[go: up one dir, main page]

WO2013084036A1 - Method for producing mechanical work - Google Patents

Method for producing mechanical work Download PDF

Info

Publication number
WO2013084036A1
WO2013084036A1 PCT/IB2012/002379 IB2012002379W WO2013084036A1 WO 2013084036 A1 WO2013084036 A1 WO 2013084036A1 IB 2012002379 W IB2012002379 W IB 2012002379W WO 2013084036 A1 WO2013084036 A1 WO 2013084036A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
actuating device
mechanical work
rotation
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2012/002379
Other languages
French (fr)
Inventor
Georgy Ramasanovich UMAROV
Sergey Ivanovich BOYCHENKO
Shiv Vikram KHEMKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solaris Holdings Ltd
Original Assignee
Solaris Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solaris Holdings Ltd filed Critical Solaris Holdings Ltd
Priority to RU2014123114A priority Critical patent/RU2014123114A/en
Priority to JP2014545373A priority patent/JP2015505931A/en
Priority to US14/363,192 priority patent/US20150240641A1/en
Priority to EP12806660.2A priority patent/EP2788582B1/en
Priority to CN201280066606.4A priority patent/CN104093936B/en
Priority to ES12806660T priority patent/ES2763855T3/en
Publication of WO2013084036A1 publication Critical patent/WO2013084036A1/en
Anticipated expiration legal-status Critical
Priority to US16/293,023 priority patent/US20190264565A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/32Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • F01D1/38Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes of the screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/17Two-dimensional hyperbolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/27Three-dimensional hyperboloid

Definitions

  • the invention pertains to the field of power plant engineering (power engineering) and may be applied to convert kinetic and thermal energy of a working medium into mechanical work.
  • Patents US3282560, 1 1.01.1966, CH669428, 15.03.1989, and RU2200848, 20.03.2003 cover methods for producing mechanical energy in a gas turbine, where compressed gas energy is converted in the blade system into mechanical work of the shaft.
  • the working medium is at the same time fed into the channels of the turbine rotor and accelerated at the outflow from the channels, the rotation of the rotor being provided.
  • thermodynamic cycles There are known methods for converting thermal energy into mechanical work that consist in additional conversion of the internal heat of the working medium into its kinetic energy, and further into mechanical energy.
  • the complementary kinetic energy is generated in this case from a portion of heat that during known thermodynamic cycles is removed into the heat receiver.
  • the complementary kinetic energy of a working medium is extracted by means of directional spatial orientation of its micro- volumes (Patent RU2134354, 10.08.1999).
  • Patents RU2006589, 30.01.1994 and RU2031230, 20.03.1995 the thermodynamic state of the working medium is changed before the latter is introduced into the turbine, and rotary motion is imparted to the working medium at different angles to the turbine rotor shaft.
  • the flow conditions created in this case for the working medium (in particular, specified distribution of peripheral velocities of the working medium micro-volumes is provided depending on the distance to the rotor shaft) are such that a portion of its heat would spontaneously generate an increment to the rotary motion of the working medium itself.
  • a known method for converting thermal and kinetic energies of a working medium into mechanical work covered by Patent RU2084645, 20.07.1997 consists in the fact that before reaching the blades of a centripetal turbine, the pre-compressed working medium is spirally swirled in a guide assembly and then directed to an acceleration chamber to be expanded and cooled, and after the dynamic pressure acts on the turbine blades, the working medium is compressed.
  • a higher efficiency factor of conversion is achieved by selecting an optimal angle of swirl for the working medium flow in the guide assembly so as to ensure an increase in the velocity of a unit mass of the working medium on approaching the axis of rotation. According to the inventor, this is an essential condition for partial heat transition to rotary motion without enlarging the volume of the working medium, and thus for a higher efficiency factor of conversion.
  • the efficiency factor gain in the described method may turn out to be less significant because of the need to match the blade shapes of the guide assembly and the turbine.
  • the technical result which this invention is aimed at consists in the development of an economical method for producing mechanical energy with its relatively easy implementation.
  • the defined technical result is achieved by the fact that in the method for producing mechanical work, which includes swirling of a pre-compressed working medium, its expansion in an actuating device to produce mechanical work in the form of rotation of the shaft of the actuating device, and discharge of the working medium from the said device, the working medium is swirled directly in the actuating device along a spatial trajectory in the form of a conical helix, the projection of which on a plane positioned at an angle to the axis of rotation is a curve having at least two breakpoints. A segment of the curve may be shaped as a hyperbolic spiral. The lead of the conical helix in a frontal plane passing through the axis of rotation may be made variable.
  • the working medium may be a liquid or a gas.
  • the discharge of the working, medium from the actuating device may be accomplished by at least two jets.
  • the working medium is discharged to a closed shell.
  • the shell is made in the form of a blade turbine and mounted with a capability of rotating.
  • space trajectory of a working medium as any second-order 3D curve can be uniquely represented by its plane projection at an angle to the rotation axis wherein every point of the curve on the plane corresponds with a point of the space curve. For that reason in order to make an algorithm of execution of an announced trajectory it is convenient to represent the space curve as its projection at an angle to the rotation axis, particularly as its orthogonal projection (at a right angle to the axis of rotation) shown in Fig.1.
  • the conical spiral with at least two breakpoints represents a piecewise smooth curve composed of three parts each described with following canonical parametric equations:
  • any segment of the curve mentioned above can be made in a shape of a hyperbolic spiral.
  • an additional "vortex source” with considerable energy potential is created.
  • tail ends of the trajectory in this manner, where the working medium jet outcome of the swirler takes place.
  • ⁇ , ⁇ are constants chosen for maximum efficiency.
  • the distinctive feature of the suggested method is the fact that the trajectory of the working medium move has breakpoints.
  • the breakpoints on a conical spiral are responsible (as the applicant reasonably affirms) for discontinuous change in quantum-mechanical state of the system the working environment represents. This change initiates the processes mentioned above which impart additional heat release in the vortex and lead to the suggested technical result.
  • the essence of the suggested method is the fact that the increment velocity of the rotary motion is provided by generating the rotary motion from a portion of heat removed to the heat receiver during implementation of known thermodynamic cycles.
  • the method is based on a statement (proved scientifically and experimentally) that heat release in a gas vortex is capable of inducing large- scale azimuthal motion, increasing the total flow circulation (Yusupaliyev U. et al. "Heat Release as a Mechanism of Self-Sustaining of Gas Vortex Flow", Applied Physics, 2000, No. 1, p. 5-10) [1].
  • This work analyzes the mechanism of converting latent thermal energy into the kinetic energy of a vortex flow and demonstrates the connection of the conversion factor with the rotary velocity of the flow and the size (geometry) of the operating region of a heat source.
  • the efficiency of converting thermal energy into the kinetic energy of azimuthal motion is expressed as:
  • r 1; r 2 - heat source boundaries i.e., a heat source of T 0 poc p f(r) volume density is acting in a region confined by r ! ⁇ r ⁇ r 2 )
  • the suggested model gives a good description of processes occurring in a vortex (tornado), where heat is released as a result of recombination and aggregation of molecules.
  • the additional torque is imparted to the shaft as well by the working medium outflow from the actuating device in at least two jets tangential to the circumference in a plane perpendicular to the axis of rotation of the shaft.
  • the dynamic pressure of the jets allows the internal energy of the working medium to be used to the fullest extent.
  • the actuating device is enclosed in a rotatably mounted shell with the formation of an annular space that maintains the working medium in full volume for the purpose of its further regeneration in order to arrange a closed work cycle of producing the mechanical work. If the shell and the actuating mechanism mounted on the same shaft are rigidly coupled, energy loss may be caused by the fact that according to the angular momentum conservation law, the net torque created on the rotor is compensated for by a reciprocal moment produced by deceleration of the used working medium on the inner surface of the shell.
  • Fig. 2 represents the functional diagram of the apparatus.
  • Fig. 3 represents a schematic image of the actuating device design shown in section along the axis of rotation of the shaft.
  • the basic element of the apparatus is actuating device 1 containing guide assembly ("swirler") 2 that forms space trajectory for the working medium.
  • Swirler is a linear bushing with several channels in its body (two in this particular device), each representing a conical spiral with two breakpoints.
  • each of the channels is described with expressions (1), (2) and (3), given predetermined values of constants, swirler dimensioning specifications and the necessity to reach the highest efficiency factor.
  • step of the conical helix may be chosen as variable.
  • Swirler 2 is rigidly secured on shaft 3, which is the axis of the apparatus, and is enclosed in rotatably mounted shell 4.
  • the shell of the actuating device in a particular case is made in the form of a blade turbine.
  • the actuating device is equipped with inlet pipe branch 5 for the working medium and outlet nozzle 6 to discharge the working medium from the actuating device.
  • Mechanically coupled to the shaft of the actuating device are mechanical energy sink shaft 7 (for example, rotor shaft of an electric machine) and compressor shaft 8.
  • the compressor outlet closes on the inlet pipe branch of the actuating device, while its inlet closes on the outlet pipe branch for providing a closed cycle of producing mechanical energy.
  • the latter may be composed of two parts.
  • the method for producing mechanical work is implemented as follows.
  • the working medium (water, viscous fluid, gas) pre-compressed in compressor 8 is supplied via inlet pipe branch 5 of the actuating device to swirler 2, where it is swirled along a trajectory determined by the shape of channels 9 in its body.
  • the working medium outflows through each of the channels at a tangent to the circle lying in the plane perpendicular to the axis of rotation of the shaft, generating reaction forces that impart torque to the actuating device.
  • the flow enters a cavity enclosed in the shell and interacts with the shell through friction.
  • Lower friction loss is achieved by making the shell capable of rotating or in the form of a blade turbine.
  • the rotation of the actuating device shaft causes the rotation of the shaft of a mechanical user sink like the electric motor.
  • Used working medium returns from outlet nozzle 6 to the inlet of the compressor for recycling.
  • the method may be applied industrially to produce mechanical energy in power engineering, transport and other industries for which the efficiency of heat engines plays a major role.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Method for producing mechanical work The invention pertains to the field of power engineering and may be applied to convert kinetic and thermal energy of a working medium into mechanical work. The method includes swirling of a pre-compressed working medium, its expansion in an actuating device to produce mechanical work in the form of rotation of the shaft (3), and discharge of the working medium from the actuating device. The working medium is swirled in the actuating device along a spatial trajectory in the form of a conical helix, the projection of which on a plane positioned at an angle to the axis of rotation is a curve having at least two breakpoints.

Description

Method for producing mechanical work Technical Field
The invention pertains to the field of power plant engineering (power engineering) and may be applied to convert kinetic and thermal energy of a working medium into mechanical work.
Background Art
There are known methods for converting kinetic energy of a working medium into mechanical energy in an engine with rotary motion of the working element. For example, Patents US3282560, 1 1.01.1966, CH669428, 15.03.1989, and RU2200848, 20.03.2003, cover methods for producing mechanical energy in a gas turbine, where compressed gas energy is converted in the blade system into mechanical work of the shaft. The working medium is at the same time fed into the channels of the turbine rotor and accelerated at the outflow from the channels, the rotation of the rotor being provided.
Low efficiency of converting the internal energy of the working medium into thermal energy and low efficiency of converting the thermal energy of a compressed working medium into mechanical energy are common drawbacks of known methods. The low efficiency of converting the thermal energy of a compressed working medium into mechanical one is explained, in particular, by the fact that (in the frames of a known principle of operation of a heat engine) according to the second law of thermodynamics, the efficiency factor of a heat engine does not depend upon its design and the type of the working medium; rather, it is determined by the temperature difference of the working medium inside the heat engine and at its outflow.
One of the feasible and effective techniques of utilizing the thermal energy of a working medium to a fuller extent is its regeneration after being used in a power turbine. In gas-turbine engines of conventional design, however, regeneration of the thermal energy takes place in the heat exchanger and does not result in a significant effect.
There are known methods for converting thermal energy into mechanical work that consist in additional conversion of the internal heat of the working medium into its kinetic energy, and further into mechanical energy. The complementary kinetic energy is generated in this case from a portion of heat that during known thermodynamic cycles is removed into the heat receiver.
In other known methods, the complementary kinetic energy of a working medium is extracted by means of directional spatial orientation of its micro- volumes (Patent RU2134354, 10.08.1999). According to methods covered by Patents RU2006589, 30.01.1994 and RU2031230, 20.03.1995, the thermodynamic state of the working medium is changed before the latter is introduced into the turbine, and rotary motion is imparted to the working medium at different angles to the turbine rotor shaft. The flow conditions created in this case for the working medium (in particular, specified distribution of peripheral velocities of the working medium micro-volumes is provided depending on the distance to the rotor shaft) are such that a portion of its heat would spontaneously generate an increment to the rotary motion of the working medium itself.
A known method for converting thermal and kinetic energies of a working medium into mechanical work covered by Patent RU2084645, 20.07.1997, consists in the fact that before reaching the blades of a centripetal turbine, the pre-compressed working medium is spirally swirled in a guide assembly and then directed to an acceleration chamber to be expanded and cooled, and after the dynamic pressure acts on the turbine blades, the working medium is compressed. In this case a higher efficiency factor of conversion is achieved by selecting an optimal angle of swirl for the working medium flow in the guide assembly so as to ensure an increase in the velocity of a unit mass of the working medium on approaching the axis of rotation. According to the inventor, this is an essential condition for partial heat transition to rotary motion without enlarging the volume of the working medium, and thus for a higher efficiency factor of conversion.
The efficiency factor gain in the described method may turn out to be less significant because of the need to match the blade shapes of the guide assembly and the turbine.
Disclosure of Invention
The technical result which this invention is aimed at consists in the development of an economical method for producing mechanical energy with its relatively easy implementation.
The defined technical result is achieved by the fact that in the method for producing mechanical work, which includes swirling of a pre-compressed working medium, its expansion in an actuating device to produce mechanical work in the form of rotation of the shaft of the actuating device, and discharge of the working medium from the said device, the working medium is swirled directly in the actuating device along a spatial trajectory in the form of a conical helix, the projection of which on a plane positioned at an angle to the axis of rotation is a curve having at least two breakpoints. A segment of the curve may be shaped as a hyperbolic spiral. The lead of the conical helix in a frontal plane passing through the axis of rotation may be made variable. The working medium may be a liquid or a gas. The discharge of the working, medium from the actuating device may be accomplished by at least two jets.
In a particular case, the working medium is discharged to a closed shell. In a particular case, the shell is made in the form of a blade turbine and mounted with a capability of rotating. According to the canonical analytic geometry, space trajectory of a working medium as any second-order 3D curve can be uniquely represented by its plane projection at an angle to the rotation axis wherein every point of the curve on the plane corresponds with a point of the space curve. For that reason in order to make an algorithm of execution of an announced trajectory it is convenient to represent the space curve as its projection at an angle to the rotation axis, particularly as its orthogonal projection (at a right angle to the axis of rotation) shown in Fig.1.
The conical spiral with at least two breakpoints represents a piecewise smooth curve composed of three parts each described with following canonical parametric equations:
1st part: a segment of the conical spiral (0<ί<ί[)
= *β| + ye2 +ze3 , (1) x=at cos t, y=at sin t, z=bt, where: ej, e2, e3 are basis vectors, x,y,z, t are temporaries, a,b are constants chosen for maximum efficiency ti,t2 are conical spiral breakpoints 2nd part: a segment of a straight line between inflection points (ti<t≤t2):
3rd part: a segment of the conical spiral (t>t2) with the equation same as
(1)
Any segment of the curve mentioned above can be made in a shape of a hyperbolic spiral. When the working medium moves along the hyperbolic spiral an additional "vortex source" with considerable energy potential is created. As a rule it is appropriate to do tail ends of the trajectory in this manner, where the working medium jet outcome of the swirler takes place.
In this case a segment of the curve is described with the following equation:
χ = Ξ≤, y=a f≥! , ζ= βί , (3) where: α, β are constants chosen for maximum efficiency.
The distinctive feature of the suggested method is the fact that the trajectory of the working medium move has breakpoints. The breakpoints on a conical spiral are responsible (as the applicant reasonably affirms) for discontinuous change in quantum-mechanical state of the system the working environment represents. This change initiates the processes mentioned above which impart additional heat release in the vortex and lead to the suggested technical result.
The essence of the suggested method is the fact that the increment velocity of the rotary motion is provided by generating the rotary motion from a portion of heat removed to the heat receiver during implementation of known thermodynamic cycles.
The method is based on a statement (proved scientifically and experimentally) that heat release in a gas vortex is capable of inducing large- scale azimuthal motion, increasing the total flow circulation (Yusupaliyev U. et al. "Heat Release as a Mechanism of Self-Sustaining of Gas Vortex Flow", Applied Physics, 2000, No. 1, p. 5-10) [1]. This work analyzes the mechanism of converting latent thermal energy into the kinetic energy of a vortex flow and demonstrates the connection of the conversion factor with the rotary velocity of the flow and the size (geometry) of the operating region of a heat source. The efficiency of converting thermal energy into the kinetic energy of azimuthal motion is expressed as:
Δ<? ~ cpT0, ' where I ΔΚ - kinetic energy increment
AQ— thermal energy increment
Q - thermal energy
r1; r2 - heat source boundaries (i.e., a heat source of T0pocp f(r) volume density is acting in a region confined by r! < r < r2)
To - temperature of the heat receiver
cp - heat capacity of the working medium
It is also shown that the spatial spectrum of the rotary velocity of the vortex core is determined by function f(r) in which r is a polar coordinate of the heat disturbance region.
The suggested model gives a good description of processes occurring in a vortex (tornado), where heat is released as a result of recombination and aggregation of molecules.
On the other hand, the work by Akhiyezer A.I. and Berestetsky V.V. "Quantum Electrodynamics", Moscow, Nauka, 1969 [2] demonstrates that complementary energy may be released in the form of heat as a result of production and destruction of electron-positron or other pairs of elementary particles occurring in the process of creation of quantum-mechanical resonance with the positron state of the Dirac's matter. As a trigger action aimed at putting the system that contains the working medium into the mentioned quantum-mechanical resonance, a required energy density per volume unit of the working medium is created, as well as a required density of momentum or of its moment. This is achieved by directional spatial orientation of the motion of the working medium micro-volumes with the provision of a step change in the quantum-mechanical state of the mentioned system. Such forced motion of the working medium along defined trajectories in the quantum-mechanical meaning of this concept provides phase changes in the working medium micro-volumes near the trajectory breakpoints.
Therefore, heat release in the vortex is transformed into the rotary motion of the working medium micro-volumes leading in its turn to additional heat release. An avalanche process develops that results in imparting an additional torque to the shaft and thus increases the efficiency of producing the mechanical work.
The additional torque is imparted to the shaft as well by the working medium outflow from the actuating device in at least two jets tangential to the circumference in a plane perpendicular to the axis of rotation of the shaft. The dynamic pressure of the jets allows the internal energy of the working medium to be used to the fullest extent.
The actuating device is enclosed in a rotatably mounted shell with the formation of an annular space that maintains the working medium in full volume for the purpose of its further regeneration in order to arrange a closed work cycle of producing the mechanical work. If the shell and the actuating mechanism mounted on the same shaft are rigidly coupled, energy loss may be caused by the fact that according to the angular momentum conservation law, the net torque created on the rotor is compensated for by a reciprocal moment produced by deceleration of the used working medium on the inner surface of the shell.
Best Mode for Carrying out the Invention
The method for producing mechanical work may be implemented in an apparatus the best embodiment of which is described in this section. Fig. 2 represents the functional diagram of the apparatus. Fig. 3 represents a schematic image of the actuating device design shown in section along the axis of rotation of the shaft.
The basic element of the apparatus is actuating device 1 containing guide assembly ("swirler") 2 that forms space trajectory for the working medium. Swirler is a linear bushing with several channels in its body (two in this particular device), each representing a conical spiral with two breakpoints.
As has been mentioned above, the form of each of the channels is described with expressions (1), (2) and (3), given predetermined values of constants, swirler dimensioning specifications and the necessity to reach the highest efficiency factor.
For the same reasons the step of the conical helix may be chosen as variable.
On the basis of working formulae mentioned above the applicant created a program under which a device with numerical control produces mechanical work over a work piece in order to make channels of a required form in its body.
Swirler 2 is rigidly secured on shaft 3, which is the axis of the apparatus, and is enclosed in rotatably mounted shell 4. The shell of the actuating device in a particular case is made in the form of a blade turbine.
There is a clearance between swirler and the shell allowing the working medium to outflow from its channels. The actuating device is equipped with inlet pipe branch 5 for the working medium and outlet nozzle 6 to discharge the working medium from the actuating device.
Mechanically coupled to the shaft of the actuating device are mechanical energy sink shaft 7 (for example, rotor shaft of an electric machine) and compressor shaft 8. The compressor outlet closes on the inlet pipe branch of the actuating device, while its inlet closes on the outlet pipe branch for providing a closed cycle of producing mechanical energy.
In order to simplify the process of channels 9 implementation in the work piece body, the latter may be composed of two parts.
The method for producing mechanical work is implemented as follows.
The working medium (water, viscous fluid, gas) pre-compressed in compressor 8 is supplied via inlet pipe branch 5 of the actuating device to swirler 2, where it is swirled along a trajectory determined by the shape of channels 9 in its body. The working medium outflows through each of the channels at a tangent to the circle lying in the plane perpendicular to the axis of rotation of the shaft, generating reaction forces that impart torque to the actuating device.
Heat released due to working momentum move on a calculated path representing a conical spiral with breakings imparts additional torque to the actuating device.
At high rate the flow enters a cavity enclosed in the shell and interacts with the shell through friction. Lower friction loss is achieved by making the shell capable of rotating or in the form of a blade turbine.
The rotation of the actuating device shaft causes the rotation of the shaft of a mechanical user sink like the electric motor.
Used working medium returns from outlet nozzle 6 to the inlet of the compressor for recycling. Industrial Applicability
The method may be applied industrially to produce mechanical energy in power engineering, transport and other industries for which the efficiency of heat engines plays a major role.

Claims

Claim
1. A method for producing mechanical work, which includes swirling of a pre-compressed working medium, its expansion in an actuating device to produce mechanical work in the form of rotation of the shaft, and discharge of the working medium from said device which is different that the working medium is swirled in the actuating device along a spatial trajectory in the form of a conical helix, the projection of which on a plane positioned at an angle to the axis of rotation is a curve having at least two breakpoints.
2. A method according to claim 1, in which a segment of said curve is shaped as a hyperbolic spiral.
3. A method according to claim 1, in which the lead of the conical helix in a frontal plane passing through the axis of rotation is made variable.
4. A method according to claim 1, in which the discharge of the working medium from the actuating device is accomplished by at least two jets.
5. A method according to claim 4, in which the working medium is discharged to a closed shell.
6. A method according to claim 5, in which said shell is made in the form of a blade turbine and mounted with a capability of rotating.
PCT/IB2012/002379 2011-12-07 2012-11-15 Method for producing mechanical work Ceased WO2013084036A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2014123114A RU2014123114A (en) 2011-12-07 2012-11-15 METHOD FOR PRODUCING MECHANICAL WORK
JP2014545373A JP2015505931A (en) 2011-12-07 2012-11-15 Methods for creating machine work
US14/363,192 US20150240641A1 (en) 2011-12-07 2012-11-15 Method for producing mechanical work
EP12806660.2A EP2788582B1 (en) 2011-12-07 2012-11-15 Method for producing mechanical work
CN201280066606.4A CN104093936B (en) 2011-12-07 2012-11-15 Produce the method for mechanical work
ES12806660T ES2763855T3 (en) 2011-12-07 2012-11-15 Method to produce mechanical work
US16/293,023 US20190264565A1 (en) 2011-12-07 2019-03-05 Method for producing mechanical work

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1121189.3 2011-12-07
GB1121189.3A GB2502943B (en) 2011-12-07 2011-12-07 Method for producing mechanical work

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/363,192 A-371-Of-International US20150240641A1 (en) 2011-12-07 2012-11-15 Method for producing mechanical work
US16/293,023 Continuation US20190264565A1 (en) 2011-12-07 2019-03-05 Method for producing mechanical work

Publications (1)

Publication Number Publication Date
WO2013084036A1 true WO2013084036A1 (en) 2013-06-13

Family

ID=45541472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/002379 Ceased WO2013084036A1 (en) 2011-12-07 2012-11-15 Method for producing mechanical work

Country Status (8)

Country Link
US (2) US20150240641A1 (en)
EP (1) EP2788582B1 (en)
JP (2) JP2015505931A (en)
CN (1) CN104093936B (en)
ES (1) ES2763855T3 (en)
GB (1) GB2502943B (en)
RU (1) RU2014123114A (en)
WO (1) WO2013084036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140252772A1 (en) * 2013-03-08 2014-09-11 Monarch Power Corp. Spiral turbine operating on pressure principle
RU232240U1 (en) * 2024-01-31 2025-03-04 Владимир Николаевич Горбашов TORQUE MULTIPLIER ON THE SHAFT OF THE BLADE PROPULSER OF THE AIRCRAFT, ALLOWING TO SAVE ELECTRICITY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7652462B2 (en) * 2021-06-03 2025-03-27 ハワード パーダム A reaction turbine that runs on condensing steam

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945619A (en) * 1954-09-21 1960-07-19 Mclure Carl Ballard Stage expansion reaction turbines
FR80110E (en) * 1961-07-17 1963-03-15 Commissariat Energie Atomique Turbo-pump
US3282560A (en) 1965-06-15 1966-11-01 Loyal W Kleckner Jet reaction turbine
FR1552212A (en) * 1967-11-22 1969-01-03
CH669428A5 (en) 1984-03-07 1989-03-15 Tode Stojicic
RU2006589C1 (en) 1990-05-22 1994-01-30 Леонид Павлович Козлов Method and device for converting heat to energy of gas flow motion
RU2031230C1 (en) 1992-04-28 1995-03-20 Анатолий Михайлович Рахмаилов Method of converting heat energy to mechanical work in gas-turbine engine and gas-turbine engine
RU2084645C1 (en) 1991-11-14 1997-07-20 Леонид Павлович Козлов Method of converting heat energy into mechanical work in heat machine and heat machine
RU2134354C1 (en) 1997-03-25 1999-08-10 Дудышев Валерий Дмитриевич Heat engine control method
RU2200848C1 (en) 2002-03-11 2003-03-20 Общество С Ограниченной Ответственностью "Мидера-К" Method and turbine for producing mechanical energy
FR2874061A1 (en) * 2004-08-09 2006-02-10 Lasquet Patrick Clouche Hydraulic power transforming device for dam, has S or X shaped diffusers, in case of engine with single or double rotational directions, placed inside rotor whose openings are placed in front of injectors that fill vanes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191107762A (en) * 1910-03-30 1912-03-21 Robert Mccullough Waugh Improvements in or relating to Steam or Fluid Pressure Turbines.
GB191024140A (en) * 1910-10-18 1911-06-29 James Stevenson Improvements in or connected with Turbines or Rotary Engines.
US1329626A (en) * 1918-12-16 1920-02-03 Frank W Oman Turbine-engine
GB864466A (en) * 1958-09-19 1961-04-06 Fuchs Anton Improvements in and relating to turbines
US5236349A (en) * 1990-10-23 1993-08-17 Gracio Fabris Two-phase reaction turbine
US5408824A (en) * 1993-12-15 1995-04-25 Schlote; Andrew Rotary heat engine
AUPM896094A0 (en) * 1994-10-24 1994-11-17 Ward, Charles Water turbine
WO1999039083A2 (en) * 1998-01-29 1999-08-05 Franz Senoner Geothermal vertical turbine
FR2811380B1 (en) * 2000-07-06 2002-10-18 Pierre Claude Marie Moreau FLUID ROTOR IN THE FORM OF A SPIRAL GALAXY
CA2554808A1 (en) * 2004-01-30 2005-08-11 Pax Scientific, Inc. Housing for a centrifugal fan, pump or turbine
CN1873190A (en) * 2006-06-29 2006-12-06 李克强 Spiral type turbine
GB0818825D0 (en) * 2008-10-14 2008-11-19 Evans Michael J Water turbine utilising axial vortical flow
EP2410127A4 (en) * 2009-03-18 2018-02-28 HK Turbine Co., Ltd Reaction-type turbine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945619A (en) * 1954-09-21 1960-07-19 Mclure Carl Ballard Stage expansion reaction turbines
FR80110E (en) * 1961-07-17 1963-03-15 Commissariat Energie Atomique Turbo-pump
US3282560A (en) 1965-06-15 1966-11-01 Loyal W Kleckner Jet reaction turbine
FR1552212A (en) * 1967-11-22 1969-01-03
CH669428A5 (en) 1984-03-07 1989-03-15 Tode Stojicic
RU2006589C1 (en) 1990-05-22 1994-01-30 Леонид Павлович Козлов Method and device for converting heat to energy of gas flow motion
RU2084645C1 (en) 1991-11-14 1997-07-20 Леонид Павлович Козлов Method of converting heat energy into mechanical work in heat machine and heat machine
RU2031230C1 (en) 1992-04-28 1995-03-20 Анатолий Михайлович Рахмаилов Method of converting heat energy to mechanical work in gas-turbine engine and gas-turbine engine
RU2134354C1 (en) 1997-03-25 1999-08-10 Дудышев Валерий Дмитриевич Heat engine control method
RU2200848C1 (en) 2002-03-11 2003-03-20 Общество С Ограниченной Ответственностью "Мидера-К" Method and turbine for producing mechanical energy
FR2874061A1 (en) * 2004-08-09 2006-02-10 Lasquet Patrick Clouche Hydraulic power transforming device for dam, has S or X shaped diffusers, in case of engine with single or double rotational directions, placed inside rotor whose openings are placed in front of injectors that fill vanes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKHIYEZER A.I.; BERESTETSKY V.V., QUANTUM ELECTRODYNAMICS, 1969
YUSUPALIYEV U. ET AL.: "Heat Release as a Mechanism of Self-Sustaining of Gas Vortex Flow", APPLIED PHYSICS, 2000, pages 5 - 10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140252772A1 (en) * 2013-03-08 2014-09-11 Monarch Power Corp. Spiral turbine operating on pressure principle
US9035482B2 (en) * 2013-03-08 2015-05-19 Monarch Power Corp. Spiral turbine operating on pressure principle
RU232240U1 (en) * 2024-01-31 2025-03-04 Владимир Николаевич Горбашов TORQUE MULTIPLIER ON THE SHAFT OF THE BLADE PROPULSER OF THE AIRCRAFT, ALLOWING TO SAVE ELECTRICITY

Also Published As

Publication number Publication date
GB2502943A (en) 2013-12-18
JP6556804B2 (en) 2019-08-07
EP2788582A1 (en) 2014-10-15
ES2763855T3 (en) 2020-06-01
JP2015505931A (en) 2015-02-26
CN104093936A (en) 2014-10-08
EP2788582B1 (en) 2019-11-06
JP2018048640A (en) 2018-03-29
CN104093936B (en) 2016-06-08
US20150240641A1 (en) 2015-08-27
GB201121189D0 (en) 2012-01-18
GB2502943B (en) 2016-03-16
RU2014123114A (en) 2016-02-10
US20190264565A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
EP2538070B1 (en) Turbine with radial inlet and outlet rotor for use in bidirectional flows
US20150037134A1 (en) Method for Producing Mechanical Energy, Single-Flow Turbine and Double-Flow Turbine, and Turbo-Jet Apparatus Therefor
US9035482B2 (en) Spiral turbine operating on pressure principle
US20190264565A1 (en) Method for producing mechanical work
JP5738252B2 (en) Impulse air turbine equipment used with reverse bidirectional airflow in wave power plants
CN105464712A (en) Screw turbine operating on the pressure principle
JP2018021455A (en) Horizontal radial/piston turbine
RU2599096C2 (en) Method for imparting motion to rotor (versions) and rotor
KR20190120552A (en) Turbine Device
Bambang Teguh et al. Design of n-butane radial inflow turbine for 100 kw binary cycle power plant
RU2006589C1 (en) Method and device for converting heat to energy of gas flow motion
RU2084645C1 (en) Method of converting heat energy into mechanical work in heat machine and heat machine
US11603794B2 (en) Method and apparatus for increasing useful energy/thrust of a gas turbine engine by one or more rotating fluid moving (agitator) pieces due to formation of a defined steam region
RU2201625C2 (en) Method and reactor for energy generation
RU2107176C1 (en) Method for operation of thermal engine and thermal engine for its realization
JP3217898U (en) Small steam generator
RU2362947C2 (en) Driven cavitational heat-steam generator
Thakker et al. Numerical simulation of 0.6 m impulse turbine for wave power conversion under different flow conditions
RU2551289C2 (en) Nozzle head
RU2470168C2 (en) Rotary-pusher ice
RU104640U1 (en) AERODYNAMIC AUTONOMOUS ENERGY SOURCE
Falempin et al. Bladeless turbines for unsteady high speed flows
RU2578789C2 (en) Perfected separation of foreign matters from gas turbine engine fan near hub zone
CN104100302B (en) Turbine
WO2006101411A1 (en) Power producing method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363192

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014545373

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012806660

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014123114

Country of ref document: RU

Kind code of ref document: A