[go: up one dir, main page]

WO2012165602A1 - 認知機能障害判別装置、認知機能障害判別システム、およびプログラム - Google Patents

認知機能障害判別装置、認知機能障害判別システム、およびプログラム Download PDF

Info

Publication number
WO2012165602A1
WO2012165602A1 PCT/JP2012/064237 JP2012064237W WO2012165602A1 WO 2012165602 A1 WO2012165602 A1 WO 2012165602A1 JP 2012064237 W JP2012064237 W JP 2012064237W WO 2012165602 A1 WO2012165602 A1 WO 2012165602A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
feature amount
determination
cognitive dysfunction
cognitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2012/064237
Other languages
English (en)
French (fr)
Inventor
昇平 加藤
英俊 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2013518182A priority Critical patent/JP5959016B2/ja
Priority to US14/122,786 priority patent/US9131889B2/en
Publication of WO2012165602A1 publication Critical patent/WO2012165602A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Definitions

  • the present invention relates to a cognitive dysfunction discriminating device, a cognitive dysfunction discriminating system, and a program, and in particular, a cognitive dysfunction discriminating device, a cognitive dysfunction discriminating system, and It is about the program.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a cognitive dysfunction discriminating apparatus, a cognitive dysfunction discriminating system, and a program suitable for early screening of brain function.
  • the cognitive impairment determination device provides a biological signal in a predetermined brain region of a subject measured when giving a task for activating the brain.
  • a data acquisition unit that acquires data
  • a feature amount extraction unit that extracts a feature amount of biological signal data acquired by the data acquisition unit
  • a feature amount extracted by the feature amount extraction unit And a discriminator that discriminates the degree of the subject's cognitive dysfunction based on the data used for the determination of cognitive dysfunction.
  • the cognitive dysfunction discriminating device is the cognitive dysfunction discriminating device according to the first aspect of the present invention, wherein the biological signal data is a blood flow in the predetermined brain region. It is the cerebral blood flow data which measured.
  • the cognitive dysfunction discriminating device is the cognitive dysfunction discriminating device according to the first aspect of the present invention, wherein the biological signal data is the frontal as the predetermined brain region. It is the cerebral blood flow data which measured the hemoglobin flow rate by NIRS apparatus in each of an anterior field, a left temporal lobe, a right temporal lobe, a left parietal lobe, and a right parietal lobe.
  • the cognitive dysfunction discriminating device is the cognitive dysfunction discriminating device according to the first aspect of the present invention, wherein the biological signal data is the frontal as the predetermined brain region.
  • the biological signal data is the frontal as the predetermined brain region.
  • the predetermined region in the left parietal lobe as the predetermined brain region
  • the predetermined region in the left temporal lobe and the right parietal lobe as the predetermined brain region
  • the cognitive dysfunction discriminating device is the cognitive dysfunction discriminating device according to any one of the first to fourth aspects of the present invention, wherein the degree of the cognitive dysfunction is known.
  • a known data acquisition unit that acquires the biological signal data measured when giving the subject to a plurality of subjects, and a known data feature that extracts the feature amount of the biological signal data acquired by the known data acquisition unit
  • a quantity extraction unit and a determination data generation unit that generates data used for the determination of the cognitive impairment based on the feature quantity extracted by the known data feature quantity extraction unit.
  • the cognitive dysfunction discriminating apparatus is the cognitive dysfunction discriminating apparatus according to the fifth aspect of the present invention, wherein the determination data generating unit is extracted by the known data feature amount extracting unit.
  • a selection unit that selects a feature amount to be used for determination of the cognitive dysfunction among the feature amounts that have been determined, the feature amount selected by the selection unit, and the degree of the cognitive dysfunction of the subject from which the feature amount has been extracted
  • a learning unit that constructs a model for the determination unit to determine the degree of the cognitive impairment corresponding to the feature amount.
  • a cognitive dysfunction discriminating apparatus uses a plurality of low-pass filters in the cognitive dysfunction discriminating apparatus according to any one of the first to sixth aspects of the present invention.
  • a plurality of low-pass filters wherein the plurality of low-pass filters include a first filter, an electroencephalogram and a blood pressure used to remove noise including noise due to ambient light.
  • the maximum amplitude value, the minimum amplitude value, the amplitude variance value, the amplitude average value, the fundamental frequency, and the slope of the approximate straight line in the biological signal data subjected to noise removal and noise removal using the first filter A variance value of amplitude of difference data between the biological signal data and the biological signal data noise-removed using the third filter, and the biological signal data noise-removed using the second filter and the first filter 3 is extracted as a feature value of the biological signal data, and the determination unit extracts the feature value extracted by the data feature value extraction unit.
  • the degree of cognitive dysfunction of the subject is determined.
  • the cognitive impairment determination system is a predetermined measurement measured when giving a task for activating the brain to a plurality of subjects whose cognitive impairment is known.
  • a determination data generation device including a determination data generation unit that generates data used for determination of the cognitive dysfunction based on the extracted feature amount, and the cognitive dysfunction measured when the task is given
  • a feature amount extraction unit that extracts a feature amount of signal data, and a degree of the cognitive dysfunction is unknown based on the feature amount extracted by the feature amount extraction unit and the data generated by the determination data generation device
  • a cognitive impairment determining device including a determining unit that determines the degree of cognitive impairment of the subject.
  • the program according to the ninth aspect of the present invention is a program for acquiring biological signal data in a predetermined brain region of a subject measured when a computer is given a task for activating the brain.
  • a discriminating unit that discriminates the degree of the cognitive dysfunction of the subject based on the data used for the test.
  • a biological signal of a plurality of regions of the brain of a subject who is executing a cognitive task is acquired, and a feature amount of the biological signal is extracted, and this feature amount is obtained in advance.
  • fNIRS functional near-infrared spectroscopy
  • fNIRS is a known technique for measuring hemoglobin flow in the brain using near-infrared light, is non-invasive and has little restraint on the subject (hereinafter also referred to as a subject), and selects the measurement environment. A relatively simple measurement is possible.
  • cerebral blood flow data during execution of a cognitive task is measured using such functional near infrared spectroscopy, and based on the measured cerebral blood flow data, normal (NC), mild recognition
  • MCI functional impairment
  • AD Alzheimer type dementia
  • the cognitive impairment determination device 10 includes fNIRS measurement devices 20 and 20 a that measure cerebral blood flow data during execution of a cognitive task using functional near-infrared spectroscopy.
  • a learning device 31 a data storage device 32, a discrimination device 33, and a display device 40 for displaying the processing results of the discrimination device 33, which are constituted by a computer that executes the cognitive impairment determination processing according to the present invention. Yes.
  • the learning device 31, the data storage device 32, and the discriminating device 33 each have a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and HDD (Hard Disk Drive) not shown. Prepare.
  • the HDD stores a program used when the CPU executes the cognitive impairment determination process according to the present invention.
  • the learning device 31 includes a feature selection unit 31a, a learning unit 31b, a clinical database 31d, and a model storage unit 31e as processing functions realized by executing a program.
  • the data storage device 32 includes an original waveform signal acquisition unit 32a, a primitive analysis unit 32b, a feature amount extraction unit 32c, and a clinical database 32d as processing functions realized by executing a program.
  • the discriminating apparatus 33 includes an original waveform signal acquisition unit 33a, a primitive analysis unit 33b, a feature amount extraction unit 33c, a Bayesian classifier 33d, and a model storage unit 33e as processing functions realized by executing a program.
  • each of the data storage device 32 and the discrimination device 33 is configured to include original waveform signal acquisition units 32a and 33a, primitive analysis units 32b and 33b, and feature amount extraction units 32c and 33c.
  • original waveform signal acquisition units 32a and 33a By configuring each of the data storage device 32 and the determination device 33 in the same computer, any of the original waveform signal acquisition units 32a and 33a, any of the primitive analysis units 32b and 33b, and a feature amount extraction unit 32c. , 33c may be shared.
  • the fNIRS measuring devices 20 and 20a measure the cerebral blood flow data of the subject as a biological signal.
  • the increase in cerebral blood flow is, for example, “Villringer, A. and Firnafl, U .: Coupling of brain activity and cerebral blood flow: basis of functional nuroimaging, Cerebrovasc. Brain Metab. Rev., Vol. 7, pp. 240-276 (1995) "reflects the activation of neural activity in the brain region, and changes in cerebral blood flow are measured by measuring changes in oxygenated hemoglobin (oxy-Hb) in the blood. Can be captured. Therefore, a change in the amount of oxy-Hb measured by the fNIRS measurement devices 20 and 20a can be regarded as an index of brain activity.
  • multi-channel fNIRS measurement devices 20 and 20a are used for measuring brain activity of elderly people who are executing cognitive tasks.
  • a near infrared light brain functional imaging device FOIRE-3000 manufactured by Shimadzu Corporation (R) was used.
  • the cerebral blood flow data of the subject is measured at a plurality of locations as shown in FIGS.
  • a white circle portion is a light emitter (illuminator)
  • a black circle portion is a detector.
  • the fNIRS measuring devices 20 and 20a measure the cerebral blood flow in the 22 channel portions of 1 to 22 in the right region Fr, the central region Fc, and the left region Fl in the prefrontal cortex. Further, as shown in FIG. 3, the fNIRS measuring devices 20 and 20a measure the cerebral blood flow in 10 channel portions of 1 to 10 in the front region Rf and the rear region Rr in the right temporal lobe. Further, as shown in FIG. 4, the fNIRS measurement devices 20 and 20a measure cerebral blood flow in the 10 channel portions of 1 to 10 in the front region Lf and the rear region Lr in the left temporal lobe. As described above, the fNIRS measurement devices 20 and 20a measure the cerebral blood flow in a total of 42 channel portions.
  • the probe set in the prefrontal cortex is placed horizontally so that the center of the bottom overlaps Fpz, and the left and right temporal lobes and parietal lobes
  • the probe set was arranged based on the positions of P3 and T3 (P4 and T4).
  • the discriminating device 33 takes in the cerebral blood flow data of a plurality of parts measured from the subject by the fNIRS measuring device 20 by the original waveform signal acquisition unit 33a. Based on the acquired cerebral blood flow data of a plurality of parts, the discriminating device 33 acquires cerebral blood flow data of a plurality of regions obtained by dividing the plurality of parts of the brain into a plurality by the primitive analysis unit 33b.
  • the discrimination device 33 extracts the feature amount of the obtained cerebral blood flow data by the feature extraction unit 33c.
  • determination apparatus 33 uses the model (model memory
  • the discrimination result is output from the discrimination device 33 to the display device 40 and displayed on the display device 40.
  • the learning device 31 stores the cerebral blood flow data stored in advance in the data storage device 32 in a plurality of parts of the brain during the cognitive task of the subject who knows whether or not the cognitive function is impaired.
  • storage parts 31e and 33e) used for determination of the above-mentioned cognitive dysfunction in the discrimination device 33 is constructed
  • the data storage device 32 uses the original waveform signal acquisition unit 32a to obtain fNIRS from the brain blood flow data of a plurality of parts of the brain that are executing the cognitive task of the subject whose cognitive function is known or not. Acquired from the measurement device 20a and collects and accumulates clinical diagnosis results of the subject inputted from an input device (not shown).
  • the data storage device 32 uses the primitive analysis unit 32b to acquire cerebral blood flow data of a plurality of regions obtained by dividing a plurality of brain regions into a plurality of regions based on the accumulated cerebral blood flow data of the plurality of regions. Next, the data storage device 32 extracts the feature amount of the obtained cerebral blood flow data by the feature extraction unit 32c.
  • the data storage device 32 performs these processes on a plurality of subjects whose cognitive function is known or not, and if so, obtains cerebral blood flow data feature quantities of the plurality of subjects. , Each of them is associated and stored in the clinical database 32d.
  • the learning device 31 accumulates the same information as the information accumulated in the clinical database 32d by the clinical database 31d. Further, the learning device 31 uses the feature selection unit 31a to select a feature amount used for determination from the feature amounts obtained in the clinical database 31d in this way. And the learning apparatus 31 builds the model for discriminating cognitive dysfunction by the learning part 31b based on this selected feature-value and the extracted feature-value.
  • Table 1 shows a breakdown of clinical diagnosis groups and age composition of subjects.
  • the numbers in parentheses in Table 1 indicate the numbers of NC (healthy) group, MCI (mild cognitive impairment) group, and AD (Alzheimer type dementia) group, respectively.
  • the MCI group is intended for patients whose “CDR (Clinical Dementia Rating)” in the “clinical dementia evaluation method” is equivalent to 0.5
  • the AD group is intended for patients equivalent to CDR1. .
  • CDR Clinical Dementia Rating
  • behavior observation scales observation formulas
  • 6 items of the care situation are evaluated in 5 levels.
  • subjects with CDR2 or higher who have moderate or severe dementia were excluded from the target group.
  • the attitude of the subjects was comprehensively evaluated from the observations by the operators who attended the task execution and the response contents of the tasks, and subjects who had obvious problems in the performance of the cognitive task itself were also excluded from the target group.
  • the block design problem shown in FIG. 5 is designed, and simultaneous voice / fNIRS measurement is performed. It was.
  • the subject's birthplace and boyhood conversation and the Hasegawa-style test were conducted, and in the latter 12 minutes, the recollection method (1. listening, 2. listening). Talking, 3. Watching, and working memory tasks (1. category recall, 2. reading span test, 3. face recall) were performed.
  • the time of one task was set to 60 seconds so that the task could be concentrated, and a one-point gaze break (rest) of 60 seconds was taken before and after each cognitive task.
  • the measurer sits on the subject (subject) in front of the task presentation device (display) and performs fNIRS measurement on the head of the subject (subject). Probe (or electrode for measuring EEG / Electroencephalogram). Then, the measurer presents a cognitive task from the display and a side speaker to the person to be measured (subject).
  • the measurement subject executes the task in accordance with instructions from the display and the speaker, and the measurer measures the brain activity state during execution of the task from the fNIRS measuring device (or electroencephalogram measuring device or the like).
  • the fNIRS measuring device or electroencephalogram measuring device or the like.
  • the fNIRS measuring devices 20 and 20a are used, and this fNIRS measuring device includes oxy-Hb (oxygenated hemoglobin amount), deoxy-Hb (deoxygenated hemoglobin amount), and total-Hb (total amount). Hemoglobin amount) is measured.
  • oxy-Hb oxygenated hemoglobin amount
  • deoxy-Hb deoxygenated hemoglobin amount
  • total-Hb total amount
  • Hemoglobin amount is measured.
  • an example using an oxy-Hb measurement signal is shown.
  • NC three groups (NC, NC) of all channels (except 33CH and 41CH) using the fNIRS data (oxy-Hb) during execution of the task of the working memory task 1 “category recall” are used.
  • FIG. 7 to FIG. 9 show examples in which channels that have been confirmed to have a significant difference in the test are mapped with 16 gradations based on the t-value.
  • the healthy group is significantly activated as compared with the disease group (Fr, Fc, and Fl regions shown in FIG. 2 in the left diagrams of FIGS. 7 and 8).
  • the cerebral blood flow in the left and right temporal lobes was also confirmed to be significantly activated in the healthy group compared to the disease group (Rf shown in FIGS. 3 and 4 in the middle right diagrams of FIGS. 7 and 8). , Rr, Lf, and Lr regions).
  • the MCI group which is mildly cognitively impaired, slightly activates these cerebral blood flow compared to the AD group.
  • FIG. 7 shows channels in which a significant difference was confirmed between the healthy (NC) group and the mild cognitive impairment (MCI) group.
  • FIG. 8 shows a channel in which a significant difference was confirmed between a healthy (NC) group and an Alzheimer type dementia (AD) group.
  • FIG. 9 shows a channel in which a significant difference was confirmed between the mild cognitive impairment (MCI) group and the Alzheimer's dementia (AD) group.
  • screening for dementia is a process in which the health of cognitive function is first judged, and if there is a suspicion, whether it is mild cognitive impairment or dementia depending on the degree.
  • the Bayesian classifier 33d includes a Bayesian classifier (1) 33d ′ and a Bayesian classifier (1) 33d ′′.
  • the primitive analysis units 32b and 33b perform primitive analysis for each channel (CH1 to CH42) on the original waveform of the fNIRS measurement signal input by the original waveform signal acquisition units 32a and 33a.
  • noise is removed by applying a low-pass filter and a difference filter, and the averaging of channels in the region of interest is performed.
  • the primitive analysis units 32b and 33b first smooth the fNIRS signal of each channel through three low-pass filters F1 to F3 (both Butterworth characteristics, order 5), as shown in FIG. Turn into.
  • the cutoff frequency of the low-pass filter F1 is 1.92 Hz
  • the cutoff frequency of the low-pass filter F2 is 0.96 Hz
  • the cutoff frequency of the low-pass filter F3 is 0.48 Hz.
  • the primitive analysis units 32b and 33b add two difference data to these three smoothed signals to generate five fNIRS time-series signals per channel.
  • the five fNIRS time series signals 1201 to 1205 shown in FIG. 12 are as follows.
  • the fNIRS time series signal 1201 is a signal from which noise mainly due to ambient light has been removed by the low-pass filter F1 (cutoff frequency 1.92 Hz).
  • the fNIRS time series signal 1202 is a signal obtained by extracting a fluctuation component (background noise) due to a pulse wave or blood pressure by a low-pass filter F2 (cutoff frequency 0.96 Hz).
  • the fNIRS time series signal 1203 is a signal from which noise due to movements such as forehead opening / closing, eye movement, and neck flexion is mainly removed by a low-pass filter F3 (cutoff frequency 0.48 Hz).
  • the fNIRS time series signal 1204 is a signal series obtained by subtracting the fNIRS time series signal 1203 from the fNIRS time series signal 1201 and is a signal focusing on fluctuation.
  • the fNIRS time series signal 1205 is a signal series obtained by subtracting the fNIRS time series signal 1203 from the fNIRS time series signal 1202 and is a signal focusing on fluctuation.
  • the primitive analysis units 32b and 33b divide the measurement brain region into the following seven regions, and add and average the fNIRS time series signals in each region. Specifically, the primitive analysis units 32b and 33b use the seven regions of the head (prefrontal cortex: three regions, left and right temporal lobes) as the addition average values Fr, Fc, Fl, Rf, Rr, Lf, and Lr in FIG. : For the channels in each of the two areas, the above five series signals are averaged (Averaging).
  • the addition average value Fr is obtained by averaging the above five series signals for the seven channels on the right side of the prefrontal cortex (channels 1, 5, 6, 10, 14, 15, 19).
  • the addition average value Fc is obtained by adding and averaging the above five series signals for the central 8 channels (channels 2, 3, 7, 11, 12, 16, 20, 21) of the prefrontal cortex.
  • the addition average value Fl is obtained by averaging the above five series signals for the seven channels on the left side of the prefrontal cortex (channels 4, 8, 9, 13, 17, 18, 22).
  • the addition average value Rf is an average of the above five series signals for the five front channels (channels 23, 24, 26, 27, 30) of the right parietal lobe.
  • the addition average value Rr is an average of the above five series signals for the five channels (channels 25, 28, 29, 31, 32) in the right temporal lobe.
  • the addition average value Lf is the average of the above five series signals for the five front channels (channels 33, 34, 36, 37, and 40) of the left parietal lobe.
  • the addition average value Lr is an average of the above five series signals for the five channels behind the left temporal lobe (channels 35, 38, 39, 41, 42).
  • the primitive analysis units 32b and 33b input the value obtained by adding and averaging the five series signals obtained for each region to the feature amount extraction units 32c and 33c.
  • the feature quantity extraction units 32c and 33c perform feature extraction for calculating the following 11 feature quantities from the five sequences for each region obtained by the primitive analysis units 32b and 33b. Specifically, the feature quantity extraction units 32c and 33c calculate the feature quantities shown in Table 2 from the prepared fNIRS data as the feature quantities representing the features of cerebral blood flow fluctuations. Eleven fNIRS feature values are calculated.
  • filter 1 F1
  • filter 3 F3
  • filter 1-3 F1-3
  • filter 2-3 F2-3
  • Filter 1 (F1) is a low-pass filter having a cutoff frequency of 1.92 Hz.
  • the signal that has passed through the filter 1 (F1) is mainly free from noise due to ambient light, and has the widest frequency component in the five signal sequences.
  • the filter 1 (F1) includes the frequency component of the filter 2 (F2).
  • Filter 2 (F2) is a low-pass filter having a cutoff frequency of 0.96 Hz.
  • the signal that has passed through the filter 2 (F2) is obtained by extracting a fluctuation component (background noise) due to a pulse wave or blood pressure, and is a biological signal component of the autonomic nervous system that is not directly related to brain activity. do not do.
  • Filter 3 is a low-pass filter having a cutoff frequency of 0.48 Hz.
  • the signal that has passed through the filter 3 (F3) is the narrowest frequency component in the five signal sequences, with the noise mainly due to movements such as forehead opening / closing, eye movements, and forward neck flexion being removed. Is considered relatively strong.
  • the filter 1-3 is a signal series obtained by subtracting the signal that has passed through the filter 3 (F3) from the signal that has passed through the filter 1 (F1).
  • F1-3 is a signal series obtained by subtracting the signal that has passed through the filter 3 (F3) from the signal that has passed through the filter 1 (F1).
  • the filter 2-3 (F2-3) is a signal series obtained by subtracting a signal that has passed through the filter 3 (F3) from a signal that has passed through the filter 1 (F2).
  • the average value (mean) of the amplitude as the fNIRS feature amount represents the average level of brain activity (activation).
  • the fundamental frequency (f0) as the fNIRS feature amount represents the number of vibrations (peak) of brain activity (activation).
  • the frequency centroid (fc) as the fNIRS feature amount represents the number of vibrations (centroid) of brain activity (activation).
  • the maximum value (max) of the amplitude as the fNIRS feature amount represents the maximum level of brain activity (activation).
  • the minimum value (min) of the amplitude as the fNIRS feature amount represents the minimum level of brain activity (activation).
  • the variance value (var) of the amplitude as the fNIRS feature amount represents a change in brain activity (activation).
  • the average value (mean) of the amplitude as the fNIRS feature amount represents the average level of brain activity (activation).
  • the slope (gr) of the approximate straight line as the fNIRS feature amount represents the tendency of brain activity (activation).
  • the variance value (var) of the amplitude as the fNIRS feature amount represents a change in brain activity (activation).
  • the feature amount extraction units 32c and 33c perform the above processing and store the numerical values (77 dimensions) converted into feature amounts in the explanatory variables.
  • the data storage device 32 stores data in which the clinical diagnosis result (NC: healthy, MCI: mild cognitive dysfunction, AD: Alzheimer type dementia) is given as a target attribute in the clinical database 32d.
  • the learning device 31 accumulates the data stored in the clinical database 32d in the above-described processing in the clinical database 31d, and constructs a model using this data (Learning).
  • the learning device 31 uses the data accumulated in advance in the clinical database 32c, that is, data for 50 people (NC: 21 people, MCI: 19 people, AD: 10 people), and cognitive dysfunction A model for estimating the presence / absence and degree of discrimination is constructed.
  • the learning device 31 constructs a Bayesian classifier using 77 fNIRS feature values extracted from the fNIRS measurement data of the subject as explanatory variables and the clinical diagnosis group as a target attribute.
  • the classifier model is Naive-Bayes Classifier.
  • the learning device 31 has a model for the discriminator NB NC / CI as a first stage for estimating whether or not the cognitive function is impaired, and a second stage for estimating the degree when the disorder is estimated.
  • the discriminator NB MCI / AD model and two discriminator models are constructed and stored in the model storage unit 31e.
  • the learning device 31 performs feature selection in advance of model construction by the feature selection unit 31a.
  • fNIRS features that are highly causally related to the cognitive impairment of the elderly have not been identified, and there is no theory or prior knowledge useful for feature selection.
  • calculating all combinations of extracted feature amounts increases the calculation cost.
  • the feature selection unit 31a is generally used frequently as described in, for example, “Draper, N. and Smith, H .: Applied Regression Analysis (3rd edition), John Wiley & Sons (1998)”. Feature selection is performed using the forward stepwise method as the sequential selection method.
  • the average value of the estimated correct answer rates for each of the two groups was used.
  • the feature selection unit 31a includes an NC group And a sub-optimal combination of feature quantities for discriminating between the two groups of the CI group (MCI + AD group).
  • the feature selection unit 31a uses the MCI group to automatically select a feature amount useful as a discrimination criterion for discriminating the degree of cognitive impairment (mild, dementia) in the Bayesian classifier (2) 33d ′′. A sub-optimal combination of feature quantities is obtained for discriminating AD groups.
  • Table 3 shows an example in which two features are selected as useful features for discrimination criteria for discriminating between healthy individuals and cognitive impairments in the Bayesian classifier (1) 33d '.
  • Table 3 shows an example in which three features are selected as useful feature amounts as discrimination criteria for discriminating the degree of cognitive impairment (mild, dementia) in the Bayesian classifier (2) 33d ′′.
  • the filter 3 (F3) in the region Fr (the right front 7 channel) is passed.
  • the maximum value (max) of the amplitude of the signal and the frequency centroid (fc) of the signal that has passed through the filter 1 (F1) in the region Lr (5 channels behind the left temporal lobe) are used.
  • Multi-modal imaging predicts memory performance in normal aging and cognitive decline, Neurobiology of Aging, Vol. 31, No. 107,1 As described in), mainly in Alzheimer type dementia, a decrease in blood flow in the posterior cingulate cerebral region has been confirmed, and attention is paid to the fact that the function of working memory decreases due to impaired cognitive function This is because. Actually, it has been confirmed from the discrimination result in the present embodiment that when the blood flow in the prefrontal cortex is reduced and the activation period of the temporal posterior region is extended, it is discriminated as a disease group of cognitive impairment.
  • the filter 1 in the region Fr (center 8 channels in the frontal area) is used as a feature amount useful for the criterion for discriminating the degree of cognitive impairment (mild, dementia) in the Bayesian classifier (2) 33d ′′. , 3 (F1, F3), the variance value (var) of the difference signal amplitude of each signal, and the average value of the amplitude of the signal that has passed through the filter 1 (F1) in the region Lf (5 channels ahead of the left parietal lobe) (Mean) and the variance value (var) of the difference signal amplitude of each signal that has passed through the filters 1 and 3 (F1 and F3) in the region Lf (5 channels in front of the left parietal lobe).
  • the feature selection part 31a is as two feature-values used when discriminating a healthy person and cognitive impairment by a Bayesian classifier (1) 33d '.
  • the frequency centroid (fc) of the passed signal is selected.
  • the feature selection unit 31a uses the region Fr (the central portion 8 of the frontal whole area) as three feature amounts used when discriminating the degree of cognitive dysfunction (mild, dementia) by the Bayesian classifier (2) 33d ′′.
  • Average value (mean) and variance value (var) of differential signal amplitude of each signal that has passed through filters 1 and 3 (F1 and F3) in region Lf (5 channels ahead of left parietal lobe) is doing.
  • the learning device 31 builds a model for discriminating cognitive dysfunction in the Bayesian classifier 33d from the feature amount selected by the feature selection unit 31a and the feature amount stored in the clinical database 31d. And stored in the model storage unit 31e.
  • the learning device 31 discriminates between the feature amounts and between the feature amounts using the clinical database 31d and the feature amount list shown in Table 3 narrowed down by the feature selection unit 31a by the learning unit 31b. Calculate probabilistic dependency with the goal. Thereby, the learning device 31 constructs the network structure and parameters (conditional probability distribution) of the classification function in the Bayesian classifier 33d and stores them in the model storage unit 31e.
  • the discriminating device 33 discriminates whether or not the subject has a disorder in cognitive function using the model constructed by the learning device 31 in this way.
  • a process for determining whether or not the subject has a disorder in the cognitive function by the determination device 33 will be described.
  • the discrimination device 33 discriminates the cognitive function level of the person through the following processing from the cerebral blood flow data being executed.
  • the discriminating device 33 first uses the original waveform signal acquisition unit 33 a provided in the discriminating device 33 to obtain the cerebral blood flow data of a plurality of parts measured by the fNIRS measuring device 20. take in.
  • the primitive analysis unit 33b performs an analysis process on the captured cerebral blood flow data at a plurality of sites.
  • the feature extraction part 33c calculates a feature-value from five series for every area
  • the Bayesian classifier 33d discriminates NC, MCI, and AD for the subject by using a model that is constructed in advance by the learning device 31 and is used to determine the cognitive impairment accumulated in the model storage unit 33e.
  • the discrimination device 33 first discriminates whether it is normal (NC) or cognitive dysfunction (CI) using a Bayesian classifier (1) 33d ′. To do.
  • the Bayesian classifier (1) 33d sets a calculated value corresponding to the selected feature amount in the node, and executes NC / CI classification processing. As the output, probability values classified into the NC group and the CI group are obtained.
  • the discriminating device 33 uses the Bayesian classifier (2) 33d ′′ to determine whether it is mild cognitive impairment (MCI) or Alzheimer's. It is discriminated whether it is type dementia (AD), and the degree of cognitive dysfunction is estimated.
  • MCI mild cognitive impairment
  • AD type dementia
  • the Bayesian classifier (2) 33d ′′ sets the calculated value corresponding to the selected feature amount in the node, and performs MCI / AD classification processing.
  • MCI mild cognitive impairment
  • AD Alzheimer type dementia
  • Table 3 shows a list of fNIRS feature values adopted by the Bayesian classifier (1) 33d 'and the Bayesian classifier (2) 33d ".
  • Table 4 shows the cross-validation result of an experiment in which 50 subjects were subjected to discrimination processing by the cognitive impairment judging device according to the present embodiment.
  • the estimated correct answer rate of MCI is 73.7%, and it can be said that the performance of the cognitive impairment determining apparatus according to the present embodiment is acceptable.
  • the cognitive impairment determination device it is also easy to accept that 80% of the five erroneously determined are determined by the disease side (AD).
  • the computer-readable storage medium for storing the program is a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system.
  • FIG. 13 shows an example of processing operation by the data storage device 32.
  • the data storage device 32 acquires fNIRS measurement data by the function of the original waveform signal acquisition unit 32a.
  • step 1302 the data storage device 32 performs primitive analysis processing for filtering the fNIRS measurement data by the function of the primitive analysis unit 32b.
  • step 1303 the data storage device 32 performs a feature amount extraction process on the fNIRS measurement data subjected to the primitive analysis process by the function of the feature amount extraction unit 32c.
  • step 1304 the data storage device 32 stores the feature quantity for the fNIRS measurement data extracted by the function of the feature quantity extraction unit 32c in the clinical database 32d.
  • FIG. 14 shows an example of the processing operation of the learning device 31.
  • the learning device 31 uses the function of the feature selection unit 31a to select from the feature amounts for the fNIRS measurement data stored in the clinical database 31d. For example, the feature amount shown in Table 3 is selected as a discrimination criterion.
  • step 1402 the learning device 31 extracts and lists the feature quantities selected as the discrimination criterion by the function of the feature selection unit 31a from the clinical database 31d, and lists them in step 1403 by the learning unit 31b.
  • the network structure of the classification function and the model of the parameter are constructed and stored in the model storage unit 31e.
  • FIG. 15 shows an example of the processing operation of the discriminating device 33.
  • the discriminating device 33 acquires fNIRS measurement data by the function of the original waveform signal acquisition unit 33a.
  • step 1502 the discriminating device 33 performs primitive analysis processing for performing filtering processing on the fNIRS measurement data by the function of the primitive analysis unit 33b.
  • step 1503 the discriminating apparatus 33 performs a feature amount extraction process on the fNIRS measurement data subjected to the primitive analysis process by the function of the feature amount extraction unit 33c.
  • step 1504 the discriminating device 33 uses the function of the Bayesian classifier 33d to extract the fNIRS measurement extracted by the function of the feature amount extraction unit 33c using the data copied and stored in the model storage unit 33e from the model storage unit 31e. The diagnosis result corresponding to the feature amount of the data is determined.
  • the cognitive dysfunction determination device 10 acquires the cerebral blood flow data as biological signals of a plurality of regions of the brain of the subject who is executing the cognitive task. Whether or not the subject's cognitive function is impaired based on the extracted feature amount and the data used for the determination of cognitive impairment prepared in advance. Determine.
  • the cognitive dysfunction discriminating apparatus 10 uses data used for the determination of cognitive dysfunction as biosignals of a plurality of regions of the brain that are executing cognitive tasks of a plurality of subjects whose cognitive functions are known in advance.
  • the feature amount is extracted and is generated based on the extracted feature amount.
  • the cognitive dysfunction discriminating device 10 selects a feature quantity used for the determination from the extracted feature quantities, and based on the selected feature quantity and the extracted feature quantity, the cognitive dysfunction as data used for the determination. Build a model for discrimination.
  • the cognitive dysfunction discriminating apparatus 10 acquires biosignals of a plurality of regions of the brain of a subject who is executing a cognitive task, extracts feature values of the biosignals, Based on the data used for the determination of cognitive dysfunction obtained in advance, it is determined whether or not there is a disorder in the cognitive function of the subject, thereby enabling early screening for brain function.
  • an example of constructing a model for discriminating cognitive dysfunction in the cognitive dysfunction discriminating apparatus has been shown.
  • an apparatus (learning apparatus 31) that constructs a model for discriminating cognitive dysfunction is shown.
  • the data storage device 32) may be installed separately from the cognitive impairment determination device.
  • a cognitive impairment determination system may be configured.
  • the brain blood flow data obtained by the fNIRS measuring device is used as the brain biological signal.
  • an electroencephalogram obtained by an electroencephalographic measuring device or the like may be used.
  • the fNIRS measuring instrument manufactured by Shimadzu Corporation (R) is used, but not limited thereto, other NIRS measuring instruments may be used.
  • 50 elderly people aged 64 to 92 are collectively used as subjects, but it is also possible to classify subjects into a plurality of groups in advance and determine the risk of dementia.
  • cerebral blood flow data collected from an elderly person is classified in advance into a plurality of groups based on the similarity. Then, by calculating the weight based on the similarity of the distribution between the data of the unknown discrimination target and these groups, a weighted distribution suitable for discrimination of the discrimination target (individual difference adaptive distribution) is simulated. A calculation method is used to calculate and execute discriminant calculation on this weighted distribution. This makes it possible to determine the degree of dementia risk adapted to individual differences in cerebral blood flow data of elderly people.
  • the above-mentioned plural groups generally take a means of classifying into an appropriate number of groups based on the similarity of the collected cerebral blood flow data. It is also possible to absorb gender and age differences by fixing to several groups according to age (age).
  • the primitive analysis units 32b and 33b divide the measurement brain region into seven regions (frontal cortex: 3 regions, left and right temporal lobes: 2 regions each), and fNIRS time series signals in each region. Are averaged. However, it is recognized from within each region by applying blind source separation techniques such as principal component analysis (PCA), independent component analysis (ICA), singular value decomposition (SVD), and non-negative matrix factorization (NMF). It is also possible to separate and extract a signal that is effective for determining a functional failure. By using such a calculation technique, higher performance is expected.
  • PCA principal component analysis
  • ICA independent component analysis
  • SVD singular value decomposition
  • NMF non-negative matrix factorization
  • the learning device 31 performs feature selection using the forward stepwise method as a commonly used sequential selection method in the feature quantity selection processing operation by the feature selection unit 31a.
  • the learning device 31 includes, for example, a sequential selection method such as a variable increase method, a variable decrease method, and a variable increase / decrease method, an EM algorithm, a genetic algorithm (GA), particle swarm optimization (Particle Swarm Optimization, PSO), and Feature selection may be performed using a simultaneous selection method such as a method using evolutionary computation such as Evolutionarily Stable Strategy (ESS) or Differential evolution (DE).
  • ESS Evolutionarily Stable Strategy
  • DE Differential evolution
  • the discriminating device 33 employs Naive-BayesBaClassifier as a classifier model in order to discriminate cognitive dysfunction, but is not limited to this.
  • classification type estimation methods such as Bayesian network, canonical discriminant analysis, linear discriminant analysis, neural network, naive Bayes method, and support vector machine (SVM), multiple regression analysis, ridge regression, support vector regression (SV regression)
  • numerical estimation methods such as kernel regression analysis may be used.
  • the risk of dementia is determined based on which of the three groups of healthy (NC), suspected dementia (MCI), and dementia (AD) from speech data of elderly people. Determine.
  • a numerical value equivalent to the score (0 to 30) of the cognitive function test such as a Hasegawa score is output, and the degree of risk of dementia is determined by the level of the numerical value.
  • a computer-readable recording medium is a data acquisition unit that acquires biological signal data in a predetermined brain region of a subject measured when the computer is given a task for activating the brain. And a feature amount extraction unit that extracts a feature amount of the biological signal data acquired by the data acquisition unit, a feature amount extracted by the feature amount extraction unit, and a cognitive impairment determined in advance Based on the data, a program for functioning as a determination unit that determines the degree of cognitive impairment of the subject is stored.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Neurosurgery (AREA)
  • Psychology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Cardiology (AREA)
  • Evolutionary Computation (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Hospice & Palliative Care (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 機能的近赤外分光法を用いて認知課題実行中の脳血流データを計測し、計測した脳血流データに対してプリミティブ解析を行った後、特徴抽出を行い、抽出された特徴量と予め構築しておいた認知機能障害の判定に用いるモデルにより、健常(NC)、軽度認知機能障害(MCI)、アルツハイマー型認知症(AD)の臨床診断群を自動判別する。これによって、多くの高齢者を対象とした早期スクリーニングに適した認知機能障害判別を行なうことができる。

Description

認知機能障害判別装置、認知機能障害判別システム、およびプログラム
 本発明は、認知機能障害判別装置、認知機能障害判別システム、およびプログラムに係り、特に、脳の生体信号を用いて認知機能障害の判別を行う認知機能障害判別装置、認知機能障害判別システム、およびプログラムに関するものである。
 現在、認知症のスクリーニングは、例えば「Katoh, S., Simogaki, H., Onodera, A., Ueda, H., Oikawa, K., Ikeda, K., Kosaka, K., Imai, Y., and Hasegawa, K.: Development of the revised version of Hasegawa's Dementia Scale (HDS-R), Japanese Journal of Geriatric Psychiatry, Vol. 2, No. 11, pp. 1339-1347 (1991), (in Japanese)」に記載のHDS-R(改訂長谷川式簡易知能評価スケール)、「Folstein, M. F., Folstein, S. E., and McHugh, P. R.: “Mini-Mental State”: A practical method for grading the cognitive state of patients for the clinician, J. Psychiat. Res, Vol. 12, No. 3, pp. 189-198 (1975)」に記載のMMSE(Mini-MentalState Examination)、及び、「Morris, J. C.: The Clinical Dementia Rating (CDR): Current version and scoring rules, Neurology, Vol. 43, No. 11, pp. 2412-2414 (1993)」に記載のCDR(Clinical Dementia Rating)などがある。これらの認知症のスクリーニングは、「Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., and Alzheimer's Disease Neuroimaging Initiative, the : Multimodal classification of Alzheimer's disease and mild cognitive impairment, Journal of Neuroimage, Vol. 55, No. 3, pp. 856-867 (2011)」に記載のfMRI(functionalMRI)、FDG-PET、及びCSFバイオマーカーなどの神経生理学に基づくテストと同様に広く用いられている。
 これらは一定のトレーニングを受けた医師、あるいは臨床心理士などにより、主として医療機関において実施されている。
 しかしながら、日常の外来診療場面では、HDS-Rなどの簡易検査であっても、医師は、検査に5~20分程度の時間を要する。これによって、他の外来患者の診療に支障をきたすとの指摘もあり、医師の負担の軽減が重要になると考えられる。
 例えば、前述のfMRI、FDG-PET、CSFバイオマーカーなどの神経生理学に基づくテストとしては、「Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., and Alzheimer's Disease Neuroimaging Initiative, the : Multimodal classification of Alzheimer's disease and mild cognitive impairment, Journal of Neuroimage, Vol. 55, No. 3, pp. 856-867 (2011)」が知られている。このテストは、非侵襲的ではあるが、髄液採取の困難性、放射線被爆、大掛かりな測定装置、被験者の束縛など制約が多く、多くの高齢者を対象とした早期スクリーニングには適さない。
 より簡便で使用しやすく、かつ、従来のツールと同等以上の性能を有するツールを開発することができれば、医師は、さらに広範にスクリーニングを実施することが可能となる。これによって、認知症の早期診断に資することが可能になる。
 発明者等は、先行研究(特開2011-255106号公報、及び「加藤昇平, 鈴木祐太, 小林朗子, 小島敏昭, 伊藤英則,本間昭:高齢者音声韻律特徴を用いたHDS-R スコアとの相関分析‐音声を用いた認知症の早期スクリーニングをめざして‐, 人工知能学会論文誌, Vol. 26, No. 2, pp. 347-352 (2011)」)において、高齢者の発話音声に着目し、音声韻律特徴を用いた認知機能障害のスクリーニングを研究してきた。この技術は、音声情報のみを用いるため誰でも在宅・外出などで場所を問わず手軽に実施できる(1次スクリーニング)長所を持つ。
 しかしながら、特開2011-255106号公報及び加藤昇平他「高齢者音声韻律特徴を用いたHDS-R スコアとの相関分析・・・」に記載の技術は、脳機能を直接測定するものではないため、専門医療機関に直接誘導する2次スクリーニングとしては限界がある。
 本発明は、上記の問題点を解決するためになされたもので、脳機能に関しての早期スクリーニングに適した認知機能障害判別装置、認知機能障害判別システム、およびプログラムを提供することを目的とする。
 上記目的を達成するため、本発明の第1の様態に係る認知機能障害判別装置は、脳を活動させるための課題を与えているときに測定された被験者の予め定められた脳部位における生体信号データを取得するデータ取得部と、前記データ取得部によって取得された生体信号データの特徴量を抽出する特徴量抽出部と、前記特徴量抽出部によって抽出された特徴量と、予め求めておいた認知機能障害の判定に用いるデータとに基づいて、前記被験者の認知機能障害の程度を判別する判別部と、を備えている。
 また、本発明の第2の様態に係る認知機能障害判別装置は、本発明の第1の様態に係る認知機能障害判別装置において、前記生体信号データは、前記予め定められた脳部位における血流を計測した脳血流データである。
 また、本発明の第3の様態に係る認知機能障害判別装置は、本発明の第1の様態に係る認知機能障害判別装置において、前記生体信号データは、前記予め定められた脳部位としての前頭前野、左側頭葉、右側頭葉、左頭頂葉、及び右頭頂葉の各々においてNIRS装置によりヘモグロビン流量を測定した脳血流データである。
 また、本発明の第4の様態に係る認知機能障害判別装置は、本発明の第1の様態に係る認知機能障害判別装置において、前記生体信号データは、前記予め定められた脳部位としての前頭前野における右領域、中央領域、及び左領域、前記予め定められた脳部位としての左頭頂葉における所定領域、及び左側頭葉における所定領域、並びに前記予め定められた脳部位としての右頭頂葉における所定領域、及び右側頭葉における所定領域、の各々の領域においてNIRS装置によりヘモグロビン流量を測定した脳血流データである。
 また、本発明の第5の様態に係る認知機能障害判別装置は、本発明の第1乃至4のいずれか1つの様態に係る認知機能障害判別装置において、前記認知機能障害の程度が既知である複数の被験者に前記課題を与えているときに測定された前記生体信号データを取得する既知データ取得部と、前記既知データ取得部によって取得された生体信号データの前記特徴量を抽出する既知データ特徴量抽出部と、前記既知データ特徴量抽出部によって抽出された特徴量に基づいて、前記認知機能障害の判定に用いるデータを生成する判定データ生成部と、を更に備える。
 また、本発明の第6の様態に係る認知機能障害判別装置は、本発明の第5の様態に係る認知機能障害判別装置において、前記判定データ生成部は、前記既知データ特徴量抽出部によって抽出された特徴量の中から、前記認知機能障害の判定に用いる特徴量を選択する選択部と、前記選択部によって選択された特徴量と当該特徴量が抽出された被験者の前記認知機能障害の程度とを学習データとして用いて、前記判別部が前記特徴量に対応する前記認知機能障害の程度を判定するためのモデルを構築する学習部と、を備える。
 また、本発明の第7の様態に係る認知機能障害判別装置は、本発明の第1乃至第6の様態のいずれか1つに係る認知機能障害判別装置において、複数の低域通過フィルタを用いて前記入力された生体信号データのノイズ除去を行なうプリミティブ解析部を備え、前記複数の低域通過フィルタは、環境光によるノイズを含むノイズを除去するのに用いる第1のフィルタ、脳波及び血圧を含む変動成分を抽出するのに用いる第2のフィルタ、及び、顎開閉及び眼球運動を含む運動によるノイズを除去するのに用いる第3のフィルタを含み、前記データ特徴量抽出部は、前記プリミティブ解析部が、前記第1のフィルタを用いてノイズ除去した前記生体信号データにおける振幅の平均値、基本周波数、及び周波数重心と、前記第3のフィルタを用いてノイズ除去した前記生体信号データにおける振幅の最大値、振幅の最小値、振幅の分散値、振幅の平均値、基本周波数、及び近似直線の傾きと、前記第1のフィルタを用いてノイズ除去した前記生体信号データと前記第3のフィルタを用いてノイズ除去した前記生体信号データとの差分データの振幅の分散値、及び、前記第2のフィルタを用いてノイズ除去した前記生体信号データと前記第3のフィルタを用いてノイズ除去した前記生体信号データとの差分データの分散値を、前記生体信号データの特徴量として抽出し、前記判別部は、前記データ特徴量抽出部によって抽出された特徴量を対象に前記被験者の認知機能障害の程度の判別を行なう。
 また、本発明の第8の様態に係る認知機能障害判別システムは、認知機能障害の程度が既知である複数の被験者に脳を活動させるための課題を与えているときに測定された予め定められた脳部位における生体信号データを取得する既知データ取得部、前記既知データ取得部によって取得された生体信号データの特徴量を抽出する既知データ特徴量抽出部、及び、前記既知データ特徴量抽出部によって抽出された特徴量に基づいて、前記認知機能障害の判定に用いるデータを生成する判定データ生成部、を含む判定データ生成装置と、前記課題を与えているときに測定された、前記認知機能障害の程度が未知である被験者の前記予め定められた脳部位における生体信号データを取得するデータ取得部、前記データ取得部によって取得された生体信号データの特徴量を抽出する特徴量抽出部、及び、前記特徴量抽出部によって抽出された特徴量と前記判定データ生成装置によって生成されたデータとに基づいて、前記認知機能障害の程度が未知である被験者の認知機能障害の程度を判別する判別部、を含む認知機能障害判別装置と、を備える。
 また、本発明の第9の様態に係るプログラムは、コンピュータを、脳を活動させるための課題を与えているときに測定された、被験者の予め定められた脳部位における生体信号データを取得するデータ取得部と、前記データ取得部によって取得された生体信号データの特徴量を抽出する特徴量抽出部と、前記特徴量抽出部で抽出された特徴量と、予め求めておいた認知機能障害の判定に用いるデータとに基づいて、前記被験者の認知機能障害の程度を判別する判別部と、として機能させるためのプログラムである。
 以上説明したように、本発明によれば、認知課題実行中の被験者の脳の複数領域の生体信号を取得して当該生体信号の特徴量を抽出し、この特徴量と、予め求めておいた認知機能障害の判定に用いるデータとに基づいて、被験者の認知機能に障害があるかどうかを判別することにより、脳機能に関しての早期スクリーニングが可能となる、という効果が得られる。
実施の形態に係る認知機能障害判別装置の構成を示すブロック図である。 図1におけるfNIRS測定装置による第1の測定箇所を示す説明図である。 図1におけるfNIRS測定装置による第2の測定箇所を示す説明図である。 図1におけるfNIRS測定装置による第3の測定箇所を示す説明図である。 実施の形態に係る認知機能障害判別装置による脳血流計測時に用いるブロックデザインを示す説明図である。 図1におけるfNIRS測定装置による脳血流計測時に用いるシステム構成例を示す説明図である。 図1におけるfNIRS測定装置による第1の脳血流計測結果例を示す説明図である。 図1におけるfNIRS測定装置による第2の脳血流計測結果例を示す説明図である。 図1におけるfNIRS測定装置による第3の脳血流計測結果例を示す説明図である。 実施の形態に係る認知機能障害判別装置におけるベイジアン分類器の内部構成を示すブロック図である。 実施の形態に係る認知機能障害判別装置におけるプリミティブ解析部の内部構成を示すブロック図である。 図11におけるプリミティブ解析部による処理例を示す説明図である。 実施の形態に係る認知機能障害判別装置により実行される第1の処理の流れを示すフローチャートである。 実施の形態に係る認知機能障害判別装置により実行される第2の処理の流れを示すフローチャートである。 実施の形態に係る認知機能障害判別装置により実行される第3の処理の流れを示すフローチャートである。
 以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、本実施の形態では、特別な測定環境を必要とせず、自然な体勢で課題実行中の脳機能を測定できる、機能的近赤外分光法(functional near-infrared spectroscopy、以下、「fNIRS」ともいう)から得られる生体信号に着目した。本実施の形態では、認知課題テスト実施中の高齢者の脳機能計測データを用いて認知症スクリーニングを行なう際に、本発明を適用した場合を例に説明する。
 なお、fNIRSとは、近赤外光を用いて脳内のヘモグロビン流量を計測する公知の技術であり、非侵襲かつ被測定者(以下、被験者ともいう)への拘束が少なく、測定環境を選ばない比較的簡便な計測が可能である。
 本実施の形態では、このような機能的近赤外分光法を用いて認知課題実行中の脳血流データを計測し、計測された脳血流データに基づいて、健常(NC)、軽度認知機能障害(MCI)、及びアルツハイマー型認知症(AD)の臨床診断群を自動判別する。
  図1に示すように、本実施の形態に係る認知機能障害判別装置10は、機能的近赤外分光法を用いて認知課題実行中の脳血流データを計測するfNIRS測定装置20,20aと、本発明に係る認知機能障害判別処理を実行するコンピュータにより構成される学習装置31、データ蓄積装置32、及び判別装置33と、判別装置33の処理結果等を表示する表示装置40とを備えている。
 学習装置31、データ蓄積装置32、及び判別装置33は、各々、図示していないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及びHDD(Hard Disk Drive)を備える。HDDには、CPUが本発明に係る認知機能障害判別処理を実行する際に用いるプログラムが記憶されている。
 学習装置31は、プログラムを実行して実現される処理機能として、特徴選択部31a、学習部31b、臨床データベース31d、及びモデル記憶部31eを備えている。
 データ蓄積装置32は、プログラムを実行して実現される処理機能として、原波形信号取得部32a、プリミティブ解析部32b、特徴量抽出部32c、及び臨床データベース32dを備えている。
 判別装置33は、プログラムを実行して実現される処理機能として、原波形信号取得部33a、プリミティブ解析部33b、特徴量抽出部33c、ベイジアン分類器33d、及びモデル記憶部33eを備えている。
 本実施の形態では、データ蓄積装置32と判別装置33の各々は、原波形信号取得部32a,33a、プリミティブ解析部32b,33b、及び特徴量抽出部32c,33cを備えた構成としている。データ蓄積装置32と判別装置33の各々を、同じコンピュータに備える構成とすることにより、原波形信号取得部32a,33aのいずれか、プリミティブ解析部32b,33bのいずれか、及び特徴量抽出部32c,33cのいずれを共有する構成としても良い。
 fNIRS測定装置20,20aは、生体信号として、被験者の脳血流データを計測する。脳血流の増加は、例えば「Villringer, A. and Firnafl, U.: Coupling of brain activity and cerebral blood flow: basis of functional nuroimaging, Cerebrovasc. Brain Metab. Rev., Vol. 7, pp. 240-276 (1995)」に記載のように、その脳部位の神経活動の活発化を反映しており、脳血流の変化は、血液中の酸素化ヘモグロビン(oxy-Hb)量の変化を測定することで捉えることが可能である。そのため、fNIRS測定装置20,20aで計測されたoxy-Hb量の変化を脳活動の指標と捉えることができる。
 本実施の形態では、認知課題実行中の高齢者の脳活動計測として、多チャンネルのfNIRS測定装置20,20aを用いている。具体的には、株式会社島津製作所(R)製の近赤外光脳機能イメージング装置FOIRE-3000を用いた。
 このような多チャンネルのfNIRS測定装置20,20aを用いて、本実施の形態では、図2~図4に示すように、複数の箇所で被験者の脳血流データを計測する。なお、図2~図4において、白丸部分は発光器(illuminator)、黒丸部分は検出器(detector)である。
 fNIRS測定装置20,20aは、図2に示すように、前頭前野では、右領域Fr、中央領域Fc、及び左領域Flにおける1~22の22チャンネルの部位において脳血流を計測する。また、図3に示すように、fNIRS測定装置20,20aは、右側頭葉では、前方領域Rf及び後方領域Rrにおける1~10の10チャンネルの部位において脳血流を計測する。また、図4に示すように、fNIRS測定装置20,20aは、左側頭葉では、前方領域Lf及び後方領域Lrにおける1~10の10チャンネルの部位において脳血流を計測する。このように、fNIRS測定装置20,20aは、合計42チャンネルの部位において脳血流を計測する。
 各プローブの装着位置については、脳波測定における国際10-20法の電極配置を参考に、前頭前野のプローブセットは最下部中央がFpzに重なるように水平に配置し、左右側頭葉及び頭頂葉のプローブセットはP3,T3(P4,T4)の位置を基準に配置した。
 判別装置33は、このようにして、fNIRS測定装置20により被験者から計測された複数部位の脳血流データを、原波形信号取得部33aにより取り込む。判別装置33は、取り込んだ複数部位の脳血流データに基づいて、プリミティブ解析部33bにより、脳の複数部位を複数に分割した複数領域の脳血流データを取得する。
 さらに、判別装置33は、特徴抽出部33cにより、得られた脳血流データの特徴量を抽出する。そして、判別装置33は、ベイジアン分類器33dにより、予め構築しておいた認知機能障害の判定に用いるモデル(モデル記憶部33e)を用いて、被験者に対して、健常(NC)、軽度認知機能障害(MCI)、及びアルツハイマー型認知症(AD)の3種類(3群)のいずれに該当するかの判別を行う。
 この判別結果は、判別装置33から表示装置40に出力され、表示装置40において表示される。
 また、学習装置31は、データ蓄積装置32が予め蓄積した、認知機能に障害があるかどうか、あればどの程度かが既知である被験者の認知課題実行中の脳の複数部位の脳血流データおよび臨床診断結果を用いて、判別装置33における上述の認知機能障害の判定に用いるモデル(臨床モデル記憶部31e,33e)を構築する。
 データ蓄積装置32は、原波形信号取得部32aにより、認知機能に障害があるかどうか、あればどの程度かが既知である被験者の認知課題実行中の脳の複数部位の脳血流データをfNIRS測定装置20aから取得すると共に、図示していない入力装置から入力される当該被検体者の臨床診断結果を収集して蓄積する。
 そして、データ蓄積装置32は、プリミティブ解析部32bにより、蓄積した複数部位の脳血流データに基づいて、脳の複数部位を複数に分割した複数領域の脳血流データを取得する。次に、データ蓄積装置32は、特徴抽出部32cにより、得られた脳血流データの特徴量を抽出する。
 データ蓄積装置32は、これらの処理を、認知機能に障害があるかどうか、あればどの程度かが既知である複数の被験者に対して行い、複数の被験者の脳血流データ特徴量を得て、各々を対応付けて、臨床データベース32dにおいて蓄積する。
 学習装置31は、臨床データベース31dにより、臨床データベース32dにおいて蓄積された情報と同じ情報を蓄積する。さらに、学習装置31は、特徴選択部31aにより、このようにして臨床データベース31dにおいて得られた特徴量の中から判定に用いる特徴量を選択する。そして、学習装置31は、学習部31bにより、この選択した特徴量と抽出された特徴量とに基づき、認知機能障害を判別するためのモデルを構築する。
 以下、認知機能障害の判定に用いるモデルの構築について、より詳しく説明する。
 本実施の形態では、認知機能に障害があるかどうか、あればどの程度かが既知である被験者として、表1に示す50名の高齢者(年齢64~92歳、男性18名、女性32名)を被験者とした。表1には、被験者の臨床診断群と年齢構成の内訳を示している。
 表1中の括弧内の数値は、それぞれ順に、NC(健常)群,MCI(軽度認知機能障害)群,AD(アルツハイマー型認知症)群の人数を示している。なお、ここでは、MCI群は、「臨床認知症評価法」における「CDR(Clinical Dementia Rating)」が0.5相当の患者を対象とし、また、AD群は、CDR1相当の患者を対象とした。
Figure JPOXMLDOC01-appb-T000001
 なお、CDR(Clinical Dementia Rating)は、世界中で広く用いられている行動観察尺度(観察式)による臨床認知症基準であり、記憶、見識、判断力と問題解決、社会適応、家族状況と趣味、及び、介護状況の6項目を5段階で評価する。本実施の形態では、中等度や重度の認知症であるCDR2以上の被験者は対象群から除外した。また、課題実行に立ち会ったオペレータによる観察及び課題の回答内容から被験者の態度を総合的に評価し、認知課題の遂行自体に明らかな問題のある被験者についても対象群から除外した。
 本実施の形態では、HDS-Rテストを含め様々な認知課題を実行中の高齢者の脳機能を計測するために、図5に示すブロックデザインの課題を設計し、音声・fNIRS同時計測を行った。
 図5に示すように、計測では、開始後の前半10分間において、被験者の出身地や少年時代の会話と長谷川式テストを実施し、後半の12分間において、回想法(1.聴く、2.話す、3.見る)ならびにワーキングメモリ課題(1.カテゴリ想起、2.リーディングスパンテスト、3.顔想起)の認知課題を実施した。また、当該計測においては、課題に集中して取り組めるように、1課題の時間は60秒とし、各認知課題の前後に60秒の1点注視休憩(レスト)を取らせた。
 具体的には、図6に示すシステム環境において、測定者は、被測定者(被験者)を課題提示装置(ディスプレイ)の正面に座らせ、被測定者(被験者)の頭部にfNIRS測定のためのプローブ(あるいは脳波EEG・Electroencephalogram測定のための電極など)を設置する。そして、測定者は、被測定者(被験者)に対して、ディスプレイ及び傍らのスピーカから認知課題を提示する。
 被測定者は、ディスプレイおよびスピーカからの指示に従い課題を実行し、測定者は、課題実行中の脳活動状態を、fNIRS測定器(あるいは脳波測定器など)から測定する。
 本実施の形態では、fNIRS測定装置20,20aを用いており、このfNIRS測定器は、oxy-Hb(酸素化ヘモグロビン量)、deoxy-Hb(脱酸素化ヘモグロビン量)、及びtotal-Hb(総ヘモグロビン量)を計測する。ここでは、oxy-Hbの測定信号を用いた例を示す。
 本実施の形態では、予備的調査として、ワーキングメモリ課題1「カテゴリ想起」の課題実行中のfNIRSデータ(oxy-Hb)を用いて全チャンネル毎(33CH,41CHを除く)の3群(NC、MCI、及びAD)間の有意差検定を行った。検定方法は、「t-検定」を用いて、両側検定、有意水準P<0.001、Bonferroni補正(1/40)のもとで実施した。
 図7乃至図9は、検定で有意差が確認されたチャンネルについて、t-値に基づき16階調の濃淡でマッピングした例を示している。図7乃至図9では、t-値が高く相互の差が大きいほど、濃い色で示され、有意差ありとなる。
 認知症患者は、認知機能の障害により、ワーキングメモリの機能が低下する。その結果、前頭前野の脳血流において、健常群は疾病群と比較して有意に賦活することが確認できる(図7及び図8の左図における図2に示されるFr、Fc及びFl領域)。また、左右側頭葉の脳血流についても、健常群は疾病群と比較して有意に賦活することが確認された(図7及び図8の中右図における図3,4で示されるRf、Rr、Lf、及びLr領域)。加えて、図9に示すように、軽度の認知機能障害であるMCI群は、AD群に比べてこれらの脳血流が僅かながら有意に賦活することが確認できる。
 すなわち、図7は、健常(NC)群と軽度認知機能障害(MCI)群間での、有意差が確認されたチャンネルを示す。図8は、健常(NC)群とアルツハイマー型認知症(AD)群間での、有意差が確認されたチャンネルを示す。図9は、軽度認知機能障害(MCI)群とアルツハイマー型認知症(AD)群間での、有意差が確認されたチャンネルを示している。
 これらの図7~図9の結果、特に、図8の結果から、健常(NC)群と疾病(AD)群の間では、認知課題実行時の脳血流に有意な差が確認される。
 これらのことは、認知課題実行中のfNIRSデータを用いた認知症スクリーニングの実現可能性を示唆している。なお、同課題実行直前のレスト区間のfNIRSデータを用いて3群に対する同様の検定を行なったところ、全てのチャンネルにおいて有意差は確認されなかった。
 従って、認知症のスクリーニングは、まず、認知機能の健常性を判断し、疑義がある場合には、その程度に応じて軽度認知機能障害あるいは認知症であるかを判定するプロセスとする。
 そこで、本実施の形態では、図10に示すように、ベイジアン分類器33dは、ベイジアン分類器(1)33d’とベイジアン分類器(1)33d”を備えている。このように、ベイジアン分類器33dは、二段階のNaive-Bayes Classifierを用いて、fNIRSデータからのNC群、MCI群、及びAD群の3群を判別する。
 次に、図11及び図12を用いて、プリミティブ解析部32b,33bについて説明する。
 プリミティブ解析部32b,33bは、原波形信号取得部32a,33aにより入力されたfNIRS測定信号の原波形に対して、チャンネル(CH1~CH42)毎に、プリミティブ解析を行う。プリミティブ解析では、低域通過フィルタ及び差分フィルタをかけてノイズが除去され、注目する領域内のチャネルの加算平均が行われる。
 具体的には、プリミティブ解析部32b,33bは、まず、図11に示すように、各チャンネルのfNIRS信号を3つの低域通過フィルタF1~F3(いずれもバタワース特性、次数5)に通して平滑化する。
 ここで、低域通過フィルタF1の遮断周波数は1.92Hz、低域通過フィルタF2の遮断周波数は0.96Hz、及び、低域通過フィルタF3の遮断周波数は0.48Hzである。
 さらに、プリミティブ解析部32b,33bは、図12に示すように、これらの3つの平滑化信号に、2つの差分データを加えて、1チャンネルあたり5個のfNIRS時系列信号を生成する。図12に示す5個のfNIRS時系列信号1201~1205は次のものである。
 fNIRS時系列信号1201は、低域通過フィルタF1(遮断周波数1.92Hz)により、主に環境光によるノイズを除去した信号である。
 fNIRS時系列信号1202は、低域通過フィルタF2(遮断周波数0.96Hz)により、脈波や血圧による変動成分(背景ノイズ)を抽出した信号である。
 fNIRS時系列信号1203は、低域通過フィルタF3(遮断周波数0.48Hz)により、主に額開閉、眼球運動、及び首前屈などの運動によるノイズを除去した信号である。
 fNIRS時系列信号1204は、fNIRS時系列信号1201からfNIRS時系列信号1203を差分した信号系列で、変動に着目した信号である。
 fNIRS時系列信号1205は、fNIRS時系列信号1202からfNIRS時系列信号1203を差分した信号系列で、変動に着目した信号である。
 次に、プリミティブ解析部32b,33bは、測定脳部位を以下の7つの領域に分割し、各領域内のfNIRS時系列信号をそれぞれ加算平均する。具体的には、プリミティブ解析部32b,33bは、図11における加算平均値Fr,Fc,Fl,Rf,Rr,Lf,Lrとして、頭部の7領域(前頭前野:3領域,左右側頭葉:各2領域)内のチャンネルについて、それぞれ上記の5系列信号を加算平均(Averaging)する。
 詳しくは、加算平均値Frは、前頭前野の右側7チャンネル(チャネル1,5,6,10,14,15,19)について、上記の5系列信号を加算平均したものである。
 加算平均値Fcは、前頭前野の中央部8チャンネル(チャネル2,3,7,11,12,16,20,21)について、上記の5系列信号を加算平均したものである。
 加算平均値Flは、前頭前野の左側7チャンネル(チャネル4,8,9,13,17,18,22)について、上記の5系列信号を加算平均したものである。
 加算平均値Rfは、右頭頂葉の前方5チャンネル(チャネル23,24,26,27,30)について、上記の5系列信号を加算平均したものである。
 加算平均値Rrは、右側頭葉の後方5チャンネル(チャネル25,28,29,31,32)について、上記の5系列信号を加算平均したものである。
 加算平均値Lfは、左頭頂葉の前方5チャンネル(チャネル33,34,36,37,40)について、上記の5系列信号を加算平均したものである。
 加算平均値Lrは、左側頭葉の後方5チャンネル(チャネル35,38,39,41,42)について、上記の5系列信号を加算平均したものである。
 プリミティブ解析部32b,33bは、このようにして得た各領域毎の5つの系列信号を加算平均した値を、特徴量抽出部32c,33cに入力する。
 特徴量抽出部32c,33cは、プリミティブ解析部32b,33bにより得られた各領域毎の5つの系列から、以下の11の特徴量を算出する特徴抽出を行う。具体的には、特徴量抽出部32c,33cは、脳血流変動の特徴を表す特徴量として、前記用意したfNIRSデータから、それぞれ表2に示す特徴量を計算し、被験者1課題について各領域あたり11個のfNIRS特徴量を算出する。
 なお、認知機能障害の判別に有効なfNIRSの特徴は未だ明らかではない。fNIRSの信号解析においても、例えば脳波におけるα、β、γ、δ、及びθなどの各波の周波数帯域や、事象関連電位N100,P300のように確立された特徴量は見出されていない。そのため、本実施の形態では、試行錯誤的ではあるものの、データマイニングのアプローチに着目した。前述の初期解析で除去できない程のアーチファクトや雑音による影響が含まれるデータについては、目視によるfNIRS信号の判読により事前に除去した。
Figure JPOXMLDOC01-appb-T000002
 表2においては、フィルタ番号として、フィルタ1(F1)、フィルタ3(F3)、フィルタ1-3(F1-3)、フィルタ2-3(F2-3)が示され、各々に対応するfNIRS特徴量が示されている。
 フィルタ1(F1)は、遮断周波数1.92Hzの低域通過フィルタである。フィルタ1(F1)を通過した信号は、主に環境光によるノイズが除去され、5つの信号系列中で最も広い周波数成分を持つ。なお、フィルタ1(F1)は、フィルタ2(F2)の周波数成分を含む。
 フィルタ2(F2)は、遮断周波数0.96Hzの低域通過フィルタである。フィルタ2(F2)を通過した信号は、脈波や血圧による変動成分(背景ノイズ)が抽出されたもので、脳活動に直接関係しない自律神経系の生体信号成分であるため、特徴量は抽出しない。
 フィルタ3(F3)は、遮断周波数0.48Hzの低域通過フィルタである。フィルタ3(F3)を通過した信号は、主に額開閉、眼球運動、及び首前屈などの運動によるノイズが除去され、5つの信号系列中で最も狭い周波数成分であり、認知機能との関連が比較的強いと考えられる。
 フィルタ1-3(F1-3)は、フィルタ1(F1)を通過した信号からフィルタ3(F3)を通過した信号を差分した信号系列であり、ここでは、その変動に着目する。
 フィルタ2-3(F2-3)は、フィルタ1(F2)を通過した信号からフィルタ3(F3)を通過した信号を差分した信号系列であり、ここでは、その変動に着目する。
 fNIRS特徴量としての振幅の平均値(mean)は、脳活動(賦活)の平均レベルを表す。
 fNIRS特徴量としての基本周波数(f0)は、脳活動(賦活)の振動回数(ピーク)を表す。
 fNIRS特徴量としての周波数重心(fc)は、脳活動(賦活)の振動回数(重心)を表す。
 fNIRS特徴量としての振幅の最大値(max)は、脳活動(賦活)の最大レベルを表す。
 fNIRS特徴量としての振幅の最小値(min)は、脳活動(賦活)の最低レベルを表す。
 fNIRS特徴量としての振幅の分散値(var)は、脳活動(賦活)の変動を表す。
 fNIRS特徴量としての振幅の平均値(mean)は、脳活動(賦活)の平均レベルを表す。
 fNIRS特徴量としての近似直線の傾き(gr)は、脳活動(賦活)の傾向を表す。
 fNIRS特徴量としての振幅の分散値(var)は、脳活動(賦活)の変動を表す。
 特徴量抽出部32c,33cは、以上の処理を施して、特徴量化した数値(77次元)を説明変数に格納する。そして、データ蓄積装置32は、これに、臨床診断結果(NC:健常、MCI:軽度認知機能障害、AD:アルツハイマー型認知症)を目標属性として付与したデータを臨床データベース32dに格納する。
 学習装置31は、上述の処理で臨床データベース32dに格納したデータを臨床データベース31dに蓄積し、このデータを用いて、モデルの構築を行う(Learning)。
 本実施の形態では、学習装置31は、予め臨床データベース32cに蓄積したデータ、すなわち、50人分(NC:21人、MCI:19人、AD:10人)のデータを用いて、認知機能障害の有無および程度の判別結果を推定するモデルを構築する。
 具体的には、学習装置31は、被験者のfNIRS測定データから抽出した77個のfNIRS特徴量を説明変数、臨床診断群を目標属性としてベイジアン・クラシファイアを構築する。なお、クラシファイアモデルにはNaive-Bayes Classifier を採用した。
 ここでは、学習装置31は、認知機能に障害があるかどうかを推定する第1段階としての判別器NBNC/CI用のモデルと、障害が推定された場合にその程度を推定する第2段階の判別器NBMCI/AD用のモデルとの2つの判別器用のモデルを構築してモデル記憶部31eに格納する。
 なお、上記のモデルを構築する際に、データから抽出した特徴量が多すぎると、その中には認知機能障害の判別に無関係な特徴量が含まれる可能性があり、モデルの構築や判別性能に悪影響を与えることが考えられる。
 そこで、本実施の形態では、学習装置31は、特徴選択部31aにより、モデル構築の事前に特徴選択を行う。しかしながら、現在のところ、高齢者の認知機能障害と因果関係の高いfNIRS特徴は特定されておらず、特徴選択として有用な理論や事前の知識は存在しない。また、抽出した特徴量のすべての組合せを計算することは計算コストが高くなる。
 そのため、ここでは、特徴選択部31aは、例えば、「Draper, N. and Smith, H.: Applied Regression Analysis (3rd edition), John Wiley & Sons (1998)」に記載のように、一般的に多用されている逐次選択法としてフォワードステップワイズ法を用いて特徴選択を行う。
 フォワードステップワイズ法の特徴選択規準としては、各2群の推定正答率の平均値を用いた。
 このフォワードステップワイズ法により、ベイジアン分類器(1)33d’において健常者と認知機能障害の弁別を行う判別基準に有用な特徴量を自動的に選択するために、特徴選択部31aは、NC群とCI群(MCI+AD群)の2群を弁別するために準最適な特徴量の組合せを求める。
 また、特徴選択部31aは、ベイジアン分類器(2)33d”において認知機能障害の程度(軽度、認知症)を弁別する判別基準として有用な特徴量を自動的に選択するために、MCI群とAD群を弁別するために準最適な特徴量の組合せを求める。
 表3は、ベイジアン分類器(1)33d’において健常者と認知機能障害の弁別を行う判別基準に有用な特徴量として2つのものを選択した例を示す。また、表3は、ベイジアン分類器(2)33d”において認知機能障害の程度(軽度、認知症)を弁別する判別基準として有用な特徴量として3つのものを選択した例を示している。
Figure JPOXMLDOC01-appb-T000003
 ここで、表3に示す特徴量について説明する。まず、ベイジアン分類器(1)33d’において健常者と認知機能障害の弁別を行う判別基準に有用な特徴量として、領域Fr(前頭全野の右側7チャネル)におけるフィルタ3(F3)を通過した信号の振幅の最大値(max)と、領域Lr(左側頭葉の後方5チャネル)におけるフィルタ1(F1)を通過した信号の周波数重心(fc)とを用いている。
 これは、例えば「Walhovd, K. B., Fjell, A. M., Dale, A. M., McEvoy, L. K., Brewer, J., Karow, D. S., Salmon, D. P., Fennema-Notestine, C., and the Alzheimer's Disease Neuroimaging Initiative, : Multi-modal imaging predicts memory performance in normal aging and cognitive decline, Neurobiology of Aging, Vol. 31, No. 7, pp. 1107-1121 (2010)」に記載のように、主にアルツハイマー型認知症において後帯状回の脳部位における血流の低下が確認されており、また、認知機能の障害に伴いワーキングメモリの機能が低下することに着目したためである。実際に、本実施の形態における判別結果から、前頭前野の血流が低下し、側頭後方領域の賦活周期が伸長すると認知機能障害の疾病群として判別することが確認されている。
 また、ベイジアン分類器(2)33d”において認知機能障害の程度(軽度、認知症)の弁別を行なう判断基準に有用な特徴量として、領域Fr(前頭全野の中央部8チャネル)におけるフィルタ1,3(F1,F3)を通過した各々の信号の差分信号振幅の分散値(var)、領域Lf(左頭頂葉の前方5チャネル)におけるフィルタ1(F1)を通過した信号の振幅の平均値(mean)、及び、領域Lf(左頭頂葉の前方5チャネル)におけるフィルタ1,3(F1,F3)を通過した各々の信号の差分信号振幅の分散値(var)とを用いている。
 これは、例えば、「Ishiwata 06 Ishiwata, A., Sakayori, O., Minoshima, S., Mizumura, S., Kitamura, S., and Katayama, Y.: Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study, Acta Neurologica Scandinavica;114(2):91-6, 2006, Vol. 114, No. 2, pp. 91-96 (2006)」に記載のように、軽度認知機能障害からアルツハイマー型認知症へ進行した患者の脳における病態学的特徴として、後帯状回や楔前部における脳血流の低下が認められることに着目したためである。実際に、本実施の形態における判別結果から、頭頂領域(左頭頂領域)の賦活の分散及び平均値が減少すると、軽度認知機能障害からアルツハイマー型認知症と分別することが確認されている。
 このように、本実施の形態では、特徴選択部31aは、表3に示すように、ベイジアン分類器(1)33d’で健常者と認知機能障害の弁別を行う際に用いる2つの特徴量として、領域Fr(前頭全野の右側7チャネル)におけるフィルタ3(F3)を通過した信号の振幅の最大値(max)と、領域Lr(左側頭葉の後方5チャネル)におけるフィルタ1(F1)を通過した信号の周波数重心(fc)とを選択している。
 また、特徴選択部31aは、ベイジアン分類器(2)33d”で認知機能障害の程度(軽度、認知症)を弁別する際に用いる3つの特徴量として、領域Fr(前頭全野の中央部8チャネル)におけるフィルタ1,3(F1,F3)を通過した各々の信号の差分信号振幅の分散値(var)、領域Lf(左頭頂葉の前方5チャネル)におけるフィルタ1(F1)を通過した信号の振幅の平均値(mean)、及び、領域Lf(左頭頂葉の前方5チャネル)におけるフィルタ1,3(F1,F3)を通過した各々の信号の差分信号振幅の分散値(var)を選択している。
 学習装置31は、このようにして特徴選択部31aにより選択された特徴量と、臨床データベース31dに蓄積されている特徴量とから、ベイジアン分類器33dにおいて認知機能障害を判別するためのモデルを構築してモデル記憶部31eに格納する。
 具体的には、学習装置31は、学習部31bにより、臨床データベース31d、および、特徴選択部31aにより絞り込まれた表3に示す特徴量のリストを用いて、各特徴量間及び特徴量と判別目標との確率的な依存関係を計算する。これにより、学習装置31は、ベイジアン分類器33dにおける分類機能のネットワーク構造およびパラメータ(条件付確率分布)を構築してモデル記憶部31eに格納する。
 判別装置33は、このようにして学習装置31が構築したモデルを用いて、被験者に認知機能に障害があるかどうかの判別を行う。以下、判別装置33による、被験者に認知機能に障害があるかどうかの判別を行う処理について説明する。
 この場合、認知機能の診断が未知の高齢者に、モデルを構築する際と同様にして、図5に示す認知課題を実行させる。判別装置33は、実行中の脳血流データから以下の処理を経て、本人の認知機能レベルを判別する。
 すなわち、判別装置33は、上記モデルを構築する場合と同様に、まず、fNIRS測定装置20において計測された複数部位の脳血流データを、判別装置33に備えられた原波形信号取得部33aにより取り込む。
 次に、取り込んだ複数部位の脳血流データに対してプリミティブ解析部33bが解析処理を行う。そして、プリミティブ解析で得られた各領域毎の5つの系列から、特徴抽出部33cが、特徴量を算出する。そして、ベイジアン分類器33dが、予め学習装置31が構築した、モデル記憶部33eにおいた蓄積された認知機能障害の判定に用いるモデルにより、当該被験者に対するNC、MCI、及びADの判別を行う。
 この判別処理においては、判別装置33は、図10に示すように、まず、ベイジアン分類器(1)33d’を用いて、健常(NC)であるか認知機能障害(CI)であるかを判別する。
 具体的には、ベイジアン分類器(1)33d’は、選択された特徴量に該当する計算値をノードにセットし、NC/CI分類処理を実行する。その出力として、NC群とCI群に分類される確率値が得られる。
 ここで、CI群に分類される確率が高いと推定された場合は、判別装置33は、次に、ベイジアン分類器(2)33d”を用いて、軽度認知機能障害(MCI)であるかアルツハイマー型認知症(AD)であるかを判別して、認知機能障害の程度を推定する。
 この場合、上記ベイジアン分類器(1)33d’の場合と同様に、ベイジアン分類器(2)33d”は、選択された特徴量に該当する計算値をノードにセットし、MCI/AD分類処理を実行する。その出力として、軽度認知機能障害(MCI)群、アルツハイマー型認知症(AD)群に分類される確率値が得られる。
 以下、本実施の形態に係る認知機能障害判別装置による判別処理の実験結果について説明する。
 この実験結果は、表1で示した50名の高齢者が実施した図5に示す認知課題のうち、ワーキングメモリ課題1(カテゴリ想起)の終盤20秒で実施された「果物の名前を出来るだけ多く答える」課題に対する回答時のfNIRSデータを用いて、NC/MCI/ADの判別実験を行った結果である。
 検証方法として、Leave-one-out交差検定を用いた。また、ベイジアン分類器(1)33d’及びベイジアン分類器(2)33d”で採用されたfNIRS特徴量の一覧は表3に示すものである。
 表4は、被験者50名に対して本実施の形態に係る認知機能障害判別装置による判別処理を行なった実験の交差検定結果を示している。
Figure JPOXMLDOC01-appb-T000004
 表4の結果は、アルツハイマー型認知症(AD)の判定正答率と、健常(NC)の判定的中率とが共に90%を超えていることを示している。このことから、本実施の形態に係る認知機能障害判別装置は、アルツハイマー型認知症(AD)群に属する被験者が健常(NC)であると誤判定することがなく、かつ、健常と判定された被験者をアルツハイマー型認知症(AD)患者であると判別することがない(1名のみMCI患者であった)ことがわかる。
 この結果は、認知症スクリーニングが求められる仕様を鑑みて好ましい結果であると言える。また、MCIの推定正答率も73.7%であり、本実施の形態に係る認知機能障害判別装置の性能は、許容できるものであるといえる.
 また、本実施の形態に係る認知機能障害判別装置では、誤判定された5名の8割が疾患側(AD)に判定されていることも受け入れやすい結果である。
 次に、図13乃至図15を用いて、図1に示す学習装置31、データ蓄積装置32、及び判別装置33による、コンピュータ読み取り可能な記憶媒体等に記憶されたプログラムに基づく処理動作例を説明する。なお、プログラムを記憶するコンピュータ読み取り可能な記憶媒体は、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。
 図13は、データ蓄積装置32による処理動作例を示しており、データ蓄積装置32は、ステップ1301において、原波形信号取得部32aの機能により、fNIRS測定データを取得する。
 ステップ1302において、データ蓄積装置32は、プリミティブ解析部32bの機能により、fNIRS測定データに対してフィルタリングするプリミティブ解析処理を行なう。
 ステップ1303において、データ蓄積装置32は、特徴量抽出部32cの機能により、プリミティブ解析処理されたfNIRS測定データに対する特徴量の抽出処理を行なう。
 ステップ1304において、データ蓄積装置32は、特徴量抽出部32cの機能により抽出したfNIRS測定データに対する特徴量を臨床データベース32dに格納する。
 図14は、学習装置31の処理動作例を示しており、学習装置31は、ステップ1401において、特徴選択部31aの機能により、臨床データベース31dに格納されたfNIRS測定データに対する特徴量の内から、例えば前述の表3に示される特徴量を判別基準として選択する。
 ステップ1402において、学習装置31は、臨床データベース31dから、特徴選択部31aの機能により判別基準として選択された特徴量を抽出してリストアップし、ステップ1403において、学習部31bにより、リストアップした特徴量を学習データとして用いて、分類機能のネットワーク構造及びパラメータ(条件付確率分布)のモデル構築を行ない、モデル記憶部31eに格納する。
 図15は、判別装置33の処理動作例を示しており、判別装置33は、ステップ1501において、原波形信号取得部33aの機能により、fNIRS測定データを取得する。
 ステップ1502において、判別装置33は、プリミティブ解析部33bの機能により、fNIRS測定データに対してフィルタリング処理等をするプリミティブ解析処理を行なう。
 ステップ1503において、判別装置33は、特徴量抽出部33cの機能により、プリミティブ解析処理されたfNIRS測定データに対する特徴量の抽出処理を行なう。
 ステップ1504において、判別装置33は、ベイジアン分類器33dの機能により、モデル記憶部33eにモデル記憶部31eからコピーして格納されたデータを用いて、特徴量抽出部33cの機能により抽出したfNIRS測定データの特徴量に対応する診断結果を判別する。
 以上、各図を用いて説明したように、本実施の形態の認知機能障害判別装置10は、認知課題実行中の被験者の脳の複数領域の生体信号としての脳血流データを取得すると、取得した脳血流データ(生体信号)の特徴量を抽出し、抽出した特徴量と、予め用意された認知機能障害の判定に用いるデータとに基づいて、被験者の認知機能に障害があるかどうかを判別する。
 なお、認知機能障害判別装置10は、認知機能障害の判定に用いるデータを、予め認知機能に障害があるかどうかが既知である複数の被験者の認知課題実行中の脳の複数領域の生体信号を用いて、その特徴量を抽出し、抽出した特徴量に基づいて生成する。その際、認知機能障害判別装置10は、抽出した特徴量の中から判定に用いる特徴量を選択し、選択した特徴量と抽出された特徴量とに基づき、判定に用いるデータとして認知機能障害を判別するためのモデルを構築する。
 このように、本実施の形態の認知機能障害判別装置10は、認知課題実行中の被験者の脳の複数領域の生体信号を取得して当該生体信号の特徴量を抽出し、この特徴量と、予め求めておいた認知機能障害の判定に用いるデータとに基づいて、被験者の認知機能に障害があるかどうかを判別しており、これにより、脳機能に関しての早期スクリーニングが可能となる。
 なお、上記した実施形態では、認知機能障害判別装置において、認知機能障害を判別するためのモデルを構築する例を示したが、認知機能障害を判別するためのモデルを構築する装置(学習装置31、及びデータ蓄積装置32)を、認知機能障害判別装置とは別に設置するようにしても良い。例えば、認知機能障害判別装置が複数ありそれぞれからネットワークを介してセンタ(認知機能障害を判別するためのモデルを構築する装置として機能)にモデル構築のためのデータを送信し、センタ側にてそのようなデータを蓄積してモデルを構築し、認知機能障害判別装置(判別装置33)が認知機能障害判別を行うときに、センタからモデルを受信し、それに基づいて認知機能障害判別を行うようにして、認知機能障害判別システムを構成することでも良い。
 また、本実施の形態では、脳の生体信号として、fNIRS測定器で得られる脳血流データを用いるものを示したが、例えば、脳波測定器などで得られる脳波を用いるようにしても良い。また、本実施の形態では、株式会社島津製作所(R)製のfNIRS測定器を用いたが、それに限らず他のNIRS測定器を用いることでも良い。
 また、本実施の形態では、64歳~92歳の高齢者50名をまとめて被験者としているが、被験者を予め複数のグループに分類して、認知症危険度の判別を行なうことも可能である。例えば、予め、高齢者から採取した脳血流データを、その類似性によって複数のグループに分類しておく。そして、未知の判別対象者のデータとこれらのグループとの分布の類似度に基づく重みを計算することで、判別対象者の判別に適した重み付き分布(個人差適応型分布)を擬似的に計算し、この重み付き分布上で判別計算を実行する計算手法をとる。このことにより、高齢者の脳血流データの個人差に適応した認知症危険度の判別が可能となる。
 なお、上述の複数グループは、一般的には、採取した脳血流データの類似性に基づいて適切な数のグループに分類する手段をとるが、それ以外にも、例えば、男女の2グループや、年齢(年代)に応じた数グループなどに固定することによっても性差や年齢差を吸収することが可能である。
 また、本実施の形態では、プリミティブ解析部32b,33bは、測定脳部位を7つの領域(前頭前野:3領域,左右側頭葉:各2領域)に分割した各領域内のfNIRS時系列信号をそれぞれ加算平均している。しかし、例えば、主成分分析(PCA)、独立成分分析(ICA)、特異値分解(SVD)、及び非負行列因子分解(NMF)などのブラインド情報源分離の技術を適用して各領域内から認知機能障害の判別に有効な信号を分離・抽出することでも良い。このような計算技術を用いることで、より高い性能が期待される。
 また、本実施の形態では、学習装置31は、特徴選択部31aによる特徴量の選択処理動作において、一般的に多用されている逐次選択法としてフォワードステップワイズ法を用いて特徴選択を行なっているが、これに限られるものではない。学習装置31は、例えば、変数増加法、変数減少法、及び変数増減法等の逐次選択法や、EMアルゴリズム、遺伝的アルゴリズム(GA)、粒子群最適化(Particle Swarm Optimization,PSO)、ならびに、Evolutionarily Stable Strategy(ESS)やDifferential evolution(DE)などの進化的計算を用いた手法等の同時選択法を用いて特徴選択を行っても良い。
 また、本実施の形態では、判別装置33は、認知機能障害を判別するために、クラシファイアモデルとしてNaive-Bayes Classifierを採用しているが、これに限られるものではない。例えば、ベイジアンネットワーク、正準判別分析、線形判別分析、ニューラルネットワーク、ナイーブベイズ法、及びサポートベクトルマシン(SVM)などの分類型の推定手法や、重回帰分析、リッジ回帰、サポートベクトル回帰(SV回帰)、及びカーネル回帰分析などの数値型の推定手法を用いることでも良い。
 例えば、分類型の計算手法では、高齢者の音声データから、健常(NC)、認知症疑い(MCI)、認知症(AD)の3群のどれに分類されるかで認知症の危険度を判別する。また、数値型の計算方法では、長谷川式スコアなど認知機能テストの点数(0~30)に相当する数値を出力し、その数値の高低で認知症の危険度を判別する。
 また、本発明のプログラムを、記憶媒体に格納して提供することも可能である。本発明に係るコンピュータ読み取り可能な記録媒体は、コンピュータを、脳を活動させるための課題を与えているときに測定された、被験者の予め定められた脳部位における生体信号データを取得するデータ取得部と、前記データ取得部によって取得された生体信号データの特徴量を抽出する特徴量抽出部と、前記特徴量抽出部で抽出された特徴量と、予め求めておいた認知機能障害の判定に用いるデータとに基づいて、前記被験者の認知機能障害の程度を判別する判別部と、として機能させるためのプログラムを記憶する。
 日本出願2011-121241の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  脳を活動させるための課題を与えているときに測定された被験者の予め定められた脳部位における生体信号データを取得するデータ取得部と、
     前記データ取得部によって取得された生体信号データの特徴量を抽出する特徴量抽出部と、
     前記特徴量抽出部によって抽出された特徴量と、予め求めておいた認知機能障害の判定に用いるデータとに基づいて、前記被験者の認知機能障害の程度を判別する判別部と、
     を備える認知機能障害判別装置。
  2.  前記生体信号データは、前記予め定められた脳部位における血流を計測した脳血流データである請求項1記載の認知機能障害判別装置。
  3.  前記生体信号データは、前記予め定められた脳部位としての前頭前野、左側頭葉、右側頭葉、左頭頂葉、及び右頭頂葉の各々においてNIRS装置によりヘモグロビン流量を測定した脳血流データである請求項1記載の認知機能障害判別装置。
  4.  前記生体信号データは、前記予め定められた脳部位としての前頭前野における右領域、中央領域、及び左領域、前記予め定められた脳部位としての左頭頂葉における所定領域、及び左側頭葉における所定領域、並びに前記予め定められた脳部位としての右頭頂葉における所定領域、及び右側頭葉における所定領域、の各々の領域においてNIRS装置によりヘモグロビン流量を測定した脳血流データである請求項1記載の認知機能障害判別装置。
  5.  前記認知機能障害の程度が既知である複数の被験者に前記課題を与えているときに測定された前記生体信号データを取得する既知データ取得部と、
     前記既知データ取得部によって取得された生体信号データの前記特徴量を抽出する既知データ特徴量抽出部と、
     前記既知データ特徴量抽出部によって抽出された特徴量に基づいて、前記認知機能障害の判定に用いるデータを生成する判定データ生成部と、
     を更に備える請求項1から請求項4のいずれか1項に記載の認知機能障害判別装置。
  6.  前記判定データ生成部は、
     前記既知データ特徴量抽出部によって抽出された特徴量の中から、前記認知機能障害の判定に用いる特徴量を選択する選択部と、
     前記選択部によって選択された特徴量と当該特徴量が抽出された被験者の前記認知機能障害の程度とを学習データとして用いて、前記判別部が前記特徴量に対応する前記認知機能障害の程度を判定するためのモデルを構築する学習部と、
     を備える請求項5に記載の認知機能障害判別装置。
  7.  複数の低域通過フィルタを用いて前記入力された生体信号データのノイズ除去を行なうプリミティブ解析部を備え、
     前記複数の低域通過フィルタは、環境光によるノイズを含むノイズを除去するのに用いる第1のフィルタ、脳波及び血圧を含む変動成分を抽出するのに用いる第2のフィルタ、及び、顎開閉及び眼球運動を含む運動によるノイズを除去するのに用いる第3のフィルタを含み、
     前記データ特徴量抽出部は、
     前記プリミティブ解析部が、前記第1のフィルタを用いてノイズ除去した前記生体信号データにおける振幅の平均値、基本周波数、及び周波数重心と、前記第3のフィルタを用いてノイズ除去した前記生体信号データにおける振幅の最大値、振幅の最小値、振幅の分散値、振幅の平均値、基本周波数、及び近似直線の傾きと、前記第1のフィルタを用いてノイズ除去した前記生体信号データと前記第3のフィルタを用いてノイズ除去した前記生体信号データとの差分データの振幅の分散値、及び、前記第2のフィルタを用いてノイズ除去した前記生体信号データと前記第3のフィルタを用いてノイズ除去した前記生体信号データとの差分データの分散値を、前記生体信号データの特徴量として抽出し、
     前記判別部は、前記データ特徴量抽出部によって抽出された特徴量を対象に前記被験者の認知機能障害の程度の判別を行なう、
     請求項1乃至請求項6のいずれか1項に記載の認知機能障害判別装置。
  8.  認知機能障害の程度が既知である複数の被験者に脳を活動させるための課題を与えているときに測定された予め定められた脳部位における生体信号データを取得する既知データ取得部、
     前記既知データ取得部によって取得された生体信号データの特徴量を抽出する既知データ特徴量抽出部、
     及び、前記既知データ特徴量抽出部によって抽出された特徴量に基づいて、前記認知機能障害の判定に用いるデータを生成する判定データ生成部、を含む判定データ生成装置と、
     前記課題を与えているときに測定された、前記認知機能障害の程度が未知である被験者の前記予め定められた脳部位における生体信号データを取得するデータ取得部、
     前記データ取得部によって取得された生体信号データの特徴量を抽出する特徴量抽出部、
     及び、前記特徴量抽出部によって抽出された特徴量と前記判定データ生成装置によって生成されたデータとに基づいて、前記認知機能障害の程度が未知である被験者の認知機能障害の程度を判別する判別部、を含む認知機能障害判別装置と、
     を備える認知機能障害判別システム。
  9.  コンピュータを、
     脳を活動させるための課題を与えているときに測定された、被験者の予め定められた脳部位における生体信号データを取得するデータ取得部と、
     前記データ取得部によって取得された生体信号データの特徴量を抽出する特徴量抽出部と、
     前記特徴量抽出部で抽出された特徴量と、予め求めておいた認知機能障害の判定に用いるデータとに基づいて、前記被験者の認知機能障害の程度を判別する判別部と、
     として機能させるためのプログラム。
PCT/JP2012/064237 2011-05-31 2012-05-31 認知機能障害判別装置、認知機能障害判別システム、およびプログラム Ceased WO2012165602A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013518182A JP5959016B2 (ja) 2011-05-31 2012-05-31 認知機能障害判別装置、認知機能障害判別システム、およびプログラム
US14/122,786 US9131889B2 (en) 2011-05-31 2012-05-31 Cognitive impairment determination apparatus, cognitive impairment determination system and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-121241 2011-05-31
JP2011121241 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165602A1 true WO2012165602A1 (ja) 2012-12-06

Family

ID=47259453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064237 Ceased WO2012165602A1 (ja) 2011-05-31 2012-05-31 認知機能障害判別装置、認知機能障害判別システム、およびプログラム

Country Status (3)

Country Link
US (1) US9131889B2 (ja)
JP (1) JP5959016B2 (ja)
WO (1) WO2012165602A1 (ja)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178323A1 (ja) * 2013-05-01 2014-11-06 株式会社国際電気通信基礎技術研究所 脳活動解析装置、脳活動解析方法およびバイオマーカー装置
JP2015047449A (ja) * 2013-09-04 2015-03-16 株式会社ノエビア マッサージ法の評価法
JP2015061827A (ja) * 2013-08-21 2015-04-02 Shiodaライフサイエンス研究所株式会社 経鼻的脳機能調整剤及び脳神経疾患を評価するためのデータを提供する方法
JP2015171499A (ja) * 2014-03-12 2015-10-01 サッポロビール株式会社 食感刺激評価方法
CN105051647A (zh) * 2013-03-15 2015-11-11 英特尔公司 基于生物物理信号的搜集时间和空间模式的大脑计算机接口(bci)系统
WO2016038937A1 (ja) * 2014-09-08 2016-03-17 国立大学法人大阪大学 精神疾患判定装置、及び、精神疾患判定方法
JP2016106940A (ja) * 2014-12-09 2016-06-20 株式会社Nttデータ・アイ 脳疾患診断支援システム、脳疾患診断支援方法及びプログラム
JP2017006649A (ja) * 2015-06-17 2017-01-12 ゼロックス コーポレイションXerox Corporation 被検体の映像からの呼吸パターンの判定
KR20170050150A (ko) * 2015-10-29 2017-05-11 서울대학교산학협력단 소아 청소년의 뇌 건강 상태 진단 방법 및 이를 수행하기 위한 장치
JP2017189471A (ja) * 2016-04-14 2017-10-19 パナソニックIpマネジメント株式会社 生体信号計測システム
JP2018055333A (ja) * 2016-09-28 2018-04-05 学校法人日本大学 認知症判定得点算出装置及びそのプログラム
WO2018168915A1 (ja) * 2017-03-14 2018-09-20 学校法人日本大学 生体機能についての医学的検査の得点判定装置、及びプログラム
JP2019041754A (ja) * 2017-08-31 2019-03-22 株式会社Nttドコモ 予測装置及び予測方法
JP2019063551A (ja) * 2018-12-05 2019-04-25 サッポロビール株式会社 食感刺激の嗜好性評価方法
KR20190075899A (ko) * 2016-08-03 2019-07-01 아킬리 인터랙티브 랩스 인크. 컴퓨터화된 연상 엘리먼트를 포함하는 인지 플랫폼
TWI665657B (zh) * 2017-11-02 2019-07-11 Panasonic Intellectual Property Management Co., Ltd. 認知功能評估裝置、認知功能評估系統、認知功能評估方法及記錄媒體
KR20200018626A (ko) 2017-07-07 2020-02-19 가부시키가이샤 시마쓰세사쿠쇼 인지 기능 판정 방법
CN110876626A (zh) * 2019-11-22 2020-03-13 兰州大学 基于多导联脑电最优导联选择的抑郁检测系统
JP2020127703A (ja) * 2018-07-24 2020-08-27 日本テクトシステムズ株式会社 軽度の認知機能障害の推定システム及び軽度の認知機能障害の推定装置
CN111588348A (zh) * 2019-02-20 2020-08-28 株式会社岛津制作所 认知功能的指标化方法
CN111588347A (zh) * 2019-02-21 2020-08-28 株式会社岛津制作所 脑活动特征量的提取方法
JP2020140724A (ja) * 2020-05-07 2020-09-03 ハルメク・ベンチャーズ株式会社 認知症判定得点算出装置及びそのプログラム
JPWO2020218013A1 (ja) * 2019-04-25 2020-10-29
US11304657B2 (en) 2016-08-26 2022-04-19 Akili Interactive Labs, Inc. Cognitive platform coupled with a physiological component
JP2022528277A (ja) * 2019-04-12 2022-06-09 コリア アドヴァンスド インスティテュート オブ サイエンス アンド テクノロジー マシンラーニングを利用して頭に関する生体情報を推定するための方法、システムおよび非一過性のコンピュータ読み取り可能な記録媒体
WO2022191367A1 (ko) * 2021-03-12 2022-09-15 주식회사 아이메디신 뇌파 데이터 분석을 통한 중증인지장애 환자 분류 방법, 서버 및 컴퓨터프로그램
KR102492373B1 (ko) * 2021-08-10 2023-01-27 주식회사 엔서 딥러닝 모델을 이용해 치매를 진단하는 치매 진단장치
WO2023054643A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 不穏およびせん妄センシング装置並びに不穏およびせん妄センシング方法
US11766209B2 (en) 2017-08-28 2023-09-26 Panasonic Intellectual Property Management Co., Ltd. Cognitive function evaluation device, cognitive function evaluation system, and cognitive function evaluation method
WO2023214545A1 (ja) * 2022-05-02 2023-11-09 国立大学法人大阪大学 認知機能評価システム
CN117243569A (zh) * 2023-10-12 2023-12-19 国家康复辅具研究中心 一种基于多源信息融合的认知功能评估方法和系统
US11918372B2 (en) 2017-11-02 2024-03-05 Panasonic Intellectual Property Management Co., Ltd. Cognitive function evaluation system, method, and storage medium for dementia by analyzing voice of evaluatee for recognition, remembering or jugment capabilities
WO2024085282A1 (ko) * 2022-10-20 2024-04-25 (주)오비이랩 인지 기능 개선을 위한 개인 맞춤형 광자극을 제공하는 방법, 장치 및 비일시성의 컴퓨터 판독 가능한 기록 매체
KR20240055980A (ko) * 2022-10-20 2024-04-30 (주)오비이랩 인지 기능 개선을 위한 개인 맞춤형 광자극을 제공하는 방법, 장치 및 비일시성의 컴퓨터 판독 가능한 기록 매체
US12020427B2 (en) 2017-10-03 2024-06-25 Advanced Telecommunications Research Institute International Differentiation device, differentiation method for depression symptoms, determination method for level of depression symptoms, stratification method for depression patients, determination method for effects of treatment of depression symptoms, and brain activity training device
CN119028583A (zh) * 2024-08-12 2024-11-26 江苏省人民医院(南京医科大学第一附属医院) 体外循环心脏手术患者神经认知障碍的预测数据处理方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269046B2 (en) 2012-01-18 2016-02-23 Brainscope Company, Inc. Method and device for multimodal neurological evaluation
US8792974B2 (en) 2012-01-18 2014-07-29 Brainscope Company, Inc. Method and device for multimodal neurological evaluation
WO2015037089A1 (ja) * 2013-09-11 2015-03-19 日立コンシューマエレクトロニクス株式会社 脳機能障害評価方法、脳機能障害評価装置およびそのプログラム
US9474481B2 (en) * 2013-10-22 2016-10-25 Mindstrong, LLC Method and system for assessment of cognitive function based on electronic device usage
WO2015187401A1 (en) * 2014-06-04 2015-12-10 Neil Rothman Method and device for multimodal neurological evaluation
KR101703547B1 (ko) * 2015-04-09 2017-02-07 대한민국 기능적 근적외선 분광법의 뇌활성도 측정에 따른 유효 채널 추출 방법 및 장치
WO2017030539A1 (en) * 2015-08-14 2017-02-23 Hewlett-Packard Development Company, L.P. Biometric data to facilitate learning
EP3381361B1 (en) * 2015-11-24 2023-12-27 Advanced Telecommunications Research Institute International Brain activity analysis device, brain activity analysis method, program, and biomarker device
US10791981B2 (en) * 2016-06-06 2020-10-06 S Square Detect Medical Devices Neuro attack prevention system, method, and apparatus
CN118714460A (zh) * 2016-12-15 2024-09-27 松下知识产权经营株式会社 摄像装置、摄像方法及计算机程序产品
CN110520041B (zh) 2017-04-28 2022-07-05 麦克赛尔株式会社 脑波数据分析系统、信息处理终端、电子设备以及用于认知症检查的信息的呈现方法
EP3669343B1 (en) * 2017-08-15 2023-12-13 Akili Interactive Labs, Inc. Cognitive platform including computerized elements
KR102090671B1 (ko) * 2017-09-15 2020-03-18 재단법인 대구경북과학기술원 다채널 fNIRS 신호에서 동잡음을 제거하는 방법 및 장치
WO2019086555A1 (en) 2017-10-31 2019-05-09 Ge Healthcare Limited Medical system for diagnosing cognitive disease pathology and/or outcome
KR102257291B1 (ko) * 2018-09-14 2021-05-28 주식회사 아이메디신 인지 장애 판별 방법 및 컴퓨터 프로그램
US12307455B2 (en) * 2019-08-01 2025-05-20 Panasonic Intellectual Property Management Co., Ltd. Evaluation system, evaluation method, program, server device, and terminal device
WO2021034619A1 (en) * 2019-08-16 2021-02-25 The Regents Of The University Of California Neurofeedback training to promote sharp wave ripples
CN110680282B (zh) * 2019-10-09 2020-10-27 黑龙江洛唯智能科技有限公司 一种大脑暂时性异常态的检测方法、装置和系统
US11464443B2 (en) * 2019-11-26 2022-10-11 The Chinese University Of Hong Kong Methods based on an analysis of drawing behavior changes for cognitive dysfunction screening
CN110859616A (zh) * 2019-12-12 2020-03-06 科大讯飞股份有限公司 一种对象的认知评估方法、装置、设备及存储介质
CN114176605B (zh) * 2021-12-16 2023-08-29 中国人民解放军火箭军工程大学 一种多通道脑电信号眼电伪迹自动去除方法及存储介质
CN114420299B (zh) * 2021-12-28 2025-10-28 中山大学中山眼科中心 基于眼动测试的认知功能筛查方法、系统、设备和介质
CN116189668B (zh) * 2023-04-24 2023-07-25 科大讯飞股份有限公司 语音分类、认知障碍检测方法、装置、设备及介质
CN120319451B (zh) * 2025-04-01 2025-10-10 夏文广 基于多任务范式融合下fNIRS数据的轻度认知障碍识别方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275191A (ja) * 2002-03-26 2003-09-30 Hitachi Medical Corp 生体光計測装置
WO2005025421A1 (ja) * 2003-09-11 2005-03-24 Hitachi Medical Corporation 生体光計測装置
WO2005096951A1 (ja) * 2004-04-09 2005-10-20 Hitachi Medical Corporation 生体光計測装置
WO2005120349A1 (ja) * 2004-06-14 2005-12-22 Hitachi Medical Corporation 生体光計測装置、生体光計測方法およびプログラム
WO2006132313A1 (ja) * 2005-06-09 2006-12-14 Hitachi Medical Corporation 疾患判定支援システム
WO2007144977A1 (ja) * 2006-06-15 2007-12-21 Hitachi Medical Corporation 生体光計測装置
WO2008142878A1 (ja) * 2007-05-21 2008-11-27 Hitachi Medical Corporation 生体光計測装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876207B2 (ja) 2010-06-11 2012-02-15 国立大学法人 名古屋工業大学 認知機能障害危険度算出装置、認知機能障害危険度算出システム、及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275191A (ja) * 2002-03-26 2003-09-30 Hitachi Medical Corp 生体光計測装置
WO2005025421A1 (ja) * 2003-09-11 2005-03-24 Hitachi Medical Corporation 生体光計測装置
WO2005096951A1 (ja) * 2004-04-09 2005-10-20 Hitachi Medical Corporation 生体光計測装置
WO2005120349A1 (ja) * 2004-06-14 2005-12-22 Hitachi Medical Corporation 生体光計測装置、生体光計測方法およびプログラム
WO2006132313A1 (ja) * 2005-06-09 2006-12-14 Hitachi Medical Corporation 疾患判定支援システム
WO2007144977A1 (ja) * 2006-06-15 2007-12-21 Hitachi Medical Corporation 生体光計測装置
WO2008142878A1 (ja) * 2007-05-21 2008-11-27 Hitachi Medical Corporation 生体光計測装置

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051647A (zh) * 2013-03-15 2015-11-11 英特尔公司 基于生物物理信号的搜集时间和空间模式的大脑计算机接口(bci)系统
JP2016513319A (ja) * 2013-03-15 2016-05-12 インテル コーポレイション 収集された生物物理的信号の時間的パターンおよび空間的パターンに基づく脳‐コンピューターインターフェース(bci)システム
US10357181B2 (en) 2013-05-01 2019-07-23 Advanced Telecommunications Research Institute International Brain activity analyzing apparatus, brain activity analyzing method and biomarker apparatus
JP2015062817A (ja) * 2013-05-01 2015-04-09 株式会社国際電気通信基礎技術研究所 脳活動解析装置、脳活動解析方法およびバイオマーカー装置
JP5691086B1 (ja) * 2013-05-01 2015-04-01 株式会社国際電気通信基礎技術研究所 脳活動解析装置、脳活動解析方法およびバイオマーカー装置
CN105163659A (zh) * 2013-05-01 2015-12-16 株式会社国际电气通信基础技术研究所 脑活动分析装置、脑活动分析方法以及生物标记物装置
CN105163659B (zh) * 2013-05-01 2018-10-23 株式会社国际电气通信基础技术研究所 脑活动分析装置、脑活动分析方法以及生物标记物装置
WO2014178323A1 (ja) * 2013-05-01 2014-11-06 株式会社国際電気通信基礎技術研究所 脳活動解析装置、脳活動解析方法およびバイオマーカー装置
US12396652B2 (en) 2013-05-01 2025-08-26 Advanced Telecommunications Research Institute International Brain activity analyzing apparatus, brain activity analyzing method and biomarker apparatus
JP2015061827A (ja) * 2013-08-21 2015-04-02 Shiodaライフサイエンス研究所株式会社 経鼻的脳機能調整剤及び脳神経疾患を評価するためのデータを提供する方法
JP2019177140A (ja) * 2013-08-21 2019-10-17 Shiodaライフサイエンス株式会社 経鼻的脳機能調整剤及び脳神経疾患を評価するためのデータを提供する方法
JP2015047449A (ja) * 2013-09-04 2015-03-16 株式会社ノエビア マッサージ法の評価法
JP2015171499A (ja) * 2014-03-12 2015-10-01 サッポロビール株式会社 食感刺激評価方法
WO2016038937A1 (ja) * 2014-09-08 2016-03-17 国立大学法人大阪大学 精神疾患判定装置、及び、精神疾患判定方法
JP2016054839A (ja) * 2014-09-08 2016-04-21 国立大学法人京都大学 精神疾患判定装置、及び、精神疾患判定方法
JP2016106940A (ja) * 2014-12-09 2016-06-20 株式会社Nttデータ・アイ 脳疾患診断支援システム、脳疾患診断支援方法及びプログラム
JP2017006649A (ja) * 2015-06-17 2017-01-12 ゼロックス コーポレイションXerox Corporation 被検体の映像からの呼吸パターンの判定
KR20170050150A (ko) * 2015-10-29 2017-05-11 서울대학교산학협력단 소아 청소년의 뇌 건강 상태 진단 방법 및 이를 수행하기 위한 장치
KR102461705B1 (ko) * 2015-10-29 2022-11-01 서울대학교산학협력단 소아 청소년의 뇌 건강 상태에 대한 정보를 제공하는 방법 및 이를 수행하기 위한 장치
JP2017189471A (ja) * 2016-04-14 2017-10-19 パナソニックIpマネジメント株式会社 生体信号計測システム
US11116452B2 (en) 2016-04-14 2021-09-14 Panasonic Intellectual Property Management Co., Ltd. Biological signal measurement system
KR20190075899A (ko) * 2016-08-03 2019-07-01 아킬리 인터랙티브 랩스 인크. 컴퓨터화된 연상 엘리먼트를 포함하는 인지 플랫폼
KR102369850B1 (ko) 2016-08-03 2022-03-03 아킬리 인터랙티브 랩스 인크. 컴퓨터화된 연상 엘리먼트를 포함하는 인지 플랫폼
JP2019533215A (ja) * 2016-08-03 2019-11-14 アキリ・インタラクティヴ・ラブズ・インコーポレイテッド コンピュータ化された喚起要素を含む認知プラットフォーム
JP7473338B2 (ja) 2016-08-03 2024-04-23 アキリ・インタラクティヴ・ラブズ・インコーポレイテッド コンピュータ化された喚起要素を含む認知プラットフォーム
US11304657B2 (en) 2016-08-26 2022-04-19 Akili Interactive Labs, Inc. Cognitive platform coupled with a physiological component
JP2018055333A (ja) * 2016-09-28 2018-04-05 学校法人日本大学 認知症判定得点算出装置及びそのプログラム
JP2018149168A (ja) * 2017-03-14 2018-09-27 学校法人日本大学 生体機能についての医学的検査の得点判定装置、及びプログラム
WO2018168915A1 (ja) * 2017-03-14 2018-09-20 学校法人日本大学 生体機能についての医学的検査の得点判定装置、及びプログラム
US12263004B2 (en) 2017-07-07 2025-04-01 Shimadzu Corporation Cognitive function determination method
KR20200018626A (ko) 2017-07-07 2020-02-19 가부시키가이샤 시마쓰세사쿠쇼 인지 기능 판정 방법
US11766209B2 (en) 2017-08-28 2023-09-26 Panasonic Intellectual Property Management Co., Ltd. Cognitive function evaluation device, cognitive function evaluation system, and cognitive function evaluation method
JP2019041754A (ja) * 2017-08-31 2019-03-22 株式会社Nttドコモ 予測装置及び予測方法
US12020427B2 (en) 2017-10-03 2024-06-25 Advanced Telecommunications Research Institute International Differentiation device, differentiation method for depression symptoms, determination method for level of depression symptoms, stratification method for depression patients, determination method for effects of treatment of depression symptoms, and brain activity training device
TWI665657B (zh) * 2017-11-02 2019-07-11 Panasonic Intellectual Property Management Co., Ltd. 認知功能評估裝置、認知功能評估系統、認知功能評估方法及記錄媒體
US11918372B2 (en) 2017-11-02 2024-03-05 Panasonic Intellectual Property Management Co., Ltd. Cognitive function evaluation system, method, and storage medium for dementia by analyzing voice of evaluatee for recognition, remembering or jugment capabilities
US11826161B2 (en) 2017-11-02 2023-11-28 Panasonic Intellectual Property Management Co., Ltd. Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method, and non-transitory computer-readable storage medium
JP2020127703A (ja) * 2018-07-24 2020-08-27 日本テクトシステムズ株式会社 軽度の認知機能障害の推定システム及び軽度の認知機能障害の推定装置
JP2019063551A (ja) * 2018-12-05 2019-04-25 サッポロビール株式会社 食感刺激の嗜好性評価方法
JP7156081B2 (ja) 2019-02-20 2022-10-19 株式会社島津製作所 認知機能の指標化方法
CN111588348A (zh) * 2019-02-20 2020-08-28 株式会社岛津制作所 认知功能的指标化方法
JP2020130630A (ja) * 2019-02-20 2020-08-31 株式会社島津製作所 認知機能の指標化方法
JP2020130724A (ja) * 2019-02-21 2020-08-31 株式会社島津製作所 脳活動特徴量の抽出方法
CN111588347A (zh) * 2019-02-21 2020-08-28 株式会社岛津制作所 脑活动特征量的提取方法
JP7147623B2 (ja) 2019-02-21 2022-10-05 株式会社島津製作所 脳血流量の特徴量の抽出方法
CN111588347B (zh) * 2019-02-21 2023-04-28 株式会社岛津制作所 脑活动特征量的提取方法
US11678833B2 (en) 2019-02-21 2023-06-20 Shimadzu Corporation Brain activity feature amount extraction method
JP2022528277A (ja) * 2019-04-12 2022-06-09 コリア アドヴァンスド インスティテュート オブ サイエンス アンド テクノロジー マシンラーニングを利用して頭に関する生体情報を推定するための方法、システムおよび非一過性のコンピュータ読み取り可能な記録媒体
JP7227657B2 (ja) 2019-04-12 2023-02-22 コリア アドヴァンスド インスティテュート オブ サイエンス アンド テクノロジー マシンラーニングを利用して頭に関する生体情報を推定するための方法、システムおよび非一過性のコンピュータ読み取り可能な記録媒体
JP7653688B2 (ja) 2019-04-25 2025-03-31 国立大学法人大阪大学 情報処理装置、判定方法、および判定プログラム
JPWO2020218013A1 (ja) * 2019-04-25 2020-10-29
CN110876626A (zh) * 2019-11-22 2020-03-13 兰州大学 基于多导联脑电最优导联选择的抑郁检测系统
CN110876626B (zh) * 2019-11-22 2022-08-12 兰州大学 基于多导联脑电最优导联选择的抑郁检测系统
JP2020140724A (ja) * 2020-05-07 2020-09-03 ハルメク・ベンチャーズ株式会社 認知症判定得点算出装置及びそのプログラム
JP7109499B2 (ja) 2020-05-07 2022-07-29 一般社団法人脳と心の健康科学研究所 認知症判定得点算出装置及びそのプログラム
WO2022191367A1 (ko) * 2021-03-12 2022-09-15 주식회사 아이메디신 뇌파 데이터 분석을 통한 중증인지장애 환자 분류 방법, 서버 및 컴퓨터프로그램
KR102492364B1 (ko) * 2021-08-10 2023-01-27 주식회사 엔서 치매 등급 분류를 위해 장착되는 치매 검사장치 및 검사결과를 토대로 머신러닝 모델을 이용해 치매를 진단하는 치매 진단장치
KR102492373B1 (ko) * 2021-08-10 2023-01-27 주식회사 엔서 딥러닝 모델을 이용해 치매를 진단하는 치매 진단장치
WO2023054643A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 不穏およびせん妄センシング装置並びに不穏およびせん妄センシング方法
WO2023214545A1 (ja) * 2022-05-02 2023-11-09 国立大学法人大阪大学 認知機能評価システム
KR20240055980A (ko) * 2022-10-20 2024-04-30 (주)오비이랩 인지 기능 개선을 위한 개인 맞춤형 광자극을 제공하는 방법, 장치 및 비일시성의 컴퓨터 판독 가능한 기록 매체
WO2024085282A1 (ko) * 2022-10-20 2024-04-25 (주)오비이랩 인지 기능 개선을 위한 개인 맞춤형 광자극을 제공하는 방법, 장치 및 비일시성의 컴퓨터 판독 가능한 기록 매체
KR102864150B1 (ko) 2022-10-20 2025-09-26 (주)오비이랩 인지 기능 개선을 위한 개인 맞춤형 광자극을 제공하는 방법, 장치 및 비일시성의 컴퓨터 판독 가능한 기록 매체
CN117243569B (zh) * 2023-10-12 2024-05-07 国家康复辅具研究中心 一种基于多源信息融合的认知功能评估方法和系统
CN117243569A (zh) * 2023-10-12 2023-12-19 国家康复辅具研究中心 一种基于多源信息融合的认知功能评估方法和系统
CN119028583A (zh) * 2024-08-12 2024-11-26 江苏省人民医院(南京医科大学第一附属医院) 体外循环心脏手术患者神经认知障碍的预测数据处理方法

Also Published As

Publication number Publication date
US9131889B2 (en) 2015-09-15
JP5959016B2 (ja) 2016-08-02
JPWO2012165602A1 (ja) 2015-02-23
US20140107494A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5959016B2 (ja) 認知機能障害判別装置、認知機能障害判別システム、およびプログラム
Sawangjai et al. EEGANet: Removal of ocular artifacts from the EEG signal using generative adversarial networks
Diaconescu et al. Visual dominance and multisensory integration changes with age
Zhang et al. Multimodal depression detection: Fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble
Karthikeyan et al. Detection of human stress using short-term ECG and HRV signals
Neto et al. EEG spectral features discriminate between Alzheimer’s and vascular dementia
Xu et al. Differentiating between psychogenic nonepileptic seizures and epilepsy based on common spatial pattern of weighted EEG resting networks
Otero-Millan et al. Unsupervised clustering method to detect microsaccades
KR102378278B1 (ko) 생체 신호 분석 시스템 및 이를 이용한 생체 신호 분석 방법
US11670423B2 (en) Method and system for early detection of neurodegeneration using progressive tracking of eye-markers
CN106413541B (zh) 用于诊断睡眠的系统和方法
WO2016163594A1 (ko) 동영상 기반 생리 신호 검출을 이용한 왜곡에 대한 정신생리적 탐지 (거짓말 탐지) 방법 및 장치
JP2005514096A (ja) Eegバイスペクトルを用いて神経学的症状を評価する系および方法
JP2005514096A5 (ja)
Newman et al. 1D convolutional neural networks for detecting nystagmus
Kato et al. Early detection of cognitive impairment in the elderly based on Bayesian mining using speech prosody and cerebral blood flow activation
Miao et al. Dynamic theta/beta ratio of clinical EEG in Alzheimer's disease
CN112587796A (zh) 脑深部电刺激促醒效果量化方法及设备
EP4590175A1 (en) Analyzing method for and apparatus of intracranial dynamics
KR20160031124A (ko) 뇌파 분석을 통한 조현병 환자 또는 정신질환 환자의 증상 심각도를 예측하는 방법 및 장치
Touryan et al. Isolating discriminant neural activity in the presence of eye movements and concurrent task demands
US8579438B2 (en) Apparatus and method for diagnosing disease involving optic nerve
Cid-Fernández et al. The importance of age in the search for ERP biomarkers of aMCI
EP3182892B1 (en) Method and system for eeg signal processing
US10070812B2 (en) Method for improved seizure detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792180

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013518182

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122786

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792180

Country of ref document: EP

Kind code of ref document: A1