WO2013022431A1 - Manipulation de couches d'écran dans des applications multicouches - Google Patents
Manipulation de couches d'écran dans des applications multicouches Download PDFInfo
- Publication number
- WO2013022431A1 WO2013022431A1 PCT/US2011/047033 US2011047033W WO2013022431A1 WO 2013022431 A1 WO2013022431 A1 WO 2013022431A1 US 2011047033 W US2011047033 W US 2011047033W WO 2013022431 A1 WO2013022431 A1 WO 2013022431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- finger
- user
- application
- touch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/04815—Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/31—User authentication
- G06F21/32—User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/0482—Interaction with lists of selectable items, e.g. menus
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/04842—Selection of displayed objects or displayed text elements
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/048—Indexing scheme relating to G06F3/048
- G06F2203/04804—Transparency, e.g. transparent or translucent windows
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2113—Multi-level security, e.g. mandatory access control
Definitions
- This disclosure relates to manipulating screen layers in multi-layer applications, and more specifically, to using finger-based substantially unique identification information to provide access to layers of the multi-layer applications.
- multi-layer applications e.g., multi-layer presentations, augmented reality applications, three-dimensional (3D) data presentations, etc.
- display layers may be manipulated independently. These layers could belong to a single application or multiple applications.
- Three-dimensional (3D) data presentations on 3D displays can also be considered to be multi-layer applications. While concept of depth in 3D displays may be mainly artificial, they allow new user interface (UI) presentation models. Slicing 3D UI presentations into layers enables compounding information in 3D objects that could be easily “opened” or “sliced.” A similar theory surrounds future holographic displays and associated UI models.
- UI user interface
- FIG. 1 is a schematic illustration of an environment in which a device may function.
- FIG. 2 is a schematic illustration of an example mobile device for providing finger-touch-based application layer access.
- FIG. 3 is a process flow diagram for manipulating screen layers in multi-layer applications.
- FIG. 4 is a process flow diagram for assigning fingers to screen layers in multilayer applications.
- FIG. 5 is a process flow diagram for identifying a user based on a finger-touch input to provide access to a multi-layer application on a mobile device.
- each layer or slice can be selected, displayed, manipulated, and/or accessed based on receiving a tactile user input.
- the tactile user input can be the touch of one of a plurality of fingers.
- Each finger of the user can be assigned to a different, corresponding layer of the application.
- fingerprint recognition techniques can be used to differentiate each finger and/or to identify the user.
- Fingerprints can be used to vary the access parameters of a layer of the application (i.e., read only, read/write, etc.) and/or to provide security levels for accessing the layers of the multi-layer application (restrict or permit access to the layer or to certain aspects or data associated with the layer).
- FIG. 1 is a schematic illustration of an environment 100 in which a device 102 may function.
- Environment 100 includes one or more devices 102 (or 102a) coupled by a network 1 18 to one or more servers 120.
- Server 120 may provide services to the user across the network 118.
- a user may launch and run a hosted multilayer application 126 on the device 102.
- the hosted multi-layer application 126 may be displayed on the user device 102, but may be executed on a remote server 120 by one or more processors 122.
- processor 122 is configured to process fingerprint information and communicate that information across the network 1 18 to the remote server 120.
- device 102 is operable to send and receive data across the network 118.
- Remote server 120 may include a memory 124 for storage of fingerprint data received from the device 102.
- Device 102 may include a display 1 10 for displaying a multi-layer presentation, an interface 1 12 for receiving finger-touch input from a user, and a sensor 1 14 coupled to the interface 1 12.
- the device 102 includes a processor 104 configured to associate the finger with a layer of the multi-layer presentation 108 based on the one or more identifying characteristics.
- the device 102 also includes a memory 106 for storing the image of the finger, the image including the one or more identifying characteristics of the finger.
- An image can be any suitable data that can be stored and compared with later generated data.
- the device 102 may also include an antenna 116 to send and receive signals to and from a wireless network.
- the device 102 can run multi-layer applications from a remote server, such as server 120, that are displayed on the device 102. Other applications may be run from a remote server 120, such as applications that store and/or process fingerprint information or user identification information.
- the device 102 may be any electronic device operable to process and display multi-layer applications.
- the device 102 may be a mobile user equipment, such as a BLACKBERRY, PLAYBOOK, IPHONE, IP AD, smartphone, tablet PC, laptop, gaming terminal, or other mobile user equipment.
- the device 102 may also be a PC or MAC, a workstation, or other device.
- device 102 includes a processor 104, a display 1 10, and a memory 106.
- the processor 104 may be a computing device, microprocessor, central processing unit, graphic control unit, network processor, or other processor for carrying out instructions stored in memory 106.
- the functions of the processor 104 may include computation, queue management, control processing, graphic acceleration, video decoding, and execution of a sequence of stored instructions from the program kept in the memory module 106. In some implementations, the processor 104 may also be responsible for signal processing including sampling, quantizing, encoding/decoding, and/or modulation/demodulation of the signal.
- the memory module 106 may include a temporary state device (e.g., random-access memory (RAM)) and data storage.
- the memory module 106 can be used to store data or programs (i.e., sequences of instructions) on a temporary or permanent basis for use in a device 102.
- Memory module 106 may be used to store fingerprint images received from the sensor 114.
- the sensor 114 is configured to sense a finger used to provide the finger-touch input from the user and to create an image of the finger, the image including one or more identifying characteristics of the finger.
- FIG. 2 is a schematic illustration 200 of an example mobile device 102 for providing finger-touch-based application layer access.
- Device 102 includes a display 110 for displaying multi-layer applications or presentations 202 (or other multi-layer applications).
- Display 1 10 can have two-dimensional and/or 3D display capabilities.
- the display 110 can act as a user interface (UI) for the user to interact with applications displayed on the display 1 10.
- the display 110 can be a touch screen, reactive to finger touches, gestures, etc. Gestures include movement of a finger across the display screen, pinching movements, reverse pinching movements, finger tapping, etc.
- the device 102 can be programed to associate a particular finger of the user with a particular layer of the application.
- the device 102 may also include one or more antennas for communicating wirelessly with a network, though device 102 may be able to communicate with a network across a wired connection.
- Multi-layer applications 202 may include a multi-layer presentation, augmented reality application, 3D virtual object (3DVO), holographic image, etc.
- the multi-layer application 202 can be considered to have multiple layers (such as the layers 202a-202d), each of which may include data or metadata, or may include other applications.
- Each layer of the multi-layer application can be individually (or simultaneously) manipulated, displayed, accessed, etc.
- a layer can include applications or data that can be displayed, stored, manipulated, operated upon, accessed, etc. as part of a multi-layer application or presentation.
- a layer may also be a slice of a 3DVO (e.g., a depth or cross-section of a 3DVO).
- a multi-layer application can be any application that includes a plurality of layers or that can facilitate the overlaying of one or more layers over a pre-existing application (i.e., augmented reality applications).
- Device 102 may also include an interface 1 12 for receiving the finger touches of the user.
- the interface 112 may be part of the display 1 10, such as a touch screen, or may be any suitable interface that receives user input and/or commands.
- the device can include a sensor 1 14 that is configured to capture an image of the finger for further processing and analysis.
- the sensor 114 may be coupled to the interface 1 12. That is, in some embodiments, the interface 1 12 and the sensor 114 may be integrated into the display 1 10 of the device 102. In other embodiments, the interface and sensor may be a separate component, but still communicably coupled to the device, such as device 102a, which includes a display 110a and a connected fingerprint sensor 1 12a.
- the senor 114 could be an optical fingerprint imager.
- Optical fingerprint imaging involves capturing a digital image of a fingerprint using visible light. This type of sensor may be a specialized digital camera or other optical scanner. The area where the finger is placed may be referred to as a touch surface.
- the sensor 1 14 can include a light-emitting phosphor layer that can illuminate the surface of the finger. The light reflected from the finger passes through the phosphor layer to an array of solid state pixels (e.g., a charge-coupled device or CCD), which captures a visual image of the fingerprint.
- solid state pixels e.g., a charge-coupled device or CCD
- the sensor 114 may be an ultrasonic sensor.
- Ultrasonic sensors make use of the principles of ultrasonography to create visual images of the fingerprint.
- Ultrasonic sensors use high frequency sound waves to penetrate the epidermal layer of skin. The sound waves may be generated using piezoelectric transducers, and the reflected energy may also be measured using piezoelectric materials. Since the dermal skin layer may exhibit the same characteristic pattern of the fingerprint, the reflected wave measurements can be used to form an image of the fingerprint.
- Sensor 114 may be a capacitance sensor. Capacitance sensors utilize the principles associated with capacitance in order to form fingerprint images. In this method of imaging, the sensor array includes pixels that each act as one plate of a parallel-plate capacitor. The dermal layer (which is electrically conductive) acts as the other plate, and the non-conductive epidermal layer acts as a dielectric. The sensor 114 can be an active capacitance sensor or a passive capacitance sensor.
- a passive capacitance sensor uses the principle outlined above to form an image of the fingerprint patterns on the dermal layer of skin. Each sensor pixel is used to measure the capacitance at that point of the array. The capacitance varies between the ridges and valleys of the fingerprint due to the fact that the volume between the dermal layer and sensing element in valleys contains an air gap. The dielectric constant of the epidermis and the area of the sensing element are known values. The measured capacitance values are then used to distinguish between fingerprint ridges and valleys. Active capacitance sensors use a charging cycle to apply a voltage to the skin before measurement takes place. The application of voltage charges the effective capacitor. The electric field between the finger and sensor follows the pattern of the ridges in the dermal skin layer.
- the voltage across the dermal layer and sensing element is compared against a reference voltage in order to calculate the capacitance.
- the distance values are then calculated mathematically, and used to form an image of the fingerprint.
- Active capacitance sensors measure the ridge patterns of the dermal layer like the ultrasonic method. Again, this eliminates the need for clean, undamaged epidermal skin and a clean sensing surface.
- FIG. 3 is a process flow diagram 300 for manipulating screen layers in multilayer applications.
- the term "manipulate" and its variants can include, but is not limited to, actions including displaying, activating, selecting, moving. In certain implementations, the term “manipulate” can also include making unselected layers transparent or making selected layer less transparent.
- a multi-layer application may be displayed to a user 302. The user may interact with the multi-layer application by touching a finger to an interface coupled to the device running the multi-layer application 304.
- the interface may be the display or may be a separate touch pad or other device configured to receive a touch indication.
- the device can sense the finger of the user and identify the finger used 306. The device can identify the finger based on certain substantially unique identification information.
- the device can image a fingerprint of the finger and compare the fingerprint to pre-existing fingerprint records.
- the resolution of detail can vary based on implementation.
- the device can sense information sufficient to identify the user based on identifying characteristics of the fingerprint. Or, if higher resolution is desired, the device can use fingerprint recognition techniques to differentiate one finger of the user from another.
- Matching algorithms are used to compare previously stored templates of fingerprints against candidate fingerprints for authentication purposes. In order to do this, either the original image must be directly compared with the candidate image or certain features must be compared.
- Pattern-based algorithms compare the basic fingerprint patterns (arch, whorl, and loop) between a previously stored template and a candidate fingerprint. This requires that the images be aligned in the same orientation.
- the algorithm finds a central point in the fingerprint image and centers on that.
- the template contains the type, size, and orientation of patterns within the aligned fingerprint image.
- the candidate fingerprint image is graphically compared with the template to determine the degree to which they match.
- a user can touch the device with varying degrees of pressure, which exposes varying amounts of finger surface area 316.
- the device can provide access to layers based on the number of identify ing/distinguishing features of the finger it recognizes.
- the device can identify an associated layer of the multi-layer application 308. For example, an identification of a user's index finger can prompt the device to provide access to an associated layer of the multi-layer application. An identification of a ring finger can similarly prompt the device to provide access to a different layer of the multi-layer device.
- Each finger of the user can be associated with a different layer.
- an identification of any finger belonging to the user can prompt the device to identify an authorized security level for the associated layer(s) 310.
- an identification of an index finger belonging to user A may provide read-only access to a first layer of the application.
- An identification of an index finger belonging to user B may provide read/write access to the first layer of the application.
- Fingerprint recognition can be used to assign different security levels to various layers in the multi-layer application (e.g., read versus read/write), or to create/display available layers according to the user's security profile/role.
- an initial finger touch could be used to identify the user, which can prompt the device to identify a global security setting for any layer available to the user.
- Subsequent touches by the same user can initiate display of associated layers having applied the appropriate security settings.
- the identification of any finger can identify the user. Access to the layer of the multi-layer application may be granted in accordance with the level of access authorization associated with the user.
- the identified (i.e., selected) layer is manipulated 312.
- the selection of the identified (i.e., selected) layer is confirmed.
- the selection of the desired layer is confirmed to the user by increasing the transparency of the other layers.
- the layers may be displayed in a semi-transparent manner, and the transparency of the selected layer can be reduced. This change in the transparency (of either the selected or unselected layers) can confirm the selection of the desired layer.
- the finger-touch prompts manipulation of objects associated with the identified layer. For example, the area segment or object on the identified layer where the finger touch was applied can be identified.
- Associated logic can be executed, as appropriate. Such logic can include, but is not limited to, expanding the object (or area) to full screen, launching the application, and/or other operations.
- the user may use a subsequent finger touch to activate applications or manipulate icons or perform other interactive functions within the layer 314.
- the user can use hard or soft keys on the device or use another user interface, such as a mouse, to interact with the selected layer.
- moving the finger could cause one of the two modes (i.e., switching between modes): moving the entire layer (relative to other layers that are fixed) or moving the focus within the layer to select various items that could be manipulated.
- FIG. 4 is a process flow diagram 400 for assigning fingers to screen layers in multi-layer applications.
- An indication that a user wants to assign fingers to layers of a multi-layer application can be received 402.
- each layer of the multi-layer application can be identified 404.
- Each layer of the multi-layer application can be enumerated 420.
- a slice may be taken to identify a cross-section of the 3D virtual object, revealing its depth.
- a unique identifier can be assigned to each layer (or slice) 406. The identifier can be one or a sequence of alphanumeric characters.
- the device can prompt the user to touch an interface to provide the device finger identification information (such as a fingerprint).
- the interface may be the display of the device or may be a separate component communicably coupled to a processor of the device.
- the finger is sensed by a sensor coupled to the interface 408.
- the sensor can create an image of the finger, the resolution of which depends on the techniques used to take the image. Examples of such techniques are described above, and include (but are not limited to) optical imaging, ultrasonic imaging, and capacitance imaging.
- the finger can be identified 410. For example, the user can input the name of the finger (i.e., right index finger) into an input on the device and assign the name to the image of the finger. Other designators can be used. Alternatively, the device may request that the user use a particular finger and subsequently establish a designator for the fingerprint automatically.
- the device correlates the fingerprint identification to a desired layer of the multi-layer application 412.
- the device may again prompt the user to select a layer the user desires to be associated with the scanned image. Other techniques for assigning a finger to a layer are readily apparent.
- the device may prompt the user to continue assigning fingers to layers 414. If the user is finished 415, the device stores the image and the user profile in a memory 418. If the user wishes to continue assigning fingers to layers 416, the device can re-cycle the assignment process flow 408
- the device can then receive a finger-touch-initiated request to access a layer of the multi-layer application, the finger-touch-initiated request including receiving a touch of a finger.
- the finger used to make the finger-touch-initiated request can be compared to the distinguishing characteristics stored on the device.
- the first layer of the multi-layer application can be manipulated (or operated on) if the finger used to make the finger- touch-initiated request matches the distinguishing characteristics associated with the first layer.
- the one or more distinguishing characteristics of the finger of the user include sufficient information to distinguish the finger from another finger.
- FIG. 5 is a process flow diagram 500 for identifying a user based on a finger-touch input to provide access to a multi-layer application on a mobile device.
- a multi-layer application can be displayed to a user 502.
- the mobile device may receive a finger- touch input from the user 504.
- the mobile device can receive the finger touch input from a sensor coupled to the display (e.g., a touch-sensitive display) or from a touch pad on, or coupled to, the device, or from other mechanisms, such as a fingerprint scanner.
- the mobile device can receive a fingerprint (or portion of a fingerprint) based on the finger touch.
- the mobile device can process the fingerprint to identify the user based on distinguishing/identifying characteristics of the fingerprint or based on a comparison of the fingerprint with recorded data. In so doing, the device can identify the user 506.
- the device may then manipulate the multi-layer application (or layer or associated object) in accordance with privileges and settings of the user 508.
- the privileges may include access rights that may be based on the user's identity, which is identified based on the fingerprint. For example, a first user may be granted read-only rights on a certain device for a certain application or layer of an application; whereas, a second user may be provided read and write access to the application or layer of the application.
- Settings may include display settings or other personalization parameters or other settings. Other users may have access to the multi-layer application, but may have different access/usage rights, settings, privileges, etc.
- the finger touch described above can be from a first finger of a plurality of fingers of the user.
- a second finger of the plurality of fingers of the user can be assigned to a second layer of the multi-layer application.
- the multi-layer application is a first multi-layer application and the finger is a first finger.
- a second layer of a second multi-layer application can be identified, the second layer being one of a plurality of user interface layers of the second multi-layer application.
- the device can receive, from the user, a touch of a second finger.
- the second finger can be assigned to the second layer of the second multi-layer application.
- the selected layer can be displayed to the user 510.
- displaying the layer to the user includes decreasing the transparency of the selected layer or increasing the transparency of layers that were not selected.
- the user may then provide further input to the device 512.
- the user may use an input device or technique to navigate the multi-layer application .
- the user may use a keypad to enter commands.
- the user may use a mouse or trackball to move a pointer or cursor; a touch pad (e.g., a laptop mouse pad) or other sensory device; a stylus, or other input device or technique.
- the layer of the multi-layer application may be operated upon based on the input from the user.
- Operating on the layer includes (but is not limited to) providing access to the layer (and to underlying data or applications thereof) to the user or moving the layer relative to other layers of the multi-layer application.
- Moving the layer includes displaying a different layer to the user based on the input.
- Operating on the layer can also include changing the focus of the layer relative to other layers of the multi-layer application.
- the device may also receive a tactile input from the user, and may operate on the layer of the multi-layer application associated with the tactile input.
- the multi-layer application can include a user interface that contains a 3DVO, and the first layer is a first slice of the 3DVO.
- the first slice of the 3DVO can be representative of a cross-section of the virtual object.
- the multi-layer application can also include a user interface that contains a holographic image and wherein identifying a first layer of a multi-layer application includes cutting the holographic image into a predefined number of layers, and enumerating each of the predefined layers.
- the multi-layer application is an augmented reality application.
- a single finger may be assigned to different layers due to the existence of multiple substantially unique identifiers on a single fingerprint.
- a user can use an entire fingerprint to identify herself. Subsequently, by varying degrees of pressure, the user can use a single finger to access different layers or to access layers with differing security levels.
- a light touch for example, may only permit scanning of a small area of the finger. The resulting analysis may reveal that there are sufficient characteristic markers to provide access to a first layer.
- first to modify “layer” does not necessarily refer to a top layer or layer one of the multi-layer application; rather, the term “first” is meant to signify a layer, and to provide a qualitative differential between multiple layers.
- a harder touch permits scanning more surface area of the finger, revealing more characteristic markers.
- the device can associate a higher number of markers with a different layer or with a different security level.
- touching one side of the finger versus another side may provide different markers from which the device can extrapolate the associated layers requested by the user. For example, a full fingerprint scan may reveal 6 markers: A, B, C, D, E, and F.
- a light touch may only reveal markers A-C, providing access to layer 1.
- a heavy touch reveals A-F, which provides access to layer 2.
- a touch may also reveal markers A-C, whereas a different touch may reveal markers D-F.
- Each set of revealed markers may be associated with a layer or a security level.
- a key e.g., a number key
- She may then navigate the layer using a touch screen or by hard/soft keys.
- Other predefined keys can be used to navigate up and down between layers.
- the device can be programed to recognize gestures, such as taps or finger swipes, to navigate up and down between layers.
- the elements of the device 102 are illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of hardware circuitry, software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements.
- DSPs digital signal processors
- some elements may comprise one or more microprocessors, DSPs, application specific integrated circuits (ASICs), radio- frequency integrated circuits (RFICs), and combinations of various hardware and logic circuitry for performing at least the functions described herein.
- the functional elements of device 102 may refer to one or more processes operating on one or more processing elements.
- a computing device includes one or more processing elements coupled with computer-readable memory that may be volatile or non-volatile memory or a combination thereof.
- a computer-readable medium may include any tangible medium for storing or transmitting information in a form readable by a machine (e.g., a computer).
- a computer-readable medium may include read-only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and others.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Un procédé exécuté sur un dispositif consiste à recevoir, d'un utilisateur, une requête déclenchée par une pression du doigt pour accéder à une couche d'une application multicouche sur le dispositif, l'application multicouche comportant une pluralité de couches d'interface utilisateur. Le procédé peut également consister à identifier un doigt de l'utilisateur utilisé pour fournir la requête déclenchée par une pression du doigt, le doigt étant associé à une des couches de l'application multicouche. La couche associée au doigt identifié de l'utilisateur peut être activée. Chaque doigt de l'utilisateur peut être associé à une couche différente de l'application multicouche. Des empreintes digitales peuvent être utilisées pour distinguer chaque doigt et/ou pour identifier l'utilisateur par des techniques de reconnaissance d'empreintes digitales. Des empreintes digitales peuvent être utilisées pour varier les paramètres d'accès d'une couche de l'application et/ou pour fournir des niveaux de sécurité permettant d'accéder aux couches de l'application multicouche.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2844615A CA2844615C (fr) | 2011-08-09 | 2011-08-09 | Manipulation de couches d'ecran dans des applications multicouches |
| EP11745884.4A EP2742412B1 (fr) | 2011-08-09 | 2011-08-09 | Manipulation de couches des applications multicouches |
| US14/237,398 US9778813B2 (en) | 2011-08-09 | 2011-08-09 | Manipulating screen layers in multi-layer applications |
| PCT/US2011/047033 WO2013022431A1 (fr) | 2011-08-09 | 2011-08-09 | Manipulation de couches d'écran dans des applications multicouches |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2011/047033 WO2013022431A1 (fr) | 2011-08-09 | 2011-08-09 | Manipulation de couches d'écran dans des applications multicouches |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013022431A1 true WO2013022431A1 (fr) | 2013-02-14 |
Family
ID=44543827
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2011/047033 Ceased WO2013022431A1 (fr) | 2011-08-09 | 2011-08-09 | Manipulation de couches d'écran dans des applications multicouches |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US9778813B2 (fr) |
| EP (1) | EP2742412B1 (fr) |
| CA (1) | CA2844615C (fr) |
| WO (1) | WO2013022431A1 (fr) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104021371A (zh) * | 2014-05-20 | 2014-09-03 | 南昌欧菲生物识别技术有限公司 | 电子设备 |
| CN104798311A (zh) * | 2013-10-18 | 2015-07-22 | Lg电子株式会社 | 移动终端及其控制方法 |
| CN105320924A (zh) * | 2014-08-01 | 2016-02-10 | 神盾股份有限公司 | 电子装置及指纹辨识装置控制方法 |
| WO2016037318A1 (fr) * | 2014-09-09 | 2016-03-17 | 华为技术有限公司 | Procédé et appareil d'identification d'empreintes digitales et terminal mobile |
| US9465930B2 (en) | 2014-08-29 | 2016-10-11 | Dropbox, Inc. | Fingerprint gestures |
| WO2017111635A1 (fr) * | 2015-12-23 | 2017-06-29 | Motorola Solutions, Inc. | Système et procédé pour modifier des permissions associées à des ressources basées sur un réseau via une saisie d'empreintes digitales sur des dispositifs de communication |
Families Citing this family (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB201109311D0 (en) * | 2011-06-03 | 2011-07-20 | Avimir Ip Ltd | Method and computer program for providing authentication to control access to a computer system |
| JP5482814B2 (ja) * | 2012-02-02 | 2014-05-07 | コニカミノルタ株式会社 | 表示装置、表示装置の制御方法、および表示装置の制御プログラム |
| WO2014032842A1 (fr) * | 2012-08-29 | 2014-03-06 | Alcatel Lucent | Mécanisme d'authentification enfichable pour des applications configurées sur un dispositif mobile |
| US8898769B2 (en) | 2012-11-16 | 2014-11-25 | At&T Intellectual Property I, Lp | Methods for provisioning universal integrated circuit cards |
| KR102134404B1 (ko) * | 2013-08-27 | 2020-07-16 | 삼성전자주식회사 | 데이터 표시 방법 및 그 전자 장치 |
| US9036820B2 (en) | 2013-09-11 | 2015-05-19 | At&T Intellectual Property I, Lp | System and methods for UICC-based secure communication |
| US9208300B2 (en) * | 2013-10-23 | 2015-12-08 | At&T Intellectual Property I, Lp | Apparatus and method for secure authentication of a communication device |
| US9240994B2 (en) | 2013-10-28 | 2016-01-19 | At&T Intellectual Property I, Lp | Apparatus and method for securely managing the accessibility to content and applications |
| TWI606386B (zh) * | 2013-10-31 | 2017-11-21 | 富智康(香港)有限公司 | 頁面切換系統、觸控裝置及頁面切換方法 |
| KR102178892B1 (ko) * | 2014-09-15 | 2020-11-13 | 삼성전자주식회사 | 정보 제공 방법 및 그 전자 장치 |
| EP3223129B1 (fr) * | 2014-11-21 | 2019-09-11 | KYOCERA Document Solutions Inc. | Dispositif et procédé d'exploitation |
| US10235807B2 (en) * | 2015-01-20 | 2019-03-19 | Microsoft Technology Licensing, Llc | Building holographic content using holographic tools |
| KR20170019808A (ko) * | 2015-08-12 | 2017-02-22 | 삼성전자주식회사 | 전자 장치에서 사용자 입력을 처리하는 방법 및 그 전자 장치 |
| US10600249B2 (en) * | 2015-10-16 | 2020-03-24 | Youar Inc. | Augmented reality platform |
| US10218793B2 (en) * | 2016-06-13 | 2019-02-26 | Disney Enterprises, Inc. | System and method for rendering views of a virtual space |
| US9642012B1 (en) * | 2016-10-03 | 2017-05-02 | International Business Machines Corporation | Mobile device access control with two-layered display |
| US9852314B1 (en) | 2017-03-20 | 2017-12-26 | International Business Machines Corporation | Mobile device access control with two-layered display |
| KR102280581B1 (ko) * | 2017-03-21 | 2021-07-22 | 엘지전자 주식회사 | 이동 단말기 및 그 제어 방법 |
| US10747404B2 (en) * | 2017-10-24 | 2020-08-18 | Microchip Technology Incorporated | Touchscreen including tactile feedback structures and corresponding virtual user interface elements |
| WO2019229698A1 (fr) | 2018-05-31 | 2019-12-05 | Purple Tambourine Limited | Interaction avec un environnement virtuel à l'aide d'un dispositif de commande de pointage |
| US10976704B2 (en) | 2018-07-17 | 2021-04-13 | International Business Machines Corporation | Fingerprint authentication during holographic object display |
| EP3928187A1 (fr) | 2019-02-18 | 2021-12-29 | Arkh Litho Holdings, LLC | Interaction avec un dispositif intelligent à l'aide d'un dispositif de commande de pointage |
| TWI697821B (zh) * | 2019-03-05 | 2020-07-01 | 宏碁股份有限公司 | 更新觸控感測裝置設定的方法及觸控感測裝置 |
| AU2020352826A1 (en) | 2019-09-24 | 2022-05-12 | Arkh, Inc. | Smart ring |
| US12455622B2 (en) | 2019-09-24 | 2025-10-28 | Arkh, Inc. | Smart ring |
| US11755111B2 (en) | 2020-03-16 | 2023-09-12 | Arkh, Inc. | Spatially aware computing hub and environment |
| US12416967B2 (en) | 2020-03-16 | 2025-09-16 | Arkh, Inc. | Spatially aware computing hub and environment |
| USD1009861S1 (en) | 2020-09-25 | 2024-01-02 | Arkh, Inc. | Smart ring |
| US12236537B2 (en) | 2020-12-18 | 2025-02-25 | Arkh, Inc. | Spatially aware environment relocalization |
| US12118677B2 (en) | 2020-12-22 | 2024-10-15 | Arkh, Inc. | Spatially aware environment interaction |
| GB202204096D0 (en) * | 2022-03-23 | 2022-05-04 | British Telecomm | A secure authentication token |
| GB202204090D0 (en) | 2022-03-23 | 2022-05-04 | British Telecomm | A secure authentication token |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1873702A1 (fr) * | 2006-06-28 | 2008-01-02 | Sony Ericsson Mobile Communications Japan, Inc. | Appareil, procédé, programme et dispositif terminal mobile de traitement de l'information |
| WO2009085338A2 (fr) * | 2007-12-28 | 2009-07-09 | Apple Inc. | Commande d'un dispositif électronique utilisant les empreintes digitales d'une personne |
| US20090199127A1 (en) * | 2008-01-31 | 2009-08-06 | Microsoft Corporation | Previewing target display areas |
| US20100211872A1 (en) * | 2009-02-17 | 2010-08-19 | Sandisk Il Ltd. | User-application interface |
| US20100265204A1 (en) * | 2009-04-21 | 2010-10-21 | Sony Ericsson Mobile Communications Ab | Finger recognition for authentication and graphical user interface input |
| US20100310136A1 (en) * | 2009-06-09 | 2010-12-09 | Sony Ericsson Mobile Communications Ab | Distinguishing right-hand input and left-hand input based on finger recognition |
| GB2477017A (en) * | 2010-01-19 | 2011-07-20 | Avaya Inc | Event generation based on identifying portions of prints or a sleeve |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7181017B1 (en) * | 2001-03-23 | 2007-02-20 | David Felsher | System and method for secure three-party communications |
| US8452978B2 (en) * | 2006-09-15 | 2013-05-28 | Identity Metrics, LLC | System and method for user authentication and dynamic usability of touch-screen devices |
| US8184102B2 (en) * | 2008-12-17 | 2012-05-22 | Cypress Semiconductor Corporation | Finger gesture recognition for touch sensing surface |
| US8941466B2 (en) * | 2009-01-05 | 2015-01-27 | Polytechnic Institute Of New York University | User authentication for devices with touch sensitive elements, such as touch sensitive display screens |
| EP2360665A3 (fr) * | 2009-11-26 | 2012-03-28 | LG Electronics | Terminal mobile et son procédé de contrôle |
| WO2011160014A1 (fr) * | 2010-06-18 | 2011-12-22 | Authentec, Inc. | Capteur digital comprenant une couche d'encapsulation sur la zone de détection et procédés associés |
| US9310940B2 (en) * | 2011-01-17 | 2016-04-12 | Pixart Imaging Inc. | Capacitive touchscreen or touch panel with fingerprint reader |
| TW201239693A (en) * | 2011-03-17 | 2012-10-01 | Chunghwa Picture Tubes Ltd | Three dimensional touch display device and touch input method thereof |
| US20130009896A1 (en) * | 2011-07-09 | 2013-01-10 | Lester F. Ludwig | 3d finger posture detection and gesture recognition on touch surfaces |
| KR20150018256A (ko) * | 2013-08-09 | 2015-02-23 | 엘지전자 주식회사 | 모바일 디바이스 및 그 제어 방법 |
| US9542783B2 (en) * | 2013-11-15 | 2017-01-10 | Google Technology Holdings LLC | Method and apparatus for authenticating access to a multi-level secure environment of an electronic device |
-
2011
- 2011-08-09 WO PCT/US2011/047033 patent/WO2013022431A1/fr not_active Ceased
- 2011-08-09 CA CA2844615A patent/CA2844615C/fr active Active
- 2011-08-09 EP EP11745884.4A patent/EP2742412B1/fr active Active
- 2011-08-09 US US14/237,398 patent/US9778813B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1873702A1 (fr) * | 2006-06-28 | 2008-01-02 | Sony Ericsson Mobile Communications Japan, Inc. | Appareil, procédé, programme et dispositif terminal mobile de traitement de l'information |
| WO2009085338A2 (fr) * | 2007-12-28 | 2009-07-09 | Apple Inc. | Commande d'un dispositif électronique utilisant les empreintes digitales d'une personne |
| US20090199127A1 (en) * | 2008-01-31 | 2009-08-06 | Microsoft Corporation | Previewing target display areas |
| US20100211872A1 (en) * | 2009-02-17 | 2010-08-19 | Sandisk Il Ltd. | User-application interface |
| US20100265204A1 (en) * | 2009-04-21 | 2010-10-21 | Sony Ericsson Mobile Communications Ab | Finger recognition for authentication and graphical user interface input |
| US20100310136A1 (en) * | 2009-06-09 | 2010-12-09 | Sony Ericsson Mobile Communications Ab | Distinguishing right-hand input and left-hand input based on finger recognition |
| GB2477017A (en) * | 2010-01-19 | 2011-07-20 | Avaya Inc | Event generation based on identifying portions of prints or a sleeve |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10444890B2 (en) | 2013-10-18 | 2019-10-15 | Lg Electronics Inc. | Mobile terminal and control method thereof |
| CN104798311A (zh) * | 2013-10-18 | 2015-07-22 | Lg电子株式会社 | 移动终端及其控制方法 |
| EP3058660A4 (fr) * | 2013-10-18 | 2017-05-17 | LG Electronics Inc. | Terminal mobile et son procédé de commande |
| CN104021371A (zh) * | 2014-05-20 | 2014-09-03 | 南昌欧菲生物识别技术有限公司 | 电子设备 |
| CN104021371B (zh) * | 2014-05-20 | 2018-04-06 | 南昌欧菲生物识别技术有限公司 | 电子设备 |
| CN105320924A (zh) * | 2014-08-01 | 2016-02-10 | 神盾股份有限公司 | 电子装置及指纹辨识装置控制方法 |
| CN105320924B (zh) * | 2014-08-01 | 2019-06-28 | 神盾股份有限公司 | 电子装置及指纹辨识装置控制方法 |
| US9465930B2 (en) | 2014-08-29 | 2016-10-11 | Dropbox, Inc. | Fingerprint gestures |
| US10621324B2 (en) | 2014-08-29 | 2020-04-14 | Dropbox, Inc. | Fingerprint gestures |
| US9910973B2 (en) | 2014-08-29 | 2018-03-06 | Dropbox, Inc. | Fingerprint gestures |
| US10176312B2 (en) | 2014-08-29 | 2019-01-08 | Dropbox, Inc. | Fingerprint gestures |
| WO2016037318A1 (fr) * | 2014-09-09 | 2016-03-17 | 华为技术有限公司 | Procédé et appareil d'identification d'empreintes digitales et terminal mobile |
| US11163969B2 (en) | 2014-09-09 | 2021-11-02 | Huawei Technologies Co., Ltd. | Fingerprint recognition method and apparatus, and mobile terminal |
| WO2017111635A1 (fr) * | 2015-12-23 | 2017-06-29 | Motorola Solutions, Inc. | Système et procédé pour modifier des permissions associées à des ressources basées sur un réseau via une saisie d'empreintes digitales sur des dispositifs de communication |
| US11146562B2 (en) | 2015-12-23 | 2021-10-12 | Motorola Solutions, Inc. | System and method for modifying permissions associated with network-based resources via fingerprint entry on communication devices |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2742412A1 (fr) | 2014-06-18 |
| CA2844615A1 (fr) | 2013-02-14 |
| EP2742412B1 (fr) | 2018-10-03 |
| US20140173721A1 (en) | 2014-06-19 |
| US9778813B2 (en) | 2017-10-03 |
| CA2844615C (fr) | 2019-01-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2844615C (fr) | Manipulation de couches d'ecran dans des applications multicouches | |
| US9514352B2 (en) | Fingerprint enrollment using touch sensor data | |
| US9400880B2 (en) | Method and apparatus for biometric-based security using capacitive profiles | |
| US9734379B2 (en) | Guided fingerprint enrollment | |
| US9111125B2 (en) | Fingerprint imaging and quality characterization | |
| US9646193B2 (en) | Fingerprint authentication using touch sensor data | |
| CN104335132B (zh) | 手指旋转的远场感测 | |
| US20150047017A1 (en) | Mobile device and method of controlling therefor | |
| US20140075368A1 (en) | Method for controlling content and digital device using the same | |
| US20130215027A1 (en) | Evaluating an Input Relative to a Display | |
| US20140002240A1 (en) | Expedited Biometric Validation | |
| US8457924B2 (en) | Control system and method using an ultrasonic area array | |
| US20170091521A1 (en) | Secure visual feedback for fingerprint sensing | |
| CN105843500A (zh) | 具有操作于向量模式下的指纹感测器的电子设备 | |
| US20160357301A1 (en) | Method and system for performing an action based on number of hover events | |
| CN105867822B (zh) | 一种信息处理方法及电子设备 | |
| CN107958146B (zh) | 指纹验证的方法、装置、存储介质及电子设备 | |
| CN110809089B (zh) | 处理方法和处理装置 | |
| WO2018094567A1 (fr) | Procédé de saisie et dispositif terminal | |
| CN119002693A (zh) | 由电子设备执行的交互方法、装置、电子设备、存储介质、系统和计算机程序产品 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11745884 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 14237398 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2844615 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |