WO2012112686A2 - Enrichissement en oxygène de brûleurs à gaz à air et à prémélange - Google Patents
Enrichissement en oxygène de brûleurs à gaz à air et à prémélange Download PDFInfo
- Publication number
- WO2012112686A2 WO2012112686A2 PCT/US2012/025256 US2012025256W WO2012112686A2 WO 2012112686 A2 WO2012112686 A2 WO 2012112686A2 US 2012025256 W US2012025256 W US 2012025256W WO 2012112686 A2 WO2012112686 A2 WO 2012112686A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas stream
- gas
- conduit
- stream
- burner arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/32—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2201/00—Staged combustion
- F23C2201/20—Burner staging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/06043—Burner staging, i.e. radially stratified flame core burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/101—Flame diffusing means characterised by surface shape
- F23D2203/1012—Flame diffusing means characterised by surface shape tubular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/00008—Burner assemblies with diffusion and premix modes, i.e. dual mode burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L2900/00—Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
- F23L2900/07007—Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber using specific ranges of oxygen percentage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Definitions
- the subject matter of the present invention relates to a premix burner arrangement and method for adding, enriching, or increasing the overall concentration of oxygen when combusting a mixture of air and a combustible gas such as natural gas.
- Premix air-fuel combustion is very difficult to enrich with oxygen. This is due to the potential of flame flashback and burner damage, if significant additional oxygen was added directly to the mixture of air and fuel.
- the potential of flashback has limited direct addition of oxygen to premix combustion mixtures to a relatively low level enrichment, e.g. 23% 02.
- Patent No 5,256,058 which is hereby incorporated by reference in its entirety, discloses an oxy-fuel burner that employs a precombustor between a burner and a process furnace.
- U.S. Patent No. 5, 199,866 which is hereby incorporated by reference in its entirety, discloses an adjustable oxy-fuel burner. Neither of these patents discloses a premix gas mixture, nor the low velocity injection of oxygen circumferentially around a central gas stream.
- a premix burner arrangement, a combustion system, and method for enriching combustion of a pre-mixture of air and a combustible gas with significant additional oxygen that is safe, efficient and reduces or eliminates overheating of the burner components would be desirable in the art.
- the present invention can solve problems associated with conventional burners by providing a burner design and method for introducing significant additional oxygen to a previously formed mixture (or pre-mix) of air and a combustible gas.
- the invention enables higher levels of oxygen-enrichment of premix combustion in a safe and efficient manner within the burner confinements.
- the invention also employs a method for introducing oxygen-flow into the burner system to minimize overheating of the burner components (e.g., refractory block for mounting the burner to a furnace wall).
- the premix burner arrangement includes a first conduit arranged and disposed to provide a first gas stream.
- the first gas stream is a self-reactive or self-flammable premixture comprising air and a combustible gas.
- At least one second conduit is arranged and disposed to provide a second gas stream circumferentially around the first gas stream.
- the second gas stream includes oxygen.
- the premix burner arrangement is configured to combust or react the first stream at a temperature at least 1000 °F greater than the temperature of the second stream.
- the premix burner arrangement is further configured to provide a velocity ratio of the second gas stream to the first gas stream sufficiently low to inhibit mixing of the first gas stream with the second gas stream.
- the combustion method includes providing a first gas stream.
- the first gas stream is a self- reactive or self flammable pre-mixture comprising air and a combustible gas in a first conduit.
- the method further includes providing a second gas stream circumferentially around the first gas stream with at least one second conduit.
- the second gas stream includes oxygen.
- the first gas stream reacts or combusts and is at a temperature at least 1000 °F higher than the second stream.
- the first gas stream and the second gas stream are provided with a velocity ratio of the second gas stream to the first gas stream sufficiently low to inhibit mixing of the first gas stream with the second gas stream.
- the combustion system includes a premix burner arrangement having a first conduit and at least one second conduit.
- the first conduit is arranged and disposed to provide a first gas stream.
- the first gas stream is a self-reactive or self-flammable pre-mixture comprising air and a combustible gas.
- the at least one second conduit is arranged and disposed to provide a second gas stream including oxygen circumferentially around the first gas stream.
- the combustion system further includes a burner block forming a precombustion zone configured to receive the first gas stream and the second gas stream.
- the premix burner arrangement is configured to combust or react the first stream at a temperature at least 1000 °F greater than the temperature of the second stream.
- the premix burner arrangement is further configured to provide a velocity ratio of the second gas stream to the first gas stream sufficiently low to inhibit mixing of the first gas stream with the second gas stream.
- FIG. 1 is a schematic drawing illustrating an embodiment of a combustion system according to the present disclosure.
- FIG. 2 is a schematic drawing illustrating a burner arrangement viewed in direction 2-2 of FIG. 1.
- FIG. 3 is a schematic drawing illustrating an alternate burner arrangement viewed in direction 2-2 of FIG. 1.
- FIG. 4 is a graphical representation of velocity ratios as a function of oxygen enrichment.
- oxygen and grammatical variations thereof refers to an oxidizer having an 0 2 concentration greater than that of atmospheric or ambient conditions.
- oxidizer having an 0 2 concentration greater than that of atmospheric or ambient conditions.
- indefinite articles “a” and “an” as used herein mean one or more when applied to any feature in embodiments of the present invention described in the specification and claims.
- the use of “a” and “an” does not limit the meaning to a single feature unless such a limit is specifically stated.
- the definite article “the” preceding singular or plural nouns or noun phrases denotes a particular specified feature or particular specified features and may have a singular or plural connotation depending upon the context in which it is used.
- the adjective “any” means one, some, or all indiscriminately of whatever quantity.
- the term “and/or” placed between a first entity and a second entity means one of (1 ) the first entity, (2) the second entity, and (3) the first entity and the second entity.
- combustion zone is defined as an enclosed space such as a space defined by a burner block that receives gas streams for combustion.
- combustion zone is defined as an enclosed space such as a furnace, downstream from the pre-combustion zone, in which combustion reactions occur, at least one of which may be the reaction of a carbon and/or hydrogen-containing fuel with oxygen to form carbon oxides and/or water and heat.
- the instant invention provides a premix burner arrangement and method for achieving higher levels of oxygen enrichment by controlling the mixing between the air- fuel premix portion of the flame and oxygen injection.
- oxygen is introduced through an annular space around the air-fuel premix flame wherein the oxygen velocity is lower than the premix air- fuel flame. While any suitable oxygen velocity can be employed, a suitable velocity range is determined by the following equation:
- V 0 2 is the velocity of second gas stream containing oxygen at the point of injection.
- Vpremix is the velocity of the first gas stream at the point of injection.
- a preferred velocity range is determined by the following equation:
- ratios may include velocity ratios of between about 0.5 to about 1.0. Greater velocity ratios according to the above equation result in higher temperatures for the resultant flame and burner components, such as the burner nozzles and burner block.
- oxygen enrichment is achieved by external lancing in the vicinity of the premix flame (e.g., an oxygen lance is located adjacent to the burner).
- External lancing can be a safer method of introducing oxygen, however, it requires additional ports in the furnace and the effect on flame is reduced due to the downstream injection point.
- external oxygen lancing can be combined with oxygen introduced into the annular space around the air-fuel premix.
- FIG. 1 shows a schematic illustration of a premix burner arrangement 100.
- the premix burner arrangement 100 includes burner nozzle section 101 , a precombustion zone 103 and a combustion zone 105.
- the burner nozzle section 101 includes burner nozzles 106, including a first conduit 107 and a second conduit 109 circumferentially disposed around the first conduit 107.
- the second conduit 109 may be a single continuous conduit or opening or may be a plurality of conduits, nozzles, or orifices.
- the precombustion zone 103 is defined by burner block 1 1 1 and receives a first gas stream 113 and a second gas stream 1 15 from the first and second conduits 107, 109.
- Burner block 1 11 is preferably a refractory material and may include a cylindrical geometry, but is not so limited and may have any suitable geometry for receiving gas streams from burner nozzle section 101.
- the burner nozzle section 101 provides a first gas stream 1 13 and a second gas stream 1 15 to the precombustion zone 103.
- the first gas stream 1 13 is a pre- mixture of air and a combustible gas.
- the combustible gas is any suitable fuel capable of pre-mixing with air prior to combustion.
- Suitable combustible gas include, but are not limited to, gaseous hydrocarbon, such as natural gas or propane, CO, hydrogen- containing gas, such as gas having less than 50 vol% hydrogen and combinations thereof.
- the hydrogen-containing gas preferably includes less than about 50 vol% hydrogen due to the high flame speed of high concentration hydrogen in air.
- the pre- mixture of air and combustible gas may be provided in any manner known in the art. Suitable sources of the premixture of combustible gas and air are streams that are premixed some distance from the first conduit 107, usually in a central premixing chamber. The premix gas is then transported to individual burners and into their fuel conduits, such as the first conduit 107.
- the second gas stream 1 15 is an oxygen- containing gas having oxygen concentrations ranging from greater than 20.9 vol% (air) to greater than 99.5 vol% (high purity oxygen).
- the oxygen-containing gas preferably includes greater than about 50 vol% oxygen.
- the first gas stream 1 13 and the second gas stream 1 15 are provided such that mixing of the first gas stream 1 13 and the second gas stream 1 15 are inhibited.
- inhibited mixing By “inhibited mixing”, “to inhibit mixing” and grammatical variations thereof, it is meant that the first gas stream 1 13 and the second gas stream 1 15 have limited mixing for a distance within the precombustion zone sufficient to prevent the overheating of the burner block 1 1 1 or other components of the burner arrangement 100.
- Overheating of components includes exposure to temperatures signficantly higher than the temperature of an air-fuel flame. The temperatures that result in overheating are sufficiently high that, for example, exposure to these temperatures could damage or melt the refractory material of the burner block 1 1 1 or the other components of the burner arrangement 100. As shown in FIG.
- the contact area 1 17 depicted by a broken line shows schematically the area in which the first gas stream 1 13 and the second gas stream 1 15 come in contact. It is understood that the contact area 1 17 is merely schematic and can vary based on the conditions within the precombustion zone 103.
- the mixing is inhibited by providing the first gas stream 1 13 and the second gas stream 1 15 at a velocity ratio of the second gas stream 1 15 to the first gas stream 1 13 sufficiently low to inhibit mixing, for example, through the precombustion zone 103.
- the velocity ratio of the second gas stream 1 15 to the first gas stream 1 13 is less than about 1.0 or from about 0.5 to about 1.0, or less than about 0.5 or from about 0.1 to about 0.5 or any range or sub-range therein.
- the first gas stream 1 13 is a premixture of air and combustible gas that is self- reactive or self-flammable.
- self-reactive or self-flammable it is meant that the gas is capable of reacting, sustaining a flame or combustion in the absence of additional reactants.
- the burner arrangement 100 provides the first stream 1 13 such that the premixture is reacting or combusting and is at a temperature at least 1000 °F greater than the second stream.
- the 1000 °F or greater temperature difference between the first gas stream 1 13 and the second gas stream 1 15 causes a significant viscosity difference, where the hotter first gas stream is of much higher viscosity than the second gas stream.
- the velocity ratio of the second gas stream to the first gas stream is sufficiently low to inhibit mixing of the higher viscosity first gas stream with the lower viscosity second gas stream.
- the first gas stream 113 and the second gas stream 1 15 are provided to the combustion zone 105 where a flame 1 19 is created.
- a source of ignition (not shown) is provided to initiate the combustion and form the flame 119.
- the flame 1 19 is not limited to the geometry or the position shown and includes combustion of the pre-mixture of the first gas stream 1 13 with the oxygen of the second gas stream 1 15.
- the inhibited mixing is a result of the differences in the physical states (e.g., temperature, velocity and viscosity) of the first gas stream 1 13 and the second gas stream 1 15.
- the pre-mixture of combustible gas and air in the first gas stream 1 13 is generally in the state of combustion wherein the temperature is high relative to ambient.
- the second gas stream 1 15 is provided, for example, at about room temperature substantially below the temperature of the first gas stream 1 13.
- the states of two streams (1. first gas stream 113 and 2.
- second gas stream 1 15 are notably different, where the hotter reactant (air- fuel premix) is characterized by much higher viscosity and the colder (i.e., stream containing oxygen) is of much lower viscosity.
- the hotter reactant air- fuel premix
- the colder i.e., stream containing oxygen
- Introduction of oxygen at high velocity would compensate for the viscosity difference and will result in relatively rapid mixing.
- by injecting oxygen at lower velocities than the air-fuel premix results in inhibited mixing, for example, at least until the gas streams exit the precombustion zone 103. This inhibited mixing results in much lower overall flame temperatures and enables the 02-enriched flame to travel through the precombustor without overheating the refractory walls.
- FIG. 2 illustrates a configuation of burner nozzles 106 shown in direction 2-2 from FIG. 1 according to an embodiment of the present disclosure.
- the burner nozzles 106 are an annular type burner.
- the first conduit 107, which provides the first gas stream 1 13, is surrounded by a continous second conduit 109 that provides the second gas stream 1 15 including oxygen.
- FIG. 3 shows a schematic illustration of a multi-jet burner nozzle shown in direction 2-2 from FIG. 1.
- the burner nozzles 106 are a multi-jet burner arrangement.
- the arrangement shown in FIG. 3 includes a central first conduit 107, which provides the first gas stream 1 13, containing a premix of air and combustible gas.
- the first conduit 107 is surrounded by a second conduit 109, which are a plurality of relatively small jets, conduits, nozzles or orifices that provide the second gas stream 1 15 including oxygen.
- FIG. 4 it illustrates the velocity ratios for the multi-jet and annular burners as a function of oxygen enrichment.
- FIG. 4 also illustrates that desirable results can be achieved by using a velocity ratio of less than about 0.5 and in some cases the ratio can range from about 0.5 to about 1.0.
- Table 1 and FIG. 4 also illustrate that the oxygen enrichment can be controlled to obtain a desired pre-determined amount of enrichment. That is, higher levels of oxygen enrichment can be achieved by controlling the mixing between the air-fuel premix portion of the flame and oxygen injection.
- inventive burner arrangement and method can be employed in a wide range of furnaces.
- furnaces include those employed for industrial heating such as cement, glass and metal treatment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
La présente invention se rapporte à un agencement de brûleur à prémélange destiné à enrichir de manière sécurisée en oxygène un système de combustion d'air et de combustible à prémélange. Dans l'agencement de brûleur de la présente invention, un premier conduit est agencé et disposé pour fournir un premier flux gazeux. Le premier flux gazeux est un prémélange auto-réactif et auto-inflammable qui contient de l'air et un gaz combustible. Au moins un second conduit est agencé et disposé pour fournir un second flux gazeux de façon circonférentielle autour du premier flux gazeux. Le second flux gazeux comporte de l'oxygène. L'agencement de brûleur à prémélange est configuré pour brûler ou faire réagir le premier flux à une température d'au moins 1000 °F qui est plus importante que la température du second flux. La présente invention se rapporte également à un procédé et à un système de combustion qui comprennent l'agencement de brûleur à prémélange.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201280009345.2A CN103782099B (zh) | 2011-02-16 | 2012-02-15 | 预混合空气-气体喷燃器的氧富化 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161443315P | 2011-02-16 | 2011-02-16 | |
| US61/443,315 | 2011-02-16 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2012112686A2 true WO2012112686A2 (fr) | 2012-08-23 |
| WO2012112686A3 WO2012112686A3 (fr) | 2013-11-28 |
Family
ID=45774337
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/025256 Ceased WO2012112686A2 (fr) | 2011-02-16 | 2012-02-15 | Enrichissement en oxygène de brûleurs à gaz à air et à prémélange |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US9017067B2 (fr) |
| CN (1) | CN103782099B (fr) |
| WO (1) | WO2012112686A2 (fr) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6551375B2 (ja) * | 2016-12-07 | 2019-07-31 | トヨタ自動車株式会社 | 水素ガスバーナ構造およびこれを備えた水素ガスバーナ装置 |
| US10513453B2 (en) * | 2017-07-28 | 2019-12-24 | Air Products And Chemicals, Inc. | Oxygen-fuel burner for a glass melting furnace |
| JP6863189B2 (ja) * | 2017-09-05 | 2021-04-21 | トヨタ自動車株式会社 | 水素ガスバーナー装置用のノズル構造体 |
| CN111578294B (zh) * | 2020-04-03 | 2022-12-23 | 乐清市亿得利燃烧器有限公司 | 一种侧喷燃烧器 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5199866A (en) | 1992-03-30 | 1993-04-06 | Air Products And Chemicals, Inc. | Adjustable momentum self-cooled oxy/fuel burner for heating in high temperature environments |
| US5256058A (en) | 1992-03-30 | 1993-10-26 | Combustion Tec, Inc. | Method and apparatus for oxy-fuel heating with lowered NOx in high temperature corrosive environments |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2857148A (en) * | 1955-12-02 | 1958-10-21 | Kennedy Van Saun Mfg & Eng | Method of firing rotary kilns and gas burner therefor |
| DE3518080A1 (de) * | 1985-05-20 | 1986-11-20 | Stubinen Utveckling AB, Stockholm | Verfahren und vorrichtung zum verbrennen fluessiger und/oder fester brennstoffe in pulverisierter form |
| DK168460B1 (da) * | 1991-12-06 | 1994-03-28 | Topsoe Haldor As | Hvirvelbrænder |
| US5575637A (en) * | 1994-11-04 | 1996-11-19 | Air Products And Chemicals, Inc. | Method and device for low-NOx high efficiency heating in high temperature furnaces |
| US5611682A (en) * | 1995-09-05 | 1997-03-18 | Air Products And Chemicals, Inc. | Low-NOx staged combustion device for controlled radiative heating in high temperature furnaces |
| DK173204B1 (da) * | 1997-03-07 | 2000-03-13 | F.L.Smidth & Co A/S | r i en ovn Fremgangsmaede og braender til at indfoere braende |
| US7279137B2 (en) | 2001-08-30 | 2007-10-09 | Tda Research, Inc. | Burners and combustion apparatus for carbon nanomaterial production |
| US6659762B2 (en) * | 2001-09-17 | 2003-12-09 | L'air Liquide - Societe Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Oxygen-fuel burner with adjustable flame characteristics |
| US8696348B2 (en) | 2006-04-26 | 2014-04-15 | Air Products And Chemicals, Inc. | Ultra-low NOx burner assembly |
| US20080006225A1 (en) * | 2006-07-06 | 2008-01-10 | William Thoru Kobayashi | Controlling jet momentum in process streams |
| US8689710B2 (en) * | 2008-09-26 | 2014-04-08 | Air Products And Chemicals, Inc. | Combustion system with precombustor |
| US8500440B2 (en) * | 2008-12-31 | 2013-08-06 | Linde, Inc. | Burner block for producing flat flame |
| US8404018B2 (en) | 2009-07-06 | 2013-03-26 | Air Products And Chemicals, Inc. | Burner and method for processing oxidizable materials |
-
2012
- 2012-02-15 US US13/396,657 patent/US9017067B2/en active Active
- 2012-02-15 CN CN201280009345.2A patent/CN103782099B/zh not_active Expired - Fee Related
- 2012-02-15 WO PCT/US2012/025256 patent/WO2012112686A2/fr not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5199866A (en) | 1992-03-30 | 1993-04-06 | Air Products And Chemicals, Inc. | Adjustable momentum self-cooled oxy/fuel burner for heating in high temperature environments |
| US5256058A (en) | 1992-03-30 | 1993-10-26 | Combustion Tec, Inc. | Method and apparatus for oxy-fuel heating with lowered NOx in high temperature corrosive environments |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103782099A (zh) | 2014-05-07 |
| US9017067B2 (en) | 2015-04-28 |
| WO2012112686A3 (fr) | 2013-11-28 |
| CN103782099B (zh) | 2016-03-16 |
| US20130052597A1 (en) | 2013-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0959299B1 (fr) | Procédé et appareil pour réduire la production de NOx pendant la combustion d'air, oxygène et combustible | |
| RU2426030C2 (ru) | УЗЕЛ ГОРЕЛОК С УЛЬТРАНИЗКОЙ ЭМИССИЕЙ NOx | |
| US5413476A (en) | Reduction of nitrogen oxides in oxygen-enriched combustion processes | |
| ES2567200T3 (es) | Proceso de combustión por etapas con lanzas de combustible de ignición asistida | |
| CA2107630C (fr) | Bruleur a injection pour combustion etagee | |
| KR0184900B1 (ko) | 이원 산화제 연소방법 | |
| KR20180097137A (ko) | 이중-단계화된 산소-연료 버너 | |
| US5755818A (en) | Staged combustion method | |
| JPH10501056A (ja) | 超低量noxバーナー | |
| US5439373A (en) | Luminous combustion system | |
| EP2494274B1 (fr) | Procédé de combustion pour les combustibles solides avec un brûleur | |
| PL173097B1 (pl) | Sposób spalania paliwa oraz urządzenie do przeprowadzania spalania paliwa | |
| US9017067B2 (en) | Oxygen enrichment of premix air-gas burners | |
| US8714969B2 (en) | Staged combustion method with optimized injection of primary oxidant | |
| KR100653029B1 (ko) | 다공성 벽 노에서의 연소 방법 | |
| EP0982540B1 (fr) | Combustion à stoechiométrie variable | |
| EP0748981A2 (fr) | Combustion étagée avec génération réduite d'oxydes d'azote et de monoxyde de carbone | |
| US20240167679A1 (en) | Combustion system with mixing and flame arresting for pollution reduction | |
| EP3030840A1 (fr) | Ensemble de brûleur et procédé pour la combustion de combustible gazeux ou liquide | |
| EP3695166B1 (fr) | Réduction de l'encrassement dans une combustion étagée |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201280009345.2 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12706751 Country of ref document: EP Kind code of ref document: A2 |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 12706751 Country of ref document: EP Kind code of ref document: A2 |