[go: up one dir, main page]

WO2013094153A1 - Eyeglasses lens - Google Patents

Eyeglasses lens Download PDF

Info

Publication number
WO2013094153A1
WO2013094153A1 PCT/JP2012/007917 JP2012007917W WO2013094153A1 WO 2013094153 A1 WO2013094153 A1 WO 2013094153A1 JP 2012007917 W JP2012007917 W JP 2012007917W WO 2013094153 A1 WO2013094153 A1 WO 2013094153A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
lens
rotation angle
prescription value
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2012/007917
Other languages
French (fr)
Japanese (ja)
Inventor
庸平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of WO2013094153A1 publication Critical patent/WO2013094153A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Definitions

  • the present invention relates to a spectacle lens.
  • Single-focus spectacle lenses include myopia lenses with negative prescription values and hyperopic lenses with positive prescription values.
  • a single-focus spectacle lens if both the object-side surface and the eyeball-side surface are designed as spherical surfaces, astigmatism occurs when the object is viewed off the optical axis due to the rotation angle and the thickness of the lens surface. As a result, the image seen through the spectacle lens is distorted.
  • the rotation angle in this specification means the position on the spectacle lens corresponding to the rotation angle of the eyeball. For example, the rotation angle of 25 ° is a position on the lens through which the line of sight passes when the rotation angle of the eyeball is 25 °.
  • the refractive power in the circumferential direction and the refractive power in the radial direction are equal at the optical center. Therefore, the astigmatism that is the difference between the refractive power in the circumferential direction and the refractive power in the radial direction is 0, and the equivalent spherical power (average) is the average of the refractive power in the circumferential direction and the refractive power in the radial direction.
  • the frequency error (the difference between the equivalent spherical power and the prescription power) is zero because the frequency is equal to the prescription power.
  • this spectacle lens with a spherical design has a problem that astigmatism and power error increase as the rotation angle increases, that is, from the center to the periphery of the lens.
  • the power error at the optical center is set to 0.
  • an aspherical surface is designed so that the error becomes 0, a large astigmatism occurs in the peripheral portion.
  • the aspherical surface is designed so that the astigmatism at the peripheral portion becomes zero, a large power error occurs.
  • an aspherical surface is designed with a balance between astigmatism and power error, the value is small compared to a design in which one of astigmatism and power error in the peripheral part is 0, but the power in the peripheral part is low. Both errors and astigmatism occur.
  • the spectacle lens disclosed in Patent Document 1 has a disadvantage that a certain degree of blurring occurs in the peripheral portion.
  • An object of the present invention is to provide a spectacle lens that can improve blurring of an image in a peripheral portion.
  • An eyeglass lens according to an aspect of the present invention includes an object-side surface and an eyeball-side surface, and at least one of the object-side surface and the eyeball-side surface is an aspheric surface, and the optical center frequency Is different from the prescribed value T, which is the prescribed spherical power S.
  • the power of the optical center is shifted to the negative side from the prescription value T.
  • the spectacle lens having this configuration when the prescription value T is negative, the power of the optical center is shifted to the negative side from the prescription value T, so that the astigmatism is almost unchanged from the conventional one.
  • the difference between the frequency and the prescription value T can be reduced.
  • the power of the optical center is shifted to the positive side from the prescription value T.
  • the spectacle lens of this configuration when the prescription value T is positive, the power of the optical center is entirely shifted to the plus side from the prescription value T, so that the astigmatism is equivalent to that in the conventional state.
  • the spherical power is close to the prescription value T. Therefore, the astigmatism is left as it is, and the power error can be made smaller than that in the prior art, so that it is possible to prevent the occurrence of blurring at the peripheral portion.
  • the object-side surface is a spherical surface
  • the eyeball-side surface is the aspheric surface
  • a curvature c is expressed by an equation (z) in the coordinate z (R) of the eyeball-side surface. 1) and formula (2) are satisfied.
  • R is the distance from the optical center of the coordinate z (R)
  • f (R) is a correction term
  • D 1 is the surface refractive power of the object side surface
  • D 2 is the surface refractive power of the eye side surface.
  • T is a lens center thickness
  • n is a lens refractive index
  • ⁇ D is a shift amount of the optical center power with respect to the prescription value T.
  • the curvature c at the coordinate z (R) of the eyeball side surface satisfies the expression (2) in consideration of the expression (1) and the shift amount ⁇ D. Therefore, since the frequency error can be more reliably suppressed in the peripheral portion, the blur in the peripheral portion can be more reliably suppressed.
  • the spectacle lens according to an aspect of the present invention includes an intersection point yc where the prescription value T and the equivalent spherical power coincide.
  • the intersection yc is at a position where the rotation angle of the eyeball is 45 ° or less.
  • the rotation angle is at a position where the intersection point yc is 45 ° or less in consideration of the field of view.
  • the gaze field is a range in which gaze can be observed by extreme movement of the eyeball without moving the head, and this gaze field is generally circular with a radius of 45 °.
  • the blur index near the intersection yc is the smallest and the blur index is smaller at the outer peripheral portion than the conventional one at the intersection yc. Therefore, a sufficient effect cannot be obtained when the intersection yc is greater than 45 °.
  • the intersection yc is preferably at a position where the rotation angle is 30 ° or less.
  • the intersection point yc was set in consideration of the actual gaze field.
  • the actual gaze field is the range of eye movement that moves beyond the compensatory movement of the head, and it is considered that there are few cases where the head is not moved at all when actually looking at the object on the side ( Optics Optics II: Published by Waseda College of Optical [Author: Hidehito Kawabata] First Edition (1982).
  • the rotation angle is about 30 °.
  • the blur index near the intersection yc is the smallest, and the blurring index is smaller at the outer peripheral portion than at the intersection yc compared to the conventional one. Therefore, the effect can be obtained when the intersection yc is 30 ° or less.
  • FIG. 1 is a schematic view of a spectacle lens according to an embodiment of the present invention.
  • 3 is a graph showing the relationship between refractive power D and rotation angle ⁇ when wearing spectacles of Example 1.
  • 6 is a graph showing the relationship between refractive power D and rotation angle ⁇ when wearing eyeglasses of Example 2.
  • 7 is a graph showing the relationship between refractive power D and rotation angle ⁇ when wearing spectacles of Example 3.
  • 10 is a graph showing the relationship between refractive power D and rotation angle ⁇ when wearing spectacles of Example 4.
  • the graph which shows the relationship between the refractive power D at the time of spectacles wear of the comparative example 1, and rotation angle
  • corner (theta). 10 is a graph showing the relationship between refractive power D and rotation angle ⁇ when wearing spectacles of Comparative Example 8.
  • FIG. 1 is a schematic view of a spectacle lens according to the present embodiment.
  • the spectacle lens L is a single focus lens in which the object-side surface Lo is a spherical surface and the eyeball-side surface Li is an aspherical surface.
  • the optical center coincides with the fitting point in this embodiment, and is indicated by the z axis in FIG.
  • the rotation angle ⁇ is 0 ° when the line of sight P coincides with the optical center, and the angle increases toward the lens periphery. Becomes larger.
  • the prescribed spherical power S is the prescription value T.
  • a lens having a negative prescription value T is a negative lens mainly used for myopia
  • a lens having a positive prescription value T is a positive lens mainly used for hyperopia.
  • n is the refractive index of the material of the spectacle lens L.
  • the coordinates of the aspherical lens can be obtained by the following formula (1).
  • the aspherical lens coordinate formula (C) is obtained by adding a function of f (R) to the spherical lens coordinate formula (A).
  • f (R) is an expression for improving the optical characteristics of the lens peripheral portion, and various expressions are used.
  • the following expression (D) can be adopted.
  • a 4 , a 6 , a 8 , and a 10 are constants.
  • f (R) can be regarded as zero.
  • the power of the optical center is shifted to the minus side from the prescription value T, and when the prescription value T is positive, The central frequency is shifted more positively than the prescription value T. That is, in the spectacle lens L of the present embodiment, the power at the optical center is different from the prescription value T. That is, in the present embodiment, the surface power of the surface Lo of the object side D 1, surface power D 2 surface Li on the eyeball side, equations indicating the relationship between the lens center thickness t, and the prescription value T is the following formula (2) It is.
  • This equation (2) is obtained by adding a power shift amount ⁇ D to the optical center to the equation (C). Note that the surface refractive power of the object-side surface Lo that is designed to be spherical is set in advance. At the optical center, the curvature c is set so as to satisfy the expressions (1) and (2) where f (R) is zero.
  • the shift amount ⁇ D is less than 0.25D (diopter) in the negative direction
  • the shift amount ⁇ D is 0 in the positive direction. It is preferable to set it to less than 25D (diopter). Within these ranges, the shift amount ⁇ D is not limited, and an effect can be obtained even if the shift amount ⁇ D is small.
  • the reason why the shift amount ⁇ D is both 0.25 D (diopter) is that the lens is generally designed with the prescription value T set to 0.25 D (diopter) pitch. Thereby, manufacture of the spectacle lens L can be performed easily.
  • the presence of a power error with respect to the prescription power D means occurrence of blurring or a reduction in visual acuity.
  • Many of the current single focus lenses are manufactured with a prescription value T of 0.25D (dioptre) pitch, and the eyesight is sufficiently comfortable for the wearer considering the accuracy of the optometry and the ISO standard of the spectacle lens L. It meets the requirements of the prescribing side to provide. That is, if the range is up to 0.25D, it is difficult to impair the comfort when worn even if the frequency is different. In the case of the spectacle lens L having a negative prescription value T, if the shift is in the negative direction, the effect can be obtained even if the shift amount ⁇ D is small.
  • the shift amount may be small in consideration of the occurrence of blurring.
  • the spectacle lens L having a positive prescription value T if the shift is in the positive direction, the effect can be obtained even if the shift amount ⁇ D is small.
  • Example 1 the object-side surface Lo is a spherical surface having a surface refractive power D 1 of 2.50 D (diopter), and the lens center thickness t is 1.1 mm.
  • the lens refractive index n is 1.661.
  • the prescribed value T which is the prescribed spherical power S, is ⁇ 4.00. That is, Example 1 is a minus lens.
  • a shift amount ⁇ D is added to the aspherical lens of Comparative Example 1 described later.
  • the refractive power D and the rotation angle ⁇ when wearing spectacles are simulated, and the relationship is shown in FIG.
  • symbol MD indicates the refractive power in the radial direction (medicalal direction)
  • symbol SD indicates the refractive power in the circumferential direction (sagittal direction).
  • the symbol A indicates an equivalent spherical power that is an average of the refractive power MD in the circumferential direction and the refractive power SD in the radial direction.
  • the equivalent spherical power A coincides with the prescription value T when the rotation angle ⁇ is 35 °. That is, when the rotation angle ⁇ is 35 °, there is an intersection yc between the prescription value T and the equivalent spherical power A.
  • the frequency error is 0, which is the smallest at the intersection yc.
  • FIG. 3 shows the relationship between the refractive power D and the rotation angle ⁇ when the glasses are worn in the second embodiment.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A match, and the equivalent spherical power A coincides with the prescription value T when the rotation angle ⁇ is 30 °. That is, when the rotation angle ⁇ is 30 °, there is an intersection yc between the prescription value T and the equivalent spherical power A.
  • the frequency error is 0, which is the smallest at the intersection yc.
  • Example 3 the object-side surface Lo is a spherical surface having a surface refractive power D 1 of 7.00 D (diopter), and the lens center thickness t is 5.5 mm.
  • the lens refractive index n is 1.661.
  • the spherical power S is +4.00 D (dioptry), and the astigmatic power C is not set.
  • Prescription value T + 4.00. That is, Example 3 is a plus lens.
  • FIG. 4 shows the relationship between the refractive power D and the rotation angle ⁇ when wearing the glasses of Example 3.
  • the equivalent spherical power A which is the average of the refractive power MD in the circumferential direction and the refractive power SD in the radial direction, matches the prescription value T when the rotation angle ⁇ is 35 °. That is, when the rotation angle ⁇ is 35 °, there is an intersection yc between the prescription value T and the equivalent spherical power A.
  • the frequency error is 0, which is the smallest at the intersection yc.
  • the surface refractive power D 1 , the lens center thickness t, and the lens refractive index n are the same as those in the third embodiment, and the spherical power S and the astigmatic power C are the same as those in the third embodiment.
  • This is a positive lens of +4.00 D (diopter).
  • Comparative Example 1 is an example in which an aspherical surface that balances power error and astigmatism is optimized. Comparative Example 1 has the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C of the object side surface as in Example 1. Unlike Example 1, Comparative Example 1 does not add a shift amount ⁇ D. In the spectacle lens of Comparative Example 1, the refractive power D and the rotation angle ⁇ when wearing spectacles are simulated, and the relationship is shown in FIG. As shown in the graph of FIG.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average value thereof are the prescription value T ⁇ 4. Although it agrees at 00D (diopter), it departs from the prescription value T to the plus side as the rotation angle ⁇ increases.
  • Comparative Example 2 is an example optimized with an aspherical surface with zero astigmatism. Comparative Example 2 has the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C of the object side surface as in Example 2. Unlike Example 2, the comparative example 2 does not add the shift amount ⁇ D. In the spectacle lens of Comparative Example 2, the refractive power D and the rotation angle ⁇ when wearing spectacles are simulated, and the relationship is shown in FIG. As shown in the graph of FIG.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are ⁇ 4.00 D of the prescription value T when the rotation angle ⁇ is 0 °. (Diopter) agrees, but as the rotation angle ⁇ increases, the prescription value T departs to the plus side.
  • Comparative Example 3 is an example in which an aspherical surface that balances power error and astigmatism is optimized.
  • the surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C of the object side surface are the same as those in Example 3.
  • Comparative Example 3 does not add a shift amount ⁇ D.
  • the refractive power D and the rotation angle ⁇ when wearing spectacles are simulated, and the relationship is shown in FIG. As shown in the graph of FIG.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are + 4.00D of the prescription value T when the rotation angle ⁇ is 0 ° (although the values coincide with each other in the diopter), the distance from the prescription value T decreases toward the minus side as the rotation angle ⁇ increases.
  • Comparative Example 4 is an example in which astigmatism is set to 0 and optimization is performed on an aspheric surface. Comparative Example 4 is a plus lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C as in Example 4 on the object side surface. Unlike Example 4, the comparative example 4 does not add the shift amount ⁇ D. In the spectacle lens of Comparative Example 4, the refractive power D and the rotation angle ⁇ when wearing spectacles are simulated, and the relationship is shown in FIG. As shown in the graph of FIG.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are + 4.00D (the prescription value T when the rotation angle ⁇ is 0 ° (although the values coincide with each other in the diopter), the distance from the prescription value T decreases toward the minus side as the rotation angle ⁇ increases.
  • Comparative Example 5 is an example of optimization with an aspherical surface in which the frequency error is zero.
  • Comparative Example 5 is a negative lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C as in Example 1 on the object side surface.
  • the shift amount ⁇ D is not added.
  • the refractive power D and the rotation angle ⁇ when wearing spectacles were simulated, and the relationship is shown in FIG. As shown in the graph of FIG.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A which is the average of these, are equal to the prescription value T ⁇ 4.
  • the circumferential refractive power MD deviates from the prescription value T in the negative direction
  • the radial refractive power SD deviates from the prescription value T in the positive direction.
  • the equivalent spherical power A remains as the prescription value T.
  • Comparative Example 6 is an example of optimization with an aspherical surface in which the frequency error is zero. Comparative Example 6 is a plus lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatic power C as those in Example 3, on the object side surface. Unlike the third embodiment, the comparative example 6 does not add the shift amount ⁇ D. In the spectacle lens of Comparative Example 6, the refractive power D and the rotation angle ⁇ when wearing spectacles were simulated, and the relationship is shown in FIG. As shown in the graph of FIG.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are + 4.00D of the prescription value T when the rotation angle ⁇ is 0 °. (Diopter), but as the turning angle ⁇ increases, the circumferential refractive power MD deviates from the prescription value T in the positive direction, and the radial refractive power SD deviates from the prescription value T in the negative direction.
  • the spherical power A remains the prescription value T.
  • Comparative Example 7 is an example of a spherical lens. Comparative Example 7 is a negative lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C as in Example 1 on the object side surface.
  • the refractive power D and the rotation angle ⁇ when wearing spectacles were simulated, and the relationship is shown in FIG. As shown in the graph of FIG.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are the prescription value T when the rotation angle ⁇ is 0 °. ⁇ 4.00 D (diopter), but as the rotation angle ⁇ increases, the circumferential refractive power MD and the equivalent spherical power A greatly deviate from the prescription value T in the negative direction, and the radial refractive power SD Substantially matches the prescription value T.
  • Comparative Example 8 is an example of a spherical lens. Comparative Example 8 is a positive lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatic power C as those in Example 3, on the object side surface.
  • the refractive power D and the rotation angle ⁇ when wearing spectacles were simulated, and the relationship is shown in FIG. As shown in the graph of FIG.
  • the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these values are equal to the prescription value T when the rotation angle ⁇ is 0 °. + 4.00D (diopter), but as the turning angle ⁇ increases, the circumferential refractive power MD and the equivalent spherical power A greatly deviate from the prescription value T in the plus direction, and the radial refractive power SD is the prescription. It almost coincides with the value T.
  • FIG. 14 is a graph showing the relationship between the blur index and the rotation angle ⁇ of Example 1, Comparative Example 1, and Comparative Example 7.
  • the blur index is an index indicating the degree of blur caused by a power error or astigmatism when a lens is worn.
  • the larger the blur index the lower the resolution when wearing the lens.
  • the image is formed on a circle or an ellipse instead of a point on the retina due to the power error and astigmatism of the lens.
  • This circle (or ellipse) is called a circle of confusion, and the bokeh index corresponds to the length of the diagonal line of the circle of confusion. That is, if the length of the major axis of the circle of confusion (ellipse) is a and the length of the minor axis is b, the blur index is the length of the diagonal line of the circle of confusion (a 2 + b 2 ) 1/2 (mm). .
  • the blur index was calculated under the condition that the infinity was viewed without adjustment.
  • the preferable range of the blur index varies depending on various conditions, but can be set to 0.2 or less, or 0.25 or less, for example.
  • the range where the rotation angle ⁇ is 45 ° or more is unlikely to be used, and the presence or absence of blurring when the rotation angle ⁇ is 45 ° or less is important for the wearer. Since there is almost no movement of only the eyeball beyond 45 °, the range of the rotation angle ⁇ exceeding 45 ° is not practically used, so there is no blur in the range of 45 ° or more for the wearer. Is relatively unimportant.
  • Example 14 in Example 1, when the rotation angle ⁇ is 0 °, the blur index is larger than that of Comparative Examples 1 and 7, but in the range of the rotation angle ⁇ of 28 ° to 40 °, It is smaller than that and falls within the range of 0.2 or less from 0 ° to 40 °.
  • Comparative Example 1 and Comparative Example 7 of the spherical lens which are the premise of Example 1, have a smaller blur index than Example 1 when the rotation angle ⁇ is close to 0 °, but 35 ° in Comparative Example 1.
  • the blur index exceeds 0.2 at the periphery of the lens, and in Comparative Example 7, the blur index exceeds 0.2 when the angle exceeds 18 °. That is, Example 1 has less blur in a wider viewing angle range than Comparative Example 1 and Comparative Example 7.
  • FIG. 15 is a graph showing the relationship between the blur index and the rotation angle ⁇ of Example 2, Comparative Example 2, and Comparative Example 7.
  • Example 2 when the rotation angle ⁇ is 0 °, the blur index is larger than that of Comparative Examples 2 and 7, but when the rotation angle ⁇ is in the range of 22 ° to 40 °, it is smaller than that of Comparative Examples 2 and 7. It is within the range of 0.25 or less from 0 ° to 40 °.
  • Comparative Example 2 and Comparative Example 7 of the spherical lens which are the premise of Example 2, have a smaller blur index than Example 2 when the rotation angle ⁇ is close to 0 °, but 30 ° in Comparative Example 2.
  • Bokeh index exceeds 0.25 from above.
  • Comparative Example 7 the blur index exceeds 0.25 from around 20 °.
  • FIG. 16 is a graph showing the relationship between the blur index and the rotation angle ⁇ of Example 3, Comparative Example 3, and Comparative Example 8.
  • Example 3 when the rotation angle ⁇ is 0 °, the blur index is larger than that of Comparative Examples 3 and 8, but when the rotation angle ⁇ is in the range of 30 ° to 40 °, it is smaller than that of Comparative Examples 3 and 8. It falls within the range of 0.2 or less from 0 ° to 40 °.
  • the comparative example 3 and the comparative example 8 of the spherical lens which are the premise of the example 3 have a smaller blur index than the example 3 when the rotation angle ⁇ is close to 0 °, but the comparative example 3 has a degree of 35 °.
  • the blur index exceeds 0.2 from around In Comparative Example 8, the blur index exceeds 0.2 from around 18 °.
  • FIG. 17 is a graph showing the relationship between the blur index and the rotation angle ⁇ in Example 4, Comparative Example 4 and Comparative Example 8.
  • Example 4 when the rotation angle ⁇ is 0 °, the blur index is larger than that of Comparative Examples 4 and 8, but when the rotation angle ⁇ is in the range of 20 ° to 40 °, it is smaller than that of Comparative Examples 4 and 8. It is within the range of 0.25 or less from 0 ° to 40 °.
  • the comparative example 4 and the comparative example 8 of the spherical lens which are the premise of the fourth example, have a smaller blur index than the fourth example when the rotation angle ⁇ is close to 0 °. Bokeh index exceeds 0.25 from above. In Comparative Example 8, the blur index exceeds 0.25 from around 20 °.
  • this embodiment can suppress blurring due to astigmatism and power error in a wider viewing angle range than when the power at the optical center is the prescription value T.
  • the spectacle lens L of the present embodiment is designed so as to include the intersection point yc, so that the power error in the lens periphery can be further suppressed, so that the blur in the periphery can be further reduced.
  • the present invention is not limited to the above-described embodiment, and includes the following modifications as long as the object of the present invention can be achieved.
  • the spectacle lens L in which the object-side surface Lo is a spherical surface and the eyeball-side surface Li is an aspheric surface has been described.
  • the object-side surface Lo and the eyeball-side surface Li It can be applied to a spectacle lens in which at least one of them is aspherical.
  • the present invention can be applied when the object-side surface Lo is an aspheric surface and the eyeball-side surface Li is a spherical surface, or when both the object-side surface Lo and the eyeball-side surface Li are aspherical surfaces.
  • the present invention can be applied to a spectacle lens L having an astigmatism power C.
  • an astigmatism power C it is preferable to obtain the curvature c for the main radial line in the direction of the astigmatic axis Ax and the main meridian in the direction orthogonal to the astigmatic axis Ax.
  • the curvature c in the astigmatic axis Ax direction is determined so as to satisfy the above-described formulas (1) and (2), with the astigmatic axis as Ax and the spherical power S in the astigmatic axis Ax direction as the prescription value T.
  • the formula “S + C” of the spherical power S and the astigmatism power C is set as the prescription value T, and is orthogonal to the astigmatism axis Ax so as to satisfy the above formulas (1) and (2).
  • the curvature c in the direction to be determined is determined. It should be noted that the above-described effects can be obtained even when ⁇ D is a different value of the power shift amount of the optical center.
  • L spectacle lens
  • Lo object side surface
  • Li eyeball side surface
  • MD refractive power in the circumferential direction
  • SD refractive power in the radial direction
  • A equivalent spherical power
  • ⁇ D shift amount, t ... lens center thickness, ⁇ ... rotation angle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

Provided is an eyeglasses lens that is capable of an improvement with respect to blurring of an image in the periphery. The glasses lens contains a surface on the object side and a surface on the eyeball side including an optical center; the surface on the object side and/or the surface on the eyeball side is an aspheric surface, and the dioptric power of the optical center differs from the prescribed value (T) that is the prescribed spherical dioptric power (S).

Description

眼鏡レンズEyeglass lenses

 本発明は眼鏡レンズに関する。 The present invention relates to a spectacle lens.

 単焦点の眼鏡レンズには、処方値がマイナスの近視用レンズや、処方値がプラスの遠視用レンズがある。単焦点眼鏡レンズでは、物体側の面と眼球側の面との双方を球面設計すると、回旋角やレンズ面の肉厚によって光軸外で物体を見た場合に非点収差が生じてしまい、その結果、眼鏡レンズを通して見える像にゆがみが生じる。なお、本明細書における回旋角は、眼球の回旋角に対応する眼鏡レンズ上の位置を意味する。例えば、回旋角が25°であるとは、眼球の回旋角が25°である場合に視線が通過するレンズ上の位置である。
 つまり、眼鏡レンズの物体側の面と眼球側の面との双方を球面設計すると、光学中心においては円周方向の屈折力と径方向の屈折力とが等しい。したがって、円周方向の屈折力と径方向の屈折力との差である非点収差が0となり、かつ、円周方向の屈折力と径方向の屈折力との平均である等価球面度数(平均度数)が処方度数に一致するので度数誤差(等価球面度数と処方度数との差)が0となる。しかし、この球面設計による眼鏡レンズでは、回旋角が大きくなるに従って、つまり、レンズの中心から周辺に向かうに従って、非点収差や度数誤差がそれぞれ大きなものとなるという不具合があった。
Single-focus spectacle lenses include myopia lenses with negative prescription values and hyperopic lenses with positive prescription values. In a single-focus spectacle lens, if both the object-side surface and the eyeball-side surface are designed as spherical surfaces, astigmatism occurs when the object is viewed off the optical axis due to the rotation angle and the thickness of the lens surface. As a result, the image seen through the spectacle lens is distorted. In addition, the rotation angle in this specification means the position on the spectacle lens corresponding to the rotation angle of the eyeball. For example, the rotation angle of 25 ° is a position on the lens through which the line of sight passes when the rotation angle of the eyeball is 25 °.
In other words, when both the object side surface and the eyeball side surface of the spectacle lens are designed as spherical surfaces, the refractive power in the circumferential direction and the refractive power in the radial direction are equal at the optical center. Therefore, the astigmatism that is the difference between the refractive power in the circumferential direction and the refractive power in the radial direction is 0, and the equivalent spherical power (average) is the average of the refractive power in the circumferential direction and the refractive power in the radial direction. The frequency error (the difference between the equivalent spherical power and the prescription power) is zero because the frequency is equal to the prescription power. However, this spectacle lens with a spherical design has a problem that astigmatism and power error increase as the rotation angle increases, that is, from the center to the periphery of the lens.

 球面設計による眼鏡レンズの不具合を解消するために、眼鏡レンズの物体側の面と眼球側の面との少なくとも一方の面を非球面化することにより、周辺部の改善を図るものが提案されている(例えば特許文献1)。
 このような眼鏡レンズでは非球面化することによって、光学的に優れ、かつ、薄く軽くすることが可能となる。
In order to eliminate the problems of spectacle lenses due to spherical design, there has been proposed an improvement of the peripheral part by aspherical at least one of the object side surface and the eyeball side surface of the spectacle lens. (For example, Patent Document 1).
Such a spectacle lens can be made optically excellent and thin and light by making it aspherical.

特許第4190764号公報Japanese Patent No. 4190764

 特許文献1に示される、物体側の面と眼球側の面の少なくとも一方が非球面とされた眼鏡レンズでは、光学中心の度数誤差を0としているので、例えば、眼鏡レンズの周辺部においても度数誤差が0となるように非球面を設計した場合に、周辺部において大きな非点収差が生じる。一方、周辺部における非点収差が0となるように非球面を設計した場合、大きな度数誤差が生じる。非点収差と度数誤差とのバランスをとって非球面を設計した場合には、周辺部における非点収差と度数誤差のうち一方が0である設計と比較すると値は小さいが、周辺部において度数誤差と非点収差との双方が発生する。つまり、特許文献1の眼鏡レンズでは、周辺部で一定以上のボケが生じるという不都合がある。 In the spectacle lens in which at least one of the object-side surface and the eyeball-side surface shown in Patent Document 1 is aspheric, the power error at the optical center is set to 0. When an aspherical surface is designed so that the error becomes 0, a large astigmatism occurs in the peripheral portion. On the other hand, when the aspherical surface is designed so that the astigmatism at the peripheral portion becomes zero, a large power error occurs. When an aspherical surface is designed with a balance between astigmatism and power error, the value is small compared to a design in which one of astigmatism and power error in the peripheral part is 0, but the power in the peripheral part is low. Both errors and astigmatism occur. In other words, the spectacle lens disclosed in Patent Document 1 has a disadvantage that a certain degree of blurring occurs in the peripheral portion.

 本発明の目的は、周辺部における像のボケを改善することができる眼鏡レンズを提供することにある。 An object of the present invention is to provide a spectacle lens that can improve blurring of an image in a peripheral portion.

 本発明の一態様に係る眼鏡レンズは、物体側の面と、眼球側の面と、を含み、前記物体側の面及び前記眼球側の面の少なくとも一方が非球面であり、光学中心の度数が、処方される球面度数Sである処方値Tと異なる。 An eyeglass lens according to an aspect of the present invention includes an object-side surface and an eyeball-side surface, and at least one of the object-side surface and the eyeball-side surface is an aspheric surface, and the optical center frequency Is different from the prescribed value T, which is the prescribed spherical power S.

 この構成の眼鏡レンズによれば、光学中心の度数が処方値Tと異なるので、光学中心の度数が処方値Tと等しい場合よりも、周辺部における円周方向の屈折力及び径方向の屈折力が処方値Tに近い値に設計できる。従って、光学中心の度数が処方値Tと等しい場合と比較して、周辺部における非点収差を同等に抑制し、かつ、度数誤差を小さくできるので、周辺部における像のボケを抑制できる。 According to the spectacle lens having this configuration, since the power at the optical center is different from the prescription value T, the refractive power in the circumferential direction and the refractive power in the radial direction in the peripheral portion are larger than when the power at the optical center is equal to the prescription value T. Can be designed to a value close to the prescription value T. Accordingly, astigmatism in the peripheral portion can be suppressed equally and the power error can be reduced compared with the case where the power at the optical center is equal to the prescription value T, and blurring of the image in the peripheral portion can be suppressed.

 本発明の一態様に係る眼鏡レンズは、前記処方値Tがマイナスである場合に、前記光学中心の度数が前記処方値Tよりもマイナス側にシフトされる。 In the spectacle lens according to one aspect of the present invention, when the prescription value T is negative, the power of the optical center is shifted to the negative side from the prescription value T.

 この構成の眼鏡レンズによれば、処方値Tがマイナスの場合に、光学中心の度数が処方値Tよりマイナス側にシフトされることで、非点収差が従来と殆どかわらない状態で、等価球面度数と処方値Tとの差を小さくできる。 According to the spectacle lens having this configuration, when the prescription value T is negative, the power of the optical center is shifted to the negative side from the prescription value T, so that the astigmatism is almost unchanged from the conventional one. The difference between the frequency and the prescription value T can be reduced.

 本発明の一態様の眼鏡レンズは、前記処方値Tがプラスである場合に、前記光学中心の度数が前記処方値Tよりもプラス側にシフトされる。 In the spectacle lens of one embodiment of the present invention, when the prescription value T is positive, the power of the optical center is shifted to the positive side from the prescription value T.

 この構成の眼鏡レンズによれば、処方値Tがプラスの場合、光学中心の度数が処方値Tよりプラス側に全体的にシフトされることで、非点収差が従来とかわらない状態で、等価球面度数が処方値Tに近接することになる。
 そのため、非点収差をそのままとし、度数誤差を従来に比べて小さなものにできるので、周辺部でのボケの発生を防止することができる。
According to the spectacle lens of this configuration, when the prescription value T is positive, the power of the optical center is entirely shifted to the plus side from the prescription value T, so that the astigmatism is equivalent to that in the conventional state. The spherical power is close to the prescription value T.
Therefore, the astigmatism is left as it is, and the power error can be made smaller than that in the prior art, so that it is possible to prevent the occurrence of blurring at the peripheral portion.

 本発明の一態様に係る眼鏡レンズは、前記物体側の面が球面であり、前記眼球側の面が前記非球面であり、前記眼球側の面の座標z(R)において曲率cが式(1)及び式(2)を満たす。 In the spectacle lens according to an aspect of the present invention, the object-side surface is a spherical surface, the eyeball-side surface is the aspheric surface, and a curvature c is expressed by an equation (z) in the coordinate z (R) of the eyeball-side surface. 1) and formula (2) are satisfied.

Figure JPOXMLDOC01-appb-M000001
                          式(1)
Figure JPOXMLDOC01-appb-M000001
Formula (1)

Figure JPOXMLDOC01-appb-M000002
                          式(2)
Figure JPOXMLDOC01-appb-M000002
Formula (2)

 ここで、Rは座標z(R)の光学中心からの距離、f(R)は補正項、D1は前記物体側の面の面屈折力、D2は前記眼球側の面の面屈折力、tはレンズ中心厚、nはレンズ屈折率、ΔDは前記処方値Tに対する前記光学中心の度数のシフト量である。 Here, R is the distance from the optical center of the coordinate z (R), f (R) is a correction term, D 1 is the surface refractive power of the object side surface, and D 2 is the surface refractive power of the eye side surface. , T is a lens center thickness, n is a lens refractive index, and ΔD is a shift amount of the optical center power with respect to the prescription value T.

 この構成の眼鏡レンズによれば、眼球側の面の座標z(R)における曲率cが、式(1)及びシフト量ΔDを加味した式(2)を満たす。従って、周辺部において、より確実に度数誤差を抑制できるので、より確実に周辺部におけるボケを抑制できる。 According to the spectacle lens having this configuration, the curvature c at the coordinate z (R) of the eyeball side surface satisfies the expression (2) in consideration of the expression (1) and the shift amount ΔD. Therefore, since the frequency error can be more reliably suppressed in the peripheral portion, the blur in the peripheral portion can be more reliably suppressed.

 本発明の一態様に係る眼鏡レンズは、前記処方値Tと等価球面度数とが一致する交点ycを含む。 The spectacle lens according to an aspect of the present invention includes an intersection point yc where the prescription value T and the equivalent spherical power coincide.

 チェルニングの楕円よりも浅いベースカーブ(曲率)で設計した場合、非点収差を減少させるような非球面量を与えると、外周に向かった等価球面度数はシフト方向と逆に変化する。従って、適正なシフト量を与えると必ず交点ycが1点存在することとなる。交点ycにおいて度数誤差が最も小さい0となる。 When designing with a base curve (curvature) shallower than the Chelning ellipse, if an aspherical amount that reduces astigmatism is given, the equivalent spherical power toward the outer circumference changes in the opposite direction to the shift direction. Accordingly, when an appropriate shift amount is given, there is always one intersection point yc. The frequency error is 0, which is the smallest at the intersection yc.

 本発明の一態様に係る眼鏡レンズは、前記交点ycは、眼球の回旋角が45°以下の位置にある。 In the spectacle lens according to one aspect of the present invention, the intersection yc is at a position where the rotation angle of the eyeball is 45 ° or less.

 この構成の眼鏡レンズでは、注視野を考慮すると、回旋角が交点ycが45°以下の位置にある。注視野とは、頭を動かすことなく、眼球の極度の運動により注視し得る範囲をいうが、この注視野が一般的に半径45°の円形になっている。本態様では交点yc付近のボケ指数が最も小さくなり、交点ycより外周部が従来よりもボケ指数が小さくなるため、交点ycが45°より大きな値では十分な効果が得られない。 In the spectacle lens having this configuration, the rotation angle is at a position where the intersection point yc is 45 ° or less in consideration of the field of view. The gaze field is a range in which gaze can be observed by extreme movement of the eyeball without moving the head, and this gaze field is generally circular with a radius of 45 °. In this embodiment, the blur index near the intersection yc is the smallest and the blur index is smaller at the outer peripheral portion than the conventional one at the intersection yc. Therefore, a sufficient effect cannot be obtained when the intersection yc is greater than 45 °.

 本発明の一態様に係る眼鏡レンズは、前記交点ycは回旋角が30°以下の位置が好ましい。 In the spectacle lens according to an aspect of the present invention, the intersection yc is preferably at a position where the rotation angle is 30 ° or less.

 この構成の眼光レンズでは、実際注視野を考慮して交点ycを設定した。実際注視野とは頭部の代償運動を超えて動く眼移動の範囲をいい、実際に側方にある物体をみるとき、全く頭を動かさないでみる場合は少ないことを考慮したものである(眼鏡光学II:早稲田眼鏡専門学校発行[著者:川端秀仁]初版1982年)。頭を動かすことを考慮すると回旋角は約30°になる。本態様では交点yc付近のボケ指数が最も小さくなり、交点ycより外周部が従来よりもボケ指数が小さくなるため、交点ycが30°以下の方が効果を得ることができる。 In the ophthalmic lens having this configuration, the intersection point yc was set in consideration of the actual gaze field. The actual gaze field is the range of eye movement that moves beyond the compensatory movement of the head, and it is considered that there are few cases where the head is not moved at all when actually looking at the object on the side ( Optics Optics II: Published by Waseda College of Optical [Author: Hidehito Kawabata] First Edition (1982). Considering moving the head, the rotation angle is about 30 °. In this aspect, the blur index near the intersection yc is the smallest, and the blurring index is smaller at the outer peripheral portion than at the intersection yc compared to the conventional one. Therefore, the effect can be obtained when the intersection yc is 30 ° or less.

本発明の一実施形態にかかる眼鏡レンズの概略図。1 is a schematic view of a spectacle lens according to an embodiment of the present invention. 実施例1の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。3 is a graph showing the relationship between refractive power D and rotation angle θ when wearing spectacles of Example 1. 実施例2の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。6 is a graph showing the relationship between refractive power D and rotation angle θ when wearing eyeglasses of Example 2. 実施例3の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。7 is a graph showing the relationship between refractive power D and rotation angle θ when wearing spectacles of Example 3. 実施例4の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。10 is a graph showing the relationship between refractive power D and rotation angle θ when wearing spectacles of Example 4. 比較例1の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。The graph which shows the relationship between the refractive power D at the time of spectacles wear of the comparative example 1, and rotation angle | corner (theta). 比較例2の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。The graph which shows the relationship between the refractive power D at the time of spectacles wear of the comparative example 2, and rotation angle | corner (theta). 比較例3の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。The graph which shows the relationship between the refractive power D at the time of spectacles wear of the comparative example 3, and rotation angle | corner (theta). 比較例4の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。The graph which shows the relationship between the refractive power D at the time of spectacles wear of the comparative example 4, and rotation angle | corner (theta). 比較例5の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。The graph which shows the relationship between the refractive power D at the time of spectacles wear of the comparative example 5, and rotation angle | corner (theta). 比較例6の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。The graph which shows the relationship between the refractive power D at the time of spectacles wear of the comparative example 6, and rotation angle | corner (theta). 比較例7の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。The graph which shows the relationship between the refractive power D at the time of spectacles wear of the comparative example 7, and rotation angle | corner (theta). 比較例8の眼鏡装用時の屈折力Dと回旋角θとの関係を示すグラフ。10 is a graph showing the relationship between refractive power D and rotation angle θ when wearing spectacles of Comparative Example 8. 実施例1、比較例1及び比較例7のボケ指数と回旋角θとの関係を示すグラフ。The graph which shows the relationship between the blurring index of Example 1, the comparative example 1, and the comparative example 7, and rotation angle | corner (theta). 実施例2、比較例2及び比較例7のボケ指数と回旋角θとの関係を示すグラフ。The graph which shows the relationship between the blurring index of Example 2, the comparative example 2, and the comparative example 7, and rotation angle | corner (theta). 実施例3、比較例3及び比較例8のボケ指数と回旋角θとの関係を示すグラフ。The graph which shows the relationship between the blurring index of Example 3, the comparative example 3, and the comparative example 8, and rotation angle | corner (theta). 実施例4、比較例4及び比較例8のボケ指数と回旋角θとの関係を示すグラフ。The graph which shows the relationship between the blurring index of Example 4, the comparative example 4, and the comparative example 8, and rotation angle | corner (theta).

 以下に、本発明の一実施形態を図面に基づいて説明する。
 図1は本実施形態にかかる眼鏡レンズの概略図である。
 図1において、眼鏡レンズLは、物体側の面Loが球面とされ、眼球側の面Liが非球面とされた単焦点レンズである。光学中心は本実施形態ではフィッティングポイントに一致しており、図1ではz軸で示されている。
 眼球の中心Eに集光される視線Pと光学中心とのなす角度を回旋角θとすると、回旋角θは視線Pが光学中心と一致する場合は0°であり、レンズ周辺に向かうに従って角度が大きくなる。
 眼鏡レンズLでは、処方される球面度数Sが処方値Tである。処方値Tがマイナスであるレンズは、主に、近視用として用いられるマイナスレンズであり、処方値Tがプラスであるレンズは、主に、遠視用として用いられるプラスレンズである。
 眼球側の面と物体側の面との双方が球面からなるレンズは球面レンズであり、一般的な球面レンズの座標は、光学中心(x、y)=(0,0)からの距離をRとし、曲率をcとすると、下記式(A)となる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a spectacle lens according to the present embodiment.
In FIG. 1, the spectacle lens L is a single focus lens in which the object-side surface Lo is a spherical surface and the eyeball-side surface Li is an aspherical surface. The optical center coincides with the fitting point in this embodiment, and is indicated by the z axis in FIG.
Assuming that the angle formed between the line of sight P collected at the center E of the eyeball and the optical center is the rotation angle θ, the rotation angle θ is 0 ° when the line of sight P coincides with the optical center, and the angle increases toward the lens periphery. Becomes larger.
In the spectacle lens L, the prescribed spherical power S is the prescription value T. A lens having a negative prescription value T is a negative lens mainly used for myopia, and a lens having a positive prescription value T is a positive lens mainly used for hyperopia.
A lens in which both the eyeball side surface and the object side surface are spherical is a spherical lens, and the coordinates of a general spherical lens are the distance from the optical center (x, y) = (0, 0). When the curvature is c, the following formula (A) is obtained.

Figure JPOXMLDOC01-appb-M000003
                           式(A)
Figure JPOXMLDOC01-appb-M000003
Formula (A)

 また、曲率c[1/m]、曲率半径r[m]、及び球面レンズの面屈折力Dの間には下記式(B)の関係がある。なお、nは眼鏡レンズLの素材の屈折率である。 Also, there is a relationship of the following formula (B) among the curvature c [1 / m], the curvature radius r [m], and the surface refractive power D of the spherical lens. Note that n is the refractive index of the material of the spectacle lens L.

Figure JPOXMLDOC01-appb-M000004
                           式(B)
Figure JPOXMLDOC01-appb-M000004
Formula (B)

 一般的な球面レンズの曲率cを設定するには、物体側の面の面屈折力をD1とし、眼球側の面の面屈折力をD2とし、レンズ中心厚をtとすると、下記式(C)の関係がある。式(C)の関係を満たす、D1とD2とを設定することで、光学中心での所望の処方度数(処方値T)が得られる。 To set the curvature c of a typical spherical lens, the surface power of the object-side surface of the D 1, the surface power of the surface on the eyeball side and D 2, when the lens center thickness and t, the following formula There is a relationship (C). By setting D 1 and D 2 that satisfy the relationship of the formula (C), a desired prescription power (prescription value T) at the optical center can be obtained.

Figure JPOXMLDOC01-appb-M000005
                           式(C)
Figure JPOXMLDOC01-appb-M000005
Formula (C)

 非球面レンズの座標は下記式(1)で求められる。 The coordinates of the aspherical lens can be obtained by the following formula (1).

Figure JPOXMLDOC01-appb-M000006
                           式(1)
Figure JPOXMLDOC01-appb-M000006
Formula (1)

 非球面レンズの座標の式(C)は、球面レンズの座標の式(A)に、f(R)の関数を付加したものである。f(R)はレンズ周辺部の光学特性を改善する式であり、種々の式が用いられるが、例えば、下記式(D)を採用することができる。
 なお、式(D)において、a4、a6、a8、a10は定数である。
The aspherical lens coordinate formula (C) is obtained by adding a function of f (R) to the spherical lens coordinate formula (A). f (R) is an expression for improving the optical characteristics of the lens peripheral portion, and various expressions are used. For example, the following expression (D) can be adopted.
In the formula (D), a 4 , a 6 , a 8 , and a 10 are constants.

Figure JPOXMLDOC01-appb-M000007
                           式(D)
Figure JPOXMLDOC01-appb-M000007
Formula (D)

 但し、光学中心付近では、R≒0であるため、f(R)は0とみなすことができる。
 ここで、本実施形態の眼鏡レンズLは、処方値Tがマイナスである場合には、光学中心の度数が処方値Tよりマイナス側にシフトされ、処方値Tがプラスである場合には、光学中心の度数が処方値Tよりプラスにシフトされる。つまり、本実施形態の眼鏡レンズLは、光学中心の度数が処方値Tと異なる。
 即ち、本実施形態において、物体側の面Loの面屈折力D1、眼球側の面Liの面屈折力D2、レンズ中心厚t及び処方値Tの関係を示す式は下記式(2)である。この式(2)は、式(C)に、光学中心の度数のシフト量ΔDを付加したものである。なお、球面設計された物体側の面Loの面屈折力は予め設定されたものを用いる。
 光学中心では、f(R)を0とした式(1)と式(2)とを満足させるような曲率cとする。
However, since R≈0 near the optical center, f (R) can be regarded as zero.
Here, in the spectacle lens L of the present embodiment, when the prescription value T is negative, the power of the optical center is shifted to the minus side from the prescription value T, and when the prescription value T is positive, The central frequency is shifted more positively than the prescription value T. That is, in the spectacle lens L of the present embodiment, the power at the optical center is different from the prescription value T.
That is, in the present embodiment, the surface power of the surface Lo of the object side D 1, surface power D 2 surface Li on the eyeball side, equations indicating the relationship between the lens center thickness t, and the prescription value T is the following formula (2) It is. This equation (2) is obtained by adding a power shift amount ΔD to the optical center to the equation (C). Note that the surface refractive power of the object-side surface Lo that is designed to be spherical is set in advance.
At the optical center, the curvature c is set so as to satisfy the expressions (1) and (2) where f (R) is zero.

Figure JPOXMLDOC01-appb-M000008
                           式(2)
Figure JPOXMLDOC01-appb-M000008
Formula (2)

 ここで、処方値Tがマイナスの眼鏡レンズLでは、シフト量ΔDはマイナス方向に0.25D(ディオプトリー)未満であり、処方値Tがプラスの眼鏡レンズLでは、シフト量ΔDはプラス方向に0.25D(ディオプトリー)未満に設定することが好ましい。これらの範囲であれば、シフト量ΔDは制限されるものではなく、シフト量ΔDが小さくても効果が得られる。なお、シフト量ΔDをプラスマイナスいずれも0.25D(ディオプトリー)としたのは、一般にレンズの設計が処方値Tを0.25D(ディオプトリー)ピッチとして行われるためである。これにより、眼鏡レンズLの製造を容易に行うことができる。
 また、処方度数Dに対する度数誤差の存在はボケの発生あるいは視力の低下を意味する。現在の単焦点レンズの多くは、処方値Tが0.25D(ディオプトリー)ピッチでの製作であり、検眼の精度や眼鏡レンズLのISO規格を考慮した上で十分に装用者に快適な視力を提供するための処方する側の要求に応えるものである。つまり、0.25Dまでの範囲であれば、度数が異なっていても装用時の快適性を損ねにくい。
 なお、処方値Tがマイナスの眼鏡レンズLでは、マイナス方向のシフトであれば、シフト量ΔDが小さくとも効果が得られるため、ボケの発生等を考慮して小さいシフト量としても良い。同様に、処方値Tがプラスの眼鏡レンズLでは、プラス方向のシフトであればシフト量ΔDが小さくとも効果を生じるため、小さいシフト量としても良い。
Here, in the spectacle lens L having a negative prescription value T, the shift amount ΔD is less than 0.25D (diopter) in the negative direction, and in the spectacle lens L having a positive prescription value T, the shift amount ΔD is 0 in the positive direction. It is preferable to set it to less than 25D (diopter). Within these ranges, the shift amount ΔD is not limited, and an effect can be obtained even if the shift amount ΔD is small. The reason why the shift amount ΔD is both 0.25 D (diopter) is that the lens is generally designed with the prescription value T set to 0.25 D (diopter) pitch. Thereby, manufacture of the spectacle lens L can be performed easily.
In addition, the presence of a power error with respect to the prescription power D means occurrence of blurring or a reduction in visual acuity. Many of the current single focus lenses are manufactured with a prescription value T of 0.25D (dioptre) pitch, and the eyesight is sufficiently comfortable for the wearer considering the accuracy of the optometry and the ISO standard of the spectacle lens L. It meets the requirements of the prescribing side to provide. That is, if the range is up to 0.25D, it is difficult to impair the comfort when worn even if the frequency is different.
In the case of the spectacle lens L having a negative prescription value T, if the shift is in the negative direction, the effect can be obtained even if the shift amount ΔD is small. Therefore, the shift amount may be small in consideration of the occurrence of blurring. Similarly, in the case of the spectacle lens L having a positive prescription value T, if the shift is in the positive direction, the effect can be obtained even if the shift amount ΔD is small.

[実施例1]
 実施例1は、物体側の面Loは面屈折力D1が2.50D(ディオプトリー)の球面であり、レンズ中心厚tが1.1mmである。レンズ屈折率nは1.662である。
 処方は球面度数Sが-4.00D(ディオプトリー)であり、乱視度数Cは設定されていない(C=0)。処方される球面度数Sである処方値Tは、-4.00である。つまり、実施例1はマイナスレンズである。
 実施例1は、後述する比較例1の非球面レンズに対してシフト量ΔDを付加したもので、シフト量ΔDは処方値T=-4.00に対してマイナス方向に0.10D(ディオプトリー)とした。
[Example 1]
In Example 1, the object-side surface Lo is a spherical surface having a surface refractive power D 1 of 2.50 D (diopter), and the lens center thickness t is 1.1 mm. The lens refractive index n is 1.661.
In the prescription, the spherical power S is −4.00 D (dioptry), and the astigmatic power C is not set (C = 0). The prescribed value T, which is the prescribed spherical power S, is −4.00. That is, Example 1 is a minus lens.
In Example 1, a shift amount ΔD is added to the aspherical lens of Comparative Example 1 described later. The shift amount ΔD is 0.10 D (diopter) in the minus direction with respect to the prescription value T = −4.00. It was.

 実施例1の眼鏡レンズLにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図2に示す。図2において、符号MDは径方向(メディジオナル方向)での屈折力を示し、符号SDは円周方向(サジタル方向)での屈折力を示す。そして、実施例1を含む実施例及び比較例において、符号Aは円周方向の屈折力MDと径方向の屈折力SDとの平均である等価球面度数を示す。
 図2に示されるグラフの通り、等価球面度数Aは回旋角θが35°の時に処方値Tと一致する。つまり、回旋角θが35°の場合に、処方値Tと等価球面度数Aとの交点ycが存在する。交点ycにおいて度数誤差が最も小さい0となる。
In the spectacle lens L of Example 1, the refractive power D and the rotation angle θ when wearing spectacles are simulated, and the relationship is shown in FIG. In FIG. 2, symbol MD indicates the refractive power in the radial direction (medicalal direction), and symbol SD indicates the refractive power in the circumferential direction (sagittal direction). In Examples and Comparative Examples including Example 1, the symbol A indicates an equivalent spherical power that is an average of the refractive power MD in the circumferential direction and the refractive power SD in the radial direction.
As shown in the graph of FIG. 2, the equivalent spherical power A coincides with the prescription value T when the rotation angle θ is 35 °. That is, when the rotation angle θ is 35 °, there is an intersection yc between the prescription value T and the equivalent spherical power A. The frequency error is 0, which is the smallest at the intersection yc.

[実施例2]
 実施例2は、面屈折力D1、レンズ中心厚t及びレンズ屈折率nが実施例1と同じである。そして、実施例2は球面度数S及び乱視度数Cが実施例1と同じであり、そのため、処方値Tが-4.00D(ディオプトリー)のマイナスレンズである。
 実施例2は、実施例1とは異なり、後述する非点収差が0の比較例2の非球面レンズに対してシフト量ΔDを付加したもので、シフト量ΔDは処方値T=-4.00に対してマイナス方向に0.20D(ディオプトリー)とした。
 実施例2の眼鏡装用時の屈折力Dと回旋角θとの関係を図3に示す。
 図3に示されるグラフの通り、実施例2は非点収差が0であるため、円周方向の屈折力MD、径方向の屈折力SD及び等価球面度数Aは一致しており、等価球面度数Aは回旋角θが30°の値の時に処方値Tと一致する。つまり、回旋角θが30°の場合に、処方値Tと等価球面度数Aとの交点ycが存在する。交点ycにおいて度数誤差が最も小さい0となる。
[Example 2]
In Example 2, the surface refractive power D 1 , the lens center thickness t, and the lens refractive index n are the same as those in Example 1. In Example 2, the spherical power S and the astigmatic power C are the same as those in Example 1. Therefore, the prescription value T is a minus lens having a −4.00 D (diopter).
In the second embodiment, unlike the first embodiment, a shift amount ΔD is added to the aspherical lens of the second comparative example having zero astigmatism described later, and the shift amount ΔD is equal to the prescription value T = −4. It was set to 0.20 D (diopter) in the minus direction with respect to 00.
FIG. 3 shows the relationship between the refractive power D and the rotation angle θ when the glasses are worn in the second embodiment.
As shown in the graph of FIG. 3, since the astigmatism in Example 2 is 0, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A match, and the equivalent spherical power A coincides with the prescription value T when the rotation angle θ is 30 °. That is, when the rotation angle θ is 30 °, there is an intersection yc between the prescription value T and the equivalent spherical power A. The frequency error is 0, which is the smallest at the intersection yc.

[実施例3]
 実施例3は、物体側の面Loは面屈折力D1が7.00D(ディオプトリー)の球面であり、レンズ中心厚tが5.5mmである。レンズ屈折率nは1.662である。
 処方は球面度数Sが+4.00D(ディオプトリー)であり、乱視度数Cは設定されていない。処方値T=+4.00である。つまり、実施例3はプラスレンズである。
 実施例3は、後述する比較例3の非球面レンズに対してシフト量ΔDを付加したもので、シフト量ΔDは処方値T=+4.00に対してプラス方向に0.10D(ディオプトリー)とした。
[Example 3]
In Example 3, the object-side surface Lo is a spherical surface having a surface refractive power D 1 of 7.00 D (diopter), and the lens center thickness t is 5.5 mm. The lens refractive index n is 1.661.
In the prescription, the spherical power S is +4.00 D (dioptry), and the astigmatic power C is not set. Prescription value T = + 4.00. That is, Example 3 is a plus lens.
In Example 3, a shift amount ΔD is added to the aspherical lens of Comparative Example 3 described later. The shift amount ΔD is 0.10 D (diopter) in the plus direction with respect to the prescription value T = + 4.00. did.

 実施例3の眼鏡装用時の屈折力Dと回旋角θとの関係を図4に示す。図4に示されるグラフの通り、円周方向の屈折力MDと径方向の屈折力SDとの平均である等価球面度数Aは回旋角θが35°の値の時に処方値Tと一致する。つまり、回旋角θが35°の場合に、処方値Tと等価球面度数Aとの交点ycが存在する。交点ycにおいて度数誤差が最も小さい0となる。 FIG. 4 shows the relationship between the refractive power D and the rotation angle θ when wearing the glasses of Example 3. As shown in the graph of FIG. 4, the equivalent spherical power A, which is the average of the refractive power MD in the circumferential direction and the refractive power SD in the radial direction, matches the prescription value T when the rotation angle θ is 35 °. That is, when the rotation angle θ is 35 °, there is an intersection yc between the prescription value T and the equivalent spherical power A. The frequency error is 0, which is the smallest at the intersection yc.

[実施例4]
 実施例4は、面屈折力D1、レンズ中心厚t及びレンズ屈折率nが実施例3と同じであり、球面度数S及び乱視度数Cが実施例3と同じであるため、処方値Tが+4.00D(ディオプトリー)のプラスレンズである。
 実施例4は、実施例3とは異なり、後述する非点収差0の比較例4の非球面レンズに対してシフト量ΔDを付加したもので、シフト量ΔDは処方値T=+4.00に対してプラス方向に0.20D(ディオプトリー)とした。
 実施例4の眼鏡装用時の屈折力Dと回旋角θとの関係を図5に示す。
 図5に示されるグラフの通り、円周方向の屈折力MD、径方向の屈折力SD及び等価球面度数Aは一致しており、等価球面度数Aは回旋角θが26°の値の時に処方値Tと一致する。つまり、回旋角θが26°の場合に、処方値Tと等価球面度数Aとの交点ycが存在する。交点ycにおいて度数誤差が最も小さい0となる。
[Example 4]
In the fourth embodiment, the surface refractive power D 1 , the lens center thickness t, and the lens refractive index n are the same as those in the third embodiment, and the spherical power S and the astigmatic power C are the same as those in the third embodiment. This is a positive lens of +4.00 D (diopter).
The fourth embodiment is different from the third embodiment in that a shift amount ΔD is added to the aspherical lens of the comparative example 4 having zero astigmatism described later, and the shift amount ΔD is set to a prescription value T = + 4.00. On the other hand, it was 0.20 D (diopter) in the plus direction.
FIG. 5 shows the relationship between the refractive power D and the rotation angle θ when the glasses are worn in Example 4.
As shown in the graph of FIG. 5, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A match, and the equivalent spherical power A is prescribed when the rotation angle θ is 26 °. It matches the value T. That is, when the rotation angle θ is 26 °, there is an intersection yc between the prescription value T and the equivalent spherical power A. The frequency error is 0, which is the smallest at the intersection yc.

[比較例1]
 比較例1は、度数誤差と非点収差とのバランスをとるような非球面で最適化した例である。比較例1は物体側の面の面屈折力D1、レンズ中心厚t、レンズ屈折率n、球面度数S及び乱視度数Cが実施例1と同じである。比較例1は、実施例1とは異なり、シフト量ΔDを付加していない。
 比較例1の眼鏡レンズにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図6に示す。
 図6に示されるグラフの通り、円周方向の屈折力MD、径方向の屈折力SD及びこれらの平均値である等価球面度数Aは回旋角θが0°の時に処方値Tの-4.00D(ディオプトリー)で一致するが、回旋角θが大きくなるに従って、処方値Tからプラス側に離れる。
[Comparative Example 1]
Comparative Example 1 is an example in which an aspherical surface that balances power error and astigmatism is optimized. Comparative Example 1 has the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C of the object side surface as in Example 1. Unlike Example 1, Comparative Example 1 does not add a shift amount ΔD.
In the spectacle lens of Comparative Example 1, the refractive power D and the rotation angle θ when wearing spectacles are simulated, and the relationship is shown in FIG.
As shown in the graph of FIG. 6, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average value thereof are the prescription value T−4. Although it agrees at 00D (diopter), it departs from the prescription value T to the plus side as the rotation angle θ increases.

[比較例2]
 比較例2は、非点収差0の非球面で最適化した例である。比較例2は物体側の面の面屈折力D1、レンズ中心厚t、レンズ屈折率n、球面度数S及び乱視度数Cが実施例2と同じである。比較例2は、実施例2とは異なり、シフト量ΔDを付加していない。
 比較例2の眼鏡レンズにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図7に示す。
 図7に示されるグラフの通り、円周方向の屈折力MD、径方向の屈折力SD及びこれらの平均である等価球面度数Aは回旋角θが0°の時に処方値Tの-4.00D(ディオプトリー)で一致するが、回旋角θが大きくなるに従って、処方値Tからプラス側に離れる。
[Comparative Example 2]
Comparative Example 2 is an example optimized with an aspherical surface with zero astigmatism. Comparative Example 2 has the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C of the object side surface as in Example 2. Unlike Example 2, the comparative example 2 does not add the shift amount ΔD.
In the spectacle lens of Comparative Example 2, the refractive power D and the rotation angle θ when wearing spectacles are simulated, and the relationship is shown in FIG.
As shown in the graph of FIG. 7, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are −4.00 D of the prescription value T when the rotation angle θ is 0 °. (Diopter) agrees, but as the rotation angle θ increases, the prescription value T departs to the plus side.

[比較例3]
 比較例3は、度数誤差と非点収差とのバランスをとるような非球面で最適化した例である。比較例3は物体側の面の面屈折力D1、レンズ中心厚t、レンズ屈折率n、球面度数S及び乱視度数Cが実施例3と同じである。比較例3は、実施例3とは異なり、シフト量ΔDを付加していない。
 比較例3の眼鏡レンズにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図8に示す。
 図8に示されるグラフの通り、円周方向の屈折力MD、径方向の屈折力SD及びこれらの平均である等価球面度数Aは回旋角θが0°の時に処方値Tの+4.00D(ディオプトリー)で一致するが、回旋角θが大きくなるに従って、処方値Tからマイナス側に離れる。
[Comparative Example 3]
Comparative Example 3 is an example in which an aspherical surface that balances power error and astigmatism is optimized. In Comparative Example 3, the surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C of the object side surface are the same as those in Example 3. Unlike Example 3, Comparative Example 3 does not add a shift amount ΔD.
In the spectacle lens of Comparative Example 3, the refractive power D and the rotation angle θ when wearing spectacles are simulated, and the relationship is shown in FIG.
As shown in the graph of FIG. 8, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are + 4.00D of the prescription value T when the rotation angle θ is 0 ° ( Although the values coincide with each other in the diopter), the distance from the prescription value T decreases toward the minus side as the rotation angle θ increases.

[比較例4]
 比較例4は、非点収差を0として非球面で最適化した例である。比較例4は物体側の面の面屈折力D1、レンズ中心厚t、レンズ屈折率n、球面度数S及び乱視度数Cが実施例4と同じプラスレンズである。比較例4は、実施例4とは異なり、シフト量ΔDを付加していない。
 比較例4の眼鏡レンズにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図9に示す。
 図9に示されるグラフの通り、円周方向の屈折力MD、径方向の屈折力SD及びこれらの平均である等価球面度数Aは回旋角θが0°の時に処方値Tの+4.00D(ディオプトリー)で一致するが、回旋角θが大きくなるに従って、処方値Tからマイナス側に離れる。
[Comparative Example 4]
Comparative Example 4 is an example in which astigmatism is set to 0 and optimization is performed on an aspheric surface. Comparative Example 4 is a plus lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C as in Example 4 on the object side surface. Unlike Example 4, the comparative example 4 does not add the shift amount ΔD.
In the spectacle lens of Comparative Example 4, the refractive power D and the rotation angle θ when wearing spectacles are simulated, and the relationship is shown in FIG.
As shown in the graph of FIG. 9, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are + 4.00D (the prescription value T when the rotation angle θ is 0 ° ( Although the values coincide with each other in the diopter), the distance from the prescription value T decreases toward the minus side as the rotation angle θ increases.

[比較例5]
 比較例5は、度数誤差を0にした非球面で最適化した例である。比較例5は物体側の面の面屈折力D1、レンズ中心厚t、レンズ屈折率n、球面度数S及び乱視度数Cが実施例1と同じマイナスレンズである。比較例5は、シフト量ΔDを付加していない。
 比較例5の眼鏡レンズにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図10に示す。
 図10に示されるグラフの通り、円周方向の屈折力MD、径方向の屈折力SD及びこれらの平均である等価球面度数Aは、回旋角θが0°の時に処方値Tの-4.00D(ディオプトリー)で一致するが、回旋角θが大きくなるに従って、円周方向の屈折力MDは処方値Tからマイナス方向に離れ、径方向の屈折力SDは処方値Tからプラス方向に離れ、等価球面度数Aは処方値Tの値のままである。
[Comparative Example 5]
Comparative Example 5 is an example of optimization with an aspherical surface in which the frequency error is zero. Comparative Example 5 is a negative lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C as in Example 1 on the object side surface. In Comparative Example 5, the shift amount ΔD is not added.
In the spectacle lens of Comparative Example 5, the refractive power D and the rotation angle θ when wearing spectacles were simulated, and the relationship is shown in FIG.
As shown in the graph of FIG. 10, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A, which is the average of these, are equal to the prescription value T −4. Although coincident at 00D (diopter), as the rotation angle θ increases, the circumferential refractive power MD deviates from the prescription value T in the negative direction, and the radial refractive power SD deviates from the prescription value T in the positive direction. The equivalent spherical power A remains as the prescription value T.

[比較例6]
 比較例6は、度数誤差を0にした非球面で最適化した例である。比較例6は物体側の面の面屈折力D1、レンズ中心厚t、レンズ屈折率n、球面度数S及び乱視度数Cが実施例3と同じプラスレンズである。比較例6は、実施例3とは異なり、シフト量ΔDを付加していない。
 比較例6の眼鏡レンズにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図11に示す。
 図11に示されるグラフの通り、円周方向の屈折力MD、径方向の屈折力SD及びこれらの平均である等価球面度数Aは、回旋角θが0°の時に処方値Tの+4.00D(ディオプトリー)で一致するが、回旋角θが大きくなるに従って、円周方向の屈折力MDは処方値Tからプラス方向に離れ、径方向の屈折力SDは処方値Tからマイナス方向に離れ、等価球面度数Aは処方値Tのままである。
[Comparative Example 6]
Comparative Example 6 is an example of optimization with an aspherical surface in which the frequency error is zero. Comparative Example 6 is a plus lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatic power C as those in Example 3, on the object side surface. Unlike the third embodiment, the comparative example 6 does not add the shift amount ΔD.
In the spectacle lens of Comparative Example 6, the refractive power D and the rotation angle θ when wearing spectacles were simulated, and the relationship is shown in FIG.
As shown in the graph of FIG. 11, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are + 4.00D of the prescription value T when the rotation angle θ is 0 °. (Diopter), but as the turning angle θ increases, the circumferential refractive power MD deviates from the prescription value T in the positive direction, and the radial refractive power SD deviates from the prescription value T in the negative direction. The spherical power A remains the prescription value T.

[比較例7]
 比較例7は、球面レンズの例である。比較例7は物体側の面の面屈折力D1、レンズ中心厚t、レンズ屈折率n、球面度数S及び乱視度数Cが実施例1と同じマイナスレンズである。
 比較例7の眼鏡レンズにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図12に示す。
 図12に示されるグラフの通り、球面レンズでは、円周方向の屈折力MD、径方向の屈折力SD及びこれらの平均である等価球面度数Aとは回旋角θが0°の時に処方値Tの-4.00D(ディオプトリー)で一致するが、回旋角θが大きくなるに従って、円周方向の屈折力MD及び等価球面度数Aは処方値Tからマイナス方向に大きく離れ、径方向の屈折力SDは処方値Tにほぼ一致することになる。
[Comparative Example 7]
Comparative Example 7 is an example of a spherical lens. Comparative Example 7 is a negative lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatism power C as in Example 1 on the object side surface.
In the spectacle lens of Comparative Example 7, the refractive power D and the rotation angle θ when wearing spectacles were simulated, and the relationship is shown in FIG.
As shown in the graph of FIG. 12, in the spherical lens, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these are the prescription value T when the rotation angle θ is 0 °. −4.00 D (diopter), but as the rotation angle θ increases, the circumferential refractive power MD and the equivalent spherical power A greatly deviate from the prescription value T in the negative direction, and the radial refractive power SD Substantially matches the prescription value T.

[比較例8]
 比較例8は、球面レンズの例である。比較例8は物体側の面の面屈折力D1、レンズ中心厚t、レンズ屈折率n、球面度数S及び乱視度数Cが実施例3と同じプラスレンズである。
 比較例8の眼鏡レンズにおいて、眼鏡装用時の屈折力Dと回旋角θとをシミュレートし、その関係を図13に示す。
 図13に示されるグラフの通り、球面レンズでは、円周方向の屈折力MD、径方向の屈折力SD及びこれらの平均である等価球面度数Aは回旋角θが0°の時に処方値Tの+4.00D(ディオプトリー)で一致するが、回旋角θが大きくなるに従って、円周方向の屈折力MD及び等価球面度数Aは処方値Tからプラス方向に大きく離れ、径方向の屈折力SDは処方値Tにほぼ一致することになる。
[Comparative Example 8]
Comparative Example 8 is an example of a spherical lens. Comparative Example 8 is a positive lens having the same surface refractive power D 1 , lens center thickness t, lens refractive index n, spherical power S, and astigmatic power C as those in Example 3, on the object side surface.
In the spectacle lens of Comparative Example 8, the refractive power D and the rotation angle θ when wearing spectacles were simulated, and the relationship is shown in FIG.
As shown in the graph of FIG. 13, in the spherical lens, the refractive power MD in the circumferential direction, the refractive power SD in the radial direction, and the equivalent spherical power A that is the average of these values are equal to the prescription value T when the rotation angle θ is 0 °. + 4.00D (diopter), but as the turning angle θ increases, the circumferential refractive power MD and the equivalent spherical power A greatly deviate from the prescription value T in the plus direction, and the radial refractive power SD is the prescription. It almost coincides with the value T.

 実施例の効果について説明する。
 図14は実施例1、比較例1及び比較例7のボケ指数と回旋角θとの関係を示すグラフである。
 ここで、ボケ指数とはレンズ装用時に度数誤差や非点収差によって生じるボケの程度を示す指数である。レンズの倍率及び個人の視覚の感度の違いにより、ボケか否かの客観的な判定は難しいが、ボケ指数が大きいほどレンズ装用時の分解能は落ちていく傾向にある。
 レンズを通して点光源を見たとき、レンズの度数誤差や非点収差によって、網膜上では点ではなく円や楕円に結像する。この円(または楕円)を錯乱円といい、錯乱円の対角線の長さに相当するものがボケ指数である。つまり、錯乱円(楕円)の長軸の長さをa、短軸の長さをbとすると、ボケ指数は錯乱円の対角線の長さ(a2+b21/2(mm)となる。ここでは、無限遠を無調節で見ると言う条件でボケ指数を計算した。
The effect of the embodiment will be described.
FIG. 14 is a graph showing the relationship between the blur index and the rotation angle θ of Example 1, Comparative Example 1, and Comparative Example 7.
Here, the blur index is an index indicating the degree of blur caused by a power error or astigmatism when a lens is worn. Although it is difficult to objectively determine whether or not it is out of focus due to differences in lens magnification and individual visual sensitivity, the larger the blur index, the lower the resolution when wearing the lens.
When a point light source is viewed through a lens, the image is formed on a circle or an ellipse instead of a point on the retina due to the power error and astigmatism of the lens. This circle (or ellipse) is called a circle of confusion, and the bokeh index corresponds to the length of the diagonal line of the circle of confusion. That is, if the length of the major axis of the circle of confusion (ellipse) is a and the length of the minor axis is b, the blur index is the length of the diagonal line of the circle of confusion (a 2 + b 2 ) 1/2 (mm). . Here, the blur index was calculated under the condition that the infinity was viewed without adjustment.

 ボケ指数の好ましい範囲は、種々の条件で変わるが、例えば、0.2以下、あるいは、0.25以下と設定することができる。眼鏡レンズLを装用した際に、回旋角θが45°以上の範囲は使用される可能性が小さく、回旋角θが45°以下の範囲でのボケの有無が装用者にとって重要となる。眼球だけを45°を超えて動かすことはほとんどないから、回旋角θが45°を超える回旋角θの範囲は実際にはほとんど用いられないので、装用者にとって45°以上の範囲におけるボケの有無は相対的に重要ではない。
 図14において、実施例1は、回旋角θが0°の場合、比較例1,7に比べてボケ指数が大きいが、回旋角θが28°から40°の範囲では比較例1,7に比べて小さくなっており、0°から40°の範囲にかけて0.2以下の範囲に収まっている。これに対して、実施例1の前提となった比較例1や球面レンズの比較例7は回旋角θが0°に近い場合は実施例1よりボケ指数が小さいが、比較例1では35°を超えるあたりから、つまり、レンズの周辺部においてボケ指数が0.2を超え、比較例7では18°を超えるあたりからボケ指数が0.2を超える。即ち、実施例1は比較例1及び比較例7よりも広い視野角の範囲においてボケが少ない。
The preferable range of the blur index varies depending on various conditions, but can be set to 0.2 or less, or 0.25 or less, for example. When the spectacle lens L is worn, the range where the rotation angle θ is 45 ° or more is unlikely to be used, and the presence or absence of blurring when the rotation angle θ is 45 ° or less is important for the wearer. Since there is almost no movement of only the eyeball beyond 45 °, the range of the rotation angle θ exceeding 45 ° is not practically used, so there is no blur in the range of 45 ° or more for the wearer. Is relatively unimportant.
In FIG. 14, in Example 1, when the rotation angle θ is 0 °, the blur index is larger than that of Comparative Examples 1 and 7, but in the range of the rotation angle θ of 28 ° to 40 °, It is smaller than that and falls within the range of 0.2 or less from 0 ° to 40 °. In contrast, Comparative Example 1 and Comparative Example 7 of the spherical lens, which are the premise of Example 1, have a smaller blur index than Example 1 when the rotation angle θ is close to 0 °, but 35 ° in Comparative Example 1. In other words, the blur index exceeds 0.2 at the periphery of the lens, and in Comparative Example 7, the blur index exceeds 0.2 when the angle exceeds 18 °. That is, Example 1 has less blur in a wider viewing angle range than Comparative Example 1 and Comparative Example 7.

 図15は実施例2、比較例2及び比較例7のボケ指数と回旋角θとの関係を示すグラフである。
 実施例2は、回旋角θが0°の場合、比較例2,7に比べてボケ指数が大きいが、回旋角θが22°から40°の範囲では比較例2,7に比べて小さくなっており、0°から40°の範囲にかけて0.25以下の範囲に収まっている。これに対して、実施例2の前提となった比較例2や球面レンズの比較例7は回旋角θが0°に近い場合は実施例2よりボケ指数が小さいが、比較例2では30°を超えるあたりからボケ指数が0.25を超える。比較例7では20°を超えるあたりからボケ指数が0.25を超える。
FIG. 15 is a graph showing the relationship between the blur index and the rotation angle θ of Example 2, Comparative Example 2, and Comparative Example 7.
In Example 2, when the rotation angle θ is 0 °, the blur index is larger than that of Comparative Examples 2 and 7, but when the rotation angle θ is in the range of 22 ° to 40 °, it is smaller than that of Comparative Examples 2 and 7. It is within the range of 0.25 or less from 0 ° to 40 °. In contrast, Comparative Example 2 and Comparative Example 7 of the spherical lens, which are the premise of Example 2, have a smaller blur index than Example 2 when the rotation angle θ is close to 0 °, but 30 ° in Comparative Example 2. Bokeh index exceeds 0.25 from above. In Comparative Example 7, the blur index exceeds 0.25 from around 20 °.

 図16は実施例3、比較例3及び比較例8のボケ指数と回旋角θとの関係を示すグラフである。
 実施例3は、回旋角θが0°の場合、比較例3,8に比べてボケ指数が大きいが、回旋角θが30°から40°の範囲では比較例3,8に比べて小さくなっており、0°から40°の範囲にかけて0.2以下の範囲に収まっている。これに対して、実施例3の前提となった比較例3や球面レンズの比較例8は回旋角θが0°に近い場合は実施例3よりボケ指数が小さいが、比較例3では35°を超えるあたりからボケ指数が0.2を超える。比較例8では18°を超えるあたりからボケ指数が0.2を超える。
FIG. 16 is a graph showing the relationship between the blur index and the rotation angle θ of Example 3, Comparative Example 3, and Comparative Example 8.
In Example 3, when the rotation angle θ is 0 °, the blur index is larger than that of Comparative Examples 3 and 8, but when the rotation angle θ is in the range of 30 ° to 40 °, it is smaller than that of Comparative Examples 3 and 8. It falls within the range of 0.2 or less from 0 ° to 40 °. On the other hand, the comparative example 3 and the comparative example 8 of the spherical lens which are the premise of the example 3 have a smaller blur index than the example 3 when the rotation angle θ is close to 0 °, but the comparative example 3 has a degree of 35 °. The blur index exceeds 0.2 from around In Comparative Example 8, the blur index exceeds 0.2 from around 18 °.

 図17は実施例4、比較例4及び比較例8のボケ指数と回旋角θとの関係を示すグラフである。
 実施例4は、回旋角θが0°の場合、比較例4,8に比べてボケ指数が大きいが、回旋角θが20°から40°の範囲では比較例4,8に比べて小さくなっており、0°から40°の範囲にかけて0.25以下の範囲に収まっている。これに対して、実施例4の前提となった比較例4や球面レンズの比較例8は回旋角θが0°に近い場合は実施例4よりボケ指数が小さいが、比較例4では30°を超えるあたりからボケ指数が0.25を超える。比較例8では20°を超えるあたりからボケ指数が0.25を超える。
FIG. 17 is a graph showing the relationship between the blur index and the rotation angle θ in Example 4, Comparative Example 4 and Comparative Example 8.
In Example 4, when the rotation angle θ is 0 °, the blur index is larger than that of Comparative Examples 4 and 8, but when the rotation angle θ is in the range of 20 ° to 40 °, it is smaller than that of Comparative Examples 4 and 8. It is within the range of 0.25 or less from 0 ° to 40 °. On the other hand, the comparative example 4 and the comparative example 8 of the spherical lens, which are the premise of the fourth example, have a smaller blur index than the fourth example when the rotation angle θ is close to 0 °. Bokeh index exceeds 0.25 from above. In Comparative Example 8, the blur index exceeds 0.25 from around 20 °.

 従って、本実施形態は、光学中心の度数が処方値Tである場合と比較して、より広い視野角の範囲において非点収差や度数誤差に由来するボケを抑制できる。本実施形態の眼鏡レンズLは、交点ycを含むように設計することで、レンズ周辺部における度数誤差をさらに抑制できるので、周辺部におけるボケをより少なくすることができる。 Therefore, this embodiment can suppress blurring due to astigmatism and power error in a wider viewing angle range than when the power at the optical center is the prescription value T. The spectacle lens L of the present embodiment is designed so as to include the intersection point yc, so that the power error in the lens periphery can be further suppressed, so that the blur in the periphery can be further reduced.

 なお、本発明は、上述した一実施形態に限定されるものではなく、本発明の目的を達成できる範囲で以下に示される変形をも含む。
 例えば、前記実施形態では、物体側の面Loが球面であり、眼球側の面Liが非球面の眼鏡レンズLについて説明したが、本発明では、物体側の面Loと眼球側の面Liとの少なくとも一方が非球面とされた眼鏡レンズに適用できる。物体側の面Loが非球面であり、眼球側の面Liが球面である場合や、物体側の面Loと眼球側の面Liとの双方が非球面である場合に適用できる。
Note that the present invention is not limited to the above-described embodiment, and includes the following modifications as long as the object of the present invention can be achieved.
For example, in the above-described embodiment, the spectacle lens L in which the object-side surface Lo is a spherical surface and the eyeball-side surface Li is an aspheric surface has been described. However, in the present invention, the object-side surface Lo and the eyeball-side surface Li It can be applied to a spectacle lens in which at least one of them is aspherical. The present invention can be applied when the object-side surface Lo is an aspheric surface and the eyeball-side surface Li is a spherical surface, or when both the object-side surface Lo and the eyeball-side surface Li are aspherical surfaces.

 さらに、乱視度数Cがない実施形態について説明したが、本発明は、乱視度数Cがある眼鏡レンズLに適用できる。乱視度数Cがある場合には、乱視軸Ax方向の主径線及び乱視軸Axと直交する方向の主経線についてそれぞれ曲率cを求めることが好ましい。この場合、乱視軸をAxとして、乱視軸Ax方向では球面度数Sを処方値Tとして、前述の式(1)及び式(2)を満たすように、乱視軸Ax方向の曲率cを決定する。一方、乱視軸Axと直交する方向では球面度数Sと乱視度数Cとの式「S+C」を処方値Tとして、前述の式(1)及び式(2)を満たすように、乱視軸Axと直交する方向の曲率cを決定する。なお、光学中心の度数のシフト量をΔDは各主径線で異なる値であっても前述の効果を得ることができる。 Furthermore, although the embodiment having no astigmatism power C has been described, the present invention can be applied to a spectacle lens L having an astigmatism power C. When there is an astigmatism power C, it is preferable to obtain the curvature c for the main radial line in the direction of the astigmatic axis Ax and the main meridian in the direction orthogonal to the astigmatic axis Ax. In this case, the curvature c in the astigmatic axis Ax direction is determined so as to satisfy the above-described formulas (1) and (2), with the astigmatic axis as Ax and the spherical power S in the astigmatic axis Ax direction as the prescription value T. On the other hand, in the direction orthogonal to the astigmatism axis Ax, the formula “S + C” of the spherical power S and the astigmatism power C is set as the prescription value T, and is orthogonal to the astigmatism axis Ax so as to satisfy the above formulas (1) and (2). The curvature c in the direction to be determined is determined. It should be noted that the above-described effects can be obtained even when ΔD is a different value of the power shift amount of the optical center.

 L…眼鏡レンズ、Lo…物体側の面、Li…眼球側の面、MD…円周方向での屈折力、SD…径方向での屈折力、A…等価球面度数、ΔD…シフト量、t…レンズ中心厚、θ…回旋角。 L: spectacle lens, Lo: object side surface, Li: eyeball side surface, MD: refractive power in the circumferential direction, SD: refractive power in the radial direction, A: equivalent spherical power, ΔD: shift amount, t ... lens center thickness, θ ... rotation angle.

Claims (8)

 物体側の面と、
 眼球側の面と、
 を含み、
 前記物体側の面及び前記眼球側の面の少なくとも一方が非球面であり、
 光学中心の度数が、処方される球面度数Sである処方値Tと異なる、
 眼鏡レンズ。
The object side surface,
The eyeball side,
Including
At least one of the object side surface and the eyeball side surface is an aspherical surface,
The power of the optical center is different from the prescription value T, which is the prescription spherical power S,
Eyeglass lens.
 請求項1に記載された眼鏡レンズにおいて、
 前記処方値Tがマイナスである場合に、前記光学中心の度数が前記処方値Tよりもマイナス側にシフトされる、
 眼鏡レンズ。
The spectacle lens according to claim 1,
When the prescription value T is negative, the power of the optical center is shifted to the negative side from the prescription value T.
Eyeglass lens.
 請求項2に記載された眼鏡レンズにおいて、
 前記物体側の面が球面であり、前記眼球側の面が前記非球面であり、
 前記眼球側の面の座標z(R)において曲率cが式(1)及び式(2)を満たす、
 眼鏡レンズ。
Figure JPOXMLDOC01-appb-M000009
                           式(1)
Figure JPOXMLDOC01-appb-M000010
                           式(2)
 ここで、Rは座標z(R)の光学中心からの距離、f(R)は補正項、D1は前記物体側の面の面屈折力、D2は前記眼球側の面の面屈折力、tはレンズ中心厚、nはレンズ屈折率、ΔDは前記処方値Tに対する前記光学中心の度数のシフト量である。
The spectacle lens according to claim 2,
The object-side surface is a spherical surface, and the eyeball-side surface is the aspheric surface;
The curvature c satisfies the expressions (1) and (2) at the coordinate z (R) of the surface on the eyeball side.
Eyeglass lens.
Figure JPOXMLDOC01-appb-M000009
Formula (1)
Figure JPOXMLDOC01-appb-M000010
Formula (2)
Here, R is the distance from the optical center of the coordinate z (R), f (R) is a correction term, D 1 is the surface refractive power of the object side surface, and D 2 is the surface refractive power of the eye side surface. , T is a lens center thickness, n is a lens refractive index, and ΔD is a shift amount of the optical center power with respect to the prescription value T.
 請求項1に記載された眼鏡レンズにおいて、
 前記処方値Tがプラスである場合に、前記光学中心の度数が前記処方値Tよりもプラス側にシフトされる、
 眼鏡レンズ。
The spectacle lens according to claim 1,
When the prescription value T is positive, the power of the optical center is shifted to the positive side from the prescription value T.
Eyeglass lens.
 請求項4に記載された眼鏡レンズにおいて、
 前記物体側の面が球面であり、前記眼球側の面が前記非球面であり、
 前記眼球側の面の座標z(R)において曲率cが式(1)及び式(2)を満たす、
 眼鏡レンズ。
Figure JPOXMLDOC01-appb-M000011
                           式(1)
Figure JPOXMLDOC01-appb-M000012
                           式(2)
 ここで、Rは座標z(R)の光学中心からの距離、f(R)は補正項、D1は前記物体側の面の面屈折力、D2は前記眼球側の面の面屈折力、tはレンズ中心厚、nはレンズ屈折率、ΔDは前記処方値Tに対する前記光学中心の度数のシフト量である。
The spectacle lens according to claim 4,
The object-side surface is a spherical surface, and the eyeball-side surface is the aspheric surface;
The curvature c satisfies the expressions (1) and (2) at the coordinate z (R) of the surface on the eyeball side.
Eyeglass lens.
Figure JPOXMLDOC01-appb-M000011
Formula (1)
Figure JPOXMLDOC01-appb-M000012
Formula (2)
Here, R is the distance from the optical center of the coordinate z (R), f (R) is a correction term, D 1 is the surface refractive power of the object side surface, and D 2 is the surface refractive power of the eye side surface. , T is a lens center thickness, n is a lens refractive index, and ΔD is a shift amount of the optical center power with respect to the prescription value T.
 請求項3または請求項5に記載された眼鏡レンズにおいて、
 前記シフト量ΔDはプラス方向の絶対値が0.25D(ディオプトリー)未満である、
 眼鏡レンズ。
In the spectacle lens according to claim 3 or claim 5,
The absolute value in the positive direction of the shift amount ΔD is less than 0.25D (diopter).
Eyeglass lens.
 請求項1ないし請求項6のいずれか1項に記載された眼鏡レンズにおいて、
 前記処方値Tと等価球面度数とが一致する交点ycを含む、
 眼鏡レンズ。
In the spectacle lens according to any one of claims 1 to 6,
Including an intersection point yc where the prescription value T and the equivalent spherical power match.
Eyeglass lens.
 請求項7に記載された眼鏡レンズにおいて、
 前記交点ycは、眼球の回旋角が45°以下の位置にある、
 眼鏡レンズ。
The spectacle lens according to claim 7,
The intersection point yc is at a position where the rotation angle of the eyeball is 45 ° or less.
Eyeglass lens.
PCT/JP2012/007917 2011-12-20 2012-12-11 Eyeglasses lens Ceased WO2013094153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-278334 2011-12-20
JP2011278334A JP2013130619A (en) 2011-12-20 2011-12-20 Spectacle lens

Publications (1)

Publication Number Publication Date
WO2013094153A1 true WO2013094153A1 (en) 2013-06-27

Family

ID=48668072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007917 Ceased WO2013094153A1 (en) 2011-12-20 2012-12-11 Eyeglasses lens

Country Status (2)

Country Link
JP (1) JP2013130619A (en)
WO (1) WO2013094153A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3206900A1 (en) * 2021-01-28 2022-08-04 Nikon-Essilor Co., Ltd. Eyeglass lens design device, eyeglass lens design method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450012A (en) * 1987-08-21 1989-02-27 Asahi Glass Co Ltd Spectacle lens with small aberration
JPH0862497A (en) * 1994-08-23 1996-03-08 Konica Corp Spectacle lens for presbyopia
JP2003215507A (en) * 2002-01-18 2003-07-30 Pentax Corp A spherical surface eyeglass lens
JP2008077098A (en) * 1999-02-12 2008-04-03 Hoya Corp Spectacle lens and manufacturing method therefor
JP2009086568A (en) * 2007-10-03 2009-04-23 Tokai Kogaku Kk Lens correction prescription power display method
JP2013050556A (en) * 2011-08-30 2013-03-14 Hoya Corp Method for designing spectacle lens, method for manufacturing spectacle lens, and system for designing spectacle lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450012A (en) * 1987-08-21 1989-02-27 Asahi Glass Co Ltd Spectacle lens with small aberration
JPH0862497A (en) * 1994-08-23 1996-03-08 Konica Corp Spectacle lens for presbyopia
JP2008077098A (en) * 1999-02-12 2008-04-03 Hoya Corp Spectacle lens and manufacturing method therefor
JP2003215507A (en) * 2002-01-18 2003-07-30 Pentax Corp A spherical surface eyeglass lens
JP2009086568A (en) * 2007-10-03 2009-04-23 Tokai Kogaku Kk Lens correction prescription power display method
JP2013050556A (en) * 2011-08-30 2013-03-14 Hoya Corp Method for designing spectacle lens, method for manufacturing spectacle lens, and system for designing spectacle lens

Also Published As

Publication number Publication date
JP2013130619A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
CA2858700C (en) Toric lens
TW201743113A (en) Multifocal lens design and method for preventing and/or slowing myopia progression
KR20100091183A (en) Ophthalmic lens element
CN101595420A (en) Ophthalmic lens element
JP2010009071A (en) Progressive spectacle lens comprising two aspherical surfaces, particularly progressive surfaces, and method of calculating the same
JP5388579B2 (en) Eyeglass lenses
CN106461976B (en) Progressive-power lens
JP5989317B2 (en) Progressive power lens, manufacturing method thereof, and designing method thereof
CA3095519C (en) A method for determining a single vision ophthalmic lens
JP2012233959A (en) Spectacle lens, spectacle, method for designing spectacle lens, and design device
CN106461977B (en) Progressive-power lens
JP2008249828A (en) Eyeglass lens and design method thereof
JP2016026324A (en) Lens for spectacle, spectacle, design method of spectacle lens, and design device
WO2013094153A1 (en) Eyeglasses lens
JP6059483B2 (en) Spectacle lens design method and spectacle lens manufacturing method
CN113906332B (en) Design method of progressive refractive power lens, design system of progressive refractive power lens
US8092012B2 (en) Single vision spectacle lens
RU2813074C2 (en) Toric ophthalmic contact lens (embodiments)
CN1701258A (en) Progressive refractive power lens and manufacturing method
CN106605168A (en) Spectacle ophthalmic lenses, method for determining spectacle ophthalmic lenses
WO2010044266A1 (en) Progressive power lens and progressive power lens series
WO2010044260A1 (en) Progressive power lens
JP2015158688A (en) Inner face progressive refractive power lens, method for designing inner face progressive refractive power lens, and method for manufacturing inner face progressive refractive power lens
JP2018112633A (en) Progressive power lens
JP2010096853A (en) Progressive refractive power lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859475

Country of ref document: EP

Kind code of ref document: A1