WO2012128036A1 - Bone density measurement device - Google Patents
Bone density measurement device Download PDFInfo
- Publication number
- WO2012128036A1 WO2012128036A1 PCT/JP2012/055782 JP2012055782W WO2012128036A1 WO 2012128036 A1 WO2012128036 A1 WO 2012128036A1 JP 2012055782 W JP2012055782 W JP 2012055782W WO 2012128036 A1 WO2012128036 A1 WO 2012128036A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- bone
- average
- local
- bone density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/467—Arrangements for interfacing with the operator or the patient characterised by special input means
- A61B6/469—Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/505—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
Definitions
- the present invention relates to a bone density measuring apparatus (bone density measurement apparatus), and more particularly to a bone density measuring apparatus that displays a bone density image by irradiating a subject with X-rays.
- the bone density measuring device is a device for diagnosing bone diseases such as osteoporosis in the medical field.
- a bone density measuring apparatus irradiates a subject with X-rays, detects X-rays transmitted through the subject, and forms a bone density image of the subject based on detection data obtained thereby. It is. Specifically, high energy X-rays and low energy X-rays are alternately irradiated according to a DEXA (dual-energy x-ray absorptiometry) method.
- DEXA dual-energy x-ray absorptiometry
- Japanese Unexamined Patent Application Publication No. 2009-1000094 (Reference 1) and Japanese Unexamined Patent Application Publication No. 6-261894 (Reference 2) describe a calculation method according to the DEXA method. Measurement sites are the lumbar spine, forearm and the like.
- the bone density measuring device is also called a bone mineral content measuring device (bone (mineral content measurement apparatus).
- the bone pixel (pixel corresponding to the bone) It is automatically identified whether it is a soft tissue pixel (a pixel corresponding to only soft tissue).
- a region of interest (ROI) is individually set for each vertebra constituting the lumbar vertebra. Within each region of interest, an average value of bone density (average bone density) of the bone pixel is calculated.
- an automatic identification result between a bone pixel and a soft tissue pixel is not always correct.
- the average bone density may not be calculated correctly. It is desirable to exclude the pixels constituting the compression fracture site from the average calculation target.
- a low bone mass although it is originally a bone pixel, it may be recognized as a soft tissue pixel. In that case, it is desirable to change the type of the pixel subject to misidentification to a bone pixel.
- blood vessels and lymph nodes are calcified, they may be recognized as bone. In that case, it is necessary to change the type of the pixel to be misidentified to a soft tissue pixel and exclude the pixel from the bone region.
- An object of the present invention is to assist a user who observes an image showing a bone density (bone mineral content) distribution when the user performs sorting of bone pixels.
- an object of the present invention is to enable quick and accurate determination of bone pixel sorting.
- the bone density measuring apparatus generates a subject image in which a two-dimensional distribution of bone mineral is reflected based on detection data obtained by irradiating the subject with X-rays.
- An identification processing unit that applies an identification process for identifying a bone pixel and a soft tissue pixel based on a pixel value of the pixel, and a pixel processing unit, A target pixel designating unit for designating a target pixel by a user, a correction support unit for providing correction support information to the user when the target pixel is designated, and a correction for the target pixel by the user
- a correction execution unit that corrects the result of the identification process when an instruction is given, and the correction support information includes a set representing the result of the identification process for the pixel of interest
- the local evaluation value calculated for the target pixel according to the result of the identification process, and the identification mean evaluation value in which the pixel of interest is computed for belonging region according to the results of processing includes.
- correction support information for the pixel of interest is displayed. Therefore, based on the content of the correction support information, it is possible to accurately determine whether or not the target pixel needs to be corrected.
- the contents of the correction work include a type change from a bone pixel to a soft tissue pixel, a type change from a soft tissue pixel to a bone pixel, and exclusion from a calculation target.
- the correction support information preferably includes a type identification processing result for the target pixel. In that case, it is possible to match the result of visual judgment with the result of automatic judgment.
- the local evaluation value calculated for the pixel of interest and the average evaluation value calculated for the entire region to which it belongs are displayed together. It is possible to objectively determine whether a local value for a pixel is out of or substantially the same as the surrounding average value. In some cases, the difference between the local evaluation value and the average evaluation value may be displayed instead of or together with the local evaluation value and the average evaluation value.
- the local value of the pixel of interest protrudes from the surroundings and is large or small, tissue abnormalities, measurement errors, calculation errors, etc. can be considered. According to the correction support information, it is possible to determine whether correction is necessary based on these possibilities.
- the evaluation value for the bone part is the bone density.
- the evaluation value for soft tissue is RL / RH described later. It corresponds to the ratio of two attenuation rates (attenuation amounts) for two types of X-ray energy.
- the evaluation value may simply be a pixel value.
- the evaluation value may be an intermediate coefficient value generated in the calculation process. In any case, it is desirable to provide an evaluation value that can evaluate or judge the relationship between the pixel of interest and the surroundings (or whether correction is necessary).
- the target pixel is an abstract concept, and may be a single pixel when viewed physically or a set of a plurality of pixels when viewed physically. In the latter case, the local evaluation value is a local average value, a local intermediate value, a local median value, or the like.
- the evaluation unit and the correction unit may be different. You may comprise so that the content of correction assistance information can be customized by the user. For example, if the organization type is known, the organization type information can be excluded from the correction support information.
- a local bone density is displayed as the local evaluation value
- an average bone density is displayed as the average evaluation value.
- the local bone density corresponds to a pixel value in the subject image, and is an element concept that is considered in comparison with the average bone density of the entire region. Although it does not represent the actual accurate bone density, it is useful information for comparison.
- a local soft tissue evaluation value is displayed as the local evaluation value
- an average soft tissue evaluation value is displayed as the average evaluation value. Since the concept of bone density does not exist for soft tissue, an evaluation value indicating the property of soft tissue is displayed instead.
- each element constituting the correction support information is basically a numerical value, a graph or the like that assists intuitive recognition may be displayed instead of or together with it.
- the correction support information further calculates a local attenuation amount during low-energy X-ray irradiation and a local attenuation amount during high-energy X-ray irradiation calculated for the target pixel, and a region to which the target pixel belongs.
- the average attenuation amount at the time of low-energy X-ray irradiation and the average attenuation amount at the time of high-energy X-ray irradiation are included. According to this configuration, it is possible to comprehensively determine whether or not correction is necessary by displaying intermediate numerical values used in the evaluation value calculation process. When an unnatural value is generated in only one of the energies, it is possible to recognize the possibility that a problem occurs in the measurement with the energy.
- the local soft tissue evaluation value corresponds to a ratio of local attenuation at the time of low energy X-ray irradiation and local attenuation at the time of high energy X-ray irradiation
- the average soft tissue evaluation value is at the time of low energy X-ray irradiation. It corresponds to the ratio of the average attenuation amount and the average attenuation amount at the time of high energy X-ray irradiation.
- the correction execution unit executes at least one of a type change from a bone pixel to a soft tissue pixel, a type change from a soft tissue pixel to a bone pixel, and an exclusion from a calculation target.
- the subject includes a plurality of vertebrae, a plurality of regions of interest are set for the plurality of vertebrae, and each region of interest is identified as a bone region and a soft tissue region.
- the boundary detection may be performed so as to bisect the region of interest, and the bone region and the soft tissue region may be specified, respectively, or only the pixel type may be specified in units of pixels.
- the correction support means generates a histogram indicating the number of pixels for each pixel value based on the subject image, and a marker for generating a marker indicating the pixel value of the pixel of interest on the histogram And a generation unit. According to this configuration, it is possible to determine whether or not the pixel of interest is to be corrected in consideration of where the pixel of interest is located on the histogram, so that more accurate determination can be made.
- the user has made corrections such as pixel exclusion only from visual observation of a monochrome grayscale image. That is, since the correction work based on sensory judgment is performed, there is a problem that the judgment result varies greatly by a user (doctor or the like) or the work load is heavy.
- information that supports the determination of whether correction is necessary in particular, information that makes it easy to compare the attention point and the entire background is displayed. It can be made objective, and the burden of correction can be greatly reduced.
- the correction support information may be displayed in a pop-up so that the correspondence relationship with the pixel of interest can be understood in the vicinity of the pixel of interest.
- the correction support information may be displayed using it as a trigger, and correction execution or correction postponement may be identified according to the content of the next instruction.
- the correction content may be reflected in the data that is the basis of the average bone density calculation at that time, or when all corrections are completed or the user's explicit The contents of each correction may be reflected in the basic data at the stage of the instruction.
- FIG. 1 shows the 1st example of a display.
- FIG. 2nd example of a display shows the 3rd example of a display.
- FIG. 3rd example of a display It is a figure for demonstrating the pixel correction method according to a condition.
- I L I 0L ⁇ EXP (- ⁇ BL X B ) ⁇ EXP (- ⁇ SL X S ) (1)
- I H I 0H ⁇ EXP (- ⁇ BH X B ) ⁇ EXP (- ⁇ SH X S ) (2)
- I L and I H both indicate transmitted X-ray intensity (low energy X-ray transmission intensity, high energy X-ray transmission intensity), and I 0L and I 0H both indicate incident X-ray intensity (low energy X-ray intensity).
- incident intensity, incident intensity of high energy X-rays ⁇ SL , ⁇ SH , ⁇ BL, and ⁇ BH each indicate a linear absorption coefficient (cm ⁇ 1 ).
- X B and X S each indicate a thickness (cm).
- R L / R H the molecule R L is ln (I 0L / I L ), which corresponds to the attenuation factor (attenuation amount) of low energy X-rays.
- the denominator R H is ln (I 0H / I H ), which corresponds to the attenuation factor (attenuation amount) of high energy X-rays. Therefore, R L / R H corresponds to a ratio of two attenuation rates (attenuation amounts) for two types of energy with respect to soft tissue.
- ⁇ SL / ⁇ SH linear absorption coefficient ratio
- the bone mineral content BMC (bone mineral content) is as follows. ).
- the bone density (planar bone density) BMD bone mineral density
- Bone density image corresponds to a representation of the distribution of the pixel values determined from the above X B.
- the pixel value is usually the lowest value in the soft tissue part.
- the soft tissue evaluation value (R) can be calculated from the above equation (8).
- a plurality of regions of interest are automatically or manually set for a plurality of vertebrae (blocks), and a bone region is automatically recognized in each region of interest. Is calculated. Then, the bone density for each vertebra is calculated according to the above equations (9) and (10).
- it is a value that does not reflect the difference in structure in the thickness direction, and should be understood as a guide. Even so, it can be said that it is a local value that can be compared with the background average value.
- an “average soft tissue evaluation value” over the entire region and a “local soft tissue evaluation value” in pixel units can be defined.
- FIG. 1 shows a preferred embodiment of a bone density measuring apparatus according to the present invention
- FIG. 1 is a block diagram showing the overall configuration thereof.
- the bone density measuring apparatus shown in FIG. 1 is an apparatus that is installed in a medical institution and performs bone density measurement on human bones, particularly lumbar vertebrae.
- the bone density measuring apparatus is roughly divided into a measuring unit 10 and a calculation unit 12. First, the measurement unit 10 will be described.
- a subject 16 as a human body is placed on the bed 14.
- X-ray irradiation is performed on a region including the lumbar spine.
- the bed 14 may be a radiographic table or the like.
- An X-ray generator 18 is provided below the bed 14.
- the X-ray generator 18 is an apparatus that alternately generates low energy X-rays and high energy X-rays. In their generation, voltage switching, filter switching, and the like are applied.
- Reference numeral 19 denotes an X-ray beam.
- a fan-beam having a divergent shape is formed.
- Reference numeral 20 denotes an X-ray detector, which is constituted by a plurality of X-ray sensors arranged in a straight line corresponding to the fan beam.
- the X-ray generator 18 and the X-ray detector 20 constitute a movable body, and the movable body is connected to the scanning mechanism 22.
- the movable body is scanned in the body axis direction (the direction in which the spine extends) by the scanning mechanism 22.
- Detection data acquired from a two-dimensional region can be obtained by performing the above-described mechanical scanning while alternately repeating low-energy X-ray irradiation and high-energy X-ray irradiation. Specifically, two-dimensional detection data corresponding to low energy X-rays and two-dimensional detection data corresponding to high energy X-rays are obtained. They are output to the data calculation unit 24.
- the data calculation unit 24 is a module for calculating the planar bone density, that is, the average bone density in the bone region according to the above-described calculation formula.
- the bone density (average bone density) is calculated for each of the plurality of vertebrae, and various other information is calculated.
- the data calculation unit 24 generates a subject image representing a two-dimensional distribution of bone mineral in the subject, that is, a bone density image.
- the image is a black and white grayscale image, and each pixel value represents bone density. However, it is the local bone density referred to to determine the above average bone density.
- the data calculation unit 24 individually sets a region of interest for each vertebra as described later, and identifies a bone region and a soft tissue region within each region of interest. Yes.
- the identification process is automatically executed based on the pixel value of each pixel.
- the display processing unit 26 is a module that configures an image to be displayed on the display unit 30.
- the display example will be described later with reference to FIGS.
- the subject image is displayed as a black and white image, and correction support information described in detail below is displayed as necessary. Information such as a histogram is also displayed.
- the control unit 28 controls the operation of each component shown in FIG.
- An input unit 32 is connected to the control unit 28.
- the user can give an operation command to the control unit 28 using the input unit 32.
- the correction instruction given from the input unit 32 is sent to the data calculation unit 24 via the control unit 28, and the data calculation unit 24 executes correction of the pixel type or the like at a predetermined timing in accordance with the correction instruction. That is, for example, when a metal or the like is imaged and it has an influence on the average bone density, pixels corresponding to the metal are excluded from the data serving as the basis of the average bone density calculation.
- the pixel type is changed from the bone pixel to the soft tissue pixel for the pixel in the misidentified region.
- the necessity of the correction depends on the visual judgment of the user. In the present embodiment, since correction support information is displayed on the screen in addition to the subject image, the judgment by the user is accurate and quick.
- FIG. 2 conceptually shows the function of the data calculation unit 24 shown in FIG.
- the data calculation unit 24 has a function of executing the above-described equations (1) to (12).
- the entity of the data calculation unit 24 is software.
- the data calculation unit includes a region-of-interest setting unit 34, a pixel type determination unit 36, and a correction unit 50.
- each block represents a software function.
- the region-of-interest setting unit 34 is a module that executes automatic processing for individually setting a plurality of regions of interest for a plurality of vertebrae on the subject image. Of course, the region of interest may be set by the user.
- each region of interest it is automatically determined pixel by pixel whether each pixel belonging to it is a bone pixel or a soft tissue pixel.
- the pixel type determination unit 36 performs this. That is, the pixel type determination unit 36 determines which type the pixel belongs to based on the pixel value of each pixel in the subject image. Of course, the type may be determined together with the pixel value or by referring to other information instead.
- the correction unit 50 is a module that executes a process of changing the type of each pixel or a process of excluding a specific pixel from the calculation target in accordance with an instruction from the user.
- Type information is information indicating the type identified for each pixel.
- “Local bone density” 40A is the bone density obtained for each pixel or a value corresponding thereto.
- the “average bone density” 40B is a planar bone density obtained in the bone region, that is, an average bone density. Usually, the average bone density is used as an index representing the properties of each vertebra.
- “Local R” indicated by reference numeral 42A is a local evaluation value in units of pixels obtained for soft tissue (see the above equation (10)), and “average R” indicated by reference numeral 42B is obtained for soft tissue. Average evaluation value within a predetermined area (see the above equation (10)).
- the predetermined region is a soft tissue region other than the bone region in the region of interest.
- the “L local attenuation rate” 44A is an attenuation rate per pixel obtained by irradiation with low energy X-rays
- the “L average attenuation rate” 44B is within the bone region or soft tissue region at the time of low energy X-ray irradiation. Is the average attenuation rate.
- H local attenuation rate” 46A is an attenuation rate in pixel units during high energy X-ray irradiation
- H average attenuation rate” 46B is an average attenuation rate in the region during high energy X-ray irradiation.
- a “histogram” 48 is a histogram constructed by representing the number of pixels for each local bone density. As will be described later, such a histogram is displayed together with the subject image, and the position of the bone density (or R) for the pixel of interest is marked on the histogram.
- 3 to 5 show display examples in the bone density measuring apparatus according to the present embodiment.
- a subject image 56 is displayed on the display screen 54.
- the subject image 56 is generally a bone density image, and is a black and white grayscale image.
- a plurality of vertebrae are shown.
- a plurality of regions of interest (sub-ROIs) are set.
- L1 to L4 indicate respective regions of interest.
- the setting of the plurality of regions of interest L1-L4 is automatically executed in the present embodiment, and the technique itself is known.
- region division that is, pixel group division, is executed.
- the average bone density for the region is calculated from the local bone density obtained for the bone pixel group.
- the local R is calculated for each pixel, and the average R is calculated for the entire region. In addition to this, the various information described above is calculated.
- a specific pixel that is, a specific coordinate can be designated by a user by performing a click input after moving the cursor 60 using a pointing device.
- correction support information 62 is displayed. Specifically, the correction support information 62 is displayed as a pop-up. It has a form like a balloon.
- a bone pixel is designated, and the correction support information 62 includes information 64 indicating that the pixel is a bone pixel as an automatic identification result, a local bone density obtained for the target pixel, and the target pixel.
- the average bone density 66 calculated for the bone region, the attenuation amount at the target pixel at the time of low energy X-ray irradiation, the average attenuation amount 68 at the region including the target pixel, and the local at the target pixel at the time of high energy X-ray irradiation The attenuation amount and the average attenuation amount 70 in the region including the target pixel are displayed.
- the user can confirm the result of automatic identification that has already been performed on the designated pixel of interest, that is, the determined pixel type, and then check the local bone density and the average bone density. From the comparison, it can be determined whether or not the pixel of interest has a protruding pixel value compared to the surrounding area. Further, in such an evaluation, it is possible to comprehensively determine whether correction is necessary by comparing the L local attenuation rate and the L average attenuation rate and comparing the H local attenuation rate and the H average attenuation rate.
- the correction support information 62 displayed in a pop-up has a balloon-type form as described above, that is, it indicates the cursor 60, the correspondence between the correction support information 62 and the target pixel is displayed on the screen. It can be intuitively recognized above. For example, a plurality of target pixels may be designated and a plurality of correction support information may be displayed simultaneously.
- the correction support information 74 includes information 64A indicating soft tissue as an automatic identification result of the pixel type, the local R calculated for the target pixel, the average R66A calculated for the region including the target pixel, and the L calculated for the target pixel.
- the user can comprehensively determine the necessity or method of correction using such information. In addition, since the determination can be made accurately and quickly, the burden on the user can be greatly reduced as compared with the conventional case.
- a specific region of interest is selected by the user and is highlighted.
- a specific pixel of interest is designated by the cursor 100.
- a histogram 76 for a specific region of interest is displayed at a position adjacent to the subject image 56.
- the horizontal axis represents the bone density (local bone density), and the vertical axis represents the number. That is, histograms are displayed for a plurality of bone pixel groups that constitute bone regions within the designated region of interest.
- a marker 78 is displayed on the histogram 76, and it is possible to easily specify where the bone pixel is located on the histogram.
- the correction support information for the target pixel designated by the cursor 100 is displayed in the column indicated by reference numeral 104. Of course, such a display example is only an example.
- various correction methods are organized as a table.
- the correction operation is performed by the user while comparing the local value with the average value.
- the local value that is, the local bone density is less than the average value, that is, the average bone density (that is, local If the bone density is lower than the average bone density by more than a predetermined value), for example, there is a possibility that a bone pixel is misidentified due to calcification of soft tissue. In that case, the pixel of interest is calculated.
- Correction to exclude from the target or correction to change the type of the target pixel from the bone pixel to the soft tissue pixel is executed.
- the target pixel is in the metal region In other words, it is presumed that the target pixel is in the compression fracture region, so that the correction for excluding the target pixel from the calculation target is executed.
- the pixel is identified as a soft tissue pixel, as shown in (B1), if the local R is less than the average R (that is, the local R exceeds the predetermined value than the average R) If it is small, a measurement error or the like is inferred. If necessary, correction for excluding the pixel from the calculation target is executed. As shown in (B2), if the local R is equal to the average R (that is, if the difference between the two is within a predetermined value), no special correction is performed.
- the local R is larger than the average R (that is, if the local R is larger than the average R beyond the predetermined value), for example, in soft tissue due to low bone density, abnormal growth, etc. Since there is a possibility that there is a misperception that there is, correction for excluding the target pixel from the calculation target or correction for changing the type of the target pixel from the soft tissue pixel to the bone pixel is executed.
- the correction method shown in FIG. 6 is an example, and may be determined by the user according to the situation.
- the correction support information is displayed as described above, there is an advantage that the necessity of correction can be determined accurately and promptly as compared with a case where an intuitive determination is simply made on the image.
- the number of bone pixel groups and soft tissue pixel groups is too large or too small, some abnormality can be estimated, so there is a possibility of a region of interest setting error in particular. , Operations such as recalculation or resetting the region of interest are automatically executed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
本発明は、骨密度測定装置(bone density measurement apparatus)に関し、特に、被検体へのX線の照射によって骨密度画像を表示する骨密度測定装置に関する。 The present invention relates to a bone density measuring apparatus (bone density measurement apparatus), and more particularly to a bone density measuring apparatus that displays a bone density image by irradiating a subject with X-rays.
骨密度測定装置は、医療の分野において、骨粗鬆症(osteoporosis)などの骨疾患を診断するための装置である。かかる骨密度測定装置は、X線を被検者に照射して、被検者を透過したX線を検出し、これにより得られた検出データに基づいて被検体の骨密度画像を形成する装置である。具体的には、DEXA(dual-energy x-ray absorptiometry)法に従って、高エネルギーX線と低エネルギーX線が交互に照射される。特開2009-100943号公報(文献1)、及び、特開平6-261894号公報(文献2)には、DEXA法に従う演算方法が記載されている。測定部位は腰椎、前腕等である。骨密度測定装置は骨塩量測定装置(bone mineral content measurement apparatus)とも称される。 The bone density measuring device is a device for diagnosing bone diseases such as osteoporosis in the medical field. Such a bone density measuring apparatus irradiates a subject with X-rays, detects X-rays transmitted through the subject, and forms a bone density image of the subject based on detection data obtained thereby. It is. Specifically, high energy X-rays and low energy X-rays are alternately irradiated according to a DEXA (dual-energy x-ray absorptiometry) method. Japanese Unexamined Patent Application Publication No. 2009-1000094 (Reference 1) and Japanese Unexamined Patent Application Publication No. 6-261894 (Reference 2) describe a calculation method according to the DEXA method. Measurement sites are the lumbar spine, forearm and the like. The bone density measuring device is also called a bone mineral content measuring device (bone (mineral content measurement apparatus).
腰椎(lumbar spine)の骨密度測定においては、骨密度画像を構成する各画素の画素値(骨密度値)に基づいて、各画素について、骨画素(bone pixel)(骨に対応する画素)であるか、軟組織画素(soft tissue pixel)(軟組織だけに対応する画素)であるか、が自動的に識別される。その際、腰椎を構成する各椎骨に対して個別的に関心領域(ROI:region of interest)が設定される。個々の関心領域内において、骨画素が有する骨密度の平均値(平均骨密度)が演算される。 In bone density measurement of the lumbar spine (lumbar spine), based on the pixel value (bone density value) of each pixel constituting the bone density image, for each pixel, the bone pixel (pixel corresponding to the bone) It is automatically identified whether it is a soft tissue pixel (a pixel corresponding to only soft tissue). At that time, a region of interest (ROI) is individually set for each vertebra constituting the lumbar vertebra. Within each region of interest, an average value of bone density (average bone density) of the bone pixel is calculated.
従来において、骨画素と軟組織画素との自動識別結果が必ずしも正しくない場合がある。例えば、圧迫骨折部位が存在している場合には平均骨密度が正しく演算されない可能性がある。その圧迫骨折部位を構成する画素を、平均演算対象から除外するのが望ましい。低骨量の場合には、本来、骨画素なのに、軟組織画素と認識されてしまうことがある。その場合には、誤認対象となった画素の種別を、骨画素に変更することが望ましい。血管やリンパ節が石灰化している場合、それらを骨として認識してしまうことがある。その場合には、誤認対象となった画素の種別を軟組織画素に変更し、その画素を骨領域から除外する必要がある。骨の変形によりあるいは骨の異常成長により、関心領域内に、他の椎骨が入り込んでしまったり、不必要な部分が存在していたりする場合には、その部分を平均骨密度演算の対象から除外する必要がある。更に、金属が埋め込まれている場合、金属部分を平均骨密度演算の対象から除外する必要がある。以上のような観点から、従来においては、平均骨密度を演算する前に、骨密度画像上において、ユーザーの目視観測によって、骨画素の追加及び削除をマニュアルで行うようにしている。 Conventionally, there is a case where an automatic identification result between a bone pixel and a soft tissue pixel is not always correct. For example, when a compression fracture site exists, the average bone density may not be calculated correctly. It is desirable to exclude the pixels constituting the compression fracture site from the average calculation target. In the case of a low bone mass, although it is originally a bone pixel, it may be recognized as a soft tissue pixel. In that case, it is desirable to change the type of the pixel subject to misidentification to a bone pixel. When blood vessels and lymph nodes are calcified, they may be recognized as bone. In that case, it is necessary to change the type of the pixel to be misidentified to a soft tissue pixel and exclude the pixel from the bone region. If other vertebrae enter the region of interest due to bone deformation or abnormal bone growth, or if there is an unnecessary part, exclude that part from the average bone density calculation target. There is a need to. Furthermore, when a metal is embedded, it is necessary to exclude the metal portion from the target of the average bone density calculation. In view of the above, conventionally, before calculating the average bone density, addition and deletion of bone pixels are manually performed on the bone density image by visual observation of the user.
しかし、骨密度画像の目視判断だけで骨画素の追加及び削除を行うのにはかなりの熟練を要する。あるいは、そのような作業によると、判断が区々になりがちである。そこで、骨画素の追加及び削除の作業を支援することが要望される。 However, considerable skill is required to add and delete bone pixels only by visual judgment of the bone density image. Or, according to such work, judgment tends to vary. Therefore, it is desired to support the work of adding and deleting bone pixels.
本発明の目的は、骨密度(骨塩量)分布を示す画像を観察したユーザーによって、骨画素の取捨選別を行う作業を行う場合に、その作業を支援することにある。あるいは、本発明の目的は、骨画素の取捨選別の判断を迅速かつ的確に行えるようにすることにある。 An object of the present invention is to assist a user who observes an image showing a bone density (bone mineral content) distribution when the user performs sorting of bone pixels. Alternatively, an object of the present invention is to enable quick and accurate determination of bone pixel sorting.
望ましくは、骨密度測定装置が、被検体に対してX線を照射することによって得られた検出データに基づいて、骨塩の二次元分布が反映された被検体画像を生成する被検体画像生成部と、前記被検体画像を構成する各画素に対して、当該画素が有する画素値に基づいて骨画素と軟組織画素とを識別する識別処理を適用する識別処理部と、前記被検体画像上においてユーザーによって注目画素を指定するための注目画素指定部と、前記注目画素が指定された場合に前記ユーザーに対して修正支援情報を提供する修正支援部と、前記注目画素に対して前記ユーザーによって修正指示が与えられた場合に、前記識別処理の結果の修正を実行する修正実行部と、を含み、前記修正支援情報には、前記注目画素についての前記識別処理の結果を表す組織種別情報と、前記識別処理の結果に従って前記注目画素について演算された局所評価値と、前記識別処理の結果に従って前記注目画素が属する領域について演算された平均評価値と、が含まれる。 Desirably, the bone density measuring apparatus generates a subject image in which a two-dimensional distribution of bone mineral is reflected based on detection data obtained by irradiating the subject with X-rays. An identification processing unit that applies an identification process for identifying a bone pixel and a soft tissue pixel based on a pixel value of the pixel, and a pixel processing unit, A target pixel designating unit for designating a target pixel by a user, a correction support unit for providing correction support information to the user when the target pixel is designated, and a correction for the target pixel by the user A correction execution unit that corrects the result of the identification process when an instruction is given, and the correction support information includes a set representing the result of the identification process for the pixel of interest And type information, the local evaluation value calculated for the target pixel according to the result of the identification process, and the identification mean evaluation value in which the pixel of interest is computed for belonging region according to the results of processing includes.
上記構成によれば、被検体画像上において、ユーザーによって注目画素(つまり画像上の座標)が指定されると、当該注目画素についての修正支援情報が表示される。よって、その修正支援情報の内容に基づいて、注目画素についての修正の要否を的確に判断することができる。例えば、修正作業の内容として、骨画素から軟組織画素への種別変更、軟組織画素から骨画素への種別変更、演算対象からの除外、等があげられる。修正支援情報には、望ましくは、当該注目画素についての種別識別処理結果が含まれる。その場合、目視判断の結果と自動判断の結果とをつき合わせることが可能である。その際、注目画素について演算された局所評価値と、それが属する領域(例えば、関心領域内の骨領域又は軟組織領域)全体について演算された平均評価値と、が併せて表示されるから、注目画素についての局所的な値が、周囲の平均的な値に比べて外れているのか、概ね同じであるのか、を客観的に判断することが可能である。場合によっては、局所評価値と平均評価値の併記に代えて、又は、それらと共に、両者の差分を表示するようにしてもよい。通常、注目画素についての局所的な値がその周囲から見て突出して大きい又は小さい場合には、組織異常、計測エラー、演算エラー等が考えられる。修正支援情報によれば、それらの可能性を踏まえて、修正の要否を判断することが可能となる。例えば、骨部についての評価値ば骨密度である。例えば、軟組織についての評価値は後述するRL/RHである。それは、2種類のX線エネルギーに対する2つの減衰率(減衰量)の比に相当するものである。評価値が単純に画素値であってもよい。評価値が演算過程で生じる中間的な係数値であってもよい。いずれにしても、注目画素と周囲との関係(あるいは修正要否)を評価又は判断できる評価値を提供するのが望ましい。なお、注目画素は抽象的概念であり、物理的に見て単一の画素であってもよいし、物理的に見て複数の画素の集合であってもよい。後者の場合、局所評価値は、局所平均値、局所中間値、局所中央値、等となる。評価単位と修正単位とを異ならせるようにしてもよい。修正支援情報の内容をユーザーによってカスタマイズできるように構成してもよい。例えば、組織種別が既知であれば、修正支援情報から組織種別情報を除外することも可能である。 According to the above configuration, when a pixel of interest (that is, coordinates on the image) is designated on the subject image by the user, correction support information for the pixel of interest is displayed. Therefore, based on the content of the correction support information, it is possible to accurately determine whether or not the target pixel needs to be corrected. For example, the contents of the correction work include a type change from a bone pixel to a soft tissue pixel, a type change from a soft tissue pixel to a bone pixel, and exclusion from a calculation target. The correction support information preferably includes a type identification processing result for the target pixel. In that case, it is possible to match the result of visual judgment with the result of automatic judgment. At that time, the local evaluation value calculated for the pixel of interest and the average evaluation value calculated for the entire region to which it belongs (for example, the bone region or soft tissue region in the region of interest) are displayed together. It is possible to objectively determine whether a local value for a pixel is out of or substantially the same as the surrounding average value. In some cases, the difference between the local evaluation value and the average evaluation value may be displayed instead of or together with the local evaluation value and the average evaluation value. Usually, when the local value of the pixel of interest protrudes from the surroundings and is large or small, tissue abnormalities, measurement errors, calculation errors, etc. can be considered. According to the correction support information, it is possible to determine whether correction is necessary based on these possibilities. For example, the evaluation value for the bone part is the bone density. For example, the evaluation value for soft tissue is RL / RH described later. It corresponds to the ratio of two attenuation rates (attenuation amounts) for two types of X-ray energy. The evaluation value may simply be a pixel value. The evaluation value may be an intermediate coefficient value generated in the calculation process. In any case, it is desirable to provide an evaluation value that can evaluate or judge the relationship between the pixel of interest and the surroundings (or whether correction is necessary). Note that the target pixel is an abstract concept, and may be a single pixel when viewed physically or a set of a plurality of pixels when viewed physically. In the latter case, the local evaluation value is a local average value, a local intermediate value, a local median value, or the like. The evaluation unit and the correction unit may be different. You may comprise so that the content of correction assistance information can be customized by the user. For example, if the organization type is known, the organization type information can be excluded from the correction support information.
望ましくは、前記識別処理により骨画素と識別された場合には、前記局所評価値として局所骨密度が表示され、且つ、前記平均評価値として平均骨密度が表示される。例えば、局所骨密度は、被検体画像における画素値に相当するものであり、領域全体の平均骨密度との対比において観念される要素概念である。それは実際の正確な骨密度を表するものではないが、対比判断上、有用な情報である。 Desirably, when a bone pixel is identified by the identification process, a local bone density is displayed as the local evaluation value, and an average bone density is displayed as the average evaluation value. For example, the local bone density corresponds to a pixel value in the subject image, and is an element concept that is considered in comparison with the average bone density of the entire region. Although it does not represent the actual accurate bone density, it is useful information for comparison.
望ましくは、前記識別処理により軟組織画素と識別された場合には、前記局所評価値として局所軟組織評価値が表示され、且つ、前記平均評価値として平均軟組織評価値が表示される。軟組織については骨密度という概念が存在しないために、それに代えて軟組織の性状を指標する評価値が表示される。修正支援情報を構成する各要素は基本的に数値であるが、それに代えて又はそれと共に直感的認識を助けるグラフ等を表示するようにしてもよい。 Desirably, when the pixel is identified as a soft tissue pixel by the identification process, a local soft tissue evaluation value is displayed as the local evaluation value, and an average soft tissue evaluation value is displayed as the average evaluation value. Since the concept of bone density does not exist for soft tissue, an evaluation value indicating the property of soft tissue is displayed instead. Although each element constituting the correction support information is basically a numerical value, a graph or the like that assists intuitive recognition may be displayed instead of or together with it.
望ましくは、前記修正支援情報には、更に、前記注目画素について演算された低エネルギーX線照射時の局所減衰量及び高エネルギーX線照射時の局所減衰量と、前記注目画素が属する領域について演算された低エネルギーX線照射時の平均減衰量及び高エネルギーX線照射時の平均減衰量と、が含まれる。この構成によれば、評価値の演算過程で利用される中間的数値を表示することによって修正要否を総合的に判断することができる。いずれかのエネルギーだけに不自然な値が生じている場合に当該エネルギーでの計測等に問題が生じている可能性を認識できる。 Preferably, the correction support information further calculates a local attenuation amount during low-energy X-ray irradiation and a local attenuation amount during high-energy X-ray irradiation calculated for the target pixel, and a region to which the target pixel belongs. The average attenuation amount at the time of low-energy X-ray irradiation and the average attenuation amount at the time of high-energy X-ray irradiation are included. According to this configuration, it is possible to comprehensively determine whether or not correction is necessary by displaying intermediate numerical values used in the evaluation value calculation process. When an unnatural value is generated in only one of the energies, it is possible to recognize the possibility that a problem occurs in the measurement with the energy.
望ましくは、前記局所軟組織評価値は、低エネルギーX線照射時の局所減衰量及び高エネルギーX線照射時の局所減衰量の比に相当し、前記平均軟組織評価値は、低エネルギーX線照射時の平均減衰量及び高エネルギーX線照射時の平均減衰量の比に相当する。 Preferably, the local soft tissue evaluation value corresponds to a ratio of local attenuation at the time of low energy X-ray irradiation and local attenuation at the time of high energy X-ray irradiation, and the average soft tissue evaluation value is at the time of low energy X-ray irradiation. It corresponds to the ratio of the average attenuation amount and the average attenuation amount at the time of high energy X-ray irradiation.
望ましくは、前記修正実行部は、骨画素から軟組織画素への種別変更、軟組織画素から骨画素への種別変更、及び、演算対象からの除外、の少なくとも1つを実行する。 Desirably, the correction execution unit executes at least one of a type change from a bone pixel to a soft tissue pixel, a type change from a soft tissue pixel to a bone pixel, and an exclusion from a calculation target.
望ましくは、前記被検体は複数の椎骨を含み、前記複数の椎骨に対して複数の関心領域が設定され、前記各関心領域内が骨部領域と軟組織領域に識別される。もちろん、上記画像処理を腰椎以外の部位へ適用してもよい。関心領域内を二分するように境界検出を行って、骨部領域と軟組織領域をそれぞれ特定してもよいし、画素単位で画素種別を特定するだけであってもよい。 Desirably, the subject includes a plurality of vertebrae, a plurality of regions of interest are set for the plurality of vertebrae, and each region of interest is identified as a bone region and a soft tissue region. Of course, you may apply the said image processing to site | parts other than a lumbar vertebra. The boundary detection may be performed so as to bisect the region of interest, and the bone region and the soft tissue region may be specified, respectively, or only the pixel type may be specified in units of pixels.
望ましくは、前記修正支援手段は、前記被検体画像に基づいて画素値ごとの画素数を示すヒストグラムを生成するヒストグラム生成部と、前記ヒストグラム上において前記注目画素の画素値を示すマーカーを生成するマーカー生成部と、を含む。この構成によれば、注目画素がヒストグラム上においてどこに位置するのかまでを考慮して、注目画素について修正要否を判断できるから、より的確な判断を行える。 Preferably, the correction support means generates a histogram indicating the number of pixels for each pixel value based on the subject image, and a marker for generating a marker indicating the pixel value of the pixel of interest on the histogram And a generation unit. According to this configuration, it is possible to determine whether or not the pixel of interest is to be corrected in consideration of where the pixel of interest is located on the histogram, so that more accurate determination can be made.
従来においては、単なる白黒の濃淡画像の目視観察だけから、ユーザーが画素除外等の修正を行っていた。つまり、感覚的な判断に基づく修正作業を行っていたので、ユーザー(医師等)によって判断結果が大きくばらつく、あるいは、作業負担が大きい、という問題があった。これに対して、上記構成によれば、修正要否の判断を支援する情報、特に、注目点と背景全体とを容易に比較できるようにする情報が表示されるから、修正要否の判断を客観化でき、修正負担を大幅に軽減できる。注目画素の近傍に、又は、注目画素との対応関係が分かるように、修正支援情報をポップアップ表示させてもよい。ポインティングデバイスにより画素が指定された場合に、それをトリガとして修正支援情報が表示されるようにし、次の指示の内容によって修正実行又は修正見送りを識別するようにしてもよい。画素種別等が修正された場合、その時点で、平均骨密度演算の基礎となるデータへ修正内容が反映されるようにしてもよいし、すべての修正が完了した段階であるいはユーザーの明示的な指示があった段階で、各修正の内容が上記の基礎データへ反映されるようにしてもよい。 Conventionally, the user has made corrections such as pixel exclusion only from visual observation of a monochrome grayscale image. That is, since the correction work based on sensory judgment is performed, there is a problem that the judgment result varies greatly by a user (doctor or the like) or the work load is heavy. On the other hand, according to the above configuration, information that supports the determination of whether correction is necessary, in particular, information that makes it easy to compare the attention point and the entire background is displayed. It can be made objective, and the burden of correction can be greatly reduced. The correction support information may be displayed in a pop-up so that the correspondence relationship with the pixel of interest can be understood in the vicinity of the pixel of interest. When a pixel is specified by the pointing device, the correction support information may be displayed using it as a trigger, and correction execution or correction postponement may be identified according to the content of the next instruction. When the pixel type is corrected, the correction content may be reflected in the data that is the basis of the average bone density calculation at that time, or when all corrections are completed or the user's explicit The contents of each correction may be reflected in the basic data at the stage of the instruction.
上記構成によれば、圧迫骨折部分の骨領域からの除外、低骨量による軟組織誤認の修正、組織石灰化による骨領域誤認の修正、骨きょく(osteophyte,bone spur)等の骨変形部位の除外、金属部分などの異物部分の除外、側わん症等によって関心領域内に入り込んでいる不必要な部位の除外、等を行える。 According to the above configuration, exclusion of compression fractures from bone regions, correction of soft tissue misidentification due to low bone mass, correction of bone region misperception due to tissue calcification, exclusion of bone deformed sites such as osteophyte, bone spur In addition, it is possible to exclude foreign parts such as metal parts and unnecessary parts that have entered the region of interest due to scoliosis.
以下、本発明の好適な実施形態を図面に基づいて説明する。
まず、骨密度測定の原理(DEXA法)について説明する。人体を透過する2種エネルギーのX線について、それぞれの全減衰量は以下のように定義される。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
First, the principle of bone density measurement (DEXA method) will be described. For two types of X-rays that pass through the human body, the total attenuation is defined as follows.
IL=I0L・EXP(-μBLXB)・EXP(-μSLXS) …(1)
IH=I0H・EXP(-μBHXB)・EXP(-μSHXS) …(2)
I L = I 0L · EXP (-μ BL X B ) ・ EXP (-μ SL X S ) (1)
I H = I 0H · EXP (-μ BH X B ) ・ EXP (-μ SH X S ) (2)
ここで、添字につき、“L”は低エネルギーを示し、“H”は高エネルギーを示し、 B は骨を示し、 S は軟組織を示している。IL及びIHはいずれも透過X線強度(低エネルギーX線の透過強度、高エネルギーX線の透過強度)を示し、I0L及びI0Hはいずれも入射X線強度(低エネルギーX線の入射強度、高エネルギーX線の入射強度)を示している。μSL、μSH、μBL及びμBHはそれぞれ線吸収係数(cm-1)を示している。XB及びXSはそれぞれ厚み(cm)を示している。 Here, for the subscripts, “L” indicates low energy, “H” indicates high energy, B indicates bone, and S indicates soft tissue. I L and I H both indicate transmitted X-ray intensity (low energy X-ray transmission intensity, high energy X-ray transmission intensity), and I 0L and I 0H both indicate incident X-ray intensity (low energy X-ray intensity). (Incident intensity, incident intensity of high energy X-rays). μ SL , μ SH , μ BL, and μ BH each indicate a linear absorption coefficient (cm −1 ). X B and X S each indicate a thickness (cm).
上記(1)式,(2)式について両辺の自然対数をとると、次の2つの式が導かれる。 When taking the natural logarithm of both sides for the above formulas (1) and (2), the following two formulas are derived.
ln(I0L/IL)=μBLXB+μSLXS …(3)
ln(I0H/IH)=μBHXB+μSHXS …(4)
ln (I 0L / I L ) = μ BL X B + μ SL X S (3)
ln (I 0H / I H ) = μ BH X B + μ SH X S (4)
上記(2)式を用いてXBについて解くならば以下が得られる。
XB=C・(RL-α・RH) …(5)
ここで、各係数は以下のように定義される。
If X B is solved using the above equation (2), the following is obtained.
X B = C · (R L −α · R H ) (5)
Here, each coefficient is defined as follows.
RL=ln(I0L/IL) …(6) R L = ln (I 0L / I L ) (6)
RH=ln(I0H/IH) …(7) R H = ln (I 0H / I H ) (7)
α=μSL/μSH …(8) α = μ SL / μ SH (8)
C=1/(μBL-α・μBH) …(9) C = 1 / (μ BL −α · μ BH ) (9)
上記(5)式において、軟組織のみの領域では左辺が0となる。よって以下が導かれる。 In the above equation (5), the left side is 0 in the area of only soft tissue. Therefore, the following is derived.
α=RL/RH …(10) α = R L / R H (10)
上記RL/RHの内で、分子RLはln(I0L/IL)であって、それは低エネルギーX線の減衰率(減衰量)に相当する。上記RL/RHの内で、分母RHはln(I0H/IH)であって、それは高エネルギーX線の減衰率(減衰量)に相当する。よって、RL/RHは、軟組織に関して、2種類のエネルギーについての2つの減衰率(減衰量)の比に相当する。それは(7)式で定義される線吸収係数の比(μSL/μSH)とは異なり、実測値として求められる。それを軟組織評価値と称することができ、あるいは、単に“R”で表現することができる。 Among the above R L / R H , the molecule R L is ln (I 0L / I L ), which corresponds to the attenuation factor (attenuation amount) of low energy X-rays. Of the above R L / R H , the denominator R H is ln (I 0H / I H ), which corresponds to the attenuation factor (attenuation amount) of high energy X-rays. Therefore, R L / R H corresponds to a ratio of two attenuation rates (attenuation amounts) for two types of energy with respect to soft tissue. Unlike the linear absorption coefficient ratio (μ SL / μ SH ) defined by Equation (7), it is obtained as an actual measurement value. It can be referred to as a soft tissue evaluation value, or can simply be represented by “R”.
一方、上記(5)式で定義される骨の厚さXBに対して骨の物理的密度ρBを乗じて骨部領域内で積分すると、以下のように骨塩量BMC(bone mineral content)を求めることができる。 On the other hand, when the bone thickness X B defined by the above equation (5) is multiplied by the bone physical density ρ B and integrated in the bone region, the bone mineral content BMC (bone mineral content) is as follows. ).
BMC=∫∫ρB・XB dxdy …(11) BMC = ∫∫ρ B・ X B dxdy… (11)
更に以下のようにBMCを骨部領域の面積Sで除することにより、最終的に骨密度(平面骨密度)BMD(bone mineral density)が演算される。 Further, by dividing BMC by the area S of the bone region as described below, the bone density (planar bone density) BMD (bone mineral density) is finally calculated.
BMD=BMC/S …(12) BMD = BMC / S ... (12)
実際には、線質硬化現象(beam hardening phenomenon)その他の影響により、正確な骨密度を演算するためには、個々の係数や最終演算結果に対して補正が適用される。骨密度画像は、上記のXBから定まる画素値の分布を表したものに相当する。骨密度画像上においては、通常、軟組織部内において画素値が最低値となるが、そうであっても上記(8)式から軟組織評価値(R)は演算され得る。骨密度画像上において、例えば、複数の椎骨(ブロック)に対して複数の関心領域が自動的に又は手動で個別的に設定され、各関心領域内において骨部領域が自動認識され、骨部領域の面積が演算される。そして、上記(9)式及び(10)式に従って個々の椎骨についての骨密度が演算される。それは基本的には骨部領域の全体にわたる“平均骨密度(=平均骨評価値)”である。それとの対比において、骨密度画像上において骨部領域内の各画素値は“局所骨密度(=局所骨評価値)”と称することができる。但し、それは、厚み方向の構造の違いを反映していない値であるから、目安として理解されるべきものである。そうであっても背景平均値との対比が可能な局所値であると言いうる。軟組織についても、領域全体にわたる“平均軟組織評価値”及び画素単位の“局所軟組織評価値”を定義し得る。 Actually, in order to calculate an accurate bone density due to a beam hardening phenomenon and other influences, corrections are applied to individual coefficients and final calculation results. Bone density image corresponds to a representation of the distribution of the pixel values determined from the above X B. On the bone density image, the pixel value is usually the lowest value in the soft tissue part. Even so, the soft tissue evaluation value (R) can be calculated from the above equation (8). On the bone density image, for example, a plurality of regions of interest are automatically or manually set for a plurality of vertebrae (blocks), and a bone region is automatically recognized in each region of interest. Is calculated. Then, the bone density for each vertebra is calculated according to the above equations (9) and (10). It is basically “average bone density (= average bone evaluation value)” over the entire bone region. In contrast, each pixel value in the bone region on the bone density image can be referred to as “local bone density (= local bone evaluation value)”. However, it is a value that does not reflect the difference in structure in the thickness direction, and should be understood as a guide. Even so, it can be said that it is a local value that can be compared with the background average value. For soft tissue, an “average soft tissue evaluation value” over the entire region and a “local soft tissue evaluation value” in pixel units can be defined.
図1には、本発明に係る骨密度測定装置の好適な実施形態が示されており、図1はその全体構成を示すブロック図である。図1に示す骨密度測定装置は医療機関において設置され、人体の骨、特に腰椎、に対して骨密度測定を行う装置である。 FIG. 1 shows a preferred embodiment of a bone density measuring apparatus according to the present invention, and FIG. 1 is a block diagram showing the overall configuration thereof. The bone density measuring apparatus shown in FIG. 1 is an apparatus that is installed in a medical institution and performs bone density measurement on human bones, particularly lumbar vertebrae.
骨密度測定装置は、大別して、測定ユニット10及び演算ユニット12からなる。まず、測定ユニット10について説明する。ベット14上には人体としての被検体16が載置されている。本実施形態においては、腰椎を含む部位に対してX線の照射が行われる。ベット14がレントゲン撮影用テーブル(radiographic table)等であってもよい。ベット14の下側にはX線発生機18が設けられている。このX線発生機18は低エネルギーX線及び高エネルギーX線を交互に発生する装置である。それらの発生にあたっては、電圧の切り替え及びフィルタの切り替え等が適用される。
The bone density measuring apparatus is roughly divided into a measuring
符号19はX線ビームを示しており、本実施形態においては末広がりの形態をもったファンビーム(fan-beam)が形成されている。符号20はX線検出器を示しており、それはファンビームに対応して直線状に並んだ複数のX線センサによって構成される。X線発生機18及びX線検出器20は可動体を構成し、その可動体が走査機構22に連結されている。その走査機構22によって可動体が体軸方向(背骨の伸長方向)に走査される。低エネルギーX線の照射及び高エネルギーX線の照射を交互に繰り返しながら、上記の機械的走査を行うことにより、2次元領域から取得された検出データが得られる。具体的には、低エネルギーX線に対応する二次元検出データと、高エネルギーX線に対応する二次元検出データと、が得られる。それらはデータ演算部24へ出力されている。
次に、演算ユニット12について説明する。上述のように検出データがデータ演算部24に入力される。その機能については後に図2を用いて詳述する。データ演算部24は、上述した計算式に従って平面骨密度すなわち骨領域における平均骨密度を演算するモジュールである。本実施形態においては、複数の椎骨のそれぞれについて骨密度(平均骨密度)が演算され、それ以外にも各種の情報が演算されている。データ演算部24により、被検体における骨塩の二次元分布を表した被検体画像すなわち骨密度画像が生成される。その画像は、白黒の濃淡画像であり、各画素値は骨密度を表す。ただし、それは上記の平均骨密度を求めるために参照された局所骨密度である。そのような演算に先立って、データ演算部24は、後に説明するように、各椎骨に対して関心領域を個別的に設定し、各関心領域内において骨領域と軟組織領域との識別を行っている。本実施形態においては、各画素の画素値に基づいて、その識別処理が自動的に実行されている。
Next, the
表示処理部26は、表示部30に表示する画像を構成するモジュールである。その表示例について後に図3-5を用いて説明する。表示部30においては被検体画像が白黒画像として表示され、また必要に応じて、以下に詳述する修正支援情報が表示される。更にヒストグラム等の情報も表示される。
The
制御部28は図1に示される各構成の動作制御を行っている。制御部28には入力部32が接続されている。ユーザはこの入力部32を利用して制御部28に対して動作指令を与えることができる。また、入力部32を利用して、被検体画像上において画素を指定して、その画素についての種別の変更や演算対象からの除外等の修正指示を与えることが可能である。入力部32から与えられた修正の指示は制御部28を介してデータ演算部24へ送られており、データ演算部24は修正の指示に従って所定のタイミングで画素種別の修正等を実行する。すなわち、例えば、金属などが画像化されており、それが平均骨密度に影響を与えているような場合においては、金属に相当する画素が平均骨密度演算の基礎となるデータから除外される。また、石灰化された軟組織が骨部であると誤認されている場合には、誤認が生じている領域内の画素について、画素種別を骨画素から軟組織画素へ変更する修正が実行される。その修正の要否はユーザの目視判断による。本実施形態においては、被検体画像に加えて修正支援情報が画面上に表示されるので、ユーザによる判断が的確かつ迅速となる。
The
図2には、図1に示したデータ演算部24の機能が概念的に示されている。データ演算部24は、上述した(1)式から(12)式まで実行する機能を有する。データ演算部24の実体はソフトウエアである。データ演算部は、図2において複数のブロックとして示されているように、関心領域設定部34、画素種別判定部36、及び、修正部50を備えている。図2において、各ブロックはソフトウエアの機能を表している。関心領域設定部34は、被検体画像上において、複数の椎骨に対して複数の関心領域を個別的に設定する自動処理を実行するモジュールである。もちろん関心領域の設定をユーザによって行うようにしてもよい。各関心領域内において、そこに属する各画素が骨画素であるか軟組織画素であるかが画素単位で自動的に判断される。それを行うのが画素種別判定部36である。すなわち、画素種別判定部36は、被検体画像における各画素の画素値に基づいてその画素がいずれの種別に属するものであるのかについて判断を行う。もちろん、画素値と共に、あるいは、それに代えて、他の情報を参照することにより種別を判定するようにしてもよい。修正部50は、ユーザからの指示に従って、各画素の種別を変更する処理、あるいは、演算対象から特定の画素を除外する処理を実行するモジュールである。
FIG. 2 conceptually shows the function of the
図2において、データ演算部24の右側に多数のブロックが示されている。それらはデータ演算部から出力される情報を模式的に示している。“種別情報”38は、各画素について識別された種別を表す情報である。“局所骨密度”40Aは各画素について求められた骨密度あるいはそれに相当する値である。“平均骨密度”40Bは骨部領域内において求められた平面骨密度すなわち平均骨密度である。通常は、その平均骨密度が各椎骨の性状を表す指標として利用される。
2, a large number of blocks are shown on the right side of the
符号42Aで示されている“局所R”は、軟組織について求められる画素単位の局所評価値であり(上記(10)式を参照)、符号42Bで示されている“平均R”は軟組織について求められる所定領域内の平均評価値である(上記(10)式を参照)。ここで、所定領域は、関心領域内における骨部領域以外の軟組織領域である。“L局所減衰率”44Aは、低エネルギーX線の照射により得られた画素単位での減衰率であり、“L平均減衰率”44Bは低エネルギーX線照射時における骨部領域内または軟組織領域内での平均減衰率である。“H局所減衰率”46Aは高エネルギーX線照射時における画素単位での減衰率であり、“H平均減衰率”46Bは高エネルギーX線照射時における前記領域内における平均減衰率である。“ヒストグラム”48は局所骨密度ごとに画素数を表すことによって構成されるヒストグラムである。後に説明するように、被検体画像と共にそのようなヒストグラムが表示され、更に注目画素についての骨密度(あるいはR)の位置がヒストグラム上においてマーキングされる。
“Local R” indicated by
図3乃至図5には、本実施形態に係る骨密度測定装置における表示例が示されている。 3 to 5 show display examples in the bone density measuring apparatus according to the present embodiment.
図3において、表示画面54上には被検体画像56が表示されている。被検体画像56は概して骨密度画像であり、白黒の濃淡画像である。図示の例においては、複数の椎骨が示されている。それらに対しては、符号58で示されるように、複数の関心領域(サブROI)が設定される。L1-L4はそれぞれの関心領域を示している。複数の関心領域L1-L4の設定は本実施形態において自動的に実行されており、その技術自体は公知である。各関心領域L1-L4内において、上述したデータ演算部の作用により、個々の画素ごとに骨画素であるか軟組織画素であるかが識別され、これによって領域分けつまり画素群分けが実行される。その上で、骨画素群について求められる局所骨密度から当該領域についての平均骨密度が演算される。一方、軟組織領域については、それぞれの画素ごとに局所Rが演算され、その領域全体について平均Rが演算される。それ以外にも上述した各種の情報が演算される。
In FIG. 3, a
図3に示されるように、ポインティングデバイスを用いて、カーソル60を動かした上で、クリック入力を行うことにより、特定の画素すなわち特定の座標をユーザー指定することができる。すると、図3に示されるように、修正支援情報62が表示される。具体的には、修正支援情報62がポップアップ表示される。それは吹き出しのような形態を有している。図3に示す例では、骨画素が指定されており、修正支援情報62として、自動識別結果としての骨画素であることを示す情報64、注目画素について求められた局所骨密度及び注目画素を含む骨部領域について演算された平均骨密度66、低エネルギーX線照射時における注目画素での減衰量及び注目画素を含む領域での平均減衰量68、高エネルギーX線照射時における注目画素での局所減衰量及び注目画素を含む領域での平均減衰量70、等が表示されている。
As shown in FIG. 3, a specific pixel, that is, a specific coordinate can be designated by a user by performing a click input after moving the
したがって、ユーザにおいては、指定した注目画素について、それに対して既に実行された自動識別の結果、つまり、判断された画素種別を確認することができ、その上で、局所骨密度及び平均骨密度の対比から、注目画素が周囲に比べて突出した画素値を有しているのか否かを把握することができる。さらにそのような評価にあたっては、L局所減衰率とL平均減衰率との比較、及び、H局所減衰率とH平均減衰率との比較を行って、総合的に修正要否を判断できる。ちなみに、ポップアップ表示される修正支援情報62は上述したように吹き出し型の形態を有しているので、つまり、それはカーソル60を指しているので、修正支援情報62と注目画素との対応関係を画面上で直感的に認識することが可能である。例えば、複数の注目画素を指定して複数の修正支援情報を同時に表示させるようにしてもよい。
Therefore, the user can confirm the result of automatic identification that has already been performed on the designated pixel of interest, that is, the determined pixel type, and then check the local bone density and the average bone density. From the comparison, it can be determined whether or not the pixel of interest has a protruding pixel value compared to the surrounding area. Further, in such an evaluation, it is possible to comprehensively determine whether correction is necessary by comparing the L local attenuation rate and the L average attenuation rate and comparing the H local attenuation rate and the H average attenuation rate. Incidentally, since the
図4に示す表示例においては、カーソル72によって軟組織画素が指定されている。その場合においては、修正支援情報74として、図示のような情報が表示される。すなわち、修正支援情報74は、画素種別の自動識別結果としての軟組織を示す情報64A、注目画素について演算された局所R及び注目画素を含む領域について演算された平均R66A、注目画素について演算されたL局所減衰率及び注目画素を含む領域について演算されたL平均減衰率68A、注目画素について演算されたH局所減衰率及び注目画素を含む領域について演算されたH平均減衰率70A、等を有している。ユーザにおいては、そのような情報を利用して修正の要否あるいは方法を総合的に判断することができる。しかもその判断を的確かつ迅速に行えるから、ユーザの負担を従来よりも大幅に軽減できる。
4, soft tissue pixels are designated by the
図5に示す例においては、符号102で示されるように、ユーザによって特定の関心領域が選択され、それがハイライト表示されている。また、カーソル100によって特定の注目画素が指定されている。被検体画像56に隣接した位置に、特定の関心領域についてのヒストグラム76が表示されている。そのヒストグラム76における横軸は骨密度(局所骨密度)であり、縦軸は個数を示している。すなわち、指定された関心領域内における骨領域を構成する複数の骨画素群についてのヒストグラムが表示されている。カーソル100によって特定の骨画素を注目画素として指定すると、ヒストグラム76上にマーカー78が表示され、その骨画素がヒストグラム上においてどこに位置するのかを容易に特定可能である。図5に示すような表示例において、カーソル100によって指定される注目画素についての修正支援情報は符号104で示す欄に表示される。もちろん、このような表示例は一例に過ぎない。
In the example shown in FIG. 5, as indicated by
図6には、各種の修正方法が表として整理されている。望ましくは、局所値と平均値とを比較しながら、ユーザーにより修正作業が遂行される。まず、自動識別の結果、骨画素であると識別された場合においては、(A1)に示すように、局所値すなわち局所骨密度が平均値すなわち平均骨密度よりも過少であれば(つまり、局所骨密度が平均骨密度よりも所定値を超えて小さければ)、例えば、軟組織の石灰化等を原因として骨画素誤認が生じている可能性があるので、その場合においては、当該注目画素を演算対象から除外する修正、あるいは、当該注目画素の種別を骨画素から軟組織画素へ変更する修正が実行される。(A2)で示すように、局所骨密度と平均骨密度が同等であれば(つまり、両者の差が所定値以内であれば)、格別の修正は不要であると判断される。(A3)に示すように、局所骨密度が平均骨密度よりも過大であれば(つまり、局所骨密度が平均骨密度よりも所定値を超えて大きければ)、例えば注目画素が金属領域にあること、あるいは圧迫骨折領域にあることが推認されるため、当該注目画素を演算対象から除外する修正が実行される。 In Fig. 6, various correction methods are organized as a table. Preferably, the correction operation is performed by the user while comparing the local value with the average value. First, as a result of automatic identification, when a bone pixel is identified, as shown in (A1), if the local value, that is, the local bone density is less than the average value, that is, the average bone density (that is, local If the bone density is lower than the average bone density by more than a predetermined value), for example, there is a possibility that a bone pixel is misidentified due to calcification of soft tissue. In that case, the pixel of interest is calculated. Correction to exclude from the target or correction to change the type of the target pixel from the bone pixel to the soft tissue pixel is executed. As shown in (A2), if the local bone density and the average bone density are equal (that is, if the difference between the two is within a predetermined value), it is determined that no special correction is necessary. As shown in (A3), if the local bone density is higher than the average bone density (that is, if the local bone density is larger than the average bone density by a predetermined value), for example, the target pixel is in the metal region In other words, it is presumed that the target pixel is in the compression fracture region, so that the correction for excluding the target pixel from the calculation target is executed.
一方、自動識別の結果、軟組織画素と識別された場合においては、(B1)に示すように、局所Rが平均Rよりも過少であれば(つまり、局所Rが平均Rよりも所定値を超えて小さければ)、測定エラー等が推認されるため、必要ならば、当該画素を演算対象から除外する修正が実行される。(B2)に示すように、局所Rが平均Rと同等であれば(つまり、両者の差が所定値以内であれば)、格別の修正は行われない。(B3)で示すように、局所Rが平均Rよりも過大であれば(つまり、局所Rが平均Rよりも所定値を超えて大きければ)、例えば低骨密度や成長異常等によって軟部組織であるとの誤認が生じている可能性があるので、注目画素を演算対象から除外する修正あるいは注目画素の種別を軟組織画素から骨画素へ変更する修正が実行される。 On the other hand, as a result of automatic identification, if the pixel is identified as a soft tissue pixel, as shown in (B1), if the local R is less than the average R (that is, the local R exceeds the predetermined value than the average R) If it is small, a measurement error or the like is inferred. If necessary, correction for excluding the pixel from the calculation target is executed. As shown in (B2), if the local R is equal to the average R (that is, if the difference between the two is within a predetermined value), no special correction is performed. As shown in (B3), if the local R is larger than the average R (that is, if the local R is larger than the average R beyond the predetermined value), for example, in soft tissue due to low bone density, abnormal growth, etc. Since there is a possibility that there is a misperception that there is, correction for excluding the target pixel from the calculation target or correction for changing the type of the target pixel from the soft tissue pixel to the bone pixel is executed.
もちろん、図6に示す修正方法は一例であって、状況に応じてユーザによって判断されればよい。本実施形態においては、上述のように修正支援情報が表示されるので、単に画像上から直感的な判断をする場合に比べて修正の要否を的確かつ迅速に判断できるという利点が得られる。ちなみに、各関心領域内において、骨画素群及び軟組織画素群のそれぞれの個数が過大または過少であれば、何らかの異常を推測できるため、特に関心領域の設定エラーの可能性があるため、その場合には、再演算あるいは関心領域の再設定等のオペレーションが自動的に実行される。 Of course, the correction method shown in FIG. 6 is an example, and may be determined by the user according to the situation. In the present embodiment, since the correction support information is displayed as described above, there is an advantage that the necessity of correction can be determined accurately and promptly as compared with a case where an intuitive determination is simply made on the image. By the way, in each region of interest, if the number of bone pixel groups and soft tissue pixel groups is too large or too small, some abnormality can be estimated, so there is a possibility of a region of interest setting error in particular. , Operations such as recalculation or resetting the region of interest are automatically executed.
Claims (10)
前記被検体画像を構成する各画素に対して、当該画素が有する画素値に基づいて骨画素と軟組織画素とを識別する識別処理を適用する識別処理部と、
前記被検体画像上においてユーザーによって注目画素を指定するための注目画素指定部と、
前記注目画素が指定された場合に前記ユーザーに対して修正支援情報を提供する修正支援部と、
前記注目画素に対して前記ユーザーによって修正指示が与えられた場合に、前記識別処理の結果の修正を実行する修正実行部と、
を含み、
前記修正支援情報は、
前記注目画素についての前記識別処理の結果を表す組織種別情報と、
前記識別処理の結果に従って前記注目画素について演算された局所評価値と、
前記識別処理の結果に従って前記注目画素が属する領域について演算された平均評価値と、
を含むことを特徴とする骨密度測定装置。 A subject image generation unit that generates a subject image in which a two-dimensional distribution of bone mineral is reflected based on detection data obtained by irradiating the subject with X-rays;
An identification processing unit that applies, to each pixel constituting the subject image, an identification process for identifying a bone pixel and a soft tissue pixel based on a pixel value of the pixel;
A target pixel designating unit for designating a target pixel by the user on the subject image;
A correction support unit that provides correction support information to the user when the pixel of interest is specified;
A correction execution unit that corrects the result of the identification process when a correction instruction is given by the user to the target pixel;
Including
The correction support information is
Organization type information representing the result of the identification processing for the pixel of interest;
A local evaluation value calculated for the pixel of interest according to the result of the identification process;
An average evaluation value calculated for the region to which the pixel of interest belongs according to the result of the identification process;
A bone density measuring apparatus comprising:
前記識別処理により骨画素と識別された場合には、前記局所評価値として局所骨密度が表示され、且つ、前記平均評価値として平均骨密度が表示される、ことを特徴とする骨密度測定装置。 The apparatus of claim 1.
When a bone pixel is identified by the identification process, a local bone density is displayed as the local evaluation value, and an average bone density is displayed as the average evaluation value. .
前記識別処理により軟組織画素と識別された場合には、前記局所評価値として局所軟組織評価値が表示され、且つ、前記平均評価値として平均軟組織評価値が表示される、ことを特徴とする骨密度測定装置。 The apparatus of claim 2.
Bone density characterized in that when the identification processing identifies a soft tissue pixel, a local soft tissue evaluation value is displayed as the local evaluation value, and an average soft tissue evaluation value is displayed as the average evaluation value measuring device.
前記修正支援情報は、更に、
前記注目画素について演算された低エネルギーX線照射時の局所減衰量及び高エネルギーX線照射時の局所減衰量と、
前記注目画素が属する領域について演算された低エネルギーX線照射時の平均減衰量及び高エネルギーX線照射時の平均減衰量と、
を含む、ことを特徴とする骨密度測定装置。 The apparatus of claim 1.
The correction support information further includes:
Local attenuation at the time of low energy X-ray irradiation and local attenuation at the time of high energy X-ray irradiation calculated for the pixel of interest;
The average attenuation at the time of low energy X-ray irradiation and the average attenuation at the time of high energy X-ray irradiation calculated for the region to which the pixel of interest belongs,
A bone density measuring device comprising:
前記局所軟組織評価値は、低エネルギーX線照射時の局所減衰量と高エネルギーX線照射時の局所減衰量との比を示す値であり、
前記平均軟組織評価値は、低エネルギーX線照射時の平均減衰量と高エネルギーX線照射時の平均減衰量との比を示す値である、
ことを特徴とする骨密度測定装置。 The apparatus of claim 3.
The local soft tissue evaluation value is a value indicating a ratio of local attenuation at the time of low energy X-ray irradiation and local attenuation at the time of high energy X-ray irradiation,
The average soft tissue evaluation value is a value indicating a ratio between an average attenuation amount during low energy X-ray irradiation and an average attenuation amount during high energy X-ray irradiation.
A bone density measuring device characterized by the above.
前記修正実行部は、骨画素から軟組織画素への種別変更、軟組織画素から骨画素への種別変更、及び、演算対象からの除外、の少なくとも1つを実行する、ことを特徴とする骨密度測定装置。 The apparatus of claim 1.
The correction execution unit executes at least one of a type change from a bone pixel to a soft tissue pixel, a type change from a soft tissue pixel to a bone pixel, and an exclusion from a calculation target. apparatus.
前記被検体は複数の椎骨を含み、
前記複数の椎骨に対して複数の関心領域が設定され、
前記各関心領域内が骨部領域と軟組織領域に識別される、
ことを特徴とする骨密度測定装置。 The apparatus of claim 2.
The subject includes a plurality of vertebrae;
A plurality of regions of interest are set for the plurality of vertebrae,
Each region of interest is identified as a bone region and a soft tissue region.
A bone density measuring device characterized by the above.
前記修正支援部は、
前記被検体画像に基づいて画素値ごとの画素数を示すヒストグラムを生成するヒストグラム生成部と、
前記ヒストグラム上において前記注目画素の画素値を示すマーカーを生成するマーカー生成部と、
を含むことを特徴とする骨密度測定装置。 The apparatus of claim 1.
The correction support unit
A histogram generation unit that generates a histogram indicating the number of pixels for each pixel value based on the subject image;
A marker generating unit that generates a marker indicating a pixel value of the target pixel on the histogram;
A bone density measuring apparatus comprising:
前記被検体画像を構成する各画素に対して、当該画素が有する画素値に基づいて骨画素と軟組織画素とを識別する識別処理を適用する工程と、
前記被検体画像上においてユーザーによって指定された注目画素の座標を認識する工程と、
前記注目画素について修正支援情報をユーザーに提供する工程と、
を含み、
前記修正支援情報は、前記識別処理の結果に従って前記注目画素について演算された局所評価値、及び、前記識別処理の結果に従って前記注目画素が属する領域について演算された平均評価値、を含む、ことを特徴とする方法。 In a method executed by a bone density measuring apparatus, and processing a subject image based on detection data obtained by irradiating a subject with X-rays,
Applying, to each pixel constituting the subject image, an identification process for identifying a bone pixel and a soft tissue pixel based on a pixel value of the pixel;
Recognizing the coordinates of the pixel of interest designated by the user on the subject image;
Providing correction support information to the user for the pixel of interest;
Including
The correction support information includes a local evaluation value calculated for the target pixel according to the result of the identification process, and an average evaluation value calculated for a region to which the target pixel belongs according to the result of the identification process. Feature method.
前記修正支援情報は、更に、前記注目画素についての前記識別処理の結果を表す組織種別情報を含む、ことを特徴とする方法。 The method of claim 9, wherein
The correction support information further includes tissue type information representing a result of the identification process for the pixel of interest.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201280013893.2A CN103442638B (en) | 2011-03-18 | 2012-03-07 | Bone density measurement device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011-060130 | 2011-03-18 | ||
| JP2011060130A JP5108965B2 (en) | 2011-03-18 | 2011-03-18 | Bone density measuring device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012128036A1 true WO2012128036A1 (en) | 2012-09-27 |
Family
ID=46879191
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2012/055782 Ceased WO2012128036A1 (en) | 2011-03-18 | 2012-03-07 | Bone density measurement device |
Country Status (4)
| Country | Link |
|---|---|
| JP (1) | JP5108965B2 (en) |
| CN (1) | CN103442638B (en) |
| TW (1) | TWI507175B (en) |
| WO (1) | WO2012128036A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20250090119A1 (en) * | 2023-09-20 | 2025-03-20 | Fujifilm Corporation | Image processing device, image processing method, and image processing program |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6204155B2 (en) * | 2013-11-11 | 2017-09-27 | 株式会社日立製作所 | Medical X-ray measurement apparatus and detection value sequence processing method |
| JP6267938B2 (en) * | 2013-11-11 | 2018-01-24 | 株式会社日立製作所 | Medical X-ray measurement apparatus and boundary determination method |
| JP2015159945A (en) | 2014-02-27 | 2015-09-07 | 富士フイルム株式会社 | Image display apparatus, method, and program |
| JP6197963B2 (en) * | 2014-10-29 | 2017-09-20 | 株式会社島津製作所 | Image processing device |
| JP6118368B2 (en) * | 2015-05-28 | 2017-04-19 | 株式会社日立製作所 | Medical X-ray measurement system |
| JP2017131427A (en) * | 2016-01-28 | 2017-08-03 | 株式会社日立製作所 | X-ray image diagnostic apparatus and bone density measuring method |
| CN107485405B (en) * | 2017-08-18 | 2021-02-19 | 浙江康源医疗器械有限公司 | Device for measuring bone mineral density by using reference module |
| JP6906479B2 (en) * | 2018-05-25 | 2021-07-21 | 富士フイルム株式会社 | Bone mineral information acquisition device, method and program |
| JP7112343B2 (en) * | 2019-01-28 | 2022-08-03 | 富士フイルムヘルスケア株式会社 | Medical X-ray measuring device and program |
| EP3932315B1 (en) | 2019-02-28 | 2025-11-26 | FUJIFILM Corporation | Radiation image processing device and program |
| CN110840473B (en) * | 2019-11-22 | 2023-05-26 | 江研伟 | Bone mineral density measuring system based on CT thin-layer scanning Hu value |
| JP2021115481A (en) * | 2020-01-29 | 2021-08-10 | キヤノン株式会社 | Image processing equipment, radiography equipment, image processing methods and programs |
| WO2021153592A1 (en) * | 2020-01-29 | 2021-08-05 | キヤノン株式会社 | Image processing device, radiography device, image processing method, and program |
| CN113491526B (en) * | 2020-04-07 | 2023-12-05 | 辽宁开普医疗系统有限公司 | Bone density correction and measurement method based on DR system |
| JP2023049944A (en) * | 2021-09-29 | 2023-04-10 | 富士フイルム株式会社 | Image processing device, method and program |
| JP2023121552A (en) * | 2022-02-21 | 2023-08-31 | 株式会社島津製作所 | MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING SYSTEM AND MEDICAL IMAGE PROCESSING METHOD |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06261894A (en) * | 1993-01-18 | 1994-09-20 | Hitachi Ltd | Bone salt quantitative determination method |
| JPH10155115A (en) * | 1996-09-25 | 1998-06-09 | Fuji Photo Film Co Ltd | Method and device for processing bone image |
| JPH10509075A (en) * | 1994-11-23 | 1998-09-08 | ルナー コーポレイション | Bone densitometer with improved indicating characteristics |
| JP2003515376A (en) * | 1999-12-03 | 2003-05-07 | コミツサリア タ レネルジー アトミーク | Method of using bone density measurement system using dual energy cone beam x-ray radiation |
| JP2004147863A (en) * | 2002-10-30 | 2004-05-27 | Aloka Co Ltd | X-ray bone density measuring apparatus |
| JP2005034539A (en) * | 2003-07-18 | 2005-02-10 | Ibaraki Prefecture | X-ray diagnostic imaging device with bone density distribution measurement function |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6474678A (en) * | 1987-09-17 | 1989-03-20 | Toshiba Corp | Picture display device |
| JP4333079B2 (en) * | 2002-04-30 | 2009-09-16 | ブラザー工業株式会社 | Color extraction device |
| JP4622700B2 (en) * | 2005-06-22 | 2011-02-02 | 株式会社島津製作所 | Light or radiation image display device |
| CN101238986B (en) * | 2008-01-16 | 2011-10-19 | 天津开发区圣鸿医疗器械有限公司 | Random calibration device for digital type bone density bone age measuring instrument |
-
2011
- 2011-03-18 JP JP2011060130A patent/JP5108965B2/en active Active
-
2012
- 2012-03-07 CN CN201280013893.2A patent/CN103442638B/en not_active Expired - Fee Related
- 2012-03-07 WO PCT/JP2012/055782 patent/WO2012128036A1/en not_active Ceased
- 2012-03-13 TW TW101108445A patent/TWI507175B/en not_active IP Right Cessation
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06261894A (en) * | 1993-01-18 | 1994-09-20 | Hitachi Ltd | Bone salt quantitative determination method |
| JPH10509075A (en) * | 1994-11-23 | 1998-09-08 | ルナー コーポレイション | Bone densitometer with improved indicating characteristics |
| JPH10155115A (en) * | 1996-09-25 | 1998-06-09 | Fuji Photo Film Co Ltd | Method and device for processing bone image |
| JP2003515376A (en) * | 1999-12-03 | 2003-05-07 | コミツサリア タ レネルジー アトミーク | Method of using bone density measurement system using dual energy cone beam x-ray radiation |
| JP2004147863A (en) * | 2002-10-30 | 2004-05-27 | Aloka Co Ltd | X-ray bone density measuring apparatus |
| JP2005034539A (en) * | 2003-07-18 | 2005-02-10 | Ibaraki Prefecture | X-ray diagnostic imaging device with bone density distribution measurement function |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20250090119A1 (en) * | 2023-09-20 | 2025-03-20 | Fujifilm Corporation | Image processing device, image processing method, and image processing program |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103442638A (en) | 2013-12-11 |
| JP5108965B2 (en) | 2012-12-26 |
| JP2012192118A (en) | 2012-10-11 |
| TWI507175B (en) | 2015-11-11 |
| CN103442638B (en) | 2015-11-25 |
| TW201240648A (en) | 2012-10-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5108965B2 (en) | Bone density measuring device | |
| JP6222795B2 (en) | Diagnostic imaging apparatus and control method thereof | |
| US10515451B2 (en) | Measuring intramuscular fat | |
| JP5156835B2 (en) | Slit collimator scattering correction | |
| US8792689B2 (en) | Measuring intramuscular fat | |
| US10548539B2 (en) | X-ray CT apparatus and scanning method | |
| CN112165900A (en) | Image analysis method, segmentation method, bone density measurement method, learning model generation method, and image generation device | |
| EP4056120B1 (en) | Estimation device, estimation method, and estimation program | |
| EP3240482B1 (en) | Contrast-enhanced x-ray image guided biopsy system and method | |
| JP6197963B2 (en) | Image processing device | |
| JPWO2019083014A1 (en) | Methods and devices for processing photon counting type X-ray detection data, and X-ray devices | |
| US20110060247A1 (en) | Methods and apparatus for measuring bone lengths | |
| WO2012008500A1 (en) | Signal-processing device, signal-processing program, and computer-readable recording medium with a signal-processing program recorded thereon | |
| US9895127B2 (en) | Systems and methods of image acquisition for surgical instrument reconstruction | |
| US11096645B2 (en) | Bone mineral information acquisition apparatus, bone mineral information acquisition method, and bone mineral information acquisition program | |
| US20230306594A1 (en) | Measuring intramuscular fat | |
| EP4310771A1 (en) | Methods and systems for image denoising | |
| EP4033981B1 (en) | Motion detection for internal breast tissue in tomosynthesis | |
| US20180353773A1 (en) | Treatment planning apparatus | |
| JP2009090022A (en) | Medical image diagnostic apparatus, medical image diagnostic program, and X-ray imaging apparatus | |
| EP4272649A1 (en) | System and method for calibrating a camera feature detection system of an x-ray system | |
| JP6252750B2 (en) | Trabecular bone analyzer | |
| JP7577591B2 (en) | Positioning device, particle beam therapy device, and positioning method | |
| JP6999895B2 (en) | Radiation imaging device and radiological image detection method | |
| Luckner | Tomosynthesis in Orthopedics: Ultra-Small-Angle Tomosynthesis and Applications Beyond |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12760808 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 12760808 Country of ref document: EP Kind code of ref document: A1 |