact)” which is an example of biomechanics data.
- the arithmetic expression generation unit 34 extracts, from the video data, the angular velocity of the lower leg when the right foot of each cycle within a predetermined time contacts the ground, and calculates the average value of the extracted angular velocity of the lower leg of the plurality of cycles. Acquire lower leg angular velocity (ground contact) ”.
- FIG. 13 is a diagram for explaining “crut angle (side) Min” which is an example of biomechanics data.
- the arithmetic expression generation unit 34 extracts the minimum value of the lower leg angle of each cycle within a certain time from the video data, and calculates the average value of the extracted lower leg angles of the plurality of cycles, thereby obtaining the “lower leg angle (lateral ) Min ”.
- FIG. 14 is a diagram illustrating an example of time-series data of forearm angles.
- the biomechanics data extraction unit 33 generates time series data of forearm angles based on the trajectory of the marker 90 in the running image.
- the broken line indicates the timing of right foot contact.
- FIG. 14 shows data for 12 seconds.
- the data includes data for 13 cycles.
- the arithmetic expression generator 34 extracts the data shown in FIG. 14 from the video data, and further extracts the maximum value and the minimum value of the forearm angle of each cycle.
- the arithmetic expression generation unit 34 calculates the average value of the maximum values and the minimum value of the acquired multiple cycles, and calculates the difference between these average values, thereby calculating the “forearm angle (side) MaxMin”. To get.
- the maximum value of the forearm angle of the thirteenth cycle is indicated by “Max”
- the minimum value is indicated by “Min”
- the difference between them is indicated by “Max ⁇ Min”.
- the arithmetic expression generation unit 34 has a characteristic highly correlated with the running form score given to the test runner from the user characteristics in step S403.
- “User characteristics” includes the physical characteristics (eg, BMI) of each runner and the biomechanics data described with reference to FIGS.
- the arithmetic expression generation unit 34 determines the characteristics of the test runner (“BMI”, “thigh angle (rear) MaxMin”, “forearm angle (side) MaxMin”, “upper arm angle (side) Max”, “lower leg angle difference ⁇ thigh angle difference”.
- a characteristic having a high correlation with the running form score assigned to the test runner is extracted. Extraction of a characteristic having a high correlation is realized, for example, by extracting a characteristic having a correlation function value equal to or greater than a specific value.
- step S404 the arithmetic expression generation unit 34 performs a single regression analysis to generate a regression expression representing the relationship between each characteristic and the running form score.
- each characteristic extracted in step S403 is an explanatory variable
- the running form score is an objective variable.
- FIG. 15 is a diagram illustrating an example of the regression equation generated in step S404.
- FIG. 15 shows “BMI”, “thigh angle (backward) MaxMin”, “forearm angle (side) MaxMin”, “upper arm angle (side) Max”, “lower leg angle difference ⁇ thigh angle difference”, and “thigh angular velocity (side) Min”.
- the regression equations for each of the above are shown as equations (1) to (6).
- N1 and “N2” in Formula (1), “I1” and “I2” in Formula (2), “J1” and “J2” in Formula (3), “K1 in Formula (4)” ”And“ K2 ”,“ L1 ”and“ L2 ”in Equation (5), and“ M1 ”and“ M2 ”in Equation (6) are coefficients used in each regression equation.
- “Score1” to “Score6” indicate the calculation results of Expressions (1) to (6), respectively.
- the generation of the arithmetic expression may be performed by the score calculation unit 35.
- the score calculation unit 35 uses the physical characteristics extracted from the test runner biomechanics data extracted by the physical information extraction unit 33 and / or the test runner user information input to the user information input unit 31, as described above.
- An arithmetic expression is generated by executing the same processing as the processing in the arithmetic expression generation unit 34.
- the arithmetic expression generation unit 34 outputs an instruction to the score calculation unit 35 as to how to process biomechanics data and body characteristics for generation of the arithmetic expression.
- the score calculation unit 35 calculates the running form score of the subject in step S204. More specifically, the score calculation unit 35 extracts the characteristics of the subject necessary for the expressions (1) to (6) from the user information of the subject and the running video.
- the extracted subject characteristics include subject physical characteristics and biomechanics data. How the physical information extraction unit 33 (the image processing unit 33a and the biomechanics data extraction unit 33b) extracts biomechanics data from the subject's running video will be described with reference to FIGS. 5 to 14, for example. Since it is described in the same manner as the extraction of the test runner biomechanics data by the arithmetic expression generation unit 34, the description is not repeated here.
- the score calculation unit 35 applies the extracted characteristics of the subject to the equations (1) to (6).
- the running form score of the subject is preliminarily calculated as “Score1” to “Score6”.
- the score calculating part 35 acquires a test subject's running form score by calculating the average value of the preliminarily calculated running form score according to the following formula (av.).
- the value of the variable i changes between “1” and “6”.
- the acquired running form score is output as a diagnosis result in step S205 (see FIG. 3).
- the arithmetic expression includes mathematical expressions (expressions (1) to (6)) using six characteristics, and mathematical expressions (expression (av.)) For calculating the average value of the running form scores that are preliminarily calculated by these mathematical expressions. ).
- the six characteristics are "BMI”, "thigh angle (back) MaxMin”, “forearm angle (side) MaxMin”, “upper arm angle (side) Max”, “lower leg angle difference-thigh angle difference”, “thigh angular velocity (side)” Min ”,“ lower leg angular velocity (ground contact) ”and“ lower leg angle (side) Min ”.
- the characteristics of the runners (test runners and subjects) used for calculating the running form score shown in the equations (1) to (6) are merely examples. These characteristics are examples of those selected as having a high correlation with the running form score given to the test runner, and the number and type thereof are shown in Equations (1) to (6). It is not limited to things.
- the characteristics of the runner used for calculating the running form score include body characteristics (for example, “BMI”) and biomechanics data.
- the characteristic of the runner used for calculating the running form score may include only biomechanics data.
- FIG. 17 is a diagram showing the correlation between the running form score calculated according to the present embodiment (running form score calculated from the evaluation score) and the running form score given by an expert for 35 test runners. It is.
- the vertical axis of the graph in FIG. 17 indicates the value of the overall running form evaluation given by the expert to each test runner.
- the horizontal axis of the graph represents the running form total score (calculated from the evaluation score) calculated using the equations (1) to (6) and the equation (av.) Based on the running images of each test runner. Shows the value of the running form score.
- the determination coefficient (square of the multiple correlation coefficient) of the score calculated from the running form score given by the expert and the evaluation score based on the result shown in FIG. 17 was “0.74”. Thereby, it can be said that the method for calculating the running form score according to the present embodiment can provide a score close to the running form score given by the expert in the evaluation result.
- the calculation formula of this modified example includes a mathematical expression (first regression formula) that associates an evaluation item having a high correlation with the running form score and the running form score, a characteristic of the runner having a high correlation with the evaluation item, and the evaluation item. And a mathematical formula (second regression formula) for associating. These mathematical expressions are generated using the physical characteristics and / or running images of the test runner.
- the running form score is calculated by extracting the user characteristics necessary for the second regression equation from the body characteristics and / or running images of the subject and applying the extracted user characteristics to the second regression equation. Calculating the value of the “highly correlated evaluation item” and applying the calculated value of the “highly correlated evaluation item” to the first regression equation.
- FIG. 18 is a flowchart of generation of an arithmetic expression in this modification.
- arithmetic expression generation unit 34 loads questionnaire scoring data and running images of M test runners for the running of M test runners by N experts (step S501).
- the arithmetic expression generation unit 34 also accepts input of physical information including the height and weight of each test runner.
- the scoring data includes an overall running form score for the run of the test runner (“Comprehensive Evaluation” in FIG. 22) and two or more skill factors that are points of view for evaluating the run ( The score of “skill factor 1” to “skill factor n” in FIG. 22 is included.
- Each of the two or more skill factors may be labeled as “skill factor Fn” in the following description.
- the arithmetic expression generation unit 34 performs statistical analysis on the scoring data of each skill factor, and skill factors that constitute a comprehensive evaluation of the running form (degree of achievement with respect to the ideal running running form) by an expert.
- Fn is specified (step S502). More specifically, the arithmetic expression generation unit 34 divides the skill factor Fn into a group of a plurality of elements (factors), for example, by performing a factor analysis on scoring items (skill factors and comprehensive evaluation) of a questionnaire by an expert. .
- the arithmetic expression generation unit 34 specifies the correlation between the factor extracted in the grouping and the comprehensive evaluation. Then, the arithmetic expression generation unit 34 identifies a representative factor from the skill factors Fn included in each factor.
- the arithmetic expression generation unit 34 acquires a skill factor Fn constituting the comprehensive evaluation as the identified representative factor. Thereby, it can link by skill factor Fn which identified comprehensive evaluation of the running form. “Composing” the comprehensive evaluation means “significantly affecting” the comprehensive evaluation.
- the arithmetic expression generation unit 34 calculates biomechanics data of each test runner from the three-dimensional coordinate information obtained from the running video of each test runner (step S503).
- the arithmetic expression generation unit 34 can extract biomechanics data using the functions of the image processing unit 33a and the biomechanics data extraction unit 33b. Since how the biomechanics data is extracted will be described in the same manner as described above with reference to FIGS. 6 to 13, the description thereof will not be repeated.
- the arithmetic expression generation unit 34 correlates each of the user characteristics (extracted biomechanics data and body characteristics) and the skill factor Fn specified in step S502 (skill factor Fn constituting the comprehensive evaluation).
- the user characteristics extracted here are described as parameters Xn (X1, X2,... Xn) as appropriate in the following description.
- step S505 the arithmetic expression generation unit 34 uses the score of the skill factor Fn constituting the overall evaluation (score described in the questionnaire) given by the expert as an objective variable, and extracts the extracted user characteristic Xn.
- Regression formula f2 (No. 2) for predicting the score of skill factor Fn constituting the overall evaluation from user characteristics Xn (body characteristics and biomechanics parameters) by multiple regression analysis with (body characteristics and biomechanics parameters) as explanatory variables 2 regression equation).
- a single regression equation or a multiple regression equation is used as the regression equation f2.
- the arithmetic expression generation unit 34 performs multiple regression analysis in step S505, thereby calculating a multiple regression expression f1 for calculating a comprehensive evaluation (running form score) using the skill factor Fn constituting the comprehensive evaluation. (First regression equation) is created.
- comprehensive evaluation is set as an objective variable
- the score of skill factor Fn constituting the comprehensive evaluation is set as an explanatory variable.
- the “calculation formula” for calculating the running form score of the subject includes a multiple regression formula f2 and a multiple regression formula f1.
- the user characteristics are related to the running form score (overall evaluation) by the multiple regression equation f2 and the multiple regression equation f1.
- the score calculation unit 35 acquires the value of “highly correlated evaluation item” by applying the user characteristic generated as described above to the multiple regression equation f2 in step S205.
- the running form score is calculated by applying the value of “highly correlated evaluation item” to the multiple regression equation f1.
- the value included in the evaluation may be displayed after normalization with a desired score scale.
- FIG. 19 shows a series of flows for calculating the running form score described above.
- FIG. 19 shows an example in which skill factors F3 and F6 are acquired from skill factors Fn as skill factors constituting the comprehensive evaluation.
- skill factors F3 and F6 are acquired from skill factors Fn as skill factors constituting the comprehensive evaluation.
- user characteristics X1 to X3 having a high correlation with the skill factor F3 and user characteristics X4 to X8 having a high correlation with the skill factor F6 are extracted from the plurality of user characteristics.
- the scores of skill factors F3 and F6 are obtained using regression equation f1.
- the running form score (overall evaluation) is obtained using the regression formula f2.
- the extracted parameter Xn as shown in FIG. 20 is used to obtain a score for the individual evaluation item (In) of the running form, and the individual evaluation item (In). May be used to obtain the score of the skill factor Fn constituting the overall evaluation, and further, the score of the skill factor Fn may be used to obtain the overall evaluation. Any item that can be derived using the parameter Xn used to calculate the skill factor Fn constituting the comprehensive evaluation can be set as the individual evaluation item (In).
- FIG. 20 A series of flows for calculating the comprehensive evaluation and the score of the individual evaluation item (In) are shown in FIG.
- skill factors F3 and F6 are acquired from skill factors Fn as skill factors constituting the comprehensive evaluation, and user characteristics X1 to X3 having a high correlation with skill factor F3 and user characteristics having a high correlation with skill factor F6
- a case where X4 to X8 are extracted from a plurality of user characteristics is shown.
- an individual evaluation item I1 that can be associated with the parameters X1 and X2 and an individual evaluation item I2 that can be associated with the parameter X3 are set, and skills are determined based on the scores of the individual evaluation items I1 and I2.
- a score for factor F3 is calculated.
- an individual evaluation item I3 that can be associated with the parameter X4 an individual evaluation item I4 that can be associated with the parameters X5 and X6, and an individual evaluation item I5 that can be associated with the parameters X7 and X8 are set.
- the score of the skill factor F6 is calculated based on these individual evaluation items I3 to I5.
- an overall score is calculated based on the scores of skill factors F3 and F6.
- the scores for the individual evaluation items I1 to I5 are obtained using the regression equation f3, the scores for the skill factors F3 and F6 are obtained using the regression equation f4, and the running form score (total score) is obtained using the regression equation f5. It is done.
- the individual evaluation items can be scored based on the evaluation result of the expert, thereby making it possible to perform the form diagnosis of the subject in more detail.
- a multiple regression equation for obtaining a running form score directly from the motion information can also be generated.
- a series of flows for calculating the running form score of the subject in this way is shown in FIG.
- the following equation (X) is an example of the multiple regression equation.
- the number of body movement information used for the multiple regression analysis is “3”, but this is an example, and the present invention is not limited to this.
- the running form evaluation formulas (multiple regression formulas f2 and f1) are stored in a storage area (not shown) in the calculation formula generation unit 34 and set in the score calculation unit 35 in the subsequent stage.
- the score calculation unit 35 selects predetermined physical characteristics and biomechanics parameters Xn from the biomechanics data of the subject A output from the biomechanics data extraction unit 33b, and uses them as a running form evaluation formula (multiple regression formula f2). , F1) are sequentially applied to calculate the running form score of the subject A (step S506).
- FIG. 22 is a diagram showing an outline of a questionnaire sheet distributed to experts. On the questionnaire form, an area for entering the scoring results for each skill factor ("skill factor 1" to “skill factor n” in FIG. 22) and an area for entering the overall evaluation (running form score) ( "Comprehensive evaluation" in FIG. 22
- Treadmill Nihon Kohden Co., Ltd.
- Photography system Library, Giganet image input system GE60W (2-camera specification)
- Analysis software Library Inc., 3D video measurement software Move-tr / 3D (including 2D software), CaptureEx (SP)
- six markers 90 were respectively attached to the right six points (shoulder, elbow, wrist, thigh root, knee, ankle) of the subject.
- the calculation formula (running form evaluation formula) was determined according to the following process. First, running images of 20 runners (test runners) with different running levels were prepared. Then, 12 prominent experts created scoring data for each test runner by viewing the running images of 20 test runners.
- FIG. 23 is a diagram showing a specific example of a questionnaire sheet distributed to each expert.
- the skill factors were scored in 7 stages, but in this analysis, it is desirable to normalize, and this example uses the average and standard deviation of M data from N experts. Then, the skill factor of 8 items and comprehensive evaluation may be converted into 70 ⁇ 15 points, respectively.
- each skill factor when representing each skill factor itself, enclose each skill factor name in double quotes (eg, “safety”, “live feeling”), and when representing the score of each skill factor, The word “score” is attached to the end of each skill factor (eg “safety score”, “dynamic feeling score”).
- the running form score (comprehensive evaluation given by experts) can be mainly formed by “safety score” and “dynamic feeling score” as follows: I understood.
- FIG. 24 is a diagram plotting the factor loadings of each skill factor against the factors extracted by factor analysis.
- FIG. 25 is a diagram in which the factor scores of 20 runners are plotted.
- FIG. 26 is a diagram showing a correlation between the factor score of the extracted factor and “overall evaluation”.
- each skill factor has a first group consisting of “motion feeling” and “speed feeling”, “comprehensive evaluation”, “beauty”. It was found that it can be classified into a second group consisting of “feeling”, “rhythmic feeling”, “relaxing”, “smooth” and “balance”, and a third group consisting of “safety”.
- the ideal running form is based on the two axes of factor 1 (factor related to safety) and factor 2 (factor related to dynamic feeling). It can be classified as.
- factor 1 factor related to safety
- factor 2 factor related to dynamic feeling
- safety score was extracted from factor 1 as the representative variable. Further, from Factor 2, “dynamic score” was extracted as the representative variable. As a result, the overall evaluation of the running form was expressed by “safety score” + “dynamic feeling score”.
- the user characteristics are narrowed down by simple correlation analysis and principal component analysis for a group of data obtained by adding the subject's BMI and floor reaction force data to these biomechanics data, so that the “safety score” and “ User characteristics (parameters) that are highly correlated with each of the “dynamic score” were extracted. This refinement for extracting user characteristics was performed while avoiding multicollinearity.
- biomechanics data used here is extracted (calculated) as described with reference to FIGS.
- Extraction (calculation) of biomechanics data requires at least six markers. More specifically, the six markers are attached to the shoulder joint, elbow joint, wrist joint, hip joint, knee joint, and ankle joint of the runner.
- the upper arm and forearm angle information can be obtained from the shoulder joint, elbow joint and wrist joint markers, and the thigh and lower leg angle information can be obtained from the hip joint, knee joint and ankle markers. Can do.
- FIG. 27 is a diagram showing an example of a set of mathematical formulas used for calculating the running form score in this embodiment.
- FIG. 27 shows Expressions (7) to (14).
- equation (9) is a regression equation for calculating the “safety score” using the values calculated by equation (7) and equation (8).
- Equation (13) is a regression equation for calculating the “dynamism score” using the values calculated by equations (10) to (12).
- Equation (14) is a regression equation for calculating a total score using the “safety score” in equation (9) and the “liveness score” in equation (13).
- FIG. 28 shows the physical characteristics and biomechanics parameters extracted as described above, individual evaluation items (for determining skill factors), skill factors calculated using the individual evaluation items, and skill factors. It is a figure which shows the relationship with the running form score calculated by this.
- the scores of the calculated five individual evaluation items (“Safety”, “Relax”, “Positioning”, “Ride”, “Swing”) are calculated.
- the score of the skill factor “safety score” and “dynamic feeling score” is calculated.
- the total score (running form score) is calculated by the equation (14).
- the score of skill factors and the total score obtained as described above are posted on the output sheet as evaluation results together with expert advice prepared in advance according to each score distribution.
- the advice comment is selected as follows, for example. In other words, each skill factor score and overall score is divided into 86 points or more, 85 points to 76 points, 75 points to 66 points, 65 points to 56 points, 55 points or less, and advice for runners in each scoring zone Is preset.
- the content of advice to be set is determined based on, for example, the content of interviews with experts.
- the output data creation unit 36 selects an advice comment corresponding to the score of the subject from the data storage unit 32 or the like and places it on the output sheet.
- the mode of division (the range of the score in each category) is not limited to the above-described one, and other modes may be adopted.
- FIG. 29 to FIG. 31 are diagrams showing the relationship between the scores calculated by the running form diagnosis system according to the present embodiment and the expert scores for each runner for 35 runners.
- FIG. 29 shows the relationship regarding the score of the skill factor “safety”.
- FIG. 30 shows the relationship regarding the score of the skill factor “dynamic feeling”.
- FIG. 31 shows the relationship regarding the running form score.
- the “safety score”, “liveness score”, and “overall evaluation” have a high correlation between the score by the running form diagnosis system according to the present example and the expert's evaluation. showed that.
- the coefficient of determination between the score given by the expert and the calculated score was 0.84.
- the effectiveness of the accuracy of the evaluation of the running form diagnosis system according to the present example was confirmed.
- the evaluation accuracy in the modification is higher than the evaluation accuracy in the embodiment.
- the output sheet includes a sheet 510 shown in FIG. 32 and a sheet 520 shown in FIG.
- the sheet 510 includes a column 110 indicating a subject's profile, a column 120 indicating a score such as a running form score given to the subject's running, a column 130 indicating advice to the subject, and an image of the subject's running form.
- a column 140 indicating a practice plan proposed to the subject, and a column 160 indicating information such as shoes recommended for the subject to purchase.
- the output data creation unit 36 generates information to be posted in the column 110 based on the information input to the user information input unit 31.
- the column 120 includes columns 121 to 125 for displaying the scores of each of the five evaluation items shown in FIG. 28, and a column 126 for displaying the running form score.
- Each of the columns 121 to 125 includes a column for displaying an advice comment corresponding to the score of each evaluation item. More specifically, the column 121 includes columns 121A and 121B.
- the column 122 includes columns 122A and 122B.
- the column 123 includes columns 123A and 123B.
- the column 124 includes columns 124A and 124B.
- the column 125 includes columns 125A and 125B.
- the data storage unit 32 stores advice comments regarding the scores of evaluation items in association with the scores divided in advance.
- the output data creation unit 36 selects an advice comment corresponding to the score of each evaluation item from the advice comments stored in the data storage unit 32 and displays it in each of the columns 121 to 125.
- the column 121A displays an advice comment corresponding to the score of the evaluation item “Safety” whose score is displayed in the column 121.
- the advice comment that is displayed is, for example, “If the burden on the body increases, it may lead to running problems. Due to “BMI, skeletal, muscular strength, running habit”, etc., the legs will be shaken from side to side while running, which will be a burden on the hip joint and knee. If you need to lose weight, run at a slower pace and continue. If you shake left and right, be careful of the landing position and toe direction. ].
- the data storage unit 32 stores points that should be noted by the subject in association with the scores that have been classified in advance for the scores of each evaluation item.
- the column 121B displays the points associated with the score shown in the column 121.
- the contents displayed in the column 121B are, for example, [landing position and toe orientation] [muscle training around the abdominal muscles and hips] [diet] [select appropriate shoes and supporters for the O leg X leg]. .
- the contents of the evaluation are stored in the data storage unit 32 in association with each of the scores divided in advance for each evaluation item.
- the evaluation includes, for example, messages “good”, “standard”, and “careful” in order from the one corresponding to the high score.
- a column 130 is a column 131 that displays a comment on the evaluation item corresponding to the highest score among the scores shown in the columns 121 to 125, and a column 132 that displays a comment on the evaluation item corresponding to the lowest score. Including.
- comments about the evaluation item “Swing” are displayed. The comment is, for example, “From the result of the Swing item, you have kicked out at a good time and have made a good swing to the landing. Let's aim for further improvement by being aware of putting out the knee quickly.” is there.
- a column 132 displays a comment of the evaluation item “Safety”. The displayed comment is, for example, “Slightly fluctuating left and right from the result of the Safety item and it is unstable. Try to improve by weight management, training, etc.”.
- “form advice” and “training advice” are displayed based on the evaluation item having the lowest score.
- Each of “form advice” and “training advice” includes an image of a person in order to present the content of the advice more specifically.
- the “form advice” includes columns 133A to 133C for displaying specific messages.
- “Training advice” includes columns 134A and 134B including specific messages.
- the column 130 further includes a column 135 for displaying a notice that the advice shown in the “form advice” and the “training advice” is merely an example of the advice to be considered.
- a column 140 includes images 141A to 141D showing the running form of the subject and images 142A to 142D showing the running form of the model runner.
- the output data creation unit 36 acquires the images 141A to 141D from the running video of the subject photographed by the photographing system 20.
- the images 142A to 142D are stored in the data storage unit 32.
- Images 141A and 142A are images at the time of landing.
- the images 141B and 142B are weighted images.
- Images 141C and 142C are images at the time of takeoff.
- Images 141 ⁇ / b> D and 142 ⁇ / b> D are images when the angle with respect to the vertical direction of the lower knee (lower leg) in the running is maximized.
- Columns 143A to 143D display messages indicating points to be checked by the runner at each of the above four time points.
- the column 150 shows information such as the prediction time of the full marathon calculated based on the running form score of the subject. Note that the column 150 includes a column 151 that displays a message indicating that the predicted time or the like displayed in the column 150 is an approximate guide.
- the column 160 includes a column 161 that indicates a landing pattern assumed for the subject, a column 162 that indicates a measurement result of the pitch and stride of the subject, and a column 163 that displays information on shoes recommended for the subject to purchase.
- the information on the shoes presented in the column 163 is approximate, and in order to know more specific information about the shoes suitable for the subject, it is possible to actually try the shoes.
- FIG. 34 shows a schematic configuration of a modified example of the running form diagnosis system.
- changes to the system shown in FIG. 1 in the running form diagnosis system according to the present modification will be mainly described.
- a subject running on the treadmill 10 is equipped with an inertial sensor 91.
- the subject wears the inertial sensor 91 at two positions sandwiching the joint whose joint angle is desired to be measured. More specifically, the subject uses inertial sensors on each of the right arm or left arm, forearm, thigh, and lower leg to measure the angle of the upper arm, forearm, thigh, and lower leg. 91 is attached.
- the 34 includes an information processing device 30A instead of the information processing device 30 of the system shown in FIG.
- the information processing apparatus 30A acquires the measurement result of the inertial sensor 91.
- Inertial sensor 91 transmits the measurement result to information processing apparatus 30A, for example, by wireless communication.
- the information processing device 30A calculates the running form score of the subject by using the measurement result acquired from the inertial sensor 91, and outputs the running form score to the output device 40.
- the output device 40 outputs the running form score.
- the information processing apparatus 30A calculates angle information and / or angular velocity of the upper arm, the forearm, the thigh, and the lower leg based on the measurement result of the inertial sensor 91.
- the inertial sensor 91 for example, an inertial measurement unit (Internal Measurement Unit) manufactured by Seiko Epson Corporation having both functions of a gyro sensor and an accelerometer is employed.
- the inertial sensor 91 can measure the angular velocity and acceleration for each of the three axis directions and output the measured angular velocity and acceleration to the information processing apparatus 30A.
- FIG. 35 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 30A.
- the communication device 326 of the information processing device 30 ⁇ / b> A receives the measurement result transmitted from the inertial sensor 91.
- the CPU 300 calculates the running form score of the subject by processing the received measurement result.
- FIG. 36 is a diagram illustrating an example of a functional configuration of the information processing apparatus 30A.
- information processing apparatus 30A includes a sensor information input unit 50 that receives input of information from inertial sensor 91.
- the sensor information input unit 50 is configured by a communication device 326, for example.
- the biomechanics data extraction unit 51 extracts biomechanics data of the subject from the measurement result of the inertial sensor 91.
- the biomechanics data extraction unit 51 is realized, for example, when the CPU 300 executes a given program.
- the score calculation unit 35 of the information processing apparatus 30A calculates the test subject's running form score by applying the biomechanics data and / or physical information of the subject to the calculation formula generated by the calculation formula generation unit 34.
- the biomechanics data of the test runner is used to generate an arithmetic expression used in the information processing apparatus 30A.
- the biomechanics data of the test runner may be extracted from the measurement result of the inertial sensor 91 or extracted from the video imaged by the imaging system 20 as described with reference to FIG. It may be.
- the running form diagnosis system 200 described with reference to FIGS. 34 to 36 extracts the biomechanics data of the subject from the measurement result of the inertial sensor 91.
- the imaging system 20 measures the subject from a plurality of angles. For this reason, it is predicted that the scale of the configuration of the apparatus will increase.
- the running form diagnosis system 200 calculates the running form score of the subject, the imaging system 20 as shown in FIG. 1 is not required. For this reason, in the running form diagnosis system 200, it is possible to reduce the size of the device necessary for calculating the score of the subject. Therefore, if an arithmetic expression is registered in advance in the information processing apparatus 30A, the subject can obtain a score for his running form even at home, for example.
- FIG. 37 is a diagram illustrating functions of the information processing device 30B when the arithmetic expression is generated by an external device.
- the information processing device 30 ⁇ / b> B is yet another modification of the information processing device 30.
- information processing apparatus 30B information for specifying an arithmetic expression is stored in arithmetic expression storage 34A.
- the score calculation unit 35 reads the calculation formula stored in the calculation formula storage unit 34A.
- the score calculation unit 35 evaluates the running form based on the extracted user characteristics (physical characteristics and / or biomechanics parameters) as well as the total score. You may calculate the score of an item. More specifically, the arithmetic expression storage unit 34A may store information for specifying an arithmetic expression for calculating points of each skill factor based on physical characteristics or biomechanics parameters. The calculation formula for each skill factor is, for example, when the physical characteristics or biomechanics data of the test runner is used as the explanatory variable, and the points of each skill factor given by the expert for the test runner are used as the objective variable Is derived by regression analysis.
- the score calculation unit 35 applies the parameter Xn (physical characteristics and / or biomechanics data) of the subject extracted in step S504 in FIG. 18 to the calculation formula for each skill factor, so that Calculate points.
- the calculated points may be added to the diagnosis result as shown in FIG.
- the running form diagnosis system generates an arithmetic expression for evaluating the running form based on the correlation between the runner's form evaluation by a plurality of experts and the runner's biomechanics data. And a running form diagnostic system scores a running form by applying a test subject's characteristic to the said computing equation. Thereby, the evaluation of the running form by the expert who has been assumed to be tacit knowledge is revealed in the form of a score through the arithmetic expression.
- the arithmetic expression is created based on the evaluation of a plurality of experts. Thus, the subject is automatically given a score for the running form. Furthermore, the score which does not deviate extremely from the evaluation by a plurality of coaches and experts can be given to the subject.
- the running form diagnosis system is useful in that a user's running form can be automatically scored based on a standard equivalent to the judgment of an expert.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Dentistry (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Physiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Physical Education & Sports Medicine (AREA)
- Geometry (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
ランニングフォーム診断システムの一実施の形態を含むシステムの構成の一例を説明する。図1は、ランニングフォーム診断システム100の構成を示す図である。
図2を参照して、情報処理装置30のハードウェア構成の一例を説明する。図2は、情報処理装置30のハードウェア構成の一例を示す図である。
以下に、図1~図3を参照して、ランニングフォーム診断システム100の動作を説明する。図3は、ランニングフォーム診断システム100の動作を示すフローチャートである。
図4を参照して、情報処理装置30の機能的構成を説明する。図4は、情報処理装置30の機能的な構成を示すブロック図である。図4に示されるように、情報処理装置30は、ユーザー情報入力部31と、データ格納部32と、身体情報抽出部33と、演算式生成部34と、演算式格納部34Aと、得点演算部35と、アウトプットデータ作成部36とを備える。
得点演算部35が被験者のランニングフォーム得点の算出に利用する演算式は、演算式生成部34によって生成される。ここで、図5を参照して、演算式の生成について説明する。以下、当該演算式の生成について、図5を参照して説明する。図5は、演算式の生成のフローチャートである。
得点演算部35は、図3を参照して説明したように、ステップS204で、被験者のランニングフォーム得点を算出する。より具体的には、得点演算部35は、被験者のユーザー情報と走行映像とから、式(1)~式(6)に必要な被験者の特性を抽出する。抽出される被験者の特性は、被験者の身体特性とバイオメカニクスデータとを含む。身体情報抽出部33(画像処理部33aおよびバイオメカニクスデータ抽出部33b)が被験者の走行映像からバイオメカニクスデータをどのように抽出するかについては、たとえば、図5~図14を参照して説明されたような、演算式生成部34によるテストランナーのバイオメカニクスデータの抽出と同様に説明されるため、ここでは説明を繰り返さない。
[小括]
図16を参照して、本実施の形態におけるランニングフォーム得点の算出を説明する。被験者のランニングフォーム得点を算出するために、テストランナーの走行映像とテストランナーの走行に対して専門家から付与されたランニングフォーム得点とに基づいて、演算式が生成される。
ランニングフォーム得点の算出に利用される演算式と当該演算式を利用したランニングフォーム得点の算出との変形例を説明する。以下の記述では、主に、本変形例における、図1等に示されたランニングフォーム診断システムに対する変更点のみが説明される。
図18を参照して、演算式生成部34は、N人の専門家によるM人のテストランナーの走行に対するアンケートの採点データおよびM人のテストランナーの走行映像をロードする(ステップS501)。また、ステップS501で、演算式生成部34は、各テストランナーの身長、体重を含む身体情報の入力も受け付ける。採点データは、図22を参照して後述するように、テストランナーの走行に対する総合的なランニングフォーム得点(図22の「総合評価」)と、走行を評価する観点である2以上のスキル要因(図22の「スキル要因1」~「スキル要因n」)の得点とを含む。2以上のスキル要因のそれぞれは、以降の説明において「スキル要因Fn」と標記される場合がある。
+N3×上腕角度(側方)MaxMin
+N4×前腕角度(側方)MaxMin …(X)
図21に示された例では、重回帰分析に利用される3種類の身体動作情報が、X1,X2,X3として示されている。当該重回帰式では、当該3種類の身体動作情報の具体例として、「大腿角度(後方)MaxMin」「上腕角度(側方)MaxMin」「前腕角度(側方)MaxMin」が採用されている。
以下、変形例の実施例を説明する。ランニングフォーム診断システムの基本構成は、図1に示した通りである。使用されたトレッドミル、撮影システム、解析ソフトは、以下の通りである。
撮影システム:株式会社ライブラリー、ギガネット画像入力システムGE60W(2カメラ仕様)
解析ソフト:株式会社ライブラリー、3次元動画計測ソフトMove-tr/3D(2次元ソフト含む)、CaptureEx(SP)
また、6つのマーカー90は、被験者の右側6箇所(肩、肘、手首、太腿付け根、膝、足首)にそれぞれ装着された。
まず、ランニングレベルの異なる20名のランナー(テストランナー)の走行映像が準備された。そして、12名の著名な専門家が、20名のテストランナーの走行映像を見ることにより、各テストランナーの採点データを作成した。図23は、各専門家に配布されたアンケート用紙の具体例を示す図である。
次に、出力装置40が出力するアウトプットシートの具体例を説明する。図32および図33は、アウトプットシートの具体例を示す図である。
図34を参照して、ランニングフォーム診断システムの変形例について説明する。図34は、ランニングフォーム診断システムの変形例の概略構成を示す。以下の説明では、本変形例に従ったランニングフォーム診断システムにおける、図1に示されたシステムに対する変更点が、主に説明される。
ランニングフォーム診断システムでは、情報処理装置30の演算式生成部34によって演算式が生成されたが、情報処理装置30の外部機器において演算式生成部34と同様の処理により演算式が生成されても良い。図37は、演算式が外部機器で生成される場合の、情報処理装置30Bの機能を示す図である。情報処理装置30Bは、情報処理装置30のさらに他の変形例である。
Claims (15)
- 被験者のランニングフォームを得点化するランニングフォーム診断システムであって、
複数のテストランナーの走行に関する情報から抽出された身体動作情報と当該複数のテストランナーのそれぞれの走行に対して専門家が付与した評価との相関関係を表す演算式を記憶するように構成された記憶装置と、
被験者の走行に関する情報の入力を受け付けるためのインターフェイスと、
前記インターフェイスに入力された情報に基づいて、前記被験者のランニングフォームについての得点を出力するように構成されたプロセッサとを備え、
前記プロセッサは、
前記インターフェイスに入力された前記被験者の走行に関する情報から前記被験者の身体動作情報を抽出し、
当該抽出した身体動作情報を前記演算式に適用することにより前記被験者のランニングフォームについての得点を算出するように構成されている、ランニングフォーム診断システム。 - 前記演算式は、
前記テストランナーの走行に対して前記専門家によって付与された2以上の項目の評価を説明変数とし、前記テストランナーの走行に対して前記専門家によって付与された総合評価を目的変数として回帰分析を行うことにより得られる第1の回帰式と、
前記テストランナーの身体動作情報を説明変数とし、前記テストランナーに対して前記専門家によって付与された前記2以上の項目の評価のそれぞれを目的変数として回帰分析を行うことにより得られる第2の回帰式とを含む、請求項1に記載のランニングフォーム診断システム。 - 前記第1の回帰式に利用される前記2以上の項目は、前記テストランナーの走行に対して前記専門家によって付与された予め定められた数の項目の評価と前記テストランナーの走行に対して前記専門家が付与した総合評価とが統計的に処理されることによって、前記予め定められた数の項目の中から特定される、請求項2に記載のランニングフォーム診断システム。
- 前記第2の回帰式に使用される前記テストランナーの身体動作情報は、特定の数の身体動作情報と前記2以上の項目の評価とが統計的に処理されることによって、前記特定の数の項目の特性の中から特定される、請求項3に記載のランニングフォーム診断システム。
- 前記演算式は、前記テストランナーの複数の身体動作情報を説明変数とし、前記テストランナーに対して前記専門家が付与した総合評価を目的変数とした重回帰分析を行うことにより得られる重回帰式とを含む、請求項1に記載のランニングフォーム診断システム。
- 前記演算式は、前記テストランナーの複数の身体動作情報のそれぞれを説明変数とし、前記テストランナーに対して前記専門家が付与した総合評価を目的変数とした回帰分析を行うことにより得られる複数の回帰式を含み、
前記プロセッサは、前記複数の回帰式より得られる複数の総合評価に基づいて前記被験者のランニングフォームについての得点を算出する、請求項1に記載のランニングフォーム診断システム。 - 前記被験者の身体動作情報は、前記被験者の前腕の上腕に対する角度を算出することによって得られる肘関節角度、前記被験者の前腕と上腕のそれぞれのセグメント角度、前記被験者の下腿の上腿に対する角度を算出することによって得られる膝関節角度、または、前記被験者の下腿と上腿のそれぞれのセグメント角度の少なくともいずれかを含む、請求項1~請求項6のいずれか1項に記載のランニングフォーム診断システム。
- 前記インターフェイスに結合され、前記被験者の映像を撮影するための撮影装置をさらに備え、
前記インターフェイスは、前記被験者の映像の入力を受け付けるように構成されており、
前記プロセッサは、
前記被験者の肘関節角度、または、前記被験者の前腕と上腕のそれぞれのセグメント角度の少なくともいずれかを抽出する場合、前記映像の中の、前記被験者の肩関節と肘関節と手関節に取り付けられたマーカーの画像の位置に基づいて、これらの角度を抽出し、
前記被験者の膝関節角度、または、前記被験者の下腿と上腿のそれぞれのセグメント角度の少なくともいずれかを抽出する場合、前記映像の中の、前記被験者の股関節と膝関節と足関節に取り付けられたマーカーの画像の位置に基づいて、これらの角度を抽出するように構成されている、請求項7に記載のランニングフォーム診断システム。 - 前記被験者に取り付けられる慣性センサをさらに備え、
前記インターフェイスは、前記慣性センサの検出結果の入力を受け付けるように構成されており、
前記プロセッサは、前記慣性センサの検出結果に基づいて、前記被験者の身体動作情報を抽出するように構成されるように構成されている、請求項7に記載のランニングフォーム診断システム。 - 前記記憶装置は、走行についてのアドバイス情報を、予め区分された得点のそれぞれに関連付けて記憶するように構成されており、
前記プロセッサは、前記被験者に対して算出した得点に関連付けられている前記アドバイス情報を出力するように構成されている、請求項1~請求項9のいずれか1項に記載のランニングフォーム診断システム。 - 前記演算式は、複数のテストランナーの走行に関する情報から抽出された身体動作情報および前記複数のテストランナーの身体特性と、当該複数のテストランナーのそれぞれの走行に対して専門家が付与した総合評価との相関関係をさらに表し、
前記インターフェイスは、さらに、前記被験者の身体特性の入力を受け付けるように構成されており、
前記プロセッサは、前記被験者の身体動作情報および身体特性を前記演算式に適用することにより、前記被験者のランニングフォームについての得点を算出するように構成されている、請求項1~請求項10のいずれか1項に記載のランニングフォーム診断システム。 - コンピュータによって実行される、被験者のランニングフォームを得点化する方法であって、
前記コンピュータは、
複数のテストランナーの走行に関する情報から抽出された身体動作情報と当該複数のテストランナーのそれぞれの走行に対して専門家が付与した評価との相関関係を表す演算式を記憶するように構成された記憶装置と、
被験者の走行に関する情報の入力を受け付けるインターフェイスとを備え、
前記コンピュータが、前記インターフェイスに入力された前記被験者の走行に関する情報から前記被験者の身体動作情報を抽出することと、
前記コンピュータが、前記抽出した身体動作情報を前記演算式に適用することにより、前記被験者のランニングフォームについての得点を算出することを備える、方法。 - 前記演算式は、
前記テストランナーの走行に対して前記専門家によって付与された2以上の項目の評価を説明変数とし、前記テストランナーの走行に対して前記専門家によって付与された得点を目的変数として回帰分析を行うことにより得られる第1の回帰式と、
前記テストランナーの身体動作情報を説明変数とし、前記テストランナーに対して前記専門家によって付与された前記2以上の項目の評価のそれぞれを目的変数として回帰分析を行うことにより得られる第2の回帰式とを含む、請求項12に記載の方法。 - 前記演算式は、前記テストランナーの複数の身体動作情報を説明変数とし、前記テストランナーに対して前記専門家が付与した総合評価を目的変数とした重回帰分析を行うことにより得られる重回帰式とを含む、請求項12に記載の方法。
- 前記演算式は、前記テストランナーの複数の身体動作情報のそれぞれを説明変数とし、前記テストランナーに対して前記専門家が付与した総合評価を目的変数とした回帰分析を行うことにより得られる複数の回帰式を含み、
前記コンピュータが前記被験者のランニングフォームについての得点を算出することは、前記複数の回帰式より得られる複数の総合評価に基づいて前記被験者のランニングフォームについての得点を算出することを含む、請求項12に記載の方法。
Priority Applications (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| ES13755578.5T ES2611196T3 (es) | 2012-02-29 | 2013-02-28 | Sistema de diagnóstico de la forma de correr y procedimiento de puntuación de la forma de correr |
| US14/116,971 US9452341B2 (en) | 2012-02-29 | 2013-02-28 | Running form diagnosis system and method for scoring running form |
| CA2834833A CA2834833C (en) | 2012-02-29 | 2013-02-28 | Running form diagnostic system and method for scoring running form |
| EP13755578.5A EP2695645B1 (en) | 2012-02-29 | 2013-02-28 | Running form diagnostic system and method for scoring running form |
| CN201380001601.8A CN103596626B (zh) | 2012-02-29 | 2013-02-28 | 跑步方式诊断系统以及跑步方式的打分方法 |
| AU2013226907A AU2013226907B2 (en) | 2012-02-29 | 2013-02-28 | Running form diagnostic system and method for scoring running form |
| KR1020137029410A KR101488130B1 (ko) | 2012-02-29 | 2013-02-28 | 러닝 폼 진단 시스템 및 러닝 폼을 득점화하는 방법 |
| BR112013031203A BR112013031203A2 (pt) | 2012-02-29 | 2013-02-28 | sistema de diagnóstico da forma de correr e método para pontuar uma forma de correr |
| JP2013522020A JP5314224B1 (ja) | 2012-02-29 | 2013-02-28 | ランニングフォーム診断システムおよびランニングフォームを得点化する方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012044622 | 2012-02-29 | ||
| JP2012-044622 | 2012-02-29 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013129606A1 true WO2013129606A1 (ja) | 2013-09-06 |
Family
ID=49082797
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2013/055517 Ceased WO2013129606A1 (ja) | 2012-02-29 | 2013-02-28 | ランニングフォーム診断システムおよびランニングフォームを得点化する方法 |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US9452341B2 (ja) |
| EP (1) | EP2695645B1 (ja) |
| JP (1) | JP5314224B1 (ja) |
| KR (1) | KR101488130B1 (ja) |
| CN (1) | CN103596626B (ja) |
| AU (1) | AU2013226907B2 (ja) |
| BR (1) | BR112013031203A2 (ja) |
| CA (1) | CA2834833C (ja) |
| ES (1) | ES2611196T3 (ja) |
| WO (1) | WO2013129606A1 (ja) |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015119833A (ja) * | 2013-12-24 | 2015-07-02 | カシオ計算機株式会社 | 運動支援システム及び運動支援方法、運動支援プログラム |
| JP2015205133A (ja) * | 2014-04-23 | 2015-11-19 | 株式会社タニタ | 運動機能測定装置、方法、及びプログラム |
| JP2016034478A (ja) * | 2014-07-31 | 2016-03-17 | セイコーエプソン株式会社 | 運動解析方法、運動解析装置、運動解析システム、運動解析プログラム、身体活動補助方法、身体活動補助装置及び身体活動補助プログラム |
| JP2016083063A (ja) * | 2014-10-23 | 2016-05-19 | 国立大学法人 筑波大学 | 評価値算出プログラム、評価値算出方法、情報処理装置 |
| WO2016132668A1 (ja) * | 2015-02-16 | 2016-08-25 | セイコーエプソン株式会社 | トレーニング管理システム、トレーニング管理方法、トレーニング管理プログラム、およびトレーニング管理装置 |
| KR101708178B1 (ko) * | 2015-12-24 | 2017-02-20 | 김창수 | 스크린 등산 훈련 및 측정 시스템 |
| WO2017069115A1 (ja) * | 2015-10-21 | 2017-04-27 | 国立大学法人 筑波大学 | 評価情報提供システムおよび評価情報提供方法 |
| JP2018069035A (ja) * | 2016-10-27 | 2018-05-10 | 株式会社アシックス | 歩行解析システム及び方法 |
| JP2018108339A (ja) * | 2016-09-27 | 2018-07-12 | アディダス アーゲー | ロボティックトレーニングシステムおよび方法 |
| JPWO2017130339A1 (ja) * | 2016-01-27 | 2018-11-22 | 株式会社ジンズ | 情報処理方法、情報処理装置及びプログラム |
| JP2019005340A (ja) * | 2017-06-27 | 2019-01-17 | 株式会社東芝 | 判定装置、判定システム、及び判定プログラム |
| JP2019036150A (ja) * | 2017-08-17 | 2019-03-07 | 株式会社富士通エフサス | 分類装置、分類方法および分類プログラム |
| WO2019082376A1 (ja) | 2017-10-27 | 2019-05-02 | 株式会社アシックス | 動作状態評価システム、動作状態評価装置、動作状態評価サーバ、動作状態評価方法、および動作状態評価プログラム |
| DE112018001710T5 (de) | 2017-03-29 | 2019-12-24 | Honda Motor Co., Ltd. | Gehhilfssystem, Gehhilfsverfahren und Gehhilfsprogramm |
| JP2020141806A (ja) * | 2019-03-05 | 2020-09-10 | 株式会社Sportip | 運動評価システム |
| WO2021054399A1 (ja) * | 2019-09-20 | 2021-03-25 | 日本電気株式会社 | 情報生成装置、情報生成方法、及び、記録媒体 |
| JP2021145894A (ja) * | 2020-03-19 | 2021-09-27 | カシオ計算機株式会社 | 運動支援装置、運動支援方法及びプログラム |
| US11308599B2 (en) | 2019-03-28 | 2022-04-19 | Mizuno Corporation | Method for processing information, information processor, and information processing program |
| JPWO2022137496A1 (ja) * | 2020-12-25 | 2022-06-30 | ||
| JPWO2022137498A1 (ja) * | 2020-12-25 | 2022-06-30 | ||
| WO2023100565A1 (ja) * | 2021-11-30 | 2023-06-08 | リオモ インク | ランニングフォーム評価システム、プログラム及び方法 |
Families Citing this family (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180001126A1 (en) * | 2010-11-18 | 2018-01-04 | Slacteq Llc | Balance measurement systems and methods thereof |
| US20170291065A1 (en) * | 2016-04-08 | 2017-10-12 | Slacteq Llc | Balance measurement systems and methods thereof |
| WO2014042121A1 (ja) * | 2012-09-12 | 2014-03-20 | 独立行政法人産業技術総合研究所 | 動作評価装置及びそのプログラム |
| JP2015011480A (ja) * | 2013-06-27 | 2015-01-19 | カシオ計算機株式会社 | 画像生成装置、画像生成方法及びプログラム |
| JP2016034482A (ja) * | 2014-07-31 | 2016-03-17 | セイコーエプソン株式会社 | 運動解析装置、運動解析方法、運動解析プログラム及び運動解析システム |
| JP2016036681A (ja) * | 2014-08-11 | 2016-03-22 | セイコーエプソン株式会社 | 運動解析方法、運動解析装置、運動解析システム及びプログラム |
| US20170084154A1 (en) * | 2015-09-23 | 2017-03-23 | Ali Kord | Posture Monitor |
| KR101782897B1 (ko) * | 2015-10-27 | 2017-09-28 | 김창수 | 가상 전투 환경을 통한 개인별 전투 역량 측정 시스템 |
| CN108079521A (zh) * | 2016-11-21 | 2018-05-29 | 风跑体育发展(深圳)有限公司 | 一种跑步测试方法及系统 |
| CN108090394A (zh) * | 2016-11-21 | 2018-05-29 | 风跑体育发展(深圳)有限公司 | 一种跑步动作自动跟踪方法及其系统 |
| CN106621281A (zh) * | 2016-12-21 | 2017-05-10 | 中国航天科工集团第四研究院指挥自动化技术研发与应用中心 | 一种便携式训练评价系统 |
| WO2018126271A1 (en) * | 2016-12-30 | 2018-07-05 | Physmodo, Inc. | Integrated goniometry system and method for use of same |
| JP6834553B2 (ja) * | 2017-02-09 | 2021-02-24 | セイコーエプソン株式会社 | 運動解析システム、運動解析装置、運動解析プログラム及び運動解析方法 |
| KR101880693B1 (ko) * | 2017-02-28 | 2018-07-23 | 경희대학교 산학협력단 | 인체의 동작 정보를 이용하여 푸시오프 각도를 계산하는 장치 및 방법 |
| IT201700046512A1 (it) * | 2017-04-28 | 2018-10-28 | Univ Degli Studi Padova | Metodo ed apparato per rilevare parametri biomeccanici e funzionali del ginocchio |
| CN110622212B (zh) * | 2017-05-15 | 2022-11-18 | 富士通株式会社 | 表演显示方法以及表演显示装置 |
| KR101940713B1 (ko) * | 2017-10-11 | 2019-01-21 | (주)코아팀즈 | 선회이동장치의 보행제어방법 |
| CN108784708A (zh) * | 2018-04-03 | 2018-11-13 | 长江师范学院 | 一种基于大数据的人体运动综合分析系统 |
| CN110404243A (zh) * | 2018-04-26 | 2019-11-05 | 北京新海樱科技有限公司 | 一种基于体态测量的康复方法及康复系统 |
| JP6781200B2 (ja) * | 2018-06-05 | 2020-11-04 | 美津濃株式会社 | 運動支援システムおよびプログラム |
| CN109009142B (zh) * | 2018-07-06 | 2021-04-20 | 歌尔科技有限公司 | 跑步姿势判定方法、系统、智能穿戴设备及存储介质 |
| US11557215B2 (en) * | 2018-08-07 | 2023-01-17 | Physera, Inc. | Classification of musculoskeletal form using machine learning model |
| CN112188864A (zh) * | 2018-10-31 | 2021-01-05 | 华为技术有限公司 | 一种运动指标评估方法及装置 |
| CN109701229A (zh) * | 2019-01-28 | 2019-05-03 | 重庆勤鸟圈科技有限公司 | 用户健身运动完成度评估系统 |
| CN111259716A (zh) * | 2019-10-17 | 2020-06-09 | 浙江工业大学 | 基于计算机视觉的人体跑步姿势识别分析方法及装置 |
| CN111863190B (zh) * | 2020-07-29 | 2024-03-15 | 重庆勤鸟圈科技有限公司 | 定制化运动装备及运动方案生成系统 |
| CN112998695B (zh) * | 2021-02-03 | 2023-05-02 | 上海橙捷健康科技有限公司 | 一种跟骨角度定量与压力跑步机的数据整合方法及系统 |
| CN113181620A (zh) * | 2021-04-28 | 2021-07-30 | 上海松鼠课堂人工智能科技有限公司 | 基于虚拟现实的体育测评方法与系统 |
| KR102763223B1 (ko) * | 2021-09-07 | 2025-02-07 | 주식회사 디랙스 | 보디빌딩 대회의 온라인 운영 방법 및 그 시스템 |
| US20240024735A1 (en) * | 2022-07-20 | 2024-01-25 | Michelle Rubio | Treadmill with Running Form Detection Device |
| CN116269347B (zh) * | 2023-03-13 | 2025-09-26 | 北京宇能天地科技有限公司 | 后摆动作类型的确定方法、装置、终端及存储介质 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002233517A (ja) | 2001-02-09 | 2002-08-20 | Nippon Telegr & Teleph Corp <Ntt> | 歩行の美しさ評価装置および方法 |
| JP2002253718A (ja) * | 2001-02-28 | 2002-09-10 | Konami Co Ltd | トレーニング評価装置、トレーニング評価方法およびトレーニング評価プログラム |
| JP2009297295A (ja) * | 2008-06-13 | 2009-12-24 | Kao Corp | 肌のなめらかさの評価方法 |
| JP2010017447A (ja) | 2008-07-14 | 2010-01-28 | Nippon Telegr & Teleph Corp <Ntt> | 歩行動作分析装置、歩行動作分析方法、歩行動作分析プログラムおよびその記録媒体 |
| JP2012024275A (ja) * | 2010-07-22 | 2012-02-09 | Omron Healthcare Co Ltd | 歩行姿勢判定装置 |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6056671A (en) * | 1997-12-19 | 2000-05-02 | Marmer; Keith S. | Functional capacity assessment system and method |
| CN2726530Y (zh) | 2003-12-22 | 2005-09-21 | 孙飙 | 灵敏素质象限跳测试与评价系统 |
| JP2008528195A (ja) | 2005-01-26 | 2008-07-31 | ベントレー・キネティクス・インコーポレーテッド | 運動動作の分析及び指示のための方法及びシステム |
| US9155487B2 (en) * | 2005-12-21 | 2015-10-13 | Michael Linderman | Method and apparatus for biometric analysis using EEG and EMG signals |
| US7717826B2 (en) * | 2007-03-21 | 2010-05-18 | Ut-Battelle, Llc | Electrical signature analysis to quantify human and animal performance on fitness and therapy equipment such as a treadmill |
| US8175326B2 (en) * | 2008-02-29 | 2012-05-08 | Fred Siegel | Automated scoring system for athletics |
| JP5459636B2 (ja) | 2009-08-24 | 2014-04-02 | 株式会社センス・イット・スマート | 支援システム及び支援方法 |
| EP2585835A1 (en) | 2010-06-22 | 2013-05-01 | Stephen J. McGregor | Method of monitoring human body movement |
| CN201928342U (zh) | 2010-12-02 | 2011-08-10 | 上海华勤通讯技术有限公司 | 能纠正跑步姿势的手机 |
| EP2649588A4 (en) | 2010-12-07 | 2014-04-16 | Movement Training Systems Llc | SYSTEMS AND METHODS FOR PERFORMANCE LEARNING |
| US20120231840A1 (en) * | 2011-03-08 | 2012-09-13 | Bank Of America Corporation | Providing information regarding sports movements |
-
2013
- 2013-02-28 CA CA2834833A patent/CA2834833C/en not_active Expired - Fee Related
- 2013-02-28 AU AU2013226907A patent/AU2013226907B2/en not_active Ceased
- 2013-02-28 CN CN201380001601.8A patent/CN103596626B/zh not_active Expired - Fee Related
- 2013-02-28 BR BR112013031203A patent/BR112013031203A2/pt active Search and Examination
- 2013-02-28 US US14/116,971 patent/US9452341B2/en active Active
- 2013-02-28 WO PCT/JP2013/055517 patent/WO2013129606A1/ja not_active Ceased
- 2013-02-28 EP EP13755578.5A patent/EP2695645B1/en active Active
- 2013-02-28 ES ES13755578.5T patent/ES2611196T3/es active Active
- 2013-02-28 KR KR1020137029410A patent/KR101488130B1/ko not_active Expired - Fee Related
- 2013-02-28 JP JP2013522020A patent/JP5314224B1/ja active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002233517A (ja) | 2001-02-09 | 2002-08-20 | Nippon Telegr & Teleph Corp <Ntt> | 歩行の美しさ評価装置および方法 |
| JP2002253718A (ja) * | 2001-02-28 | 2002-09-10 | Konami Co Ltd | トレーニング評価装置、トレーニング評価方法およびトレーニング評価プログラム |
| JP2009297295A (ja) * | 2008-06-13 | 2009-12-24 | Kao Corp | 肌のなめらかさの評価方法 |
| JP2010017447A (ja) | 2008-07-14 | 2010-01-28 | Nippon Telegr & Teleph Corp <Ntt> | 歩行動作分析装置、歩行動作分析方法、歩行動作分析プログラムおよびその記録媒体 |
| JP2012024275A (ja) * | 2010-07-22 | 2012-02-09 | Omron Healthcare Co Ltd | 歩行姿勢判定装置 |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2695645A4 * |
Cited By (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015119833A (ja) * | 2013-12-24 | 2015-07-02 | カシオ計算機株式会社 | 運動支援システム及び運動支援方法、運動支援プログラム |
| JP2015205133A (ja) * | 2014-04-23 | 2015-11-19 | 株式会社タニタ | 運動機能測定装置、方法、及びプログラム |
| JP2016034478A (ja) * | 2014-07-31 | 2016-03-17 | セイコーエプソン株式会社 | 運動解析方法、運動解析装置、運動解析システム、運動解析プログラム、身体活動補助方法、身体活動補助装置及び身体活動補助プログラム |
| JP2016083063A (ja) * | 2014-10-23 | 2016-05-19 | 国立大学法人 筑波大学 | 評価値算出プログラム、評価値算出方法、情報処理装置 |
| WO2016132668A1 (ja) * | 2015-02-16 | 2016-08-25 | セイコーエプソン株式会社 | トレーニング管理システム、トレーニング管理方法、トレーニング管理プログラム、およびトレーニング管理装置 |
| US10460451B2 (en) | 2015-10-21 | 2019-10-29 | University Of Tsukuba | Evaluation information provision system and evaluation information provision method |
| WO2017069115A1 (ja) * | 2015-10-21 | 2017-04-27 | 国立大学法人 筑波大学 | 評価情報提供システムおよび評価情報提供方法 |
| JP2017077403A (ja) * | 2015-10-21 | 2017-04-27 | 国立大学法人 筑波大学 | 評価情報提供システムおよび評価情報提供方法 |
| KR101708178B1 (ko) * | 2015-12-24 | 2017-02-20 | 김창수 | 스크린 등산 훈련 및 측정 시스템 |
| JPWO2017130339A1 (ja) * | 2016-01-27 | 2018-11-22 | 株式会社ジンズ | 情報処理方法、情報処理装置及びプログラム |
| JP2018108339A (ja) * | 2016-09-27 | 2018-07-12 | アディダス アーゲー | ロボティックトレーニングシステムおよび方法 |
| JP2018069035A (ja) * | 2016-10-27 | 2018-05-10 | 株式会社アシックス | 歩行解析システム及び方法 |
| US11571141B2 (en) | 2017-03-29 | 2023-02-07 | Honda Motor Co., Ltd. | Walking support system, walking support method, and walking support program |
| DE112018001710T5 (de) | 2017-03-29 | 2019-12-24 | Honda Motor Co., Ltd. | Gehhilfssystem, Gehhilfsverfahren und Gehhilfsprogramm |
| JP2019005340A (ja) * | 2017-06-27 | 2019-01-17 | 株式会社東芝 | 判定装置、判定システム、及び判定プログラム |
| JP2019036150A (ja) * | 2017-08-17 | 2019-03-07 | 株式会社富士通エフサス | 分類装置、分類方法および分類プログラム |
| JP6994870B2 (ja) | 2017-08-17 | 2022-01-14 | 株式会社富士通エフサス | 分類装置、分類方法および分類プログラム |
| JPWO2019082376A1 (ja) * | 2017-10-27 | 2020-04-23 | 株式会社アシックス | 動作状態評価システム、動作状態評価装置、動作状態評価サーバ、動作状態評価方法、および動作状態評価プログラム |
| WO2019082376A1 (ja) | 2017-10-27 | 2019-05-02 | 株式会社アシックス | 動作状態評価システム、動作状態評価装置、動作状態評価サーバ、動作状態評価方法、および動作状態評価プログラム |
| JP2020141806A (ja) * | 2019-03-05 | 2020-09-10 | 株式会社Sportip | 運動評価システム |
| JP7008342B2 (ja) | 2019-03-05 | 2022-01-25 | 株式会社Sportip | 運動評価システム |
| US11308599B2 (en) | 2019-03-28 | 2022-04-19 | Mizuno Corporation | Method for processing information, information processor, and information processing program |
| WO2021054399A1 (ja) * | 2019-09-20 | 2021-03-25 | 日本電気株式会社 | 情報生成装置、情報生成方法、及び、記録媒体 |
| JP2021145894A (ja) * | 2020-03-19 | 2021-09-27 | カシオ計算機株式会社 | 運動支援装置、運動支援方法及びプログラム |
| JP7014249B2 (ja) | 2020-03-19 | 2022-02-01 | カシオ計算機株式会社 | 運動支援装置、運動支援方法及びプログラム |
| WO2022137498A1 (ja) * | 2020-12-25 | 2022-06-30 | 株式会社アシックス | 運動動作分析システム、運動動作分析方法および運動動作分析プログラム |
| JPWO2022137498A1 (ja) * | 2020-12-25 | 2022-06-30 | ||
| WO2022137496A1 (ja) * | 2020-12-25 | 2022-06-30 | 株式会社アシックス | 運動動作分析システム、運動動作分析方法および運動動作分析プログラム |
| JPWO2022137496A1 (ja) * | 2020-12-25 | 2022-06-30 | ||
| CN116568376A (zh) * | 2020-12-25 | 2023-08-08 | 株式会社爱世克私 | 运动动作分析系统、运动动作分析方法及运动动作分析程序 |
| JP7487344B2 (ja) | 2020-12-25 | 2024-05-20 | 株式会社アシックス | 運動動作分析システム、運動動作分析方法および運動動作分析プログラム |
| JP7487345B2 (ja) | 2020-12-25 | 2024-05-20 | 株式会社アシックス | 運動動作分析システム、運動動作分析方法および運動動作分析プログラム |
| CN116568376B (zh) * | 2020-12-25 | 2025-10-14 | 株式会社爱世克私 | 运动动作分析系统、方法及计算机可读存储介质 |
| WO2023100565A1 (ja) * | 2021-11-30 | 2023-06-08 | リオモ インク | ランニングフォーム評価システム、プログラム及び方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2695645A4 (en) | 2015-01-14 |
| BR112013031203A2 (pt) | 2017-01-31 |
| US20140148931A1 (en) | 2014-05-29 |
| KR20140012743A (ko) | 2014-02-03 |
| US9452341B2 (en) | 2016-09-27 |
| JPWO2013129606A1 (ja) | 2015-07-30 |
| AU2013226907B2 (en) | 2015-10-29 |
| KR101488130B1 (ko) | 2015-01-29 |
| CN103596626A (zh) | 2014-02-19 |
| CA2834833C (en) | 2016-07-05 |
| EP2695645B1 (en) | 2016-10-19 |
| ES2611196T3 (es) | 2017-05-05 |
| CA2834833A1 (en) | 2013-09-06 |
| EP2695645A1 (en) | 2014-02-12 |
| CN103596626B (zh) | 2015-11-25 |
| JP5314224B1 (ja) | 2013-10-16 |
| AU2013226907A1 (en) | 2013-10-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5314224B1 (ja) | ランニングフォーム診断システムおよびランニングフォームを得点化する方法 | |
| Velloso et al. | Qualitative activity recognition of weight lifting exercises | |
| Grewal et al. | Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: a randomized controlled trial | |
| JP2023540286A (ja) | ユーザー動作を識別する方法及びシステム | |
| JP4590010B1 (ja) | 動作解析装置、および動作解析方法 | |
| JP6127873B2 (ja) | 歩行特徴の解析方法 | |
| JP6844284B2 (ja) | 歩容の評価方法 | |
| JP2016144598A (ja) | 運動機能診断装置及び方法、並びにプログラム | |
| Wang et al. | Analysis of mechanical damage in dance training under artificial intelligence behavior constraints | |
| JP2018187284A (ja) | 運動状態診断システムおよび運動状態診断プログラム | |
| US20230178233A1 (en) | Biomechanics assessment system and biomechanical sensing device and biomechanical assessment platform thereof | |
| TWI681360B (zh) | 應用於巴金森氏病的復健監控系統及其方法 | |
| Wang et al. | Evaluation of effects of balance training from using wobble board-based exergaming system by MSE and MMSE techniques | |
| JP2018038753A (ja) | 歩行分析方法及び歩行分析装置 | |
| JP6552875B2 (ja) | 移動運動解析装置、方法及びプログラム | |
| JP7465842B2 (ja) | 作業支援システム | |
| EP4464245A1 (en) | Posture estimating device, posture estimating system, and posture estimating method | |
| KR102885697B1 (ko) | 메타버스 서비스를 이용한 운동 관리 시스템 | |
| JP2021099666A (ja) | 学習モデルの生成方法 | |
| KR102403472B1 (ko) | 인지장애 재활훈련 판단 장치 및 방법 | |
| Zhang et al. | Walking stability by age a feature analysis based on a fourteen-linkage model | |
| Reinker | Real-time simulation and evaluation of data from wearable smart-devices to prevent musculoskeletal signs of aging | |
| Kalra | Human Factors in Sports, Performance and Wellness | |
| JP2025187660A (ja) | 評価装置、評価プログラム、評価方法 | |
| KR20210074972A (ko) | 인지장애 재활훈련 판단 장치 및 방법 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| ENP | Entry into the national phase |
Ref document number: 2013522020 Country of ref document: JP Kind code of ref document: A |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13755578 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2834833 Country of ref document: CA Ref document number: 2013226907 Country of ref document: AU Date of ref document: 20130228 Kind code of ref document: A |
|
| REEP | Request for entry into the european phase |
Ref document number: 2013755578 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013755578 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 20137029410 Country of ref document: KR Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013031203 Country of ref document: BR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14116971 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 112013031203 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131204 |