[go: up one dir, main page]

WO2013128839A1 - Image recognition system, image recognition method and computer program - Google Patents

Image recognition system, image recognition method and computer program Download PDF

Info

Publication number
WO2013128839A1
WO2013128839A1 PCT/JP2013/000881 JP2013000881W WO2013128839A1 WO 2013128839 A1 WO2013128839 A1 WO 2013128839A1 JP 2013000881 W JP2013000881 W JP 2013000881W WO 2013128839 A1 WO2013128839 A1 WO 2013128839A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking
calculation unit
identification
frequency
image recognition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2013/000881
Other languages
French (fr)
Japanese (ja)
Inventor
航介 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of WO2013128839A1 publication Critical patent/WO2013128839A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Definitions

  • the present invention relates to an information processing system technology that can be used for image recognition.
  • the detection in the image recognition system is to identify and specify an image area belonging to a specific category such as a pedestrian or a vehicle from the other image areas on the input image.
  • the tracking in the image recognition system is to continuously specify the tracking target acquired by the above detection or the tracking target reflected in the artificially specified image area using time-series images. .
  • Patent Documents 1 to 3 disclose examples of related image recognition systems.
  • the image recognition system disclosed in Patent Document 1 is an image recognition system that uses both detection and tracking.
  • the image recognition system includes a person detector and a person tracker that operate independently of each other.
  • the person detector registers the person image area detected at each time as a tracking target.
  • the person tracking device tracks the registered tracking target according to time series. As a result, this image recognition system detects a person from the background image, and specifies the locus of movement of the detected person.
  • the object tracking method disclosed in Patent Document 2 can accurately track an object even when an object similar to the object exists around the object.
  • an object tracking device that employs the above method specifies a positional relationship determination unit that determines a positional relationship in which similar objects exist in the preceding and following images in the captured video space, and specifies a position in which the similar objects exist.
  • a similar object position specifying unit If the tracking device can identify the position of the object from the movement of the object, the tracking device identifies the position of the object from the movement. On the other hand, if the tracking device cannot be identified from the movement of the object, the tracking device searches the image for the position of the object.
  • the object tracking device disclosed in Patent Document 3 is a device that reduces the possibility of erroneous tracking.
  • the object tracking device first calculates a feature quantity representing an image and a feature quantity representing a particle.
  • the tracking device calculates the likelihood that the particle is present at the position of the target object, and calculates the position of the target object according to the calculated likelihood. If a plurality of objects exist and they overlap, the tracking device tracks the object by correcting the likelihood.
  • Patent Document 1 calculates the detection result and the tracking result independently, and adopts the result only when the calculation results match. As a result, the image recognition system cannot output a tracking result when either one of the detection result and the tracking result as described above fails in the calculation.
  • Each of the object tracking devices disclosed in Patent Documents 2 to 3 has only one type of object tracking device. Therefore, there is a high possibility that these object tracking devices cannot track the tracking target.
  • the main object of the present invention is to provide an image recognition system or the like that reduces the likelihood of detection and / or tracking failure.
  • an image recognition system has the following configuration.
  • An image recognition system in an input image, identifies an image region where a tracking target category exists, and an identification calculation unit that calculates the identification frequency of a tracking target belonging to the tracking target category; A tracking calculation unit for calculating a tracking frequency related to the position of the tracking target; A weighting is determined according to a predetermined method for the results output by the identification calculation unit and the tracking calculation unit, and an integrated calculation unit that integrates the results according to the weighting, It is characterized by providing.
  • an image recognition method includes: In the input image, an image region where the tracking target category exists is identified, and the identification frequency of the tracking target belonging to the tracking target category and the tracking frequency related to the position of the tracking target are calculated, and the identification frequency and the tracking frequency On the other hand, weighting is determined according to a predetermined method, and the identification frequency and the tracking frequency are integrated according to the weighting.
  • the object is also achieved by a computer program for realizing the image recognition system having the above-described configuration and the corresponding method by a computer, and a computer-readable storage medium storing the computer program. .
  • FIG. 1 is a block diagram illustrating a configuration of an image recognition system according to a first embodiment of the present invention. It is a flowchart which shows the procedure of the process which the image recognition system which concerns on the 1st Embodiment of this invention performs. It is a flowchart of another form which shows the procedure of the process which the image recognition system which concerns on the 1st Embodiment of this invention performs. It is a block diagram which shows roughly the hardware constitutions of the calculation processing apparatus which can implement
  • the detection in the embodiment of the present invention described below refers to identifying an object belonging to a specific category such as a pedestrian or a vehicle by distinguishing it from other image areas in the input image.
  • tracking in the embodiment of the present invention described below is performed by detecting or artificially specifying, on a time-series image, an image region of the same individual object in an image region designated as a tracking target. It means to keep doing.
  • FIG. 1 is a block diagram showing a configuration of an image recognition system according to the first embodiment of the present invention.
  • the image recognition system 104 according to the present embodiment includes an integrated calculation unit 101, an identification calculation unit 102, and a tracking calculation unit 103.
  • the identification calculation unit 102 analyzes the input time-series image.
  • the identification calculation unit 102 identifies “an image region in which a tracking target category (a tracking target category such as a pedestrian or a vehicle according to a purpose) exists” as a background image.
  • the identification calculation unit 102 is a likelihood that is “an image region in which a tracking target category exists” or a value equivalent to the likelihood (hereinafter, these are collectively referred to as “discrimination frequency”. Is calculated for each tracking category.
  • the identification calculation unit 102 can be realized by a machine learning method or the like as described below.
  • the identification calculation unit 102 represents an image with a feature amount.
  • the identification calculation unit 102 identifies the image data expressed using the feature amount using a classifier configured by a machine learning method or the like.
  • the identification calculation unit 102 can employ Haar-like features, HoG features, and the like as feature amounts.
  • the identification calculation unit 102 can employ a Support Vector Machine (SVM), an Adaptive Boosting (AdaBoost) method, or the like as a machine learning method.
  • SVM Support Vector Machine
  • AdaBoost Adaptive Boost
  • the identification calculation unit 102 is not limited to the above-described example, and the identification calculation unit 102 may be realized using a feature quantity other than the above-described feature quantity or a machine learning method other than the above-described machine learning method. Good.
  • the identification frequency PD (x, S) is normalized to a value from 0.0 to 1.0 according to the coordinate x on the image and the scale S (FIG. 10).
  • the discriminating frequency is not a discrete value of 0 or 1, but a value of 0.0 to 1.0, which is not a binary value.
  • the detection in the embodiment of the present invention refers to calculating a non-binary value of 0.0 to 1.0.
  • Scale S is defined from values such as parameters including image width and height.
  • the scale S is a fixed value corresponding to the physical arrangement between the real world and the camera image and the appropriate size in the image of the tracking target object at each coordinate x determined from the optical system on a one-to-one basis.
  • the scale S may be defined as a result of calculating the discrimination frequency for each of a plurality of scales with respect to the same coordinate x.
  • the definition of the scale S is not limited to the examples shown above.
  • the identification frequency PD (x, S) depends only on x.
  • the identification frequency PD (x, S) is respectively Discriminating frequencies PD (x, S1), PD (x, S2),. . . , PD (x, Sn) (FIG. 12A).
  • the distribution of PD (x, S) is x and PD (x, S1), PD (x, S2),. . . , PD (x, Sn) can be expressed as a table (FIG. 12B).
  • the tracking calculation unit 103 analyzes at least one input time-series image. In the analysis, for at least one tracking target, for each tracking target, the likelihood related to the tracking position, or a value equivalent to the likelihood (hereinafter, the two are collectively referred to as “tracking frequency”). calculate.
  • the tracking calculation unit 103 can employ template matching using image features, a derivation method thereof, and the like as a method of calculating the tracking frequency. Furthermore, the tracking calculation unit 103 can also use estimation methods such as linear interpolation, curve fitting, Kalman filter, and Particle filter from the track of the tracking target as a method of calculating the tracking frequency. Furthermore, the tracking calculation unit 103 can also employ the similarity between the registered image feature and the image feature at the coordinate x existing within the search range as the tracking frequency.
  • the method of calculating the tracking frequency in the tracking calculation unit 103 is not limited to the method exemplified above. Further, the tracking frequency in the tracking calculation unit 103 is not limited to the similarity exemplified above.
  • the tracking calculation unit 103 can employ, as the image feature, an HS color histogram inside the image region registered as a tracking target, an edge base feature such as HoG, or the like. Further, the tracking calculation unit 103 can employ a Bhattacharya distance or the like as a similarity calculation method.
  • the image features in the tracking calculation unit 103 are not limited to the image features exemplified above.
  • the similarity calculation method in the tracking calculation unit 103 is not limited to the similarity calculation method exemplified above.
  • the tracking calculation unit 103 can also retain the image feature in the image region at the time of registering the tracking target as the image feature without depending on the time.
  • the tracking calculation unit 103 may update the image feature in time series according to the image feature of the region defined from the tracking position from the time when the tracking target is registered to the previous time and the scale. .
  • image features f ′ (0),..., F ′ (t ⁇ 1) acquired from the tracking target region at the tracking position from the registration time (0) to the previous time (t ⁇ 1). Is defined as the weighted average fm (t ⁇ 1)
  • the tracking calculation unit 103 can update the image according to the image feature at each coordinate x and the comparison result.
  • the image feature processing method in the tracking calculation unit 103 is not limited to the above method.
  • the tracking calculation unit 103 calculates the tracking frequency PT (x, Oi) of the i-th tracking target Oi at the coordinate x on the image.
  • the tracking frequency PT (x, Oi) is normalized to a real value from 0.0 to 1.0 (FIG. 13).
  • the integrated calculation unit 101 integrates the calculation values of the identification calculation unit 102 and the tracking calculation unit 103, registers a new tracking target, updates and deletes the tracking information of the existing tracking target, and records past tracking information. Save.
  • the result integration in the integrated calculation unit 101 corresponds to the weighting after determining the weighting of each frequency using the identification frequency calculated by the identification calculation unit 102 and the tracking frequency calculated by the tracking calculation unit 103 as inputs. To calculate the integration result value.
  • the weight is determined according to a predetermined method.
  • the integrated calculation unit 101 determines the position of the tracking target according to the integration result value.
  • the integration calculation unit 101 As a weighting method, the integration calculation unit 101 generates a weight at least once in a predetermined range and determines the maximum integration result value as described above, or sets a specific frequency in advance. For example, a method of gradually increasing the corresponding weight can be employed. Further, the integrated calculation unit 101 changes the weight according to a method of fixing the weight in advance so as to average at least two or more frequencies as a weighting method, or according to a deviation from the average of each frequency. Methods can also be employed. The weighting method in the integrated arithmetic unit 101 is not limited to the above, and methods other than these methods may be adopted.
  • the integrated calculation unit 101 extracts, as a tracking candidate, an image region with a high likelihood that is an image region in which an object category to be tracked exists, according to the identification frequency PD (x, S) output from the identification calculation unit 102. To do. If the integrated calculation unit 101 determines that the region extracted as the tracking candidate is not the same as the registered tracking target, it registers as the reference tracking target.
  • the integrated calculation unit 101 extracts, as a tracking candidate region, a region related to the coordinate x and the scale S when the maximum value is obtained in a region where the identification frequency PD (x, S) is equal to or greater than a predetermined threshold.
  • the integrated calculation unit 101 excludes the already registered tracking candidate area from the new tracking target in the search range of the tracking target information in the tracking candidate area extracted as described above, and the others Register as a new tracking target.
  • the integrated calculation unit 101 can be realized by such a processing method. However, it is not limited to the processing method described above.
  • the tracking information Oi (t) is tracking information used in the next processing at time t + 1.
  • the scale Si (t) of the i-th tracking target at the current time t may be the same as the value of Si (t ⁇ 1) of the i-th tracking target at the previous time (t ⁇ 1), or time series You may update according to.
  • the scale Si (t) is a scale corresponding to the tracking position yi (t) determined at the current time. S.
  • the scale Si (t) is set to S that maximizes the integration frequency.
  • the definition of scale Si (t) is not limited to the method shown above, and other methods may be used.
  • the search range A (t) corresponding to the position coordinates at the current time (t) is an area range that is assumed to include the tracking target at the next time moved from the position coordinates y (t) at the current time. . Therefore, for example, the search range A (t) is defined as a region that is a constant multiple of the scale S (t) with y (t) as the center.
  • the search range A (t) can also be defined as being independent of the scale.
  • the search range A (t) may be defined as an area that is a constant multiple of
  • the definition of the scale Si (t) and the search range A (t) is not limited to the above-described definition method, and may be defined by other definition methods.
  • FIG. 2A is a flowchart showing a procedure of processing executed by the image recognition system according to the first embodiment of the present invention.
  • FIG. 2B is a flowchart of another form showing a procedure of processing executed by the image recognition system according to the first embodiment of the present invention.
  • the identification calculation unit 102 identifies “image area in which the tracking target category exists” in the input time-series image as a background image. In this case, the identification calculation unit 102 calculates an identification frequency that is “an image area in which a tracking target category exists” in each area on the input image (step S201).
  • the tracking calculation unit 103 analyzes the input at least one time series image.
  • the tracking frequency related to the tracking position is calculated for at least one tracking object (step S202).
  • the order of the process of step S201 and the process of step S202 is reversed. This is because the process in step S201 and the process in step S202 can operate independently. That is, the identification calculation unit 102 may execute the identification power calculation and the tracking power calculation in any order, and may execute them simultaneously.
  • the integrated calculation unit 101 determines the weight according to a predetermined method from the two values of the identification frequency calculated by the identification calculation unit 102 and the tracking frequency calculated by the tracking calculation unit 103, and refers to the weight, and the integrated result value Is calculated (step S203).
  • the image recognition system 104 increases the weighting of the other frequency even when the frequency of either the identification calculation unit 102 or the tracking calculation unit 103 falls below a predetermined range due to the cause of image noise or the like. By doing so, the influence on the integrated result value is suppressed, and it is possible to continuously perform tracking on the tracking target. Thereby, the image recognition system 104 can reduce the possibility of detection or tracking failure in the image recognition system or the like.
  • FIG. 9A is a diagram illustrating a relationship between time and frequency in time series in the first frequency calculation process performed by the identification calculation unit.
  • FIG. 9B is a diagram illustrating a relationship between time and frequency in time series in the second frequency calculation process performed by the tracking calculation unit.
  • FIG. 9C is a diagram illustrating a relationship between time and frequency in time series in the third frequency calculation process performed by the tracking calculation unit.
  • FIG. 9D shows the time in time series, the respective frequencies in the first, second, and third types of frequency calculation processing, and the integration result value of the image recognition system according to the first embodiment of the present invention. It is a figure which shows a relationship.
  • the transition of the identification frequency calculated by the identification calculation unit 102 will be described.
  • the frequency keeps a high value while the time is early, but the reliability temporarily decreases due to the influence of noise mixed in the time-series image.
  • the identification calculation unit 102 cannot identify the “image area in which the tracking target category exists” from the background image during the period in which the reliability is low.
  • the identification calculation unit 102 cannot distinguish the “image area where the tracking target category exists” from the background image for a long period of time. As a result, the frequency calculated by the identification calculation unit 102 decreases over a long period of time.
  • the transition of the tracking frequency calculated by the tracking calculation unit 103 will be described with reference to FIGS. 9A and 9B.
  • the processing method in the tracking calculation unit 103 is different from the processing method in the identification calculation unit 102. Therefore, the transition of the frequency output from the tracking calculation unit 103 and the transition of the frequency output from the identification calculation unit 102 are different from each other.
  • the identification frequency calculated by the identification calculation unit 102 temporarily decreases due to the appearance of an image having similar characteristics. Similarly, the identification calculation unit 102 cannot identify the “image area in which the tracking target category exists” from the background image for a long time due to the occlusion. Meanwhile, the identification frequency calculated by the identification calculation unit 102 decreases over a long period of time.
  • the image recognition system since the occurrence time of noise that causes a decrease in the identification frequency is different from the occurrence time of the cause that causes a decrease in the tracking frequency, the image recognition system according to the first embodiment of the present invention integrates these frequencies. By doing, it can reduce that a frequency falls.
  • FIG. 9C has a different configuration from the tracking calculation unit 103 in FIG. 9B.
  • the transition of the tracking frequency calculated by the tracking calculation unit 103 will be described with reference to FIG. 9C.
  • the tracking frequency is lowered by the non-linear motion of the tracked object. However, the tracking frequency does not decrease even if occlusion occurs. This behavior is different from the two frequency behaviors described above.
  • the integration result value according to the present embodiment will be described with reference to FIGS. 9A, 9B, 9C, and 9D.
  • FIG. 9A, FIG. 9B, and FIG. 9C it is common that the curves representing the respective frequencies have a time region in which the frequencies are low. However, the times when the frequency decreases are different from each other.
  • the curve representing the integration result value described above has high reliability in the entire time domain. That is, it means that the image recognition system 104 continues to recognize the tracking target.
  • the first embodiment of the present invention it is possible to provide an image recognition system or the like that reduces the possibility of failure in detection and / or tracking.
  • the frequency is three types, but even if there are two types, according to the first embodiment of the present invention, detection and / or tracking may fail. It is possible to provide an image recognition system or the like with reduced performance. Similarly, even when the frequency is four or more, according to the first embodiment of the present invention, it is possible to provide an image recognition system or the like that can reduce the possibility of failure in detection and / or tracking.
  • both the identification calculation unit 102 and the tracking calculation unit 103 have been normalized to output real values from 0.0 to 1.0, but are not necessarily from 0.0 to 1.0. It need not be a real number. That is, for the outputs of the identification calculation unit 102 and the tracking calculation unit 103, in addition to the above, it is possible to use numerical values whose value ranges match and the order relationship can be defined.
  • FIG. 4 is a diagram showing a configuration of an image recognition system according to the second embodiment of the present invention. Next, the configuration of the image recognition system according to the second embodiment will be described with reference to FIG.
  • the tracking calculation unit 407 includes a first tracking calculation unit 405 that calculates a tracking frequency according to a calculation method using an image feature, a second tracking calculation unit 406 that calculates a tracking frequency according to a calculation method using information other than the image feature, Is provided.
  • the image recognition system 408 includes an identification calculation unit 102, a tracking calculation unit 407, and an integrated calculation unit 101.
  • the first tracking calculation unit 405 compares the feature extracted from the image in the past with the input image, and calculates the tracking frequency based on the comparison result.
  • the first tracking calculation unit 405 calculates the tracking frequency using, for example, template matching using an image feature and a derivation method thereof.
  • the calculation method using the image feature used by the first tracking calculation unit 405 is not limited to the method exemplified here.
  • the second tracking calculation unit 406 analyzes one or more input time-series images, and then employs each calculation method such as linear interpolation, curve fitting, Kalman filter, and Particle filter from the track to be tracked. Calculate the tracking frequency.
  • the calculation method employed by the second tracking calculation unit 406 is not limited to the method illustrated here.
  • the identification calculation unit 102, the first tracking calculation unit 405, and the second tracking calculation unit 406 respectively calculate the frequency according to mutually different processing methods. As a result, the calculation results obtained from these three calculation units are likely to be different from each other.
  • the image recognition system 408 determines that any two of the identification calculation unit 102, the first tracking calculation unit 405, and the second tracking calculation unit 406 have a predetermined range depending on the cause of image noise or the like. Even when the value is less than, the weighting of the frequency of the other calculation unit is increased. By increasing the weight, the influence on the integrated result value is suppressed, and the tracking can be continued. As a result, the image recognition system 408 can further reduce the possibility of detection or tracking failure in the image recognition system or the like.
  • the second embodiment of the present invention it is possible to provide an image recognition system or the like that reduces the possibility of failure in detection and / or tracking. Furthermore, since the tracking calculation unit 407 calculates two or more different tracking frequencies, according to the second embodiment of the present invention, an image with reduced possibility of detection and / or tracking failure. A recognition system can be provided.
  • step S201 and the process of step S202 may be interchanged or may be executed simultaneously.
  • FIG. 5 is a flowchart showing a procedure of processing executed by the image recognition system according to the third embodiment of the present invention.
  • the operation of the image recognition system 104 according to the third embodiment will be described in detail with reference to FIGS. 1 and 5.
  • Equation 1 is an equation for calculating the result integrated value.
  • the function f is a monotonically increasing function whose domain is the identification frequency calculated by the identification calculation unit 102 (step S201) or the tracking frequency calculated by the tracking calculation unit 103 (step S202). Represents an association.
  • the calculation of the result integration value is to take the sum of the product of the real number and the weight W for all frequencies.
  • the integrated calculation unit 101 includes a function value monotonically increasing to the identification frequency calculated by the identification calculation unit 102 and a function value monotonically increasing to the tracking frequency calculated by the tracking calculation unit 103.
  • a weighted arithmetic mean is calculated (step S503), the weighting of each frequency described above is determined according to a predetermined method, and then an integration result value is calculated (step S504).
  • the image recognition system 104 sets a weighted total average value of two or more different tracking frequencies as an integrated result value. Therefore, the possibility that the integration result value falls below the lower limit of the predetermined range is low, and the image recognition system 104 is a system that performs image recognition that is resistant to image changes. That is, according to the third embodiment of the present invention, it is possible to provide an image recognition system or the like that reduces the possibility that detection and / or tracking will both fail.
  • step S201 and the process of step S202 may be interchanged or may be executed simultaneously.
  • FIG. 6 is a flowchart showing a procedure of processing executed by the image recognition system according to the fourth embodiment of the present invention.
  • the operation of the image recognition system 104 will be described in detail with reference to FIGS. 1 and 6.
  • Equation 2 is an equation for calculating the result integrated value.
  • the result integrated value is calculated by using the identification frequency calculated by the identification calculation unit 102 (step S201) or the product of the tracking frequency calculated by the tracking calculation unit 103 (step S202) and the weight W for all the frequencies. It is to take the sum.
  • the integrated calculation unit 101 calculates a weighted arithmetic average of two values in the object identification frequency calculated by the identification calculation unit 102 and the position frequency calculated by the tracking calculation unit 103 as shown in Expression 2 ( Step S603).
  • the image recognition system 104 sets a weighted arithmetic mean value of two or more different tracking frequencies as an integrated result value. Therefore, the possibility that the integration result value described above falls below the lower limit of the predetermined range is low, and the image recognition system 104 is a system that performs image recognition that is resistant to image changes. That is, according to the present embodiment, it is possible to provide an image recognition system or the like that reduces the possibility that detection and / or tracking will fail.
  • step S201 and the process of step S202 may be interchanged or may be executed simultaneously.
  • FIG. 7 is a flowchart showing a procedure of processing executed by the image recognition system according to the fifth embodiment of the present invention.
  • the operation of the image recognition system 104 will be described in detail with reference to FIGS. 1 and 7.
  • the integrated calculation unit 101 uses a predetermined method based on the identification frequency calculated by the identification calculation unit 102 (step S201) and the tracking frequency calculated by the first tracking calculation unit 405 and the second tracking calculation unit 406 (step S202).
  • the weighting is determined according to, and the integrated result value is calculated according to the weighting (step S703).
  • the integration calculation unit 101 changes the weighting according to a predetermined method (step S705).
  • the integrated calculation unit 101 calculates the integrated result value and weights it until the integrated result value is equal to or greater than the lower limit of the predetermined range.
  • the integration calculation unit 101 performs an integration calculation corresponding to the integration result value (step S504).
  • the integrated calculation unit 101 As a predetermined method, the integrated calculation unit 101 generates a random value at least once in a predetermined range and weights the integrated result value so as to maximize the weight, or gradually adds a weight corresponding to a certain frequency. A method of increasing the size can be adopted. Furthermore, the integrated calculation unit 101 changes the weight according to a predetermined method, such as a method of fixing the weight in advance with a value that does not match any one frequency, or a deviation from the average of each frequency. Methods can also be employed. The weighting method in the integrated arithmetic unit 101 is not limited to the above, and methods other than these methods can also be employed.
  • the image recognition system according to the fifth embodiment of the present invention makes it possible to continue tracking. Accordingly, the image recognition system 104 becomes a system that performs image recognition that is resistant to image changes. That is, according to the fifth embodiment of the present invention, it is possible to provide an image recognition system or the like that reduces the possibility of failure in detection and / or tracking.
  • step S201 and the process of step S202 may be switched, or may be executed simultaneously.
  • FIG. 8 is a flowchart showing a procedure of processing executed by the image recognition system according to the sixth embodiment of the present invention.
  • the operation of the image recognition system 104 will be described in detail with reference to FIGS. 1 and 8.
  • the integrated calculation unit 101 determines the identification frequency calculated by the identification calculation unit 102 (step S201) and the tracking frequency calculated by the first tracking calculation unit 405 and the second tracking calculation unit 406 (step S202). The weighting is determined according to the method. Next, the integration calculation unit 101 calculates an integration result value (step S803), and when the integration result value falls below the lower limit of the predetermined range (step S704), changes the weighting (step S805).
  • the integration calculation unit 101 repeats the calculation of the integration result value and the determination of the weighting until the integration result value is equal to or greater than the lower limit of the predetermined range.
  • the integration calculation unit 101 performs the integration calculation according to the integration result value (step S504).
  • the integrated calculation unit 101 As a predetermined method, the integrated calculation unit 101 generates a random value at least once in a predetermined range and weights the integrated result value so as to maximize the weight, or gradually adds a weight corresponding to a certain frequency. A method of increasing the size can be adopted. Furthermore, the integrated calculation unit 101 changes the weight according to a predetermined method, such as a method of fixing the weight in advance with a value that does not match any one frequency, or a deviation from the average of each frequency. A method etc. can also be adopted.
  • the integrated calculation unit 101 uses the above-described weight corresponding to the tracking frequency of the second tracking calculation unit 406 based on the above-described weight corresponding to the frequency of the first tracking calculation unit 405 and the identification calculation unit 102. If the maximum value of the integration result value does not exceed the lower limit of the predetermined range, the weight corresponding to the tracking frequency of the second tracking calculation unit 406 described above is calculated. A method of increasing the size can also be adopted.
  • the integration calculation unit 101 can also employ a method of terminating the calculation when the maximum value of the integration result values described above exceeds the lower limit of the predetermined range as a predetermined method.
  • the predetermined method in the integrated calculation unit 101 is not limited to the above, and may be realized by a method other than these methods.
  • the sixth embodiment of the present invention suppresses the influence of the frequency reduction in the identification calculation unit 102, the first tracking calculation unit 405, and the second tracking calculation unit 406 on the integrated result value, and continues tracking. enable.
  • the image recognition system according to the sixth embodiment of the present invention is a system that performs image recognition that is resistant to image changes. That is, according to the sixth embodiment of the present invention, it is possible to provide an image recognition system or the like that reduces the possibility that detection and / or tracking will both fail.
  • step S201 and the process of step S202 may be switched, or may be executed simultaneously.
  • FIG. 3 is a diagram schematically showing a hardware configuration of a calculation processing device (information processing device, computer) capable of realizing the image recognition system according to the first to sixth embodiments.
  • the calculation processing device 306 includes a CPU (Central Processing Unit) 301, a memory 302, a disk 303, an output device 304, and an input device 305.
  • CPU Central Processing Unit
  • the CPU 301 copies a software program (computer program) stored in the disk 303: hereinafter simply referred to as a program to the memory 7 at the time of execution, and executes arithmetic processing.
  • the CPU 301 reads data necessary for program execution from the memory 302. When display is necessary, the CPU 301 displays the output result on the output device 304.
  • the CPU 301 reads a program stored in a program storage medium 307 in which a computer-readable non-transitory program is stored via the input device 305.
  • the CPU 301 interprets the image recognition program (FIG. 2A, FIG. 2B, FIG. 5 to FIG. 8) in the memory 302 corresponding to the function (process) represented by each unit shown in FIG. 1 or FIG. Execute.
  • the CPU 301 sequentially performs the processes described in the above embodiments of the present invention.
  • the present invention can also be achieved by such an image recognition program. Furthermore, it can be understood that the present invention can also be realized by a computer-readable recording medium in which such an image recognition program is recorded.
  • an identification calculation unit that identifies an image area where the tracking target category exists and calculates the identification frequency of the tracking target belonging to the tracking target category;
  • a tracking calculation unit for calculating a tracking frequency related to the position of the tracking target;
  • a weighting is determined according to a predetermined method for the results output from the identification calculation unit and the tracking calculation unit, and an integrated calculation unit that integrates the results according to the weighting,
  • An image recognition system comprising:
  • Appendix 2 The image recognition system according to appendix 1, wherein the identification calculation unit calculates two or more types of identification frequencies.
  • the tracking calculation unit includes: A first tracking calculation unit for calculating a first tracking frequency according to a calculation method using an image feature; A second tracking calculation unit for calculating a second tracking frequency according to a calculation method using information other than image features;
  • the integrated calculation unit is configured to calculate the value of the function monotonically increasing to the numerical value calculated by the identification calculation unit and the value of the function monotonically increasing to the numerical value calculated by the tracking calculation unit by using a weighted arithmetic mean.
  • the calculation result is calculated,
  • the image recognition system according to any one of appendices 1 to 7.
  • the integrated calculation unit calculates the calculation result by a weighted arithmetic average of a numerical value calculated by the identification calculation unit and a numerical value calculated by the tracking calculation unit,
  • the image recognition system according to any one of appendices 1 to 7.
  • the integrated calculation unit is configured to alternately and repeatedly change the weight according to a predetermined method and calculate the calculation result until the calculation result reaches a lower limit of a predetermined range.
  • the image recognition system according to any one of appendices 1 to 7.
  • the integrated calculation unit increases the weight for the calculation value of the second tracking calculation unit until the calculation result is equal to or greater than the lower limit of the predetermined range, and the calculation value of the first tracking calculation unit and the identification calculation unit.
  • the image recognition system according to any one of appendices 1 to 7, wherein a weight is reduced and the calculation result is calculated alternately.
  • An identification calculation function for identifying an image area where a tracking target category exists in an input image and calculating a discrimination frequency of the tracking target belonging to the tracking target category;
  • a tracking calculation function for calculating a tracking frequency related to the position of the tracking target;
  • a weighting is determined according to a predetermined method for the results output by the identification calculation function and the tracking calculation function, and an integrated calculation function for integrating the results according to the weighting,

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Description

画像認識システム、画像認識方法およびコンピュータ・プログラムImage recognition system, image recognition method, and computer program

 本発明は、画像認識に用いることができる情報処理のシステム技術等に関する。 The present invention relates to an information processing system technology that can be used for image recognition.

  画像認識システムにおける検知は、入力画像上で、歩行者、あるいは車両などの特定のカテゴリに属する画像領域を、その他の画像領域と識別して特定することである。また、画像認識システムにおける追跡は、上記の検知により獲得される追跡対象、あるいは人為的に指定された画像領域に映る追跡対象を、時系列な画像を用いて連続的に特定し続けることである。 The detection in the image recognition system is to identify and specify an image area belonging to a specific category such as a pedestrian or a vehicle from the other image areas on the input image. The tracking in the image recognition system is to continuously specify the tracking target acquired by the above detection or the tracking target reflected in the artificially specified image area using time-series images. .

 情報処理装置を利用した画像認識システムは、車載カメラなどを使って撮影される画像を認識するために用いられる。特許文献1乃至3は、関連する画像認識システムの例を開示する。 An image recognition system using an information processing apparatus is used for recognizing an image shot using an in-vehicle camera or the like. Patent Documents 1 to 3 disclose examples of related image recognition systems.

 特許文献1に開示された画像認識システムは、検知と追跡とを併用した画像認識システムである。その画像認識システムは、互いに独立に動作をする人物検出器と人物追跡器とを備える。上記の人物検出器は、各時刻に検出した人物画像領域を、追跡対象として登録をする。上記の人物追跡器は、登録された追跡対象を時系列に応じて追跡する。その結果、この画像認識システムは、背景画像から人物を検出し、検出された人物が動いた軌跡を特定する。 The image recognition system disclosed in Patent Document 1 is an image recognition system that uses both detection and tracking. The image recognition system includes a person detector and a person tracker that operate independently of each other. The person detector registers the person image area detected at each time as a tracking target. The person tracking device tracks the registered tracking target according to time series. As a result, this image recognition system detects a person from the background image, and specifies the locus of movement of the detected person.

 特許文献2に開示された対象物追跡方法は、対象物が存在する周囲に、対象物と類似する物が存在する場合であっても、対象物を正確に追跡できる。そのために、上記の方法を採用する対象物追跡装置は、撮像された映像空間における前後の画像において類似物が存在する位置関係を判定する位置関係判定部と、類似物が存在する位置を特定する類似物位置特定部とを備える。その追跡装置は、対象物の動きから、対象物の位置を特定できる場合には、その動きから対象物の位置を特定する。反対に、対象物の動きから特定できなければ、その追跡装置は、対象物の位置を画像から探す。 The object tracking method disclosed in Patent Document 2 can accurately track an object even when an object similar to the object exists around the object. For this purpose, an object tracking device that employs the above method specifies a positional relationship determination unit that determines a positional relationship in which similar objects exist in the preceding and following images in the captured video space, and specifies a position in which the similar objects exist. A similar object position specifying unit. If the tracking device can identify the position of the object from the movement of the object, the tracking device identifies the position of the object from the movement. On the other hand, if the tracking device cannot be identified from the movement of the object, the tracking device searches the image for the position of the object.

 特許文献3に開示された対象物追跡装置は、誤追跡の可能性を低下させる装置である。その対象物追跡装置は、まず、画像を表現する特徴量とパーティクルとを表現する特徴量を計算する。次に、その追跡装置は、パーティクルが対象物の位置に存在する尤度を計算し、計算した尤度に応じて対象物の位置を計算する。仮に、対象物が複数存在し、それらが重なり合う場合には、その追跡装置は、尤度を補正することにより対象物を追跡する。 The object tracking device disclosed in Patent Document 3 is a device that reduces the possibility of erroneous tracking. The object tracking device first calculates a feature quantity representing an image and a feature quantity representing a particle. Next, the tracking device calculates the likelihood that the particle is present at the position of the target object, and calculates the position of the target object according to the calculated likelihood. If a plurality of objects exist and they overlap, the tracking device tracks the object by correcting the likelihood.

特開2010-072723号公報JP 2010-0727223 A 特開2011-192092号公報JP 2011-192092 A 特開2011-170684号公報JP 2011-170684 A

 上述した関連文献に開示された装置が持つ問題点は、背景画像が変化したり、あるいは追跡対象が見掛け上変化したりすることによって、追跡すべき対象を見失う可能性が高いことである。その結果、それらの装置は、追跡すべき対象を追跡できなくなる可能性が高い。 The problem with the devices disclosed in the above-mentioned related literatures is that there is a high possibility of losing the target to be tracked by changing the background image or apparently changing the tracked target. As a result, these devices are likely to be unable to track the object to be tracked.

 その理由は、特許文献1に開示された画像認識システムが、検知結果と追跡結果とを独立して計算し、それらの計算結果が一致する場合のみを、結果として採用するためである。その結果、係る画像認識システムは、上記のような検知結果と追跡結果のいずれか一方が、計算に失敗する場合には、追跡結果を出力することができない。 The reason is that the image recognition system disclosed in Patent Document 1 calculates the detection result and the tracking result independently, and adopts the result only when the calculation results match. As a result, the image recognition system cannot output a tracking result when either one of the detection result and the tracking result as described above fails in the calculation.

 特許文献2乃至3に開示された対象物追跡装置は、それぞれ、対象物追跡装置を1種類しか持っていない。そのため、それらの対象物追跡装置は、追跡対象を追跡ができなくなる可能性が高い。 Each of the object tracking devices disclosed in Patent Documents 2 to 3 has only one type of object tracking device. Therefore, there is a high possibility that these object tracking devices cannot track the tracking target.

 本発明の主たる目的は、検知または追跡、またはその両方が失敗する可能性を低減する画像認識システム等を、提供することである。 The main object of the present invention is to provide an image recognition system or the like that reduces the likelihood of detection and / or tracking failure.

 上記の目的を達成すべく、本発明に係る画像認識システムは、以下の構成を備えることを特徴とする。 In order to achieve the above object, an image recognition system according to the present invention has the following configuration.

 本発明に係る画像認識システムは、入力画像において、追跡対象カテゴリが存在する画像領域を識別し、前記追跡対象カテゴリに属する追跡対象の識別度数を計算する識別演算部と、
 前記追跡対象の位置に関する追跡度数を計算する追跡演算部と、
 前記識別演算部および前記追跡演算部が出力する結果に対し、所定の方法に従って重み付けを決め、前記重み付けに応じて、前記結果を統合する統合演算部とを、
備えることを特徴とする。
An image recognition system according to the present invention, in an input image, identifies an image region where a tracking target category exists, and an identification calculation unit that calculates the identification frequency of a tracking target belonging to the tracking target category;
A tracking calculation unit for calculating a tracking frequency related to the position of the tracking target;
A weighting is determined according to a predetermined method for the results output by the identification calculation unit and the tracking calculation unit, and an integrated calculation unit that integrates the results according to the weighting,
It is characterized by providing.

 また、本発明の他の見地として、本発明に係る画像認識方法は、
 入力画像において、追跡対象カテゴリが存在する画像領域を識別し、前記追跡対象カテゴリに属する追跡対象の識別度数と、前記追跡対象の位置に関する追跡度数とを計算し、前記識別度数と前記追跡度数とに対し、所定の方法に従って重み付けを決め、前記重み付けに応じて、前記識別度数と前記追跡度数とを統合する。
As another aspect of the present invention, an image recognition method according to the present invention includes:
In the input image, an image region where the tracking target category exists is identified, and the identification frequency of the tracking target belonging to the tracking target category and the tracking frequency related to the position of the tracking target are calculated, and the identification frequency and the tracking frequency On the other hand, weighting is determined according to a predetermined method, and the identification frequency and the tracking frequency are integrated according to the weighting.

 また、同目的は、上記構成を有する画像認識システム、並びに対応する方法を、コンピュータによって実現するコンピュータ・プログラム、及びそのコンピュータ・プログラムが格納されている、コンピュータ読み取り可能な記憶媒体によっても達成される。 The object is also achieved by a computer program for realizing the image recognition system having the above-described configuration and the corresponding method by a computer, and a computer-readable storage medium storing the computer program. .

 本発明によれば、検知または追跡、またはその両方が失敗する可能性を低減する画像認識システム等を提供できる。 According to the present invention, it is possible to provide an image recognition system or the like that reduces the possibility of failure in detection and / or tracking.

本発明の第1の実施形態に係る画像認識システムの構成を示すブロック図である。1 is a block diagram illustrating a configuration of an image recognition system according to a first embodiment of the present invention. 本発明の第1の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the image recognition system which concerns on the 1st Embodiment of this invention performs. 本発明の第1の実施形態に係る画像認識システムが実行する処理の手順を示す別の形態のフローチャートである。It is a flowchart of another form which shows the procedure of the process which the image recognition system which concerns on the 1st Embodiment of this invention performs. 実施形態に係る画像認識システムを実現可能な計算処理装置のハードウェア構成を概略的に示すブロック図である。It is a block diagram which shows roughly the hardware constitutions of the calculation processing apparatus which can implement | achieve the image recognition system which concerns on embodiment. 本発明の第2の実施形態に係る画像認識システムの構成を示す図である。It is a figure which shows the structure of the image recognition system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the image recognition system which concerns on the 3rd Embodiment of this invention performs. 本発明の第4の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the image recognition system which concerns on the 4th Embodiment of this invention performs. 本発明の第5の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the image recognition system which concerns on the 5th Embodiment of this invention performs. 本発明の第6の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the image recognition system which concerns on the 6th Embodiment of this invention performs. 本発明の第1の実施形態に係る識別演算部が行う、第1の度数演算処理において、時系列における時刻と、度数の関連を示す図である。It is a figure which shows the relationship of the time in a time series, and frequency in the 1st frequency calculation process which the identification calculating part which concerns on the 1st Embodiment of this invention performs. 本発明の第1の実施形態に係る追跡演算部が行う、第2の度数演算処理において、時系列における時刻と、度数との関連を示す図である。It is a figure which shows the relationship between the time in a time series, and a frequency in the 2nd frequency calculation process which the tracking calculating part which concerns on the 1st Embodiment of this invention performs. 本発明の第1の実施形態に係る追跡演算部が行う、第3の度数演算処理において、時系列における時刻と、度数との関連を示す図である。It is a figure which shows the relationship between the time in a time series, and a frequency in the 3rd frequency calculation process which the tracking calculating part which concerns on the 1st Embodiment of this invention performs. 時系列における時刻と、第1、第2、第3の3種類の度数演算処理におけるそれぞれの度数と、本発明の第1の実施形態に係る画像認識システムの統合結果値との関連を示す図である。The figure which shows the relationship between the time in a time series, each frequency in 1st, 2nd, 3rd type frequency calculation processing, and the integrated result value of the image recognition system which concerns on the 1st Embodiment of this invention. It is. 識別度数における、位置とスケールの関連を表す図である。It is a figure showing the relationship between a position and a scale in identification frequency. 位置とスケールとが1対1に対応しているときにおける、識別度数がとる値の推移を表す図である。It is a figure showing transition of the value which a discriminating degree takes, when a position and a scale correspond one to one. 位置とスケールとが1対1に対応しているときにおける、識別度数がとる値の推移を表現する方法の一例を表す図である。It is a figure showing an example of the method of expressing the transition of the value which a discrimination frequency takes when a position and a scale respond | correspond one to one. スケールが複数あるときにおける、識別度数がとる値の推移を表す図である。It is a figure showing transition of the value which a discrimination frequency takes when there are a plurality of scales. スケールが複数あるときにおける、識別度数がとる値の推移を表現する方法の一例を表す図である。It is a figure showing an example of the method of expressing the transition of the value which a discrimination frequency takes when there are two or more scales. 追跡度数の分布の一例を示す図である。It is a figure which shows an example of distribution of tracking frequency.

 次に、本発明の実施の形態について、図面を参照して詳細に説明する。以下に説明する本発明の実施形態における検知は、入力画像において、歩行者、あるいは車両などの特定のカテゴリに属する物体を、その他の画像領域と識別して、特定することを指す。同様に、以下に説明する本発明の実施形態における追跡は、検知あるいは人為的に、追跡対象に指定される画像領域に映る物体の同一個体の画像領域を、時系列画像上で連続的に特定し続けることをいう。 Next, embodiments of the present invention will be described in detail with reference to the drawings. The detection in the embodiment of the present invention described below refers to identifying an object belonging to a specific category such as a pedestrian or a vehicle by distinguishing it from other image areas in the input image. Similarly, tracking in the embodiment of the present invention described below is performed by detecting or artificially specifying, on a time-series image, an image region of the same individual object in an image region designated as a tracking target. It means to keep doing.

 <第1の実施形態>
 図1は、本発明の第1の実施形態に係る画像認識システムの構成を示すブロック図である。図1を参照すると、本実施形態に係る画像認識システム104は、統合演算部101と、識別演算部102と、追跡演算部103とを備える。
<First Embodiment>
FIG. 1 is a block diagram showing a configuration of an image recognition system according to the first embodiment of the present invention. Referring to FIG. 1, the image recognition system 104 according to the present embodiment includes an integrated calculation unit 101, an identification calculation unit 102, and a tracking calculation unit 103.

 識別演算部102は、入力される時系列画像を解析する。識別演算部102は、「追跡対象カテゴリ(歩行者、車両など目的に応じた追跡対象のカテゴリ)が存在する画像領域」を背景画像と識別する。識別演算部102は、入力画像上の各領域において、「追跡対象カテゴリが存在する画像領域」である尤度、あるいは尤度と等価な値(以降、これらをまとめて、「識別度数」と記載する)を、それぞれの追跡カテゴリに対して計算する。 The identification calculation unit 102 analyzes the input time-series image. The identification calculation unit 102 identifies “an image region in which a tracking target category (a tracking target category such as a pedestrian or a vehicle according to a purpose) exists” as a background image. In each region on the input image, the identification calculation unit 102 is a likelihood that is “an image region in which a tracking target category exists” or a value equivalent to the likelihood (hereinafter, these are collectively referred to as “discrimination frequency”. Is calculated for each tracking category.

 識別演算部102は、以下に示すように、機械学習法等により実現することができる。識別演算部102は、まず、画像を特徴量によって表現する。次に、識別演算部102は、その特徴量を使って表現した画像データを、機械学習法等から構成される識別器を用いて識別する。識別演算部102は、特徴量として、Haar-like特徴、HoG特徴などを採用することができる。また、識別演算部102は、機械学習法として、Support Vector Machine(SVM)、Adaptive Boosting(AdaBoost)法などを採用することができる。識別演算部102は、上述した例に限定されるものではなく、上述した特徴量以外の特徴量や、上述した機械学習法以外の機械学習法を使って、識別演算部102を実現してもよい。 The identification calculation unit 102 can be realized by a machine learning method or the like as described below. First, the identification calculation unit 102 represents an image with a feature amount. Next, the identification calculation unit 102 identifies the image data expressed using the feature amount using a classifier configured by a machine learning method or the like. The identification calculation unit 102 can employ Haar-like features, HoG features, and the like as feature amounts. Further, the identification calculation unit 102 can employ a Support Vector Machine (SVM), an Adaptive Boosting (AdaBoost) method, or the like as a machine learning method. The identification calculation unit 102 is not limited to the above-described example, and the identification calculation unit 102 may be realized using a feature quantity other than the above-described feature quantity or a machine learning method other than the above-described machine learning method. Good.

 識別演算部102は、画像上の座標x=(u,v)(以降、単にxと記載する)と、画像領域スケールSとに応じて、識別度数PD(x,S)を計算する。この識別度数PD(x,S)は、画像上の座標xおよびスケールSとに応じて、0.0から1.0までの値に正規化されている(図10)。すなわち、この識別度数は、0あるいは1という離散値ではなく、0.0から1.0までの値という、2値ではない値になる。本発明の実施形態における検知は、この0.0から1.0までの値という、2値ではない値を算出することを指す。 The identification calculation unit 102 calculates the identification frequency PD (x, S) according to the coordinates x = (u, v) on the image (hereinafter simply referred to as x) and the image area scale S. The identification frequency PD (x, S) is normalized to a value from 0.0 to 1.0 according to the coordinate x on the image and the scale S (FIG. 10). In other words, the discriminating frequency is not a discrete value of 0 or 1, but a value of 0.0 to 1.0, which is not a binary value. The detection in the embodiment of the present invention refers to calculating a non-binary value of 0.0 to 1.0.

 スケールSは、画像の幅および高さを含むパラメタなどの値から定義される。例えば、スケールSは、実世界とカメラ画像との間の物理的な配置と、光学系から決定される各座標xにおける追跡対象物体の画像における適切なサイズを、xに一対一対応する固定値として、定義することができる。あるいは、スケールSは、同一の座標xに対して、複数のスケール毎に識別度数を演算した結果として定義してもよい。スケールSの定義は、上記に示した事例に限定されるものではない。 Scale S is defined from values such as parameters including image width and height. For example, the scale S is a fixed value corresponding to the physical arrangement between the real world and the camera image and the appropriate size in the image of the tracking target object at each coordinate x determined from the optical system on a one-to-one basis. Can be defined as Alternatively, the scale S may be defined as a result of calculating the discrimination frequency for each of a plurality of scales with respect to the same coordinate x. The definition of the scale S is not limited to the examples shown above.

 スケールSが座標xと一対一対応で定義されている場合、識別度数PD(x,S)は、xのみに依存する。その場合、PD(x,S)=PD(x)の分布(図11A)は、xの値とSの値とPD(x,S)とを関連付けするテーブルとして表現できる(図11B)。 When the scale S is defined in a one-to-one correspondence with the coordinate x, the identification frequency PD (x, S) depends only on x. In this case, the distribution of PD (x, S) = PD (x) (FIG. 11A) can be expressed as a table that associates the value of x, the value of S, and PD (x, S) (FIG. 11B).

 スケールSが座標xと独立な場合、例えば、スケールSを少なくとも1つ以上のスケール(S1,S2,...,Sm)として表現するのであれば、識別度数PD(x,S)は、それぞれに対応する識別度数PD(x,S1),PD(x,S2),...,PD(x,Sn)として表現できる(図12A)。その場合、PD(x,S)の分布は、xとPD(x,S1),PD(x,S2),...,PD(x,Sn)とを関連付けするテーブルとして表現できる(図12B)。 When the scale S is independent of the coordinate x, for example, if the scale S is expressed as at least one scale (S1, S2,..., Sm), the identification frequency PD (x, S) is respectively Discriminating frequencies PD (x, S1), PD (x, S2),. . . , PD (x, Sn) (FIG. 12A). In that case, the distribution of PD (x, S) is x and PD (x, S1), PD (x, S2),. . . , PD (x, Sn) can be expressed as a table (FIG. 12B).

 追跡演算部103は、入力された少なくとも1つ以上の時系列画像を解析する。その解析は、少なくとも1つ以上の追跡対象に対して、追跡対象それぞれについて、追跡位置に関する尤度、あるいは尤度と等価な値(以降、2つをまとめて「追跡度数」と記載する)を計算する。 The tracking calculation unit 103 analyzes at least one input time-series image. In the analysis, for at least one tracking target, for each tracking target, the likelihood related to the tracking position, or a value equivalent to the likelihood (hereinafter, the two are collectively referred to as “tracking frequency”). calculate.

 追跡演算部103は、追跡度数を計算する方法として、画像特徴を用いたテンプレートマッチング、およびその派生手法などを採用することができる。さらに、追跡演算部103は、追跡度数を計算する方法として、追跡対象の軌跡から線形補間、曲線フィッティング、Kalmanフィルタ、Particleフィルタ等の各推定手法を使うこともできる。さらに、追跡演算部103は、追跡度数として、登録された画像特徴と、探索範囲内部に存在する座標xにおける画像特徴との間における、類似度を採用することもできる。追跡演算部103における追跡度数を計算する方法は、上記に例示した方法には限られない。また、追跡演算部103における追跡度数は、上記に例示した類似度に限られない。 The tracking calculation unit 103 can employ template matching using image features, a derivation method thereof, and the like as a method of calculating the tracking frequency. Furthermore, the tracking calculation unit 103 can also use estimation methods such as linear interpolation, curve fitting, Kalman filter, and Particle filter from the track of the tracking target as a method of calculating the tracking frequency. Furthermore, the tracking calculation unit 103 can also employ the similarity between the registered image feature and the image feature at the coordinate x existing within the search range as the tracking frequency. The method of calculating the tracking frequency in the tracking calculation unit 103 is not limited to the method exemplified above. Further, the tracking frequency in the tracking calculation unit 103 is not limited to the similarity exemplified above.

 追跡演算部103は、画像特徴として、追跡対象として登録された画像領域内部のHS色ヒストグラム、HoG等のエッジベース特徴などを採用することができる。また、追跡演算部103は、類似度の計算方法として、Bhattacharya距離などを採用することができる。追跡演算部103における画像特徴は、上記に例示した画像特徴には限られない。同様に、追跡演算部103における類似度の計算方法は、上記に例示した類似度の計算方法には限られない。 The tracking calculation unit 103 can employ, as the image feature, an HS color histogram inside the image region registered as a tracking target, an edge base feature such as HoG, or the like. Further, the tracking calculation unit 103 can employ a Bhattacharya distance or the like as a similarity calculation method. The image features in the tracking calculation unit 103 are not limited to the image features exemplified above. Similarly, the similarity calculation method in the tracking calculation unit 103 is not limited to the similarity calculation method exemplified above.

 また、追跡演算部103は、画像特徴として、時刻によらず、追跡対象を登録する時点の画像領域における画像特徴を、そのまま保持しておくこともできる。あるいは、追跡演算部103は、画像特徴として、追跡対象を登録する時刻から前時刻までの追跡位置と、スケールとから定義される領域の画像特徴に応じて、時系列的に更新しても良い。例えば、画像特徴を、登録時刻(0)から前時刻(t-1)までの追跡位置における追跡対象領域から取得された画像特徴f’(0),・・・,f’(t-1)の重み付平均fm(t-1)として定義するのであれば、追跡演算部103は、各座標xにおける画像特徴と比較結果に応じて更新することができる。追跡演算部103における画像特徴の処理方法は、上記の方法には限られない。 Further, the tracking calculation unit 103 can also retain the image feature in the image region at the time of registering the tracking target as the image feature without depending on the time. Alternatively, the tracking calculation unit 103 may update the image feature in time series according to the image feature of the region defined from the tracking position from the time when the tracking target is registered to the previous time and the scale. . For example, image features f ′ (0),..., F ′ (t−1) acquired from the tracking target region at the tracking position from the registration time (0) to the previous time (t−1). Is defined as the weighted average fm (t−1), the tracking calculation unit 103 can update the image according to the image feature at each coordinate x and the comparison result. The image feature processing method in the tracking calculation unit 103 is not limited to the above method.

 追跡演算部103は、画像上の座標xにおける第i番目の追跡対象Oiの追跡度数PT(x,Oi)を計算する。この追跡度数PT(x,Oi)は、0.0から1.0までの実数値に正規化する(図13)。 The tracking calculation unit 103 calculates the tracking frequency PT (x, Oi) of the i-th tracking target Oi at the coordinate x on the image. The tracking frequency PT (x, Oi) is normalized to a real value from 0.0 to 1.0 (FIG. 13).

 統合演算部101は、識別演算部102と追跡演算部103との計算値を統合する結果統合と、新規追跡対象の登録と、既存追跡対象の追跡情報の更新、削除と、過去の追跡情報の保存とを行なう。 The integrated calculation unit 101 integrates the calculation values of the identification calculation unit 102 and the tracking calculation unit 103, registers a new tracking target, updates and deletes the tracking information of the existing tracking target, and records past tracking information. Save.

 統合演算部101における結果統合は、識別演算部102が計算した識別度数と追跡演算部103が計算した追跡度数とを入力として、それらの各度数への重み付けを決定した後、その重み付けに対応して統合結果値を計算する。その重み付けは、所定の方法に従って決める。統合演算部101は、その統合結果値に応じて、追跡対象の位置を決定する。 The result integration in the integrated calculation unit 101 corresponds to the weighting after determining the weighting of each frequency using the identification frequency calculated by the identification calculation unit 102 and the tracking frequency calculated by the tracking calculation unit 103 as inputs. To calculate the integration result value. The weight is determined according to a predetermined method. The integrated calculation unit 101 determines the position of the tracking target according to the integration result value.

 統合演算部101は、重み付けの方法として、所定の範囲でランダムに1度以上、重みを発生させて、そのうち上述した統合結果値が最大になるように決める方法や、あらかじめ、ある特定の度数に対応する重みを、徐々に大きくしていく方法などを採用することができる。さらに、統合演算部101は、重み付けの方法として、少なくとも2つ以上の度数を平均するように、あらかじめ重みを固定しておく方法や、各度数の平均からの乖離に応じて、重みを変化させる方法なども採用することができる。統合演算部101におけるその重み付けの方法は、上記に限られるものではなく、これらの方法以外を採用していてもよい。 As a weighting method, the integration calculation unit 101 generates a weight at least once in a predetermined range and determines the maximum integration result value as described above, or sets a specific frequency in advance. For example, a method of gradually increasing the corresponding weight can be employed. Further, the integrated calculation unit 101 changes the weight according to a method of fixing the weight in advance so as to average at least two or more frequencies as a weighting method, or according to a deviation from the average of each frequency. Methods can also be employed. The weighting method in the integrated arithmetic unit 101 is not limited to the above, and methods other than these methods may be adopted.

 統合演算部101は、識別演算部102が出力した識別度数PD(x,S)に応じて、追跡対象となる物体カテゴリが存在する画像領域である尤度が高い画像領域を、追跡候補として抽出する。統合演算部101は、追跡候補として抽出した領域が登録済みの追跡対象と同一でないと判断した場合には、規追跡対象として登録する。 The integrated calculation unit 101 extracts, as a tracking candidate, an image region with a high likelihood that is an image region in which an object category to be tracked exists, according to the identification frequency PD (x, S) output from the identification calculation unit 102. To do. If the integrated calculation unit 101 determines that the region extracted as the tracking candidate is not the same as the registered tracking target, it registers as the reference tracking target.

 例えば、統合演算部101は、識別度数PD(x,S)が所定の閾値以上である領域において極大値をとるときの、座標xとスケールSとに関する領域を、追跡候補領域として、抽出する。次に、統合演算部101は、上記のように抽出した追跡候補領域の中にある追跡対象情報の探索範囲において、既に登録済みである追跡候補領域を、新規追跡対象から除外し、それ以外を新規追跡対象として登録する。このような処理方法によって、統合演算部101を実現することができる。しかし上述した処理方法に限定されるものではない。 For example, the integrated calculation unit 101 extracts, as a tracking candidate region, a region related to the coordinate x and the scale S when the maximum value is obtained in a region where the identification frequency PD (x, S) is equal to or greater than a predetermined threshold. Next, the integrated calculation unit 101 excludes the already registered tracking candidate area from the new tracking target in the search range of the tracking target information in the tracking candidate area extracted as described above, and the others Register as a new tracking target. The integrated calculation unit 101 can be realized by such a processing method. However, it is not limited to the processing method described above.

 統合演算部101は、i番目の追跡対象に関する前時刻の追跡情報Oi(t―1)={位置座標:yi(t―1)、探索範囲:Ai(t-1)、スケール:Si(t―1)}を保持する。統合演算部101は、この追跡情報と現時刻で取得した情報に基づき、現時刻の追跡情報Oi(t)を保存する。追跡情報Oi(t)は、次の時刻t+1の処理で用いられる追跡情報となる。 The integrated calculation unit 101 has the previous time tracking information Oi (t−1) = {position coordinates: yi (t−1), search range: Ai (t−1), scale: Si (t ―1)} is held. Based on the tracking information and the information acquired at the current time, the integrated arithmetic unit 101 stores the tracking information Oi (t) at the current time. The tracking information Oi (t) is tracking information used in the next processing at time t + 1.

 現時刻tにおけるi番目の追跡対象のスケールSi(t)は、前時刻(t-1)におけるi番目の追跡対象のSi(t-1)の値と同じであってもよいし、時系列に応じて更新してもよい。例えば、識別演算部102におけるスケールパラメータSが、画像座標xに対し、一意に定義されている場合に、スケールSi(t)は、決定された現時刻における追跡位置yi(t)に対応するスケールSとする。また、例えば、識別演算部102におけるスケールパラメータSが、画像座標xに独立な場合に、スケールSi(t)は、統合度数を最大化するSとする。スケールSi(t)の定義は、上記で示した方法には限定されず、それ以外の方法であってもよい。 The scale Si (t) of the i-th tracking target at the current time t may be the same as the value of Si (t−1) of the i-th tracking target at the previous time (t−1), or time series You may update according to. For example, when the scale parameter S in the identification calculation unit 102 is uniquely defined for the image coordinate x, the scale Si (t) is a scale corresponding to the tracking position yi (t) determined at the current time. S. Further, for example, when the scale parameter S in the identification calculation unit 102 is independent of the image coordinate x, the scale Si (t) is set to S that maximizes the integration frequency. The definition of scale Si (t) is not limited to the method shown above, and other methods may be used.

 現時刻(t)の位置座標に相当する探索範囲A(t)は、現時刻の位置座標y(t)を起点として、移動した次時刻の追跡対象が含まれると仮定される領域範囲である。そのため、例えば、探索範囲A(t)は、y(t)を中心としたスケールS(t)の定数倍の領域として定義する。 The search range A (t) corresponding to the position coordinates at the current time (t) is an area range that is assumed to include the tracking target at the next time moved from the position coordinates y (t) at the current time. . Therefore, for example, the search range A (t) is defined as a region that is a constant multiple of the scale S (t) with y (t) as the center.

 例えば、スケールがS(t)=(w,h)(w:追跡対象の幅、h:高さ)で定義されているとき、探索範囲A(t)は、
   A(t)={y(t)を中心とする、±(w,h)の範囲の画像領域}、
としても定義できる。また、探索範囲A(t)は、スケールと独立であるとして定義することもできる。
For example, when the scale is defined as S (t) = (w, h) (w: width of the tracking target, h: height), the search range A (t) is
A (t) = {image region in the range of ± (w, h) centered on y (t)},
Can be defined as The search range A (t) can also be defined as being independent of the scale.

 例えば、探索範囲A(t)は、前時刻までに追跡対象が移動した変化の履歴に基づいて、|y(t)-y(t-1)|の定数倍の面積領域として定義することもできる。 For example, the search range A (t) may be defined as an area that is a constant multiple of | y (t) −y (t−1) | based on the history of changes in which the tracking target has moved up to the previous time. it can.

 スケールSi(t)、探索範囲A(t)の定義は上記に示した定義方法に限定されるわけではなく、これ以外の定義方法で定義していてもよい。 The definition of the scale Si (t) and the search range A (t) is not limited to the above-described definition method, and may be defined by other definition methods.

 図2Aは、本発明の第1の実施形態に係る画像認識システムが、実行する処理の手順を示すフローチャートを示す。図2Bは、本発明の第1の実施形態に係る画像認識システムが、実行する処理の手順を示す別の形態のフローチャートを示す。次に図1、図2Aを参照しながら、本発明の第1の実施形態に係る画像認識システムの動作について説明する。 FIG. 2A is a flowchart showing a procedure of processing executed by the image recognition system according to the first embodiment of the present invention. FIG. 2B is a flowchart of another form showing a procedure of processing executed by the image recognition system according to the first embodiment of the present invention. Next, the operation of the image recognition system according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2A.

 識別演算部102は、入力された時系列画像において、「追跡対象カテゴリが存在する画像領域」を背景画像と識別する。そこでは、識別演算部102は、入力画像上の各領域において、「追跡対象カテゴリが存在する画像領域」である識別度数を計算する(ステップS201)。 The identification calculation unit 102 identifies “image area in which the tracking target category exists” in the input time-series image as a background image. In this case, the identification calculation unit 102 calculates an identification frequency that is “an image area in which a tracking target category exists” in each area on the input image (step S201).

 次に、追跡演算部103は、入力された少なくとも1つ以上の時系列画像を解析する。その解析は、少なくとも1つ以上の追跡対象に対して、それぞれ、追跡位置に関する追跡度数を計算する(ステップS202)。図2Bを参照すると、ステップS201の処理とステップS202の処理は、順序が入れ替わっている。これは、ステップS201の処理とステップS202の処理は、独立して動作をすることが可能なためである。即ち、識別演算部102は、識別度数の計算と、追跡度数の計算との実行順序は問わないし、同時に実行してもよい。 Next, the tracking calculation unit 103 analyzes the input at least one time series image. In the analysis, the tracking frequency related to the tracking position is calculated for at least one tracking object (step S202). Referring to FIG. 2B, the order of the process of step S201 and the process of step S202 is reversed. This is because the process in step S201 and the process in step S202 can operate independently. That is, the identification calculation unit 102 may execute the identification power calculation and the tracking power calculation in any order, and may execute them simultaneously.

 統合演算部101は、識別演算部102が計算した識別度数と追跡演算部103が計算した追跡度数との2つの値から、所定の方法に従って重み付け決定し、その重み付けを参照しながら、統合結果値を計算する(ステップS203)。 The integrated calculation unit 101 determines the weight according to a predetermined method from the two values of the identification frequency calculated by the identification calculation unit 102 and the tracking frequency calculated by the tracking calculation unit 103, and refers to the weight, and the integrated result value Is calculated (step S203).

 その結果、画像認識システム104は、識別演算部102と追跡演算部103とのいずれか一方の度数が、画像ノイズ等の原因によって、所定の範囲を下回る場合においても、他方の度数に対する重み付けを高くすることで、統合結果値への影響が抑制され、追跡対象に対する追跡を継続的に実行することを、可能にする。それにより、画像認識システム104は、画像認識システム等において、検知または追跡が失敗する可能性を、低減することができる。 As a result, the image recognition system 104 increases the weighting of the other frequency even when the frequency of either the identification calculation unit 102 or the tracking calculation unit 103 falls below a predetermined range due to the cause of image noise or the like. By doing so, the influence on the integrated result value is suppressed, and it is possible to continuously perform tracking on the tracking target. Thereby, the image recognition system 104 can reduce the possibility of detection or tracking failure in the image recognition system or the like.

 図9Aは、識別演算部が行う、第1の度数演算処理において、時系列における時刻と、度数の関連を示す図である。図9Bは、追跡演算部が行う、第2の度数演算処理において、時系列における時刻と、度数との関連を示す図である。図9Cは、追跡演算部が行う、第3の度数演算処理において、時系列における時刻と、度数との関連を示す図である。図9Dは、時系列における時刻と、第1、第2、第3の3種類の度数演算処理におけるそれぞれの度数と、本発明の第1の実施形態に係る画像認識システムの統合結果値との関連を示す図である。 FIG. 9A is a diagram illustrating a relationship between time and frequency in time series in the first frequency calculation process performed by the identification calculation unit. FIG. 9B is a diagram illustrating a relationship between time and frequency in time series in the second frequency calculation process performed by the tracking calculation unit. FIG. 9C is a diagram illustrating a relationship between time and frequency in time series in the third frequency calculation process performed by the tracking calculation unit. FIG. 9D shows the time in time series, the respective frequencies in the first, second, and third types of frequency calculation processing, and the integration result value of the image recognition system according to the first embodiment of the present invention. It is a figure which shows a relationship.

 それら3種類の度数と、統合演算部101が計算した統合結果値は、小さな値になるほど、識別もしくは追跡している情報の信頼度が低く、逆に、大きな値になるほど、その信頼度が高くなることを表す。すなわち、統合演算部101は、信頼度の値が高いほど、追跡対象が認識できており、逆に、信頼度の値が低いほど、追跡対象が認識できていないことを表す。 These three types of frequencies and the integration result value calculated by the integration calculation unit 101 have a smaller reliability as the value is smaller, and the higher the value, the higher the reliability. Represents that That is, the integrated calculation unit 101 indicates that the tracking target can be recognized as the reliability value is high, and conversely, the tracking target is not recognized as the reliability value is low.

 図9Aを参照しながら、識別演算部102が計算した識別度数の推移について説明をする。その度数は、時刻が早い間、高い値を保っているが、時系列画像に混入したノイズの影響で、一時的に信頼度が低下する。この場合、信頼度が低下している期間において、識別演算部102は、「追跡対象カテゴリが存在する画像領域」を背景画像と識別できない。 Referring to FIG. 9A, the transition of the identification frequency calculated by the identification calculation unit 102 will be described. The frequency keeps a high value while the time is early, but the reliability temporarily decreases due to the influence of noise mixed in the time-series image. In this case, the identification calculation unit 102 cannot identify the “image area in which the tracking target category exists” from the background image during the period in which the reliability is low.

 さらに時刻が進むと、追跡すべき対象が他の対象の背景に隠れる、オクルージョンが発生することがある。識別演算部102は、オクルージョンが発生すると長期間、「追跡対象カテゴリが存在する画像領域」を背景画像と識別できない。その結果、識別演算部102が算出する度数は、長期間にわたり低下する。 If the time further advances, occlusion may occur where the target to be tracked is hidden behind the background of other targets. When the occlusion occurs, the identification calculation unit 102 cannot distinguish the “image area where the tracking target category exists” from the background image for a long period of time. As a result, the frequency calculated by the identification calculation unit 102 decreases over a long period of time.

 図9Aおよび図9Bを参照しながら、追跡演算部103が計算した追跡度数の推移について説明をする。追跡演算部103における処理方法は、識別演算部102における処理方法とは異なる。そのため、追跡演算部103が出力する度数の推移と、識別演算部102が出力する度数の推移とは、相互に異なる。 The transition of the tracking frequency calculated by the tracking calculation unit 103 will be described with reference to FIGS. 9A and 9B. The processing method in the tracking calculation unit 103 is different from the processing method in the identification calculation unit 102. Therefore, the transition of the frequency output from the tracking calculation unit 103 and the transition of the frequency output from the identification calculation unit 102 are different from each other.

 識別演算部102が計算した識別度数は、似たような特徴をもつ画像が出現するなどの要因により、一時的に低下する。識別演算部102は、同様に、上記のオクルージョンが原因となって、長期間、「追跡対象カテゴリが存在する画像領域」を背景画像と識別できい。その間、識別演算部102が算出する識別度数は、長期間に亘って低下する。 The identification frequency calculated by the identification calculation unit 102 temporarily decreases due to the appearance of an image having similar characteristics. Similarly, the identification calculation unit 102 cannot identify the “image area in which the tracking target category exists” from the background image for a long time due to the occlusion. Meanwhile, the identification frequency calculated by the identification calculation unit 102 decreases over a long period of time.

 しかしながら、識別度数が低下する要因となるノイズの発生時刻と、追跡度数が低下する要因の発生時刻とが異なるため、本発明の第1の実施形態に係る画像認識システムは、これらの度数を統合することによって、度数が低下することを低減できる。 However, since the occurrence time of noise that causes a decrease in the identification frequency is different from the occurrence time of the cause that causes a decrease in the tracking frequency, the image recognition system according to the first embodiment of the present invention integrates these frequencies. By doing, it can reduce that a frequency falls.

 図9Cにおける追跡演算部は、図9Bにおける追跡演算部103とは異なる構成を持つ。図9Cを参照しながら、追跡演算部103が計算した追跡度数の推移について説明する。その追跡度数は、追跡対象の動作が、非線形的な動作をすることによって、低下する。しかしながら、その追跡度数は、オクルージョンが発生しても、低下しない。この挙動は、上記の2つの度数の挙動とは異なる。 9C has a different configuration from the tracking calculation unit 103 in FIG. 9B. The transition of the tracking frequency calculated by the tracking calculation unit 103 will be described with reference to FIG. 9C. The tracking frequency is lowered by the non-linear motion of the tracked object. However, the tracking frequency does not decrease even if occlusion occurs. This behavior is different from the two frequency behaviors described above.

 図9A、図9B、図9C、図9Dを参照しながら、本実施形態に係る統合結果値の説明を行う。図9A、図9B、図9Cを参照すると、それぞれの度数を表す曲線には、度数が低くなっている時間領域が存在することは、共通している。しかしながら、度数の低下する時刻は、相互に異なる。それに対し、図9Dの実線を参照すると、上述の統合結果値を表す曲線は、全時間領域において信頼度が高い。即ち、それは、画像認識システム104が追跡対象を認識し続けていることを意味する。 The integration result value according to the present embodiment will be described with reference to FIGS. 9A, 9B, 9C, and 9D. Referring to FIG. 9A, FIG. 9B, and FIG. 9C, it is common that the curves representing the respective frequencies have a time region in which the frequencies are low. However, the times when the frequency decreases are different from each other. On the other hand, referring to the solid line in FIG. 9D, the curve representing the integration result value described above has high reliability in the entire time domain. That is, it means that the image recognition system 104 continues to recognize the tracking target.

 即ち、本発明の第1の実施形態によれば、検知または追跡、またはその両方が失敗する可能性を低減した画像認識システム等を提供できる。 That is, according to the first embodiment of the present invention, it is possible to provide an image recognition system or the like that reduces the possibility of failure in detection and / or tracking.

 上記説明においては、度数が3種類の場合の例について説明を行ったが、2種類であっても、本発明の第1の実施形態によれば、検知または追跡、またはその両方が失敗する可能性を低減した画像認識システム等を提供できる。同様に、度数が4種類以上の場合についても、本発明の第1の実施形態によれば、検知または追跡、またはその両方が失敗する可能性を低減した画像認識システム等を提供できる。 In the above description, an example in which the frequency is three types has been described, but even if there are two types, according to the first embodiment of the present invention, detection and / or tracking may fail. It is possible to provide an image recognition system or the like with reduced performance. Similarly, even when the frequency is four or more, according to the first embodiment of the present invention, it is possible to provide an image recognition system or the like that can reduce the possibility of failure in detection and / or tracking.

 上記説明においては、識別演算部102と追跡演算部103とは、ともに、0.0から1.0までの実数値に正規化して出力していたが、必ずしも、0.0から1.0までの実数値である必要はない。すなわち、識別演算部102と追跡演算部103との出力は、上記以外にも、値の範囲が一致し、順序関係が定義できる数値を使うことができる。 In the above description, both the identification calculation unit 102 and the tracking calculation unit 103 have been normalized to output real values from 0.0 to 1.0, but are not necessarily from 0.0 to 1.0. It need not be a real number. That is, for the outputs of the identification calculation unit 102 and the tracking calculation unit 103, in addition to the above, it is possible to use numerical values whose value ranges match and the order relationship can be defined.

 <第2の実施形態>
 次に、上述した第1の実施形態を基本とする第2の実施形態について説明する。
<Second Embodiment>
Next, a second embodiment based on the above-described first embodiment will be described.

 以下の説明においては、本実施形態に係る特徴的な部分を中心に説明すると共に、上述した第1の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。 In the following description, the characteristic parts according to the present embodiment will be mainly described, and the same reference numerals will be given to the same configurations as those in the first embodiment described above, and the redundant description will be omitted. To do.

 図4は、本発明の第2の実施形態に係る画像認識システムの構成を示す図である。次に、図4を参照しながら、第2の実施形態に係る画像認識システムの構成について説明する。 FIG. 4 is a diagram showing a configuration of an image recognition system according to the second embodiment of the present invention. Next, the configuration of the image recognition system according to the second embodiment will be described with reference to FIG.

 追跡演算部407は、画像特徴を用いた計算手法に従って追跡度数を計算する第1追跡演算部405と、画像特徴以外の情報を用いた計算手法に従って追跡度数を計算する第2追跡演算部406とを備える。画像認識システム408は、識別演算部102と、追跡演算部407と、統合演算部101とを備える。 The tracking calculation unit 407 includes a first tracking calculation unit 405 that calculates a tracking frequency according to a calculation method using an image feature, a second tracking calculation unit 406 that calculates a tracking frequency according to a calculation method using information other than the image feature, Is provided. The image recognition system 408 includes an identification calculation unit 102, a tracking calculation unit 407, and an integrated calculation unit 101.

 第1追跡演算部405は、過去において画像から抽出された特徴と入力された画像との比較を行い、比較結果に基づき追跡度数を計算する。第1追跡演算部405は、例えば、画像特徴を用いたテンプレートマッチング、およびその派生手法などを使って、追跡度数を計算する。第1追跡演算部405が使う画像特徴を用いた計算手法は、ここに例示した手法には限られない。 The first tracking calculation unit 405 compares the feature extracted from the image in the past with the input image, and calculates the tracking frequency based on the comparison result. The first tracking calculation unit 405 calculates the tracking frequency using, for example, template matching using an image feature and a derivation method thereof. The calculation method using the image feature used by the first tracking calculation unit 405 is not limited to the method exemplified here.

 第2追跡演算部406は、例えば、入力された1以上の時系列画像を解析し、その後、追跡対象の軌跡から線形補間、曲線フィッティング、Kalmanフィルタ、Particleフィルタ等の各計算手法を採用して、追跡度数を計算する。第2追跡演算部406が採用する計算手法は、ここに例示した手法に限られない。 The second tracking calculation unit 406, for example, analyzes one or more input time-series images, and then employs each calculation method such as linear interpolation, curve fitting, Kalman filter, and Particle filter from the track to be tracked. Calculate the tracking frequency. The calculation method employed by the second tracking calculation unit 406 is not limited to the method illustrated here.

 識別演算部102と、第1追跡演算部405と、および第2追跡演算部406とは、それぞれ相互に異なる処理方法に従って、それぞれ度数を計算する。その結果、それら3つの演算部から得られる計算結果は、互いに異なる可能性が高い。 The identification calculation unit 102, the first tracking calculation unit 405, and the second tracking calculation unit 406 respectively calculate the frequency according to mutually different processing methods. As a result, the calculation results obtained from these three calculation units are likely to be different from each other.

 その結果、画像認識システム408は、識別演算部102と、第1追跡演算部405と、第2追跡演算部406とのうち、いずれか2つの度数が、画像ノイズ等の原因によって、所定の範囲を下回る場合においても、他方の演算部の度数の重み付けを高くする。重み付けを高くすることにより、統合結果値への影響が抑制され、追跡を継続することを可能にする。その結果、画像認識システム408は、さらに、画像認識システム等において、検知または追跡が失敗する可能性を低減することができる。 As a result, the image recognition system 408 determines that any two of the identification calculation unit 102, the first tracking calculation unit 405, and the second tracking calculation unit 406 have a predetermined range depending on the cause of image noise or the like. Even when the value is less than, the weighting of the frequency of the other calculation unit is increased. By increasing the weight, the influence on the integrated result value is suppressed, and the tracking can be continued. As a result, the image recognition system 408 can further reduce the possibility of detection or tracking failure in the image recognition system or the like.

 即ち、本発明の第2の実施形態によれば、検知または追跡、またはその両方が失敗する可能性を低減した画像認識システム等を提供できる。さらに、追跡演算部407は、異なる2つ以上の追跡度数を計算するため、本発明の第2の実施形態によれば、検知または追跡、またはその両方が失敗する可能性を、より低減した画像認識システム等を提供できる。 That is, according to the second embodiment of the present invention, it is possible to provide an image recognition system or the like that reduces the possibility of failure in detection and / or tracking. Furthermore, since the tracking calculation unit 407 calculates two or more different tracking frequencies, according to the second embodiment of the present invention, an image with reduced possibility of detection and / or tracking failure. A recognition system can be provided.

 ここでは、図4を使って本実施形態のフローを説明したが、ステップS201の処理とステップS202の処理との実行順序は、入れ替わっていてもよいし、同時に実行してもよい。 Here, although the flow of the present embodiment has been described with reference to FIG. 4, the execution order of the process of step S201 and the process of step S202 may be interchanged or may be executed simultaneously.

 <第3の実施形態>
 次に、上述した第1及び第2の実施形態を基本とする第3の実施形態について説明する。
<Third Embodiment>
Next, a third embodiment based on the first and second embodiments described above will be described.

 以下の説明においては、本実施形態に係る特徴的な部分を中心に説明すると共に、上述した第1及び第2の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。第2の実施形態は、第1の実施形態を基本としているため、第1の実施形態との違いを説明する。ここでは説明を省略する第2の実施形態を基本とする第3の実施形態についても同様の説明になる。 In the following description, the characteristic part according to the present embodiment will be mainly described, and the same configurations as those in the first and second embodiments described above are denoted by the same reference numerals and overlapped. Description is omitted. Since the second embodiment is based on the first embodiment, differences from the first embodiment will be described. The same description applies to the third embodiment based on the second embodiment, which is not described here.

 図5は、本発明の第3の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。ここで、図1及び図5を参照して、第3の実施形態に係る画像認識システム104の動作について詳細に説明する。 FIG. 5 is a flowchart showing a procedure of processing executed by the image recognition system according to the third embodiment of the present invention. Here, the operation of the image recognition system 104 according to the third embodiment will be described in detail with reference to FIGS. 1 and 5.

 式1は、結果統合値を算出するための式である。関数fは、識別演算部102が計算した識別度数(ステップS201)、または、追跡演算部103が計算した追跡度数(ステップS202)を定義域とする単調増加関数であり、度数とある実数との関連付けを表している。結果統合値の計算は、その実数と重みWとの積の値を、すべての度数について総和をとることである。 Equation 1 is an equation for calculating the result integrated value. The function f is a monotonically increasing function whose domain is the identification frequency calculated by the identification calculation unit 102 (step S201) or the tracking frequency calculated by the tracking calculation unit 103 (step S202). Represents an association. The calculation of the result integration value is to take the sum of the product of the real number and the weight W for all frequencies.

 統合演算部101は、式1に示すように、識別演算部102が計算した識別度数に単調増加する関数の値と、追跡演算部103が計算した追跡度数に単調増加する関数の値との、重み付き相加平均を計算し(ステップS503)、所定の方法に従って、上述した各度数の重み付けを決定し、その後、統合結果値を計算する(ステップS504)。 As shown in Equation 1, the integrated calculation unit 101 includes a function value monotonically increasing to the identification frequency calculated by the identification calculation unit 102 and a function value monotonically increasing to the tracking frequency calculated by the tracking calculation unit 103. A weighted arithmetic mean is calculated (step S503), the weighting of each frequency described above is determined according to a predetermined method, and then an integration result value is calculated (step S504).

   結果統合値=ΣWi*度数, ΣWi=1, 0≦Wi ≦1・・・(式1)、
 その結果、画像認識システム104は、異なる2つ以上の追跡度数の重み付き総加平均の値を統合結果値とする。そのため、前記統合結果値が所定の範囲の下限を下回る可能性は低くなり、画像認識システム104は画像変化に強い画像認識を行うシステムとなる。即ち、本発明の第3の実施形態によれば、検知または追跡、またはその両方が失敗する可能性を低減した画像認識システム等を提供できる。
Result integrated value = ΣWi * frequency, ΣWi = 1, 0 ≦ Wi ≦ 1 (Equation 1),
As a result, the image recognition system 104 sets a weighted total average value of two or more different tracking frequencies as an integrated result value. Therefore, the possibility that the integration result value falls below the lower limit of the predetermined range is low, and the image recognition system 104 is a system that performs image recognition that is resistant to image changes. That is, according to the third embodiment of the present invention, it is possible to provide an image recognition system or the like that reduces the possibility that detection and / or tracking will both fail.

 ここでは、図5を使って本実施形態のフローを説明したが、ステップS201の処理とステップS202の処理との実行順序は入れ替わっていてもよいし、同時に実行してもよい。 Here, although the flow of the present embodiment has been described with reference to FIG. 5, the execution order of the process of step S201 and the process of step S202 may be interchanged or may be executed simultaneously.

 <第4の実施形態>
 次に、上述した第1及び第2の実施形態を基本とする第4の実施形態について説明する。
<Fourth Embodiment>
Next, a fourth embodiment based on the first and second embodiments described above will be described.

 以下の説明においては、本実施形態に係る特徴的な部分を中心に説明すると共に、上述した第1及び第2の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。第2の実施形態は、第1の実施形態を基本としているため、第1の実施形態と本実施形態との違いを説明する。ここでは説明を省略する第2の実施形態を基本とする第4の実施形態についても同様の説明になる。 In the following description, the characteristic part according to the present embodiment will be mainly described, and the same configurations as those in the first and second embodiments described above are denoted by the same reference numerals and overlapped. Description is omitted. Since the second embodiment is based on the first embodiment, the difference between the first embodiment and this embodiment will be described. The same description applies to the fourth embodiment based on the second embodiment, which is not described here.

 図6は、本発明の第4の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。ここで、図1及び図6を参照して、画像認識システム104の動作について詳細に説明する。 FIG. 6 is a flowchart showing a procedure of processing executed by the image recognition system according to the fourth embodiment of the present invention. Here, the operation of the image recognition system 104 will be described in detail with reference to FIGS. 1 and 6.

 式2は、結果統合値を算出するための式である。結果統合値の計算は、識別演算部102が計算した識別度数(ステップS201)、または、追跡演算部103が計算した追跡度数(ステップS202)と重みWとの積の値を、すべての度数について総和をとることである。 Equation 2 is an equation for calculating the result integrated value. The result integrated value is calculated by using the identification frequency calculated by the identification calculation unit 102 (step S201) or the product of the tracking frequency calculated by the tracking calculation unit 103 (step S202) and the weight W for all the frequencies. It is to take the sum.

 統合演算部101は、式2に示すように、識別演算部102が算出した物体の識別度数と、追跡演算部103が算出した位置の度数における2つの値の重み付き相加平均を計算する(ステップS603)。 The integrated calculation unit 101 calculates a weighted arithmetic average of two values in the object identification frequency calculated by the identification calculation unit 102 and the position frequency calculated by the tracking calculation unit 103 as shown in Expression 2 ( Step S603).

   結果統合値=ΣWi*f(度数), ΣWi=1, 0≦Wi ≦1, f()は単調増加関数・・・(式2)、
 所定の方法に従って重み付けを決定し、その重み付けに対応して、前記統合結果値を計算する(ステップS504)。その結果、画像認識システム104は、異なる2つ以上の追跡度数の重み付き相加平均の値を統合結果値とする。そのため、上述した統合結果値が所定の範囲の下限を下回る可能性は低くなり、画像認識システム104は画像変化に強い画像認識を行うシステムとなる。即ち、本実施形態によれば、検知または追跡、またはその両方が失敗する可能性を低減した画像認識システム等を提供できる。
Result integrated value = ΣWi * f (frequency), ΣWi = 1, 0 ≦ Wi ≦ 1, f () is a monotonically increasing function (Equation 2),
Weighting is determined according to a predetermined method, and the integrated result value is calculated corresponding to the weighting (step S504). As a result, the image recognition system 104 sets a weighted arithmetic mean value of two or more different tracking frequencies as an integrated result value. Therefore, the possibility that the integration result value described above falls below the lower limit of the predetermined range is low, and the image recognition system 104 is a system that performs image recognition that is resistant to image changes. That is, according to the present embodiment, it is possible to provide an image recognition system or the like that reduces the possibility that detection and / or tracking will fail.

 ここでは、図6を使って本実施形態のフローを説明したが、ステップS201の処理とステップS202の処理との実行順序は入れ替わっていてもよいし、同時に実行してもよい。 Here, the flow of the present embodiment has been described with reference to FIG. 6, but the execution order of the process of step S201 and the process of step S202 may be interchanged or may be executed simultaneously.

 <第5の実施形態>
 次に、上述した第1の実施形態を基本とする第5の実施形態について説明する。
<Fifth Embodiment>
Next, a fifth embodiment based on the first embodiment described above will be described.

 以下の説明においては、本実施形態に係る特徴的な部分を中心に説明すると共に、上述した第1の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。 In the following description, the characteristic parts according to the present embodiment will be mainly described, and the same reference numerals will be given to the same configurations as those in the first embodiment described above, and the redundant description will be omitted. To do.

 図7は、本発明の第5の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。ここで、図1及び図7を参照して、画像認識システム104の動作について詳細に説明する。 FIG. 7 is a flowchart showing a procedure of processing executed by the image recognition system according to the fifth embodiment of the present invention. Here, the operation of the image recognition system 104 will be described in detail with reference to FIGS. 1 and 7.

 統合演算部101は、識別演算部102が計算した識別度数(ステップS201)と、第1追跡演算部405、および第2追跡演算部406が計算した追跡度数(ステップS202)とに、所定の方法に従って重み付けを決定し、その重み付けに従って統合結果値を計算する(ステップS703)。次に、統合演算部101は、統合結果値が所定の範囲の下限を下回る場合(ステップS704)には、所定の方法に従って、重み付けを変更する(ステップS705)。統合演算部101は、統合結果値が所定の範囲の下限以上になるまで、統合結果値の計算とその重み付けを行う。統合演算部101は、統合結果値が所定の範囲の下限以上になると、その統合結果値に対応して、統合演算を行う(ステップS504)。 The integrated calculation unit 101 uses a predetermined method based on the identification frequency calculated by the identification calculation unit 102 (step S201) and the tracking frequency calculated by the first tracking calculation unit 405 and the second tracking calculation unit 406 (step S202). The weighting is determined according to, and the integrated result value is calculated according to the weighting (step S703). Next, when the integration result value falls below the lower limit of the predetermined range (step S704), the integration calculation unit 101 changes the weighting according to a predetermined method (step S705). The integrated calculation unit 101 calculates the integrated result value and weights it until the integrated result value is equal to or greater than the lower limit of the predetermined range. When the integration result value is equal to or greater than the lower limit of the predetermined range, the integration calculation unit 101 performs an integration calculation corresponding to the integration result value (step S504).

 統合演算部101は、所定の方法として、所定の範囲でランダムに1度以上発生させて、そのうちの統合結果値が最大になるように重み付けする方法や、ある度数に対応する重みを、徐々に大きくしていく方法などを採用することができる。さらに、統合演算部101は、所定の方法として、いずれか1つの度数に一致しない値で、あらかじめ重みを固定しておく方法や、各度数の平均からの乖離に対応させて、重みを変化させる方法なども採用することができる。統合演算部101における重み付けの方法は、上記に限られるものではなく、これらの方法以外を採用することもできる。 As a predetermined method, the integrated calculation unit 101 generates a random value at least once in a predetermined range and weights the integrated result value so as to maximize the weight, or gradually adds a weight corresponding to a certain frequency. A method of increasing the size can be adopted. Furthermore, the integrated calculation unit 101 changes the weight according to a predetermined method, such as a method of fixing the weight in advance with a value that does not match any one frequency, or a deviation from the average of each frequency. Methods can also be employed. The weighting method in the integrated arithmetic unit 101 is not limited to the above, and methods other than these methods can also be employed.

 統合演算部101が算出する統合結果値への影響が抑制されるため、本発明の第5の実施形態に係る画像認識システムは、追跡を継続することを可能にする。それにより、画像認識システム104は、画像変化に強い画像認識を行うシステムとなる。即ち、本発明の第5の実施形態によれば、検知または追跡、またはその両方が失敗する可能性を低減した画像認識システム等を提供できる。 Since the influence on the integration result value calculated by the integration calculation unit 101 is suppressed, the image recognition system according to the fifth embodiment of the present invention makes it possible to continue tracking. Accordingly, the image recognition system 104 becomes a system that performs image recognition that is resistant to image changes. That is, according to the fifth embodiment of the present invention, it is possible to provide an image recognition system or the like that reduces the possibility of failure in detection and / or tracking.

 ここでは、図7を使って本実施形態のフローを説明したが、ステップS201の処理とステップS202の処理との実行順序は入れ替わっていてもよいし、同時に実行してもよい。 Here, although the flow of the present embodiment has been described with reference to FIG. 7, the execution order of the process of step S201 and the process of step S202 may be switched, or may be executed simultaneously.

 <第6の実施形態>
 次に、上述した第2の実施形態を基本とする第6の実施形態について説明する。
<Sixth Embodiment>
Next, a sixth embodiment based on the above-described second embodiment will be described.

 以下の説明においては、本実施形態に係る特徴的な部分を中心に説明すると共に、上述した第2の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。 In the following description, the characteristic part according to the present embodiment will be mainly described, and the same components as those in the second embodiment described above will be denoted by the same reference numerals, and redundant description will be omitted. To do.

 図8は、本発明の第6の実施形態に係る画像認識システムが実行する処理の手順を示すフローチャートである。ここで、図1及び図8を参照して、画像認識システム104の動作について詳細に説明する。 FIG. 8 is a flowchart showing a procedure of processing executed by the image recognition system according to the sixth embodiment of the present invention. Here, the operation of the image recognition system 104 will be described in detail with reference to FIGS. 1 and 8.

 統合演算部101は、識別演算部102が計算した識別度数(ステップS201)と、第1追跡演算部405、および第2追跡演算部406が計算した追跡度数(ステップS202)とに対して、所定の方法に従って重み付けを決定する。次に、統合演算部101は、統合結果値を計算し(ステップS803)、その統合結果値が所定の範囲の下限を下回る場合(ステップS704)には、重み付けを変更する(ステップS805)。 The integrated calculation unit 101 determines the identification frequency calculated by the identification calculation unit 102 (step S201) and the tracking frequency calculated by the first tracking calculation unit 405 and the second tracking calculation unit 406 (step S202). The weighting is determined according to the method. Next, the integration calculation unit 101 calculates an integration result value (step S803), and when the integration result value falls below the lower limit of the predetermined range (step S704), changes the weighting (step S805).

 統合演算部101は、統合結果値が所定の範囲の下限以上になるまで、統合結果値の計算と重み付けの決定を繰り返す。統合演算部101は、統合結果値が所定の範囲の下限以上になると、その統合結果値に応じて、統合演算を行う(ステップS504)。 The integration calculation unit 101 repeats the calculation of the integration result value and the determination of the weighting until the integration result value is equal to or greater than the lower limit of the predetermined range. When the integration result value is equal to or greater than the lower limit of the predetermined range, the integration calculation unit 101 performs the integration calculation according to the integration result value (step S504).

 統合演算部101は、所定の方法として、所定の範囲でランダムに1度以上発生させて、そのうちの統合結果値が最大になるように重み付けする方法や、ある度数に対応する重みを、徐々に大きくしていく方法などを採用することができる。さらに、統合演算部101は、所定の方法として、いずれか1つの度数に一致しない値で、あらかじめ重みを固定しておく方法や、各度数の平均からの乖離に対応させて、重みを変化させる方法などを採用することもできる。 As a predetermined method, the integrated calculation unit 101 generates a random value at least once in a predetermined range and weights the integrated result value so as to maximize the weight, or gradually adds a weight corresponding to a certain frequency. A method of increasing the size can be adopted. Furthermore, the integrated calculation unit 101 changes the weight according to a predetermined method, such as a method of fixing the weight in advance with a value that does not match any one frequency, or a deviation from the average of each frequency. A method etc. can also be adopted.

 さらに、統合演算部101は、所定の方法として、第2追跡演算部406の追跡度数に対応する上述した重みを、第1追跡演算部405および識別演算部102の度数に対応する上述した重みよりも小さく設定して、その統合結果値を演算し、係る統合結果値の最大値が所定の範囲の下限を超えない場合には、上述した第2追跡演算部406の追跡度数に対応する重みを大きくする方法も採用することができる。 Further, as a predetermined method, the integrated calculation unit 101 uses the above-described weight corresponding to the tracking frequency of the second tracking calculation unit 406 based on the above-described weight corresponding to the frequency of the first tracking calculation unit 405 and the identification calculation unit 102. If the maximum value of the integration result value does not exceed the lower limit of the predetermined range, the weight corresponding to the tracking frequency of the second tracking calculation unit 406 described above is calculated. A method of increasing the size can also be adopted.

 統合演算部101は、所定の方法として、上述した統合結果値の最大値が所定の範囲の下限を超えた時点で、計算を終了する方法も採用することができる。統合演算部101における所定の方法は、上記に限られるものではなく、これらの方法以外によって実現してもよい。 The integration calculation unit 101 can also employ a method of terminating the calculation when the maximum value of the integration result values described above exceeds the lower limit of the predetermined range as a predetermined method. The predetermined method in the integrated calculation unit 101 is not limited to the above, and may be realized by a method other than these methods.

 本発明の第6の実施形態は、識別演算部102、第1追跡演算部405および第2追跡演算部406における度数の低下が、統合結果値に与える影響を抑制し、追跡を継続することを可能にする。それにより、本発明の第6の実施形態に係る画像認識システムは、画像変化に強い画像認識を行うシステムとなる。即ち、本発明の第6の実施形態によれば、検知または追跡、またはその両方が失敗する可能性を低減する画像認識システム等を提供できる。 The sixth embodiment of the present invention suppresses the influence of the frequency reduction in the identification calculation unit 102, the first tracking calculation unit 405, and the second tracking calculation unit 406 on the integrated result value, and continues tracking. enable. Thus, the image recognition system according to the sixth embodiment of the present invention is a system that performs image recognition that is resistant to image changes. That is, according to the sixth embodiment of the present invention, it is possible to provide an image recognition system or the like that reduces the possibility that detection and / or tracking will both fail.

 ここでは、図8を使って本実施形態のフローを説明したが、ステップS201の処理とステップS202の処理との実行順序は入れ替わっていてもよいし、同時に実行してもよい。 Here, the flow of the present embodiment has been described with reference to FIG. 8, but the execution order of the process of step S201 and the process of step S202 may be switched, or may be executed simultaneously.

 (ハードウェア構成例)
 次に、上述した各実施形態における画像認識システムを、1つの計算処理装置(情報処理装置、コンピュータ)を用いて実現するハードウェア資源の構成例について説明する。但し、係る画像認識システムは、物理的または機能的に複数の計算処理装置(情報処理装置、コンピュータ)を用いて実現してもよい。また、係る画像認識システムは、専用の装置として実現してもよい。
(Hardware configuration example)
Next, a configuration example of hardware resources for realizing the image recognition system in each of the above-described embodiments using one calculation processing device (information processing device, computer) will be described. However, such an image recognition system may be realized physically or functionally using a plurality of calculation processing devices (information processing devices, computers). Such an image recognition system may be realized as a dedicated device.

 図3は、第1乃至第6の実施形態に係る画像認識システムを実現可能な計算処理装置(情報処理装置、コンピュータ)のハードウェア構成を概略的に示す図である。計算処理装置306は、CPU(Central Processing Unit)301、メモリ302、ディスク303、出力装置304、および入力装置305を有する。 FIG. 3 is a diagram schematically showing a hardware configuration of a calculation processing device (information processing device, computer) capable of realizing the image recognition system according to the first to sixth embodiments. The calculation processing device 306 includes a CPU (Central Processing Unit) 301, a memory 302, a disk 303, an output device 304, and an input device 305.

 即ち、CPU301は、ディスク303が記憶しているソフトウェア・プログラム(コンピュータ・プログラム):以下、単にプログラムと称する)を、実行時にメモリ7にコピーし、演算処理を実行する。CPU301は、プログラム実行に必要なデータをメモリ302から読み込む。表示が必要な場合には、CPU301は、出力装置304に出力結果を表示する。外部からプログラムを入力する場合、CPU301は、入力装置305を介して、コンピュータ読取り可能で、且つ、非一時的なプログラムが記憶されたプログラム記憶媒体307から記憶されたプログラムを読み取る。CPU301は、上述した図1、あるいは、図3に示した各部が表す機能(処理)に対応するところのメモリ302にある画像認識プログラム(図2A、図2B、図5乃至図8)を解釈し実行する。CPU301は、上述した本発明の各実施形態において説明した処理を順次行う。 That is, the CPU 301 copies a software program (computer program) stored in the disk 303: hereinafter simply referred to as a program to the memory 7 at the time of execution, and executes arithmetic processing. The CPU 301 reads data necessary for program execution from the memory 302. When display is necessary, the CPU 301 displays the output result on the output device 304. When inputting a program from the outside, the CPU 301 reads a program stored in a program storage medium 307 in which a computer-readable non-transitory program is stored via the input device 305. The CPU 301 interprets the image recognition program (FIG. 2A, FIG. 2B, FIG. 5 to FIG. 8) in the memory 302 corresponding to the function (process) represented by each unit shown in FIG. 1 or FIG. Execute. The CPU 301 sequentially performs the processes described in the above embodiments of the present invention.

 即ち、このような場合、本発明は、係る画像認識プログラムによっても成し得ると捉えることができる。更に、係る画像認識プログラムが記録されたコンピュータ読み取り可能な記録媒体によっても、本発明は成し得ると捉えることができる。 That is, in such a case, it can be understood that the present invention can also be achieved by such an image recognition program. Furthermore, it can be understood that the present invention can also be realized by a computer-readable recording medium in which such an image recognition program is recorded.

 尚、上述した各実施形態の一部又は全部は、以下の付記のようにも記載されうる。しかしながら、上述した各実施形態により例示的に説明した本発明は、以下には限られない。即ち、
 (付記1)
 入力画像において、追跡対象カテゴリが存在する画像領域を識別し、前記追跡対象カテゴリに属する追跡対象の識別度数を計算する識別演算部と、
 前記追跡対象の位置に関する追跡度数を計算する追跡演算部と、
 前記識別演算部および前記追跡演算部が出力した結果に対し、所定の方法に従って重み付けを決め、前記重み付けに応じて、前記結果を統合する統合演算部とを、
備えることを特徴とする画像認識システム。
In addition, a part or all of each embodiment mentioned above can be described also as the following additional remarks. However, the present invention described by way of example with the above-described embodiments is not limited to the following. That is,
(Appendix 1)
In the input image, an identification calculation unit that identifies an image area where the tracking target category exists and calculates the identification frequency of the tracking target belonging to the tracking target category;
A tracking calculation unit for calculating a tracking frequency related to the position of the tracking target;
A weighting is determined according to a predetermined method for the results output from the identification calculation unit and the tracking calculation unit, and an integrated calculation unit that integrates the results according to the weighting,
An image recognition system comprising:

 (付記2)
 前記識別演算部は2種類以上の識別度数を計算することを特徴とする
付記1に記載の画像認識システム。
(Appendix 2)
The image recognition system according to appendix 1, wherein the identification calculation unit calculates two or more types of identification frequencies.

 (付記3)
 前記追跡演算部は2種類以上の追跡度数を計算することを特徴とする
付記1乃至2に記載の画像認識システム。
(Appendix 3)
3. The image recognition system according to appendix 1 or 2, wherein the tracking calculation unit calculates two or more types of tracking frequencies.

 (付記4)
 前記追跡演算部は、
 画像特徴を用いた計算手法に従って、第1の追跡度数を計算する第1追跡演算部と、
 画像特徴以外の情報を用いた計算手法に従って、第2の追跡度数を計算する第2追跡演算部とを、
備えることを特徴とする付記1に記載の画像認識システム。
(Appendix 4)
The tracking calculation unit includes:
A first tracking calculation unit for calculating a first tracking frequency according to a calculation method using an image feature;
A second tracking calculation unit for calculating a second tracking frequency according to a calculation method using information other than image features;
The image recognition system according to appendix 1, further comprising:

 (付記5)
 前記識別演算部は2種類以上の識別度数を計算することを特徴とする
付記4に記載の画像認識システム。
(Appendix 5)
The image recognition system according to appendix 4, wherein the identification calculation unit calculates two or more types of identification frequencies.

 (付記6)
 前記第1追跡演算部は2種類以上の識別度数を計算することを特徴とする
付記4乃至5に記載の画像認識システム。
(Appendix 6)
The image recognition system according to any one of appendices 4 to 5, wherein the first tracking calculation unit calculates two or more types of discrimination frequencies.

 (付記7)
 前記第2追跡演算部は2種類以上の識別度数を計算することを特徴とする
付記4乃至6のいずれか一項に記載の画像認識システム。
(Appendix 7)
The image recognition system according to any one of appendices 4 to 6, wherein the second tracking calculation unit calculates two or more types of discrimination frequencies.

 (付記8)
 前記統合演算部は、前記識別演算部が計算した数値に単調増加する関数の値と、前記追跡演算部が計算した数値に単調増加する前記関数の値とを、重み付き相加平均によって、前記演算結果を計算することを特徴とする、
付記1乃至7のいずれかに記載の画像認識システム。
(Appendix 8)
The integrated calculation unit is configured to calculate the value of the function monotonically increasing to the numerical value calculated by the identification calculation unit and the value of the function monotonically increasing to the numerical value calculated by the tracking calculation unit by using a weighted arithmetic mean. The calculation result is calculated,
The image recognition system according to any one of appendices 1 to 7.

 (付記9)
 前記統合演算部は、前記識別演算部が計算した数値および前記追跡演算部が計算した数値の重み付き相加平均によって、前記演算結果を計算することを特徴とする、
付記1乃至7のいずれかに記載の画像認識システム。
(Appendix 9)
The integrated calculation unit calculates the calculation result by a weighted arithmetic average of a numerical value calculated by the identification calculation unit and a numerical value calculated by the tracking calculation unit,
The image recognition system according to any one of appendices 1 to 7.

 (付記10)
 前記統合演算部は、前記演算結果が所定の範囲の下限以上になるまで、所定の方法に従って重みを変更することと、前記演算結果を計算することとを、交互に繰り返し行うことを特徴とする、
付記1乃至7のいずれか一項に記載の画像認識システム。
(Appendix 10)
The integrated calculation unit is configured to alternately and repeatedly change the weight according to a predetermined method and calculate the calculation result until the calculation result reaches a lower limit of a predetermined range. ,
The image recognition system according to any one of appendices 1 to 7.

 (付記11)
 前記統合演算部は、前記演算結果が所定の範囲の下限以上になるまで、前記第2追跡演算部の計算値に対する重みを大きくするとともに、前記第1追跡演算部および識別演算部の計算値に対する重みを小さくすることと、前記演算結果を計算することとを、交互に繰り返し行うことを特徴とする
付記1乃至7のいずれか1項に記載の画像認識システム。
(Appendix 11)
The integrated calculation unit increases the weight for the calculation value of the second tracking calculation unit until the calculation result is equal to or greater than the lower limit of the predetermined range, and the calculation value of the first tracking calculation unit and the identification calculation unit. The image recognition system according to any one of appendices 1 to 7, wherein a weight is reduced and the calculation result is calculated alternately.

 (付記12)
 入力画像において、追跡対象カテゴリが存在する画像領域を識別し、前記追跡対象カテゴリに属する追跡対象の識別度数と、前記追跡対象の位置に関する追跡度数を計算し、前記識別度数と前記追跡度数とに対し、所定の方法に従って重み付けを決め、前記重み付けに応じて、前記識別度数と前記追跡度数とを統合する画像認識方法。
(Appendix 12)
In the input image, the image area where the tracking target category exists is identified, the identification frequency of the tracking target belonging to the tracking target category, the tracking frequency related to the position of the tracking target are calculated, and the identification frequency and the tracking frequency are On the other hand, an image recognition method in which weighting is determined according to a predetermined method, and the identification power and the tracking power are integrated according to the weighting.

 (付記13)
 入力画像において、追跡対象カテゴリが存在する画像領域を識別し、前記追跡対象カテゴリに属する追跡対象の識別度数を計算する識別演算機能と、
 前記追跡対象の位置に関する追跡度数を計算する追跡演算機能と、
 前記識別演算機能および前記追跡演算機能が出力した結果に対し、所定の方法に従って重み付けを決め、前記重み付けに応じて、前記結果を統合する統合演算機能とを、
 コンピュータに実現させるコンピュータ・プログラム。
(Appendix 13)
An identification calculation function for identifying an image area where a tracking target category exists in an input image and calculating a discrimination frequency of the tracking target belonging to the tracking target category;
A tracking calculation function for calculating a tracking frequency related to the position of the tracking target;
A weighting is determined according to a predetermined method for the results output by the identification calculation function and the tracking calculation function, and an integrated calculation function for integrating the results according to the weighting,
A computer program to be realized by a computer.

 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.

 この出願は、2012年3月2日に出願された日本出願特願2012-046424を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-046424 filed on March 2, 2012, the entire disclosure of which is incorporated herein.

 101  統合演算部
 102  識別演算部
 103  追跡演算部
 104  画像認識システム
 301  CPU
 302  メモリ
 303  ディスク
 304  出力装置
 305  入力装置
 306  計算処理装置
 307  記憶媒体
 405  第1追跡演算部
 406  第2追跡演算部
 407  追跡演算部
 408  画像認識システム
DESCRIPTION OF SYMBOLS 101 Integrated calculation part 102 Identification calculation part 103 Tracking calculation part 104 Image recognition system 301 CPU
302 memory 303 disk 304 output device 305 input device 306 calculation processing device 307 storage medium 405 first tracking calculation unit 406 second tracking calculation unit 407 tracking calculation unit 408 image recognition system

Claims (10)

 入力画像において、追跡対象カテゴリが存在する画像領域を識別し、前記追跡対象カテゴリに属する追跡対象の識別度数を計算する識別演算部と、
 前記追跡対象の位置に関する追跡度数を計算する追跡演算部と、
 前記識別演算部および前記追跡演算部が出力した結果に対し、所定の方法に従って重み付けを決め、前記重み付けに応じて、前記結果を統合する統合演算部とを、
備える画像認識システム。
In the input image, an identification calculation unit that identifies an image area where the tracking target category exists and calculates the identification frequency of the tracking target belonging to the tracking target category;
A tracking calculation unit for calculating a tracking frequency related to the position of the tracking target;
A weighting is determined according to a predetermined method for the results output from the identification calculation unit and the tracking calculation unit, and an integrated calculation unit that integrates the results according to the weighting,
An image recognition system provided.
 前記識別演算部は2種類以上の識別度数を計算する
請求項1に記載の画像認識システム。
The image recognition system according to claim 1, wherein the identification calculation unit calculates two or more types of identification frequencies.
 前記追跡演算部は2種類以上の追跡度数を計算する
請求項1または請求項2に記載の画像認識システム。
The image recognition system according to claim 1, wherein the tracking calculation unit calculates two or more types of tracking frequencies.
 前記追跡演算部は、
  画像特徴を用いた計算手法に従って、第1の追跡度数を計算する第1追跡演算部と、
  画像特徴以外の情報を用いた計算手法に従って、第2の追跡度数を計算する第2追跡演算部とを含む
請求項1に記載の画像認識システム。
The tracking calculation unit includes:
A first tracking calculation unit for calculating a first tracking frequency according to a calculation method using an image feature;
The image recognition system according to claim 1, further comprising: a second tracking calculation unit that calculates a second tracking frequency according to a calculation method using information other than image features.
 前記統合演算部は、前記識別演算部が計算した数値に単調増加する関数の値と、前記追跡演算部が計算した数値に単調増加する前記関数の値とを、重み付き相加平均によって、前記演算結果を計算する、
請求項1乃至4のいずれかに記載の画像認識システム。
The integrated calculation unit is configured to calculate the value of the function monotonically increasing to the numerical value calculated by the identification calculation unit and the value of the function monotonically increasing to the numerical value calculated by the tracking calculation unit by using a weighted arithmetic mean. Calculate the calculation result,
The image recognition system according to claim 1.
 前記統合演算部は、前記識別演算部が計算した数値および前記追跡演算部が計算した数値の重み付き相加平均によって、前記演算結果を計算する、
請求項1乃至4のいずれかに記載の画像認識システム。
The integrated calculation unit calculates the calculation result by a weighted arithmetic average of the numerical value calculated by the identification calculation unit and the numerical value calculated by the tracking calculation unit,
The image recognition system according to claim 1.
 前記統合演算部は、前記演算結果が所定の範囲の下限以上になるまで、所定の方法に従って重みを変更することと、前記演算結果を計算することとを、交互に繰り返し行う、
請求項1乃至4のいずれかに記載の画像認識システム。
The integrated calculation unit alternately and repeatedly changes the weight according to a predetermined method and calculates the calculation result until the calculation result is equal to or higher than a lower limit of a predetermined range.
The image recognition system according to claim 1.
 前記統合演算部は、前記演算結果が所定の範囲の下限以上になるまで、前記第2追跡演算部の計算値に対する重みを大きくするとともに、前記第1追跡演算部および識別演算部の計算値に対する重みを小さくすることと、前記演算結果を計算することとを、交互に繰り返し行う
請求項1乃至4のいずれかに記載の画像認識システム。
The integrated calculation unit increases the weight for the calculation value of the second tracking calculation unit and the calculation values of the first tracking calculation unit and the identification calculation unit until the calculation result is equal to or higher than a lower limit of a predetermined range. The image recognition system according to any one of claims 1 to 4, wherein a weight is reduced and the calculation result is calculated alternately.
 入力画像において、追跡対象カテゴリが存在する画像領域を識別し、前記追跡対象カテゴリに属する追跡対象の識別度数と、前記追跡対象の位置に関する追跡度数を計算し、前記識別度数と前記追跡度数とに対し、所定の方法に従って重み付けを決め、前記重み付けに応じて、前記識別度数と前記追跡度数とを統合する画像認識方法。 In the input image, the image area where the tracking target category exists is identified, and the identification frequency of the tracking target belonging to the tracking target category and the tracking frequency related to the position of the tracking target are calculated, and the identification frequency and the tracking frequency are On the other hand, an image recognition method in which weighting is determined according to a predetermined method, and the identification power and the tracking power are integrated according to the weighting.  入力画像において、追跡対象カテゴリが存在する画像領域を識別し、前記追跡対象カテゴリに属する追跡対象の識別度数を計算する識別演算機能と、
 前記追跡対象の位置に関する追跡度数を計算する追跡演算機能と、
 前記識別演算機能および前記追跡演算機能が出力した結果に対し、所定の方法に従って重み付けを決め、前記重み付けに応じて、前記結果を統合する統合演算機能とを、
 コンピュータに実現させるコンピュータ・プログラム。
An identification calculation function for identifying an image area where a tracking target category exists in an input image and calculating a discrimination frequency of the tracking target belonging to the tracking target category;
A tracking calculation function for calculating a tracking frequency related to the position of the tracking target;
A weighting is determined according to a predetermined method for the results output by the identification calculation function and the tracking calculation function, and an integrated calculation function for integrating the results according to the weighting,
A computer program to be realized by a computer.
PCT/JP2013/000881 2012-03-02 2013-02-18 Image recognition system, image recognition method and computer program Ceased WO2013128839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012046424 2012-03-02
JP2012-046424 2012-03-02

Publications (1)

Publication Number Publication Date
WO2013128839A1 true WO2013128839A1 (en) 2013-09-06

Family

ID=49082055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000881 Ceased WO2013128839A1 (en) 2012-03-02 2013-02-18 Image recognition system, image recognition method and computer program

Country Status (1)

Country Link
WO (1) WO2013128839A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162232A (en) * 2015-03-02 2016-09-05 キヤノン株式会社 Method and device for image recognition and program
WO2020213099A1 (en) * 2019-04-17 2020-10-22 日本電気株式会社 Object detection/tracking device, method, and program recording medium
JPWO2019180917A1 (en) * 2018-03-23 2020-12-10 日本電気株式会社 Object tracking device, object tracking method, and object tracking program
JP2022140105A (en) * 2021-03-12 2022-09-26 オムロン株式会社 Object tracking device and object tracking method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141687A (en) * 2003-11-10 2005-06-02 Nippon Telegr & Teleph Corp <Ntt> Object tracking method, object tracking apparatus, object tracking system, program, and recording medium
JP2007328746A (en) * 2006-06-09 2007-12-20 Sony Computer Entertainment Inc Apparatus and method for tracking object
JP4855556B1 (en) * 2011-03-22 2012-01-18 株式会社モルフォ Moving object detection apparatus, moving object detection method, moving object detection program, moving object tracking apparatus, moving object tracking method, and moving object tracking program
JP2012044428A (en) * 2010-08-18 2012-03-01 Canon Inc Tracker, tracking method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141687A (en) * 2003-11-10 2005-06-02 Nippon Telegr & Teleph Corp <Ntt> Object tracking method, object tracking apparatus, object tracking system, program, and recording medium
JP2007328746A (en) * 2006-06-09 2007-12-20 Sony Computer Entertainment Inc Apparatus and method for tracking object
JP2012044428A (en) * 2010-08-18 2012-03-01 Canon Inc Tracker, tracking method and program
JP4855556B1 (en) * 2011-03-22 2012-01-18 株式会社モルフォ Moving object detection apparatus, moving object detection method, moving object detection program, moving object tracking apparatus, moving object tracking method, and moving object tracking program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162232A (en) * 2015-03-02 2016-09-05 キヤノン株式会社 Method and device for image recognition and program
JPWO2019180917A1 (en) * 2018-03-23 2020-12-10 日本電気株式会社 Object tracking device, object tracking method, and object tracking program
US11494922B2 (en) 2018-03-23 2022-11-08 Nec Corporation Object tracking device, object tracking method, and object tracking program
WO2020213099A1 (en) * 2019-04-17 2020-10-22 日本電気株式会社 Object detection/tracking device, method, and program recording medium
JPWO2020213099A1 (en) * 2019-04-17 2020-10-22
JP7196999B2 (en) 2019-04-17 2022-12-27 日本電気株式会社 Object detection and tracking device, method and program
US11948312B2 (en) 2019-04-17 2024-04-02 Nec Corporation Object detection/tracking device, method, and program recording medium
JP2022140105A (en) * 2021-03-12 2022-09-26 オムロン株式会社 Object tracking device and object tracking method
JP7548079B2 (en) 2021-03-12 2024-09-10 オムロン株式会社 OBJECT TRACKING DEVICE AND OBJECT TRACKING METHOD

Similar Documents

Publication Publication Date Title
US11880985B2 (en) Tracking multiple objects in a video stream using occlusion-aware single-object tracking
US9141196B2 (en) Robust and efficient learning object tracker
US20220245405A1 (en) Deterioration suppression program, deterioration suppression method, and non-transitory computer-readable storage medium
US11972610B2 (en) Multi-pass object tracking system utilizing single object tracking in a multi object tracking use case for higher accuracy
JP7438684B2 (en) Image processing device, image processing method, and program
US20190266392A1 (en) Image processing apparatus, image processing method, and storage medium
JP2017523498A (en) Eye tracking based on efficient forest sensing
KR20180037746A (en) Method and apparatus for tracking object, and 3d display device thereof
CN109886994A (en) Adaptive occlusion detection system and method in video tracking
CN112966654A (en) Lip movement detection method and device, terminal equipment and computer readable storage medium
CN115797410A (en) A vehicle tracking method and system
US10417487B2 (en) Pattern recognition apparatus, pattern recognition method, and storage medium
CN104219488A (en) Method and device of generating target image as well as video monitoring system
US10872423B2 (en) Image detection device, image detection method and storage medium storing program
WO2013128839A1 (en) Image recognition system, image recognition method and computer program
CN110610120A (en) A face trajectory matching method
US20250239056A1 (en) Information processing apparatus, information processing method, and storage medium
US20220301292A1 (en) Target object detection device, target object detection method, and non-transitory computer readable storage medium storing target object detection program
US20220392107A1 (en) Image processing apparatus, image processing method, image capturing apparatus, and non-transitory computer-readable storage medium
JP2021144359A (en) Learning apparatus, estimation apparatus, learning method, and program
JP7521704B2 (en) Posture estimation device, learning model generation device, posture estimation method, learning model generation method, and program
Ni et al. A high-quality trajectory generation method for the multi-person tracking
JP7540500B2 (en) GROUP IDENTIFICATION DEVICE, GROUP IDENTIFICATION METHOD, AND PROGRAM
JP2021128759A (en) Method and device for detecting objects
KR102837797B1 (en) Method, System for Hybrid Object Detection and Tracking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP