[go: up one dir, main page]

WO2012110119A1 - Battery housing for powered surgical tool - Google Patents

Battery housing for powered surgical tool Download PDF

Info

Publication number
WO2012110119A1
WO2012110119A1 PCT/EP2011/070312 EP2011070312W WO2012110119A1 WO 2012110119 A1 WO2012110119 A1 WO 2012110119A1 EP 2011070312 W EP2011070312 W EP 2011070312W WO 2012110119 A1 WO2012110119 A1 WO 2012110119A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
driver
battery housing
attached
surgical tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2011/070312
Other languages
French (fr)
Inventor
Marc Detry
Kévin SORNAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimmer Surgical SA
Original Assignee
Zimmer Surgical SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zimmer Surgical SA filed Critical Zimmer Surgical SA
Priority to EP11785400.0A priority Critical patent/EP2675369B1/en
Priority to CN201180066088.1A priority patent/CN103338715B/en
Publication of WO2012110119A1 publication Critical patent/WO2012110119A1/en
Priority to US13/966,716 priority patent/US9034505B2/en
Anticipated expiration legal-status Critical
Priority to US14/687,240 priority patent/US9687253B2/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/16Instruments for performing osteoclasis; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1628Motors; Power supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery housing for powered surgical tools.
  • the present disclosure relates in particular to a detachable battery housing containing one or more batteries for powering the motor of a powered surgical tool's driver.
  • Powered surgical tools for example powered surgical saws and/or drills, are powered tools that surgeons employ for performing certain surgical procedures that include cutting and/or drilling bones and/or other tissues.
  • a powered surgical tool typically comprises a handpiece, or driver, in which is housed a motor, for example an electrically or pneumatically driven motor.
  • the motor is attached, for example through a drive shaft, to a head of the driver, which is adapted to removably receive a surgical tool, for example a saw blade or a drill bit.
  • the actuation of the motor causes an oscillating or rotating movement of the head and thus of the tool.
  • Powered surgical tools in particular those with an electrically driven motor, usually comprise one or more batteries providing the electrical power necessary for driving the motor.
  • the batteries are often contained in a housing having an opening for allowing the insertion and removal of the batteries therein, and for example a door for closing, preferably hermetically closing, the opening.
  • the battery housing is often removeably attached to the driver.
  • An advantage of removeable batteries is that they can be easily taken out of the powered tool, for example before sterilization. Indeed, while sterilization of the powered surgical tool is required for the patients' safety, electrical batteries often suffer from the related heat and humidity conditions that can lead to a significant loss of power. After and/or before an operation, the batteries are thus preferably taken out of the battery housing, which is then sterilized, for example in an autoclave, while the batteries are cleaned and disinfected. The batteries are then inserted again into the sterilized battery housing and the housing is closed, thus forming a battery pack which is sterile on its outside despite containing non sterile battery or batteries.
  • the battery housing being for example removeably attached to the driver of the powered tool, the battery pack can easily be replaced, if necessary, during an operation and inside an operation room, because no access to the unsterile batteries is necessary. If for any reasons the batteries need replacement, the battery housing can be detached from the driver and replaced by a fresh and sterile battery pack, without contamination risk for the patient. No battery housing thus needs to be opened for replacing batteries.
  • the batteries inside the battery housing are not sterile, a contamination risk still exists if for example the battery housing inadvertently opens or remains open in the operation room, in particular if it opens or remained partly opened while the tool to which it is attached is being used.
  • a battery housing for a driver of a powered surgical tool comprising a casing with an opening for inserting at least one battery into the casing, a door for closing the opening when the door is in its closed position and a driver interface for removeably attaching the battery housing to a driver of a powered surgical tool, wherein the door comprises at least one part that is configured for being blocked by the driver when the door is moved out of its closed position and the battery housing is attached to the driver, such that the door cannot be opened when the battery housing is attached to the driver.
  • a battery housing and driver assembly comprising such a battery housing and a driver for a powered surgical tool, wherein the at least one part of the door is blocked by the driver when the door is in its closed position and when the battery housing is attached to the driver.
  • a powered surgical tool comprising such a battery housing and driver assembly and a surgical tool configured for attachment to the driver.
  • the door of the battery housing comprising one or more elements that are configured for being blocked by the driver upon an attempt to move the door out of its closed position while the battery housing is attached to a driver.
  • the door is maintained closed as long as the driver is attached to the battery housing, thereby avoiding the inadvertent opening of the door while the powered surgical tool is in use, even if the door is not locked by a specific locking mechanism, e.g. the door's locking mechanism is opened or the door is lacking such a specific mechanism.
  • the driver interface is configured such that the driver must be sled onto the battery housing and pushes the door in its closed position while being attached onto the battery housing. Accordingly, if the door is not completely closed before attaching the driver, it will be closed by the operation of attaching the driver to the battery housing.
  • the door comprises a self-locking
  • Fig. 1 is a perspective view of an illustrative but not limiting example of a battery housing according to an exemplary embodiment
  • Fig. 2 is a transversal cut view of the battery housing of Fig. 1 showing the door locking mechanism in its locked position;
  • Fig.3 is a transversal cut view of the battery housing of Fig. 1 showing the door locking mechanism in its unlocked position;
  • Fig. 4 is a lateral cut view of the battery housing of Fig.1 and of a part of an exemplary adapted driver.
  • Fig. 5 is a lateral view of the battery housing of Fig.1 and of a part of an exemplary adapted driver.
  • the battery housing 1 is a closed container with a casing 2 having an opening, and a door 3 which is adapted and configured to close the opening.
  • the battery housing 1 further comprises a driver interface 4 for removably attaching it to a driver of a powered surgical tool, not represented in Fig. 1 , which comprises a correspondingly configured interface.
  • the driver interface 4 comprises attachment means for mechanically coupling the battery housing 1 to the driver.
  • the attachment means for example comprises grooves 41 in which corresponding ridges of the driver's battery housing interface can slide when the battery housing 1 is being attached to the driver.
  • the attachment means further comprises a self- locking pin 42 that latches into a corresponding opening of the driver's battery housing interface when the battery housing 1 is correctly attached to the driver, thereby locking the battery housing 1 onto the driver for avoiding any undesired detachment of the battery housing 1.
  • the self-locking pin 42 is actuated by a lever 43 that allows retracting it before detaching the battery housing 1 from the driver.
  • the lever 43 for example act against the elastic force of one or more springs, not visible in Fig.
  • the self-locking pin and the lever for actuating it is comprised in the battery interface of the driver, while the driver interface of the battery housing comprises a corresponding opening in which the self-locking pin latches when the battery housing is correctly attached to the driver.
  • the driver interface 4 further comprises electrical contacts 45 for electrically coupling the battery housing 1 to the driver, in particular for establishing an electrical contact between the poles of the one or more batteries contained in the battery housing and the driver's electrical motor for powering said motor.
  • the electrical contacts 45 are for example located in the grooves 41 where they are in contact with corresponding electrical contacts located around the ridges of the driver's battery housing interface, when the battery housing 1 is attached to the driver. Other configurations and/or position of the electrical contacts are however possible within the frame of the present invention.
  • the casing 2 comprises an opening, for example on a front side of the casing 2, for inserting one or more batteries therein.
  • the opening can be closed, for example hermetically closed, by a door 3.
  • the door 3 is for example pivotably attached on one side to the casing 2 through a hinge 30.
  • the door 3 when closed the door 3 is locked and can be unlocked for example by actuating, e.g. rotating, a handle 31 located on the external side of the door 3.
  • the handle 31 actuates a locking mechanism located for example on the inner side of and/or inside the door 3.
  • the door 3 is configured such that it can not be opened when the battery housing 1 is attached to a driver, even if the locking mechanism is unlocked.
  • the door 3 is pivotably attached to the casing 2 with its hinge side located opposite to the driver interface 4 such that its swing side is close to or adjacent the driver interface 4 when the door 3 is in its closed position.
  • the door 3 is configured such that, when the door 3 is in its closed position and the battery housing 1 is attached to a driver, at least a part of the door's swing side is blocked against any opening movement by the driver, thereby preventing the door 3 from opening.
  • the swing side of the door 3 is thus maintained close to the driver interface 4 by the driver when the battery housing 1 is attached to a driver.
  • a lip 300 formed on at least part of the edge of the swing side of the door 3 is part of the driver interface 4 when the door 3 is closed, such that its movements are strictly limited or at all prevented by the battery interface of a driver that would be attached to the battery housing 1 .
  • the door 3 comprises wings or projections 301 on its swing side, which extend beyond the rotation axis of the hinge 30 towards a back or body side of the casing 2 when the door is in its closed position.
  • the projections 301 thus extend from the swing side of the door 3 in a direction essentially perpendicular to the principal plane of the door 3, i.e. essentially radial relative to the axis of the hinge 30, such that when the door 3 is rotated around the hinge 30 the tip of the projections 301 being further away from the rotation axis than the rest of the swing side of the door 3, they move along an arch having a larger radius than the radius along which the rest of the swing side moves.
  • the projections 301 when the door 3 is opened, at least part of the projections 301 , in particular their tip, first moves, in its circular movement, towards a surface 44 of the driver interface before moving away from it and freeing the opening in the front side of the casing 2. Accordingly, if a driver is attached to the driver interface 4, the projections 301 , and in particular their tip, would come into contact with the attached driver, thereby preventing the door 3 from being opened.
  • Other configurations, in particular other shapes of the door 3, are possible in order to prevent the door 3 from being opened when a driver is attached to the driver interface 4.
  • the door 3 comprises a self-locking mechanism, which is illustrated by way of an exemplary embodiment in Fig. 2 and Fig. 3, such that the door 3 is automatically locked when it is pushed in its closed position against the casing 2.
  • the self-locking mechanism comprises a latch 32 that cooperates with a notch 21 of the casing 2, visible in Fig. 4, for maintaining the door 3 in its closed position when the self-locking mechanism is in its locked position.
  • the latch 32 is for example pushed into its locked position by the force of one or more spring elements, for example by two springs 321 that push on a base plate 320 to which the latch 32 is attached in a fixed relationship.
  • the latch 32 is for example integral to the base plate 320.
  • the latch 32 is for example profiled such that when the door 3 is being pushed into its closed position, the latch 32 comes in contact with the notch 21 and is pushed towards its unlocked position against the force of the springs 321 . Once the door 3 is closed, the latch 32 is returned by the force of the springs 321 into its locked position behind the notch 21 , thereby maintaining the door 3 in its closed position.
  • the self-locking mechanism is for example actuated, in particular pushed in its unlocked position, by a cam 310 that can act on the base plate 320 for displacing it.
  • the cam 310 is for example located in an aperture of the base plate 320, whereas the cam 310 and the aperture in the base plate 320 are configured such that when the cam 310 is rotated, it pushes on the base plate 320 in a direction opposed to the direction of the force exerted by the springs 321 , thus pushing the latch 32 in its unlocked position.
  • the cam 310 is connected to the handle 31 located for example on the external side of the door 3, and is rotated by the rotation of the handle 31 .
  • the cam 310 is for example integral with the handle 31 .
  • the self-locking mechanism is for example attached to the inner side of the door 3 and covered in an embodiment by a cover plate 33 that protects the self-locking mechanism against external elements.
  • the cover plate 33 is for example riveted or screwed onto the inner side of the door 3.
  • Fig. 4 illustrates the exemplary battery housing 1 removably attached to a corresponding driver 9.
  • the driver interface 4 comprises parts of both the casing 2 and of the door 3.
  • the driver interface 4 is for the most part integral with the casing 2 and comprises a part of the door 3, for example a lip 300 on the edge of the swing side of the door 3.
  • a flange 90 of the battery interface of the driver for example blocks the part 300 of the door 3 when the driver 9 is attached to the battery housing 1 .
  • the projections 310 extending in a direction essentially perpendicular to the plane of the door 3 and beyond the rotation axis of hinge 30 towards the body side of the battery housing 2 when the door 3 is closed, prevent the door 3 from being opened when the battery housing 1 is attached to a driver 9. Indeed, if the door 3 was to be rotated out of its closed position around the hinge 30, the projections 310 would start moving towards the driver 9 and rapidly abut against it, thereby preventing the door 3 from moving any further. Accordingly, the door 3 of the battery housing 1 cannot be opened while the driver 9 is correctly attached to the battery housing 1 , thereby preventing it in particular from being opened while the corresponding powered surgical tool is in use.
  • the door 3 when a driver is attached to the battery housing 1 , the door 3 is maintained in its closed position by both the lip 300 and the projections 301 that are configured to rapidly abut against the driver 9, for example against its lower flange 90, when the door 3 is rotated out of its closed position.
  • the opening of the door when a driver is attached to the battery housing 1 can be prevented by only one of these elements, or even by only one projection, configured to be blocked by the driver when the door is rotated out of its closed position.
  • the door can comprise other elements having for example other shapes and/or position on the door, that are blocked by the driver for preventing the door from being opened when a driver is attached to the battery housing.
  • the driver 9 is attached to the battery housing 1 by being sled onto the battery housing 1 , in particular onto the driver interface 4, from the front side of the battery housing 1 where the door 3 is located towards the back side, or body side, of the battery housing 1 , such that if the door 3 is only partly closed, the interface flange 90 of the driver 9 holds onto the lip 300 and/or on the projections 310 and pushes them against the other elements of the driver interface 4 until the driver 9 is locked onto the battery housing 1 , for example by the self-locking pin 42, thereby pushing the door 3 in its closed position until it is locked by its self-locking mechanism. Accordingly, if the door 3 is only partly closed and thus unlocked, it will be correctly closed and locked when the driver 9 will be attached to the battery housing 1 , thereby preventing the use of the corresponding powered surgical tool with the door 3 partly opened.
  • the door further comprises electrical contacts that are in contact with corresponding electrical contacts of the casing when the door is closed and locked.
  • the electrical contacts of the door are taken away from the electrical contacts of the casing, thereby opening the thus formed electrical switches and interrupting for example the electrical power supply to the driver, such that the driver's motor can not be powered by the battery or batteries when the door of the battery housing is opened and/or unlocked.
  • the casing 2 and the door 3 are for example made of rigid plastic material that is compatible with medical applications and can thus be sterilized in autoclaves.
  • Some elements like the self-locking pin 42 and/or parts of the door's self-locking mechanism can be made of one or more medically compatible metals or alloys.
  • the springs 321 of the self-locking mechanism, the spring 420 of the self-locking pin 42 and the electrical contacts 45 are advantageously made of metal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Battery housing (1) for a driver (9) of a powered surgical tool, the battery housing (1) comprising a casing (2) with an opening for inserting at least one battery into the casing (2), a door (3) for closing the opening when the door (3) is in its closed position, and a driver interface (4) for removeably attaching the battery housing (1) to a driver (9)of a powered surgical tool, wherein the door (3) comprises at least one part (300, 301) that is configured for being blocked by the driver (9) when the door (3) is moved out of its closed position and the battery housing (1) is attached to the driver (9), such that the door (3) cannot be opened when the battery housing (1) is attached to the driver (9). Battery housing (1) and driver (9) assembly, comprising such a battery housing (1) and a driver (9) for a powered surgical tool,wherein the at least one part (300, 301) of the door (3) is blocked by the driver (9) when the door (3) is in its closed position and when the battery housing (1) is attached to the driver (9). Powered surgical tool comprising such a battery housing (1) and driver (9) assembly and a surgical tool configured for attachment to the driver (9).

Description

Battery Housing for Powered Surgical Tool
The present disclosure relates to a battery housing for powered surgical tools. The present disclosure relates in particular to a detachable battery housing containing one or more batteries for powering the motor of a powered surgical tool's driver.
Powered surgical tools, for example powered surgical saws and/or drills, are powered tools that surgeons employ for performing certain surgical procedures that include cutting and/or drilling bones and/or other tissues. A powered surgical tool typically comprises a handpiece, or driver, in which is housed a motor, for example an electrically or pneumatically driven motor. The motor is attached, for example through a drive shaft, to a head of the driver, which is adapted to removably receive a surgical tool, for example a saw blade or a drill bit. Depending on the configuration of the driver and/or the nature of the attached tool, the actuation of the motor causes an oscillating or rotating movement of the head and thus of the tool.
Powered surgical tools, in particular those with an electrically driven motor, usually comprise one or more batteries providing the electrical power necessary for driving the motor. The batteries are often contained in a housing having an opening for allowing the insertion and removal of the batteries therein, and for example a door for closing, preferably hermetically closing, the opening. The battery housing is often removeably attached to the driver.
An advantage of removeable batteries, is that they can be easily taken out of the powered tool, for example before sterilization. Indeed, while sterilization of the powered surgical tool is required for the patients' safety, electrical batteries often suffer from the related heat and humidity conditions that can lead to a significant loss of power. After and/or before an operation, the batteries are thus preferably taken out of the battery housing, which is then sterilized, for example in an autoclave, while the batteries are cleaned and disinfected. The batteries are then inserted again into the sterilized battery housing and the housing is closed, thus forming a battery pack which is sterile on its outside despite containing non sterile battery or batteries.
Furthermore, the battery housing being for example removeably attached to the driver of the powered tool, the battery pack can easily be replaced, if necessary, during an operation and inside an operation room, because no access to the unsterile batteries is necessary. If for any reasons the batteries need replacement, the battery housing can be detached from the driver and replaced by a fresh and sterile battery pack, without contamination risk for the patient. No battery housing thus needs to be opened for replacing batteries.
However, since the batteries inside the battery housing are not sterile, a contamination risk still exists if for example the battery housing inadvertently opens or remains open in the operation room, in particular if it opens or remained partly opened while the tool to which it is attached is being used.
There is thus a need for a battery housing and a corresponding powered surgical tool that can avoid any risk of contamination by preventing in particular the battery housing from being opened while the powered tool is being used.
It is thus an object of the present disclosure to provide a safe battery housing for powered surgical tools.
It is in particular an aim of the present disclosure to provide a battery housing or container that cannot be opened while the powered surgical tool is being used or ready for use.
It is another aim of the present disclosure to provide a battery housing or container that cannot remain partly opened while the powered surgical tool is being used or ready for use.
These objects and other advantages are achieved by a battery housing, by a battery housing and driver assembly and by a powered surgical tool comprising the features of the corresponding independent claims.
These objects are furthermore achieved by a battery housing for a driver of a powered surgical tool, the battery housing comprising a casing with an opening for inserting at least one battery into the casing, a door for closing the opening when the door is in its closed position and a driver interface for removeably attaching the battery housing to a driver of a powered surgical tool, wherein the door comprises at least one part that is configured for being blocked by the driver when the door is moved out of its closed position and the battery housing is attached to the driver, such that the door cannot be opened when the battery housing is attached to the driver..
These objects are also achieved in particular by a battery housing and driver assembly, comprising such a battery housing and a driver for a powered surgical tool, wherein the at least one part of the door is blocked by the driver when the door is in its closed position and when the battery housing is attached to the driver.
These objects are also achieved in particular by a powered surgical tool comprising such a battery housing and driver assembly and a surgical tool configured for attachment to the driver.
Accordingly, the door of the battery housing comprising one or more elements that are configured for being blocked by the driver upon an attempt to move the door out of its closed position while the battery housing is attached to a driver. The door is maintained closed as long as the driver is attached to the battery housing, thereby avoiding the inadvertent opening of the door while the powered surgical tool is in use, even if the door is not locked by a specific locking mechanism, e.g. the door's locking mechanism is opened or the door is lacking such a specific mechanism.
Furthermore, according to variant embodiments, the driver interface is configured such that the driver must be sled onto the battery housing and pushes the door in its closed position while being attached onto the battery housing. Accordingly, if the door is not completely closed before attaching the driver, it will be closed by the operation of attaching the driver to the battery housing. In still variant embodiments, the door comprises a self-locking
mechanism, thereby facilitating its locking, in particular when it is pushed in its closed position while the driver is being attached onto the battery housing.
The above and further advantages of the disclosure will be better understood by reference to the following description illustrated by the figures, where:
Fig. 1 is a perspective view of an illustrative but not limiting example of a battery housing according to an exemplary embodiment;
Fig. 2 is a transversal cut view of the battery housing of Fig. 1 showing the door locking mechanism in its locked position;
Fig.3 is a transversal cut view of the battery housing of Fig. 1 showing the door locking mechanism in its unlocked position;
Fig. 4 is a lateral cut view of the battery housing of Fig.1 and of a part of an exemplary adapted driver.
Fig. 5 is a lateral view of the battery housing of Fig.1 and of a part of an exemplary adapted driver.
With reference to Fig. 1 , the battery housing 1 is a closed container with a casing 2 having an opening, and a door 3 which is adapted and configured to close the opening. The battery housing 1 further comprises a driver interface 4 for removably attaching it to a driver of a powered surgical tool, not represented in Fig. 1 , which comprises a correspondingly configured interface.
The driver interface 4 comprises attachment means for mechanically coupling the battery housing 1 to the driver. The attachment means for example comprises grooves 41 in which corresponding ridges of the driver's battery housing interface can slide when the battery housing 1 is being attached to the driver. In an embodiment, the attachment means further comprises a self- locking pin 42 that latches into a corresponding opening of the driver's battery housing interface when the battery housing 1 is correctly attached to the driver, thereby locking the battery housing 1 onto the driver for avoiding any undesired detachment of the battery housing 1. The self-locking pin 42 is actuated by a lever 43 that allows retracting it before detaching the battery housing 1 from the driver. The lever 43 for example act against the elastic force of one or more springs, not visible in Fig. 1 , that maintain the self-locking pin 42 in its locked, or extended, position. In a variant embodiment, the self-locking pin and the lever for actuating it is comprised in the battery interface of the driver, while the driver interface of the battery housing comprises a corresponding opening in which the self-locking pin latches when the battery housing is correctly attached to the driver.
The driver interface 4 further comprises electrical contacts 45 for electrically coupling the battery housing 1 to the driver, in particular for establishing an electrical contact between the poles of the one or more batteries contained in the battery housing and the driver's electrical motor for powering said motor. The electrical contacts 45 are for example located in the grooves 41 where they are in contact with corresponding electrical contacts located around the ridges of the driver's battery housing interface, when the battery housing 1 is attached to the driver. Other configurations and/or position of the electrical contacts are however possible within the frame of the present invention.
The casing 2 comprises an opening, for example on a front side of the casing 2, for inserting one or more batteries therein. The opening can be closed, for example hermetically closed, by a door 3. The door 3 is for example pivotably attached on one side to the casing 2 through a hinge 30. In
embodiments, when closed the door 3 is locked and can be unlocked for example by actuating, e.g. rotating, a handle 31 located on the external side of the door 3. The handle 31 actuates a locking mechanism located for example on the inner side of and/or inside the door 3.
According to the invention, the door 3 is configured such that it can not be opened when the battery housing 1 is attached to a driver, even if the locking mechanism is unlocked. In embodiments, the door 3 is pivotably attached to the casing 2 with its hinge side located opposite to the driver interface 4 such that its swing side is close to or adjacent the driver interface 4 when the door 3 is in its closed position. The door 3 is configured such that, when the door 3 is in its closed position and the battery housing 1 is attached to a driver, at least a part of the door's swing side is blocked against any opening movement by the driver, thereby preventing the door 3 from opening. The swing side of the door 3 is thus maintained close to the driver interface 4 by the driver when the battery housing 1 is attached to a driver.
In the illustrated embodiment, a lip 300 formed on at least part of the edge of the swing side of the door 3 is part of the driver interface 4 when the door 3 is closed, such that its movements are strictly limited or at all prevented by the battery interface of a driver that would be attached to the battery housing 1 .
In embodiments, the door 3 comprises wings or projections 301 on its swing side, which extend beyond the rotation axis of the hinge 30 towards a back or body side of the casing 2 when the door is in its closed position. The projections 301 thus extend from the swing side of the door 3 in a direction essentially perpendicular to the principal plane of the door 3, i.e. essentially radial relative to the axis of the hinge 30, such that when the door 3 is rotated around the hinge 30 the tip of the projections 301 being further away from the rotation axis than the rest of the swing side of the door 3, they move along an arch having a larger radius than the radius along which the rest of the swing side moves. As a result, when the door 3 is opened, at least part of the projections 301 , in particular their tip, first moves, in its circular movement, towards a surface 44 of the driver interface before moving away from it and freeing the opening in the front side of the casing 2. Accordingly, if a driver is attached to the driver interface 4, the projections 301 , and in particular their tip, would come into contact with the attached driver, thereby preventing the door 3 from being opened. Other configurations, in particular other shapes of the door 3, are possible in order to prevent the door 3 from being opened when a driver is attached to the driver interface 4.
In embodiments, the door 3 comprises a self-locking mechanism, which is illustrated by way of an exemplary embodiment in Fig. 2 and Fig. 3, such that the door 3 is automatically locked when it is pushed in its closed position against the casing 2.
In the illustrated exemplary embodiment, the self-locking mechanism comprises a latch 32 that cooperates with a notch 21 of the casing 2, visible in Fig. 4, for maintaining the door 3 in its closed position when the self-locking mechanism is in its locked position. The latch 32 is for example pushed into its locked position by the force of one or more spring elements, for example by two springs 321 that push on a base plate 320 to which the latch 32 is attached in a fixed relationship. The latch 32 is for example integral to the base plate 320. The latch 32 is for example profiled such that when the door 3 is being pushed into its closed position, the latch 32 comes in contact with the notch 21 and is pushed towards its unlocked position against the force of the springs 321 . Once the door 3 is closed, the latch 32 is returned by the force of the springs 321 into its locked position behind the notch 21 , thereby maintaining the door 3 in its closed position.
The self-locking mechanism is for example actuated, in particular pushed in its unlocked position, by a cam 310 that can act on the base plate 320 for displacing it. The cam 310 is for example located in an aperture of the base plate 320, whereas the cam 310 and the aperture in the base plate 320 are configured such that when the cam 310 is rotated, it pushes on the base plate 320 in a direction opposed to the direction of the force exerted by the springs 321 , thus pushing the latch 32 in its unlocked position. The cam 310 is connected to the handle 31 located for example on the external side of the door 3, and is rotated by the rotation of the handle 31 . In an embodiment, the cam 310 is for example integral with the handle 31 . Fig. 3 illustrates an exemplary embodiment of the door's self-locking mechanism in its unlocked position. The self-locking mechanism is for example attached to the inner side of the door 3 and covered in an embodiment by a cover plate 33 that protects the self-locking mechanism against external elements. The cover plate 33 is for example riveted or screwed onto the inner side of the door 3.
Fig. 4 illustrates the exemplary battery housing 1 removably attached to a corresponding driver 9.
In embodiments, the driver interface 4 comprises parts of both the casing 2 and of the door 3. In the illustrated embodiment, the driver interface 4 is for the most part integral with the casing 2 and comprises a part of the door 3, for example a lip 300 on the edge of the swing side of the door 3. When the driver 9 is attached and locked onto the battery housing 1 and the door 3 is closed, the lip 300 is thus maintained together with the other elements of the driver interface 4 by the driver 9, thereby preventing the door 3 from being opened even if the door's self-locking mechanism is inadvertently unlocked. In the illustrated embodiment, a flange 90 of the battery interface of the driver for example blocks the part 300 of the door 3 when the driver 9 is attached to the battery housing 1 .
In embodiments, as illustrated in Fig. 5, the projections 310 extending in a direction essentially perpendicular to the plane of the door 3 and beyond the rotation axis of hinge 30 towards the body side of the battery housing 2 when the door 3 is closed, prevent the door 3 from being opened when the battery housing 1 is attached to a driver 9. Indeed, if the door 3 was to be rotated out of its closed position around the hinge 30, the projections 310 would start moving towards the driver 9 and rapidly abut against it, thereby preventing the door 3 from moving any further. Accordingly, the door 3 of the battery housing 1 cannot be opened while the driver 9 is correctly attached to the battery housing 1 , thereby preventing it in particular from being opened while the corresponding powered surgical tool is in use.
In the illustrated exemplary but in no way limiting embodiment, when a driver is attached to the battery housing 1 , the door 3 is maintained in its closed position by both the lip 300 and the projections 301 that are configured to rapidly abut against the driver 9, for example against its lower flange 90, when the door 3 is rotated out of its closed position. The one skilled in the art will however understand that the opening of the door when a driver is attached to the battery housing 1 can be prevented by only one of these elements, or even by only one projection, configured to be blocked by the driver when the door is rotated out of its closed position. In addition to or in replacement of the illustrated lip and projections, the door can comprise other elements having for example other shapes and/or position on the door, that are blocked by the driver for preventing the door from being opened when a driver is attached to the battery housing.
In embodiments, the driver 9 is attached to the battery housing 1 by being sled onto the battery housing 1 , in particular onto the driver interface 4, from the front side of the battery housing 1 where the door 3 is located towards the back side, or body side, of the battery housing 1 , such that if the door 3 is only partly closed, the interface flange 90 of the driver 9 holds onto the lip 300 and/or on the projections 310 and pushes them against the other elements of the driver interface 4 until the driver 9 is locked onto the battery housing 1 , for example by the self-locking pin 42, thereby pushing the door 3 in its closed position until it is locked by its self-locking mechanism. Accordingly, if the door 3 is only partly closed and thus unlocked, it will be correctly closed and locked when the driver 9 will be attached to the battery housing 1 , thereby preventing the use of the corresponding powered surgical tool with the door 3 partly opened.
In variant embodiments, the door further comprises electrical contacts that are in contact with corresponding electrical contacts of the casing when the door is closed and locked. When the door is open or partly opened, the electrical contacts of the door are taken away from the electrical contacts of the casing, thereby opening the thus formed electrical switches and interrupting for example the electrical power supply to the driver, such that the driver's motor can not be powered by the battery or batteries when the door of the battery housing is opened and/or unlocked.
The casing 2 and the door 3 are for example made of rigid plastic material that is compatible with medical applications and can thus be sterilized in autoclaves. Some elements like the self-locking pin 42 and/or parts of the door's self-locking mechanism can be made of one or more medically compatible metals or alloys. The springs 321 of the self-locking mechanism, the spring 420 of the self-locking pin 42 and the electrical contacts 45 are advantageously made of metal.
The illustrated embodiment described herein is given as illustrating but in no way limiting example. Other configurations of the door's self-locking mechanism and/or of the driver interface's attachment means, in particular, are possible within the frame of the invention.
Reference numerals battery housing
casing
notch
door
hinge
part of the door
projection
handle
cam
latch
base plate
springs
cover plate
driver interface
grooves
self-locking pin
spring (of the self-locking pin) lever
surface (of the driver interface) electrical contacts
driver
interface flange

Claims

Claims
1 . Battery housing (1 ) for a driver (9) of a powered surgical tool, said battery housing (1 ) comprising:
- a casing (2) with an opening for inserting at least one battery into said casing (2);
- a door (3) for closing said opening when said door (3) is in its closed position; and
- a driver interface (4) for removeably attaching said battery housing (1 ) to a driver (9) of a powered surgical tool,
wherein said door (3) comprises at least one part (300, 301 ) that is configured for being blocked by said driver (9) when said door (3) is moved out of its closed position and said battery housing (1 ) is attached to said driver (9), such that said door (3) cannot be opened when said battery housing (1 ) is attached to said driver (9).
2. Battery housing (1 ) according to the preceding claim, wherein said door (3) comprises a locking mechanism for locking said door (3) in its closed position.
3. Battery housing (1 ) according to the preceding claim, wherein said locking mechanism is a self-locking mechanism.
4. Battery housing (1 ) according to the one of the preceding claims, wherein said door (3) is pivotally attached to said casing (2) by a hinge (30) and said at least one part (300, 301 ) of said door (3) is part of the swing side of said door (3).
5. Battery housing (1 ) according to the preceding claim, wherein said at least one part (300, 301 ) of said door (3) comprises a lip (300) formed on said swing side of said door (3).
6. Battery housing (1 ) according to the preceding claim, wherein said lip (300) forms part of the driver interface (4) when said door (3) is in its closed position.
7. Battery housing according to one of the preceding claims, wherein said at least one part (300, 301 ) of said door (3) comprises at least one projection (301 ) extending in a direction essentially perpendicular to a principal plane of said door (3).
8. Battery housing (1 ) according to the preceding claim, wherein said at least one projection (301 ) extends from a swing side of said door (3) in a direction radial to a rotation axis of said door (3) and towards a body side of said casing (2) when said door (3) is in its locked position.
9. Battery housing according to one of the preceding claims, wherein said at least one part (300, 301 ) of said door (3) is configured to be pushed towards a locked position of said door (3) by said driver (9) when said driver (9) is being attached to said battery housing (1 ).
10. Battery housing according to one of the preceding claims, wherein the at least one part (300, 301 ) maintains said door (3) in its closed position on said battery housing (1 ) and/or prevents the door from opening when the battery housing is attached to a driver even if the door is not locked by a specific locking mechanism.
1 1 . Battery housing (1 ) and driver (9) assembly, comprising:
- a battery housing (1 ) according to one of the preceding claims; and
- a driver (9) for a powered surgical tool,
wherein said at least one part (300, 301 ) of said door (3) is blocked by said driver (9) when said door (3) is in its closed position and when said battery housing (1 ) is attached to said driver (9).
12. Battery housing (1 ) and driver (9) assembly according to the preceding claim, wherein said at least one part (300, 301 ) of said door (3) is blocked by an interface flange (90) of said driver (9)
13. Powered surgical tool comprising a battery housing (1 ) and driver (9) assembly according to one of claims 1 1 or 12 and a surgical tool configured for attachment to said driver (9).
PCT/EP2011/070312 2011-02-15 2011-11-17 Battery housing for powered surgical tool Ceased WO2012110119A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11785400.0A EP2675369B1 (en) 2011-02-15 2011-11-17 Battery housing for powered surgical tool
CN201180066088.1A CN103338715B (en) 2011-02-15 2011-11-17 Battery housings for powered surgical tools
US13/966,716 US9034505B2 (en) 2011-02-15 2013-08-14 Battery housing for powered surgical tool
US14/687,240 US9687253B2 (en) 2011-02-15 2015-04-15 Battery housing for powered surgical tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11154456 2011-02-15
EP11154456.5 2011-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/966,716 Continuation US9034505B2 (en) 2011-02-15 2013-08-14 Battery housing for powered surgical tool

Publications (1)

Publication Number Publication Date
WO2012110119A1 true WO2012110119A1 (en) 2012-08-23

Family

ID=45001745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070312 Ceased WO2012110119A1 (en) 2011-02-15 2011-11-17 Battery housing for powered surgical tool

Country Status (4)

Country Link
US (2) US9034505B2 (en)
EP (1) EP2675369B1 (en)
CN (1) CN103338715B (en)
WO (1) WO2012110119A1 (en)

Families Citing this family (436)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8991676B2 (en) 2007-03-15 2015-03-31 Ethicon Endo-Surgery, Inc. Surgical staple having a slidable crown
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8632535B2 (en) 2007-01-10 2014-01-21 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
WO2010090940A1 (en) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US20120080336A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US12213666B2 (en) 2010-09-30 2025-02-04 Cilag Gmbh International Tissue thickness compensator comprising layers
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
EP2675369B1 (en) * 2011-02-15 2015-07-15 Zimmer Surgical SA Battery housing for powered surgical tool
JP6026509B2 (en) 2011-04-29 2016-11-16 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Staple cartridge including staples disposed within a compressible portion of the staple cartridge itself
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
JP6105041B2 (en) 2012-03-28 2017-03-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator containing capsules defining a low pressure environment
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US12383267B2 (en) 2012-06-28 2025-08-12 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
EP2866686A1 (en) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Empty clip cartridge lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US20150053743A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Error detection arrangements for surgical instrument assemblies
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member lock
US12232723B2 (en) 2014-03-26 2025-02-25 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US20150272571A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023698B1 (en) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10388921B2 (en) 2015-07-22 2019-08-20 Tti (Macao Commercial Offshore) Limited Latching mechanism for a battery pack
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10159507B2 (en) 2015-10-27 2018-12-25 Covidien Lp Devices, systems, and methods facilitating insertion and removal of components from surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10548673B2 (en) 2016-08-16 2020-02-04 Ethicon Llc Surgical tool with a display
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
JP7010957B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー Shaft assembly with lockout
CN110114003A (en) 2016-12-21 2019-08-09 爱惜康有限责任公司 Surgical stapling system
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
CN110114014B (en) 2016-12-21 2022-08-09 爱惜康有限责任公司 Surgical instrument system including end effector and firing assembly lockout
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US12490980B2 (en) 2017-06-20 2025-12-09 Cilag Gmbh International Surgical instrument having controllable articulation velocity
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11331099B2 (en) 2017-09-01 2022-05-17 Rev Medica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US10966720B2 (en) 2017-09-01 2021-04-06 RevMedica, Inc. Surgical stapler with removable power pack
US10695060B2 (en) 2017-09-01 2020-06-30 RevMedica, Inc. Loadable power pack for surgical instruments
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US12336705B2 (en) 2017-12-21 2025-06-24 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US20200054321A1 (en) 2018-08-20 2020-02-20 Ethicon Llc Surgical instruments with progressive jaw closure arrangements
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
TWM612458U (en) 2019-03-12 2021-06-01 美商米沃奇電子工具公司 Power tool
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11564685B2 (en) 2019-07-19 2023-01-31 RevMedica, Inc. Surgical stapler with removable power pack
US12279770B2 (en) 2019-07-19 2025-04-22 RevMedica, Inc. Power pack for activating surgical instruments and providing user feedback
US12357307B2 (en) 2022-05-13 2025-07-15 RevMedica, Inc. Power pack for activating surgical instruments and providing user feedback
US12290257B2 (en) 2019-07-19 2025-05-06 RevMedica, Inc. Surgical clip applier with removable power pack
US12279771B2 (en) 2019-07-19 2025-04-22 RevMedica, Inc. Power pack for activating surgical instruments and providing user feedback
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
EP4153383A1 (en) 2020-05-22 2023-03-29 Black & Decker Inc. Power tool with battery pack enclosure
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US12064107B2 (en) 2020-07-28 2024-08-20 Cilag Gmbh International Articulatable surgical instruments with articulation joints comprising flexible exoskeleton arrangements
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US12471982B2 (en) 2020-12-02 2025-11-18 Cilag Gmbh International Method for tissue treatment by surgical instrument
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US12324580B2 (en) 2021-02-26 2025-06-10 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US12178535B2 (en) 2021-03-01 2024-12-31 RevMedica, Inc. Power pack for activating surgical instruments
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US12239317B2 (en) 2021-10-18 2025-03-04 Cilag Gmbh International Anvil comprising an arrangement of forming pockets proximal to tissue stop
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US12432790B2 (en) 2021-10-28 2025-09-30 Cilag Gmbh International Method and device for transmitting UART communications over a security short range wireless communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149424A1 (en) 2002-02-07 2003-08-07 Barlev B. Alex Sterile transfer battery container
WO2007090025A1 (en) * 2006-01-27 2007-08-09 Stryker Corporation Aseptic battery assembly with removable, rechargeable battery pack, the battery pack adapted to be used with a conventional charger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438923B2 (en) * 1993-12-13 2003-08-18 三洋電機株式会社 Battery pack used for power tools
KR100974996B1 (en) * 2002-10-31 2010-08-09 산요덴키가부시키가이샤 Pack battery
CN101815464A (en) * 2007-07-20 2010-08-25 梅丁格有限公司 Energy supply for fluid dispensing apparatus
EP2675369B1 (en) * 2011-02-15 2015-07-15 Zimmer Surgical SA Battery housing for powered surgical tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149424A1 (en) 2002-02-07 2003-08-07 Barlev B. Alex Sterile transfer battery container
WO2007090025A1 (en) * 2006-01-27 2007-08-09 Stryker Corporation Aseptic battery assembly with removable, rechargeable battery pack, the battery pack adapted to be used with a conventional charger

Also Published As

Publication number Publication date
CN103338715A (en) 2013-10-02
US9687253B2 (en) 2017-06-27
CN103338715B (en) 2016-02-10
EP2675369A1 (en) 2013-12-25
EP2675369B1 (en) 2015-07-15
US20150216538A1 (en) 2015-08-06
US20130330589A1 (en) 2013-12-12
US9034505B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
US9034505B2 (en) Battery housing for powered surgical tool
US20060206100A1 (en) Surgical apparatus and power module for same, and a method of preparing a surgical apparatus
US11690618B2 (en) Handheld electromechanical surgical instruments
US20060217729A1 (en) Surgical apparatus and tools for same
EP4039199B1 (en) Surgical instrument including a lockout key
CN107019535B (en) Hand-held electromechanical surgical system
US6824087B2 (en) Automatic bone mill
BR112021002997A2 (en) motor-equipped articulating surgical instruments, with dedicated articulating motor arrangements
BR112012015586B1 (en) Surgical instrument
BR112019009912A2 (en) surgical instrument with selectively actuated end-actuator span adjustment features ".
JP2005118606A (en) Motor-driven rongeur
EP1082062B1 (en) Rechargeable, powered and manual dermatome comprising means to prevent contamination
CN120882376A (en) Powered surgical tool with oscillating saw blade
US7360730B2 (en) Medical waste disposal device
CN119486675A (en) Surgical instruments with predetermined separation characteristics for waste stream utilization and related methods
CN112716563B (en) Knife boxes and closures
CN114010270A (en) Hook scissors
CN223516385U (en) Surgical instrument
CN223516386U (en) Surgical instrument
CN223627535U (en) Surgical instruments
CN223248307U (en) Reusable bipolar electrocoagulation forceps
CN223365645U (en) A rod clamp quick-release mechanism and bipolar electrocoagulation forceps
CN113288331B (en) Rib cutting device for operation
RU2818467C2 (en) Electrosurgical instrument for sealing and dissecting vessels
CN211066863U (en) Swing type U-shaped ring saw

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11785400

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011785400

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE