[go: up one dir, main page]

WO2012152199A1 - Air conditioning unit for heat recovery from heat pump - Google Patents

Air conditioning unit for heat recovery from heat pump Download PDF

Info

Publication number
WO2012152199A1
WO2012152199A1 PCT/CN2012/074960 CN2012074960W WO2012152199A1 WO 2012152199 A1 WO2012152199 A1 WO 2012152199A1 CN 2012074960 W CN2012074960 W CN 2012074960W WO 2012152199 A1 WO2012152199 A1 WO 2012152199A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat pump
box
pump system
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2012/074960
Other languages
French (fr)
Chinese (zh)
Inventor
荣国华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of WO2012152199A1 publication Critical patent/WO2012152199A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the invention belongs to the field of HVAC, and particularly relates to an air conditioning unit that uses a heat pump for heat energy recovery.
  • the object of the present invention is to provide a heat recovery air conditioning unit with reasonable structure, hygienic cleaning and sufficient energy saving.
  • the heat pump heat recovery air conditioning unit is composed of a blower box, a blower box, a heat pump system and a power distribution control system.
  • the air supply box is composed of a fresh air outlet, a return air outlet, a filter, a blower, an evaporator, an air supply port, and an additional functional section.
  • the exhaust fan is composed of an air inlet, a fresh air outlet, a filter, a condenser, an exhaust fan, an air outlet, and an additional functional section.
  • the heat pump system consists of a compressor, a condenser, an expansion throttle, an evaporator, and an auxiliary device.
  • the power distribution control system is composed of power distribution equipment and automatic control equipment.
  • the indoor exhaust air and the outdoor fresh air are used to cool the condenser of the heat pump system in the air exhaust box, and the cooling capacity is absorbed by the condenser.
  • the outdoor fresh air and the indoor return air are cooled and cooled by the evaporator of the heat pump system and sent to the air-conditioned room. In this way, the cooling capacity in the indoor exhaust air is recovered and utilized by the refrigeration cycle of the heat pump system.
  • the condenser of the heat pump system in the exhaust fan is converted into an evaporator. Since the indoor air temperature is higher than the outdoor, the indoor exhaust air and the outdoor fresh air are used to heat the evaporator of the heat pump system in the exhaust fan, and the heat is evaporated. Absorbed. In the blower box, the evaporator of the heat pump system is converted into a condenser, and the outdoor fresh air and the indoor return air are heated by the condenser and sent to the air-conditioned room. In this way, the heat in the indoor exhaust air is recovered and utilized by the heating cycle of the heat pump system.
  • the power distribution equipment of the power distribution control system provides power for the heat pump system, the blower, the exhaust fan, the electric air volume adjustment air outlet, and the automatic control equipment.
  • the automatic control equipment automatically adjusts the heat pump system, the blower, the exhaust fan, and the electric motor according to the changes of indoor and outdoor air parameters.
  • the air volume adjusts the operating state of the tuyere to ensure efficient and stable operation of the air conditioning unit.
  • Figure 1 is a structural diagram of a connected heat pump heat recovery air conditioning unit (1)
  • Figure 2 is a structural diagram of a split heat pump heat recovery air conditioning unit
  • Figure 3 is a heat pump system diagram
  • Figure 4 is a heat pump system diagram
  • Figure 5 is a heat pump system diagram (3)
  • Figure 6 is a structural diagram of a heat exchanger unit for heat recovery of a heat pump (2)
  • Figure 8 is a heat pump system diagram (5)
  • Figure 9 is a heat pump system diagram (6)
  • Figure 10 is a heat pump system diagram (7)
  • Figure 11 is a structural diagram of a heat exchanger unit for heat recovery of a heat pump (3)
  • Figure 13 is a heat pump system diagram (9)
  • Figure 14 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit (1)
  • Figure 16 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit ( 2 )
  • Figure 17 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit (3)
  • Figure 18 is a heat pump system diagram (11)
  • Figure 20 is a heat pump system diagram ( 13 )
  • Figure 21 is a heat pump system diagram ( 14 )
  • Figure 22 is a heat pump system diagram ( 15 )
  • Figure 23 is a heat pump system diagram ( 16 )
  • Figure 24 is a heat pump system diagram ( 17 )
  • Figure 26 is the construction diagram of the cylinder piston type accumulator
  • Figure 27 is a diaphragm type reservoir construction diagram
  • Figure 28 shows the connection between the shared reservoir and the bidirectional expansion throttle in the heat pump system ( 1 )
  • Figure 30 shows the connection between the shared reservoir and the bidirectional expansion throttle in the heat pump system (3)
  • Figure 31 shows the connection between the shared reservoir and the bidirectional expansion throttle valve in the heat pump system ( 4 )
  • Figure 1 is a structural diagram of a connected heat pump heat recovery air conditioning unit, which is provided by a blower box 1 and a blower box 2
  • the heat pump system and the power distribution control system are composed of four parts.
  • the box body is made of steel plate and other materials, and is insulated with a heat insulating material such as polyurethane.
  • An inspection door is provided on the cabinet to facilitate access and maintenance of the personnel.
  • Air supply box 1 Disconnected from the exhaust box 2 by the partition 7 and placed with insulation material to prevent hurricane and heat exchange between fresh air and exhaust air.
  • Air supply box 1 , air exhaust box 2 Can be made in one piece, the required equipment is installed in a complete box, the integrated air conditioning unit is not convenient to transport, install and repair, but saves materials; can also be made into a segmented combination, with different functions
  • the equipment is placed in several functional sections, and is made into a number of small boxes, which are assembled into a whole after being on the scene.
  • air box In 1 , the fresh air outlet 3, the return air outlet 4, and the filter 5 are made into the inlet air mixing filter section, and so on, and can be made into a blower section, an evaporator section, and a humidifying and blowing section.
  • Air exhaust box 2 It can be made into the inlet air mixing filter section, the condenser section, the heat pump main unit, the electric control box section and the exhaust fan section. Each section can be disassembled for easy transportation, installation and overhaul.
  • Other functional sections may be added as needed, such as an additional electric heating section, an air disinfection section, an anechoic section, an inspection section, and the like.
  • the main part of the heat pump system (compressor 17 and other equipment) can be placed in the box or outside the box, evaporator 8 and condenser 16
  • the equipment such as the refrigerant circulation pipe 9 is located in the casing.
  • a heat exchanger in the form of a straight-expanded structural coil is used to ensure that the refrigerant evaporates and condenses therein, and the heat exchanger is made of a copper tube and an aluminum fin.
  • Electrical control box for distribution control system 18 It is equipped with controller, display, power distribution equipment, etc., which can be hung outside the box, or embedded in the box, or separated from the box. Various power distribution and control equipment and pipelines are distributed in the box. Crossing the partition 7 All kinds of pipelines should be sealed to prevent air leakage.
  • the outdoor high temperature and high humidity fresh air and indoor return air are under the action of the blower 6, from the fresh air outlet 3
  • the return air inlet 4 enters the box, mixes and is filtered by the filter 5, filtered by the filter 5, passed through the blower 6 , cooled by the evaporator 8 , cooled and dehumidified, after reaching the set temperature and humidity, from the air supply port 12 It is sent to the air-conditioning area; in the air exhaust box 2, the outdoor fresh air and the indoor exhaust air enter the tank from the air inlet 13 and the fresh air outlet 14 under the action of the exhaust fan 19, and are mixed by the filter 15
  • the dust removal filter is heated by the condenser 16, heated, and discharged to the outside through the exhaust fan 19 and the exhaust port 20.
  • the heat pump system performs a refrigeration cycle, and in the blower box 1, the evaporator 8 The heat is evaporated and the air is cooled and dehumidified.
  • the condenser 16 is cooled by the indoor and outdoor air, and the cooling capacity in the indoor exhaust is recycled.
  • the outdoor low temperature fresh air and the indoor return air are under the action of the blower 6, from the fresh air outlet 3 and the return air outlet. 4 Enter the box, mix and filter by dust filter 5, pass the blower 6 and pass the evaporator 8 to heat up. If the humidity is low, humidifier 10 is needed to humidify. After reaching the set temperature and humidity, pass the water retaining plate. 11 From the air supply port 12 to the air conditioning area; in the air exhaust box 2, the outdoor fresh air and the indoor exhaust air are driven by the exhaust fan 19, enter the box from the air inlet 13 and the fresh air outlet 14, and are mixed by the filter.
  • the heat pump system stops running, and the return air outlet 4 in the air supply box 1 is closed, and the fresh air outlet 3 and the air supply port 12 Open, blower 6 operation; fresh air outlet in the air exhaust box 2 14 closed, air inlet 13 , side air vent 21 , air vent 20 open, exhaust fan 19 Operation, air conditioning unit for new wind operation.
  • the side vent 21 is connected to the indoor exhaust air like the air inlet 13 to reduce the exhaust resistance caused by the condenser 16 and reduce the power consumption of the exhaust fan 19.
  • the power distribution equipment of the power distribution control system is the heat pump system, the blower 6 , and the exhaust fan 19
  • the electric air volume adjustment air outlet and the automatic control system provide power.
  • the heat pump system is a variable capacity system
  • the compressor 17 is a variable capacity compressor
  • the blower 6 and the exhaust fan 19 are frequency conversion speed control fans
  • the fresh air outlets 3, 14 , return air inlet 4 air inlet 13 for electric air volume adjustment air outlet, manual or electric dual-purpose air volume adjustment air outlet, side air vent 21 It is not commonly used, it can be set as manual air outlet, or it can be set as manual and electric dual-purpose air volume adjustment air outlet.
  • the automatic control device controls the compressor according to changes in indoor and outdoor air parameters.
  • FIG. 2 is a structural diagram of a split heat pump heat recovery air conditioning unit, the air supply box 1 and The exhaust fan box 2 is separated, and when the device is shipped from the factory, the refrigerant circulation pipe 9 connected to the main body of the heat pump system by the evaporator 8 or the condenser 16 is disconnected and sealed, and various types of lines connected to the electric control box 18 are also disconnected.
  • the refrigerant circulation pipe 9 is connected through the quick joint, and various types of lines are connected to the electric control box 18.
  • the two cabinets can be placed in different positions according to the needs of the user, and the arrangement is more flexible.
  • the air exhaust box 2 can be placed on the roof to save floor space and reduce the noise of the unit.
  • An air supply vent 22 can be added to the air supply box 1 to reduce the air supply resistance.
  • FIG. 3 is a diagram of the heat pump system of the above heat pump heat recovery air conditioning unit, which is a refrigeration cycle.
  • the refrigerant cycle process is this: compressor 17 ⁇ Oil separator 24 ⁇ water cooler 25 ⁇ four-way switching valve 26 ⁇ condenser 16 ⁇ four-way switching valve 27 ⁇ accumulator 28 ⁇ drying filter 29 ⁇ sight glass 30 ⁇ expansion throttle 31 ⁇ four Through the reversing valve 27 ⁇ evaporator 8 ⁇ four-way reversing valve 26 ⁇ gas-liquid separator 32 ⁇ Compressor 17 .
  • the high-pressure, high-temperature gaseous refrigerant discharged from the compressor 17 is separated from the lubricating oil in the oil separator 24, and the lubricating oil is returned to the compressor through the oil return capillary 23
  • the lubricant can also be reflowed by other means.
  • tap water enters The water cooler 25 absorbs the heat of the high-temperature refrigerant and becomes hot water, which can provide customers with domestic hot water and save fuel costs.
  • the heat of the refrigerant is absorbed by the tap water, the amount of fresh air for condensing the refrigerant can be reduced, and the power consumption of the exhaust fan 19 is lowered.
  • the water cooler 25 can be cancelled or turned off, and the heat of the refrigerant is exhausted by the indoor exhaust air and the outdoor fresh air.
  • the water cooler 25 can be in the form of a spiral tube type, a shell tube type, a sleeve type or the like, and a closed type pressurized container or an open type pressureless container is used. Compressor 17 The closer the exhaust port is, the better the heat recovery effect. image 3
  • the medium water cooler 25 is connected in series on the refrigerant pipe. Since the refrigerant is uncontrollable, the water temperature in the water cooler 25 is also difficult to control, and it is preferably used as a water supply preheater for the internal hot water system of the building.
  • the expansion restrictor 31 usually employs an electronic expansion valve to adjust the flow rate of the refrigerant relatively quickly and accurately, and other expansion restrictors, such as capillary tubes, can be used for small systems.
  • the compressor 17 employs a variable capacity compressor such as a variable frequency rotor type, a scroll type, or a screw type compressor. When the system cooling capacity and the heating capacity change, the compressor 17 also changes the capacity output in time to achieve energy-saving operation. when There are multiple compressors in the heat pump system. 17 When operating in parallel, the compressor 17 All of the fixed capacity compressors, or all of the variable capacity compressors, or a combination of variable capacity compressors and fixed capacity compressors, can achieve variable capacity operation. To achieve the purpose of energy saving.
  • auxiliary devices such as the oil separator 24, the four-way switching valve 26, 27, the accumulator 28, the drying filter 29, the sight glass 30, and the gas-liquid separator 32
  • other auxiliary equipment such as heat recovery is provided. , recooler, temperature, pressure sensor, etc.
  • the automatic control system automatically adjusts the operating status of the system according to changes in system temperature and pressure, and maintains efficient operation of the heat pump system.
  • the heat pump system performs a heating cycle, after the four-way switching valves 26, 27 are turned, the evaporator 8 becomes a condenser, and the condenser 16 becomes an evaporator.
  • the refrigerant cycle process is this: compressor 17 ⁇ Oil separator 24 ⁇ water cooler 25 ⁇ four-way switching valve 26 ⁇ evaporator 8 ⁇ four-way switching valve 27 ⁇ accumulator 28 ⁇ drying filter 29 ⁇ sight glass 30 ⁇ expansion throttle 31 ⁇ four Through the reversing valve 27 ⁇ condenser 16 ⁇ four-way reversing valve 26 ⁇ gas-liquid separator 32 ⁇ Compressor 17 .
  • the water cooler 25 stops working, does not produce hot water, the refrigerant dissipates heat in the evaporator 8, and is used to heat the outdoor fresh air, and absorbs heat in the condenser 16, absorbs the heat of the indoor exhaust air and the outdoor fresh air, and recycles the indoor Exhaust heat. If the water cooler 25 can also produce hot water in winter, it is necessary to increase the system capacity and increase the heat generation, such as increasing the power of the compressor 17, increasing the amount of fresh air outside the exhaust box 2, and the amount of exhaust air of the exhaust fan 19. . In the winter, the water cooler 25 is suitable for use in the south, while in the north, the outdoor temperature is low, and when the water cooler 25 is in operation, The heat pump system is inefficient.
  • the apparatus with the water cooler 25 described above may also be referred to as a hot water type heat pump heat recovery air conditioning unit.
  • the heat pump system When the outdoor temperature in winter is low and the indoor exhaust air volume is small, the heat pump system performs a heating cycle, and the condenser 16 acts as an evaporator to easily frost, in order to melt the frost,
  • the water cooler 25 stops the output of the hot water, but the hot water is supplied to the water cooler 25 by an external heat source (boiler, electric heat, etc.), and the water cooler 25 becomes a water heater to supply heat for the refrigerant to evaporate.
  • an external heat source blower, electric heat, etc.
  • the water cooler 25 becomes a water heater to supply heat for the refrigerant to evaporate.
  • open the air inlet of the bellows 2 13 ⁇ Close the fresh air outlet 14 open the electric control valve 37, close the electric control valve 38, and use the indoor exhaust air to melt the frost. At this time, it does not affect the normal operation of the air conditioning system.
  • FIG 6 is a structural diagram of another type of heat pump heat recovery air conditioning unit, which differs from the above air conditioning unit in that a reheater is added to the air supply box 1. 43.
  • a reheater is added to the air supply box 1. 43.
  • Heating can increase the air supply temperature, reduce the air supply temperature difference, improve the air conditioning comfort, and is suitable for air conditioning with high air conditioning precision and humidity.
  • the device can also be constructed as a split heat pump heat recovery air conditioning unit as shown in Figure 2.
  • FIG 7 is a diagram of the heat pump system of the apparatus shown in Figure 6.
  • the reheater 43 is connected in parallel with the condenser 16 in the system, and the electric control valve 44 45, according to the load change situation, adjust the refrigerant flow into the reheater 43, the condenser 16, when the winter heating cycle, the electric control valve 44 is closed, the reheater 43 does not work.
  • Electric control valve 44, 45 One of them can be assigned to a solenoid valve to distribute the refrigerant flow.
  • the reheater 43 is constructed in the same manner as the evaporator 8 and the condenser 16.
  • the device with reheater 43 described above can also be called Reheat heat pump heat recovery air conditioning unit.
  • FIG 8 is a heat pump system diagram of another reheat heat pump heat recovery air conditioning unit, shown in the refrigeration cycle, valves 46, 49, 50 Open, valves 47, 48, 51 are closed. It and Figure 7 The difference is that the reheater 43 can be converted into an evaporator. When the evaporator 8 is inoperable, the valves 46, 49, 50, the electric regulating valve 44 are closed, and the reheater 43 is used as a backup. When cooling, close valve 48 and open the valve 47, 51, the reheater 43 is converted into an evaporator; when heating, the valve 47 is closed, the valves 48, 51 are opened, and the reheater 43 is converted into a condenser.
  • solenoid valves 33, 34, 35, 36 replace the heat pump system of Figure 8.
  • Four-way reversing valve 27 In the heat pump system shown in Figure 9, solenoid valves 33, 34, 35, 36 replace the heat pump system of Figure 8.
  • FIG 11 is another conjoined The heat pump heat recovery air conditioning unit structure diagram, which differs from the above air conditioning unit in that there are two sets of refrigeration systems. One of them is a heat pump system for cooling or heating the air; the other is a single cooling system for reheating the cooled air. The system can also be used as a heat pump system for both reheating and cooling. It is a backup to the former, and although the equipment is added, the reliability is improved. The device can also be made into a picture 2 The split heat pump heat recovery air conditioning unit shown. The above equipment can also be called a two-machine heat pump heat recovery air conditioning unit.
  • Figure 12 is a heat pump system diagram of a multi-unit heat pump heat recovery air conditioning unit, showing a refrigeration cycle.
  • Two compressors 17 are operated in parallel, and the refrigerant can flow in both directions in the expansion restrictors 52, 53, 54.
  • the condenser 16 is housed in the exhaust box 2, and the evaporator 8 is installed in the blower box 1. It has a bellows 2 and condenser 16 , can connect two and several air blowers 1 and evaporator 8 , and other equipment. Only the two air blowers 1 and evaporator 8 and one room air conditioner are shown in Figure 12 . , a water cooler 25 .
  • Room air conditioner 55 Housed in an air-conditioned room, it uses a heat exchanger in the form of a straight-expanded structural coil, made of copper tubing and aluminum fins, which rely on direct evaporation or condensation of the refrigerant to circulate cooling or heat the air in the room.
  • air box 1 and air box 2 can be called the system's additional equipment, or the end equipment, there are other additional equipment that uses the refrigerant to cool or heat, such as: the bathroom's hand dryer, can use the condensation heat of the refrigerant; use the building's sewage, Equipment for cooling refrigerant in the summer, heating the refrigerant in the winter; equipment for heating the refrigerant by using the kitchen fumes, waste heat of washing the waste water; equipment for heating the refrigerant by using the solar hot water or the hot air.
  • the bathroom's hand dryer can use the condensation heat of the refrigerant; use the building's sewage, Equipment for cooling refrigerant in the summer, heating the refrigerant in the winter; equipment for heating the refrigerant by using the kitchen fumes, waste heat of washing the waste water; equipment for heating the refrigerant by using the solar hot water or the hot air.
  • the air supply box 1 In the air-conditioned area served, when there are enough additional devices such as room air conditioners 55, the air supply box 1 does not have a return air outlet 4 or closes the air return port 4 and only sends fresh air.
  • Water cooler 25 Parallel in the system, when the water temperature reaches the set temperature, the solenoid valve 57 is closed, the high temperature refrigerant is turned off, the solenoid valve 58 is opened, the high temperature refrigerant is passed, and the solenoid valves 57, 58 It can also be changed to an electric control valve to allow the refrigerant to pass through the two valves in proportion.
  • the exhaust fan 2 is usually placed outdoors, called an outdoor unit (since the exhaust box 2 can be placed indoors, it can also be called an indoor unit), and the indoor exhaust is concentrated to the exhaust box. 2 in.
  • an outdoor unit since the exhaust box 2 can be placed indoors, it can also be called an indoor unit
  • the indoor exhaust is concentrated to the exhaust box. 2 in.
  • two or more exhaust ducts 2 and condensers 16 can be made, and several air blowers 1 and evaporators 8, additional equipment, water coolers 25 and other indoor units, water coolers 25 can be connected. It can also be placed outdoors, called an outdoor unit.
  • the operating conditions of several evaporators 8 are the same, either cooling or heating, and therefore, it can be called the same-type heat pump system.
  • FIG 13 is a heat pump system diagram of another multi-heat pump heat recovery air conditioning unit, which adds a reheater to the air supply box 1 And a water cooler 25 is provided in parallel with the condenser 16 in the system, and the electric flow regulating valve 44 is used to regulate the refrigerant flow.
  • the evaporator 8 and the room air conditioner in the two blower boxes 1 are 55 It can be cooled at the same time and heated at the same time.
  • the two blower boxes 1 can also be heated one by one while the other is refrigerated, wherein the reheater 43 in the cooled blower box 1 is converted into an evaporator for cooling, Evaporator in the same box 8 Not working.
  • Figure 14 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit.
  • the air exhaust box 2 is placed outdoors, the air inlet 13 and the side air vent 21 When the indoor air is exhausted, the condenser 16 can also be converted into an evaporator to absorb the indoor heat and the cold heat in the outdoor fresh air.
  • the compressor 17 is placed in the box body and can also be placed outside the box.
  • Multiple air vents can be set 2 Parallel use; the exhaust fan 59 is different from the above-mentioned exhaust fan 2, it does not have a compressor 17, fresh air outlet 14, only handles indoor exhaust, condenser 16 It can also be converted into an evaporator to recover the cold heat in the indoor exhaust air.
  • FIG. 14 The middle part is split type, so that the arrangement is more flexible and convenient; in the air supply box 1, the evaporator 8 can also be converted into a condenser, and the reheater 43 can also be converted into an evaporator or a condenser.
  • Air exhaust box 2, 59, The blower box 1, the room air conditioner 55, and the water cooler 25 are connected to the low pressure air pipe 60, the high pressure air pipe 61, and the high pressure (or medium pressure) liquid pipe 62.
  • the water cooler 25 is placed outdoors, which is a heat-insulated pressurized container equipped with a refrigerant radiator.
  • FIG. 15 is a heat pump system diagram of the multi-unit heat pump heat recovery air conditioning unit shown in Figure 14.
  • Solenoid box 2 solenoid valve 65 open, solenoid valve 66 Shutdown, condenser 16 heating; solenoid valve 65 closed, solenoid valve 66 open, condenser 16 cooled.
  • Solenoid valve 68 opens, high temperature refrigerant passes The water cooler 25 heats the water, and when the water temperature reaches the set temperature, the solenoid valve 68 is closed. When the condenser 16 needs to be defrost, the solenoid valve 68 is closed and the solenoid valve 69 is opened.
  • the water cooler 25 is converted into a water heater to which a heat source is supplied from the outside.
  • the solenoid valve 70 is open, the solenoid valve 71 is closed, the condenser 16 is heating, the solenoid valve 71 is open, and the solenoid valve is 70 Shut down, condenser 16 is cooled.
  • the blower box 1 has a reheater 43 which controls the flow rate of the refrigerant, and controls the solenoid valves 73, 74 and the reheater 43. It can also be converted to an evaporator or condenser for use with the evaporator 8 for backup.
  • the reheater 43 is connected to the high pressure gas pipe 61 and the high pressure (or medium pressure) liquid pipe 62. Solenoid valve 73 When the solenoid valve 74 is closed, the reheater 43 is heated; the solenoid valve 73 is closed, the solenoid valve 74 is opened, and the reheater 43 is cooled.
  • Solenoid valve 76 open, solenoid valve 75 closed, evaporator 8 Cooling; solenoid valve 76 is closed, solenoid valve 75 is open, and evaporator 8 is heated.
  • Mode Converter 78 Controls the conversion of room air conditioners 55 to cooling and heating conditions.
  • the system shown in Figure 15 is a three-control system, evaporator 8, reheater 43, condenser 16 and room air conditioner 55.
  • the air supply box 1 sends cold air, and the evaporator 8 Refrigeration, reheater 43 heating; room air conditioner 55 heating, it is not in an air conditioning area with the air supply box 1; the air exhaust box 59 absorbs heat, the condenser 16 is cooled; the water cooler 25 heats; 2 Endothermic, where the condenser 16 is cooled (whether it is cooling or heating, it needs to be executed by the operation and judgment of the automatic control system).
  • Multi-junction heat pump systems are also known as heat recovery heat pump systems. For example, in the office building with a deeper depth, in the winter, the outer zone needs to send hot air, and the inner zone needs to send cold air. This equipment can meet the requirements.
  • Figure 16 is a structural diagram of another multi-unit heat pump heat recovery air conditioning unit, a set of air supply boxes 1 and air exhaust boxes 2 placed outdoors (also indoors)
  • the heat pump system has more than three room air conditioners 55, which are three-regulated heat recovery type heat pump systems.
  • FIG 17 is a structural diagram of another multi-heat pump heat recovery air conditioning unit, which replaces the outdoor unit exhaust box 2 in Figure 14 with an outdoor unit. 79. It is composed of a condenser 16, an exhaust fan 80, a compressor 17, a refrigerant circulation pipe 9, a refrigeration system auxiliary device, an electric control box 18, and the like, and an outdoor unit 79 Without indoor exhaust, the outdoor air is cooled or heated by the exhaust fan 80, and the heat energy of the indoor exhaust is recovered by the indoor unit exhaust fan 59 responsible, the unit is suitable for indoor air ducts that are inconvenient to lead out to the outside, or where there is no indoor exhaust.
  • Figure 18 is a heat pump system diagram of a multi-unit heat pump heat recovery air conditioning unit, including a condenser 16 of the outdoor exhaust box 2, and an indoor exhaust box The condenser 16 of 59, the evaporator 8 of the blower 1 and the reheater 43, the room air conditioner 55, and the water cooler 25.
  • the system is undergoing a heating cycle, the reheater 43
  • the room air conditioner 55, the water cooler 25 are heating
  • the condenser 16 and the evaporator 8 are being cooled, and the heat is transferred to the room air conditioner 55 by the evaporator 8 through the circulation.
  • the internal heat is recycled.
  • This system is also called heat recovery type.
  • the heat pump system unlike the three control systems described above, is a two-control system that connects multiple units through a gas line and a high pressure liquid line.
  • the heat pump system shown in Figure 19 is undergoing a refrigeration cycle, and the electronic expansion throttle valve 91 is open, 92 When the heating cycle is performed, the electronic expansion throttle valve 91 is closed and 92 is opened.
  • the high-pressure liquid refrigerant exchanges heat with the low-temperature gas refrigerant, which can save energy, and the compressor 17 is screwed.
  • the rod compressor a part of the high-pressure liquid refrigerant is throttled by the electronic expansion throttle valve 93, and then lowered into a low-pressure low-temperature liquid, which is injected into the compressor 17 chamber for cooling.
  • the heat pump system shown in Fig. 20 is undergoing a heating cycle, and the expansion restrictor 97 is a two-way valve, and the accumulator 28 and the water cooler 98 are eliminated. It can be used as a liquid storage device in which high-temperature and high-pressure gas refrigerant is cooled into liquid refrigerant by cooling water (or cold air).
  • solenoid valve 99 is opened, 100 is closed, and vice versa, solenoid valve is used.
  • 99 closed, 100 open, solenoid valve 99, 100 can be used electric throttle valve or electric three-way control valve, water cooler 98 should use spiral tube, shell and tube heat exchanger.
  • the heat pump system shown in Fig. 21 is undergoing a heating cycle, and a reservoir 28 is connected behind the water cooler 101.
  • the high temperature and high pressure gaseous refrigerant is cooled by the cooling water (or cold air) into a liquid refrigerant in the water cooler 101, and then flows into the accumulator 28, and the low temperature gaseous refrigerant from the evaporator 8 or the condenser 16 passes through the solenoid valve.
  • 102 Entering the water cooler 101 it is also possible to cool the high temperature and high pressure gaseous refrigerant.
  • the water cooler 101 should adopt a double spiral tube heat exchanger, and the solenoid valve 102, 103 An electric control valve or an electric three-way control valve can be used.
  • the heat pump system shown in Fig. 22 is in a refrigeration cycle, the expansion throttle 97 is a two-way valve, and the compressor 17 is a screw.
  • the rod type compressor opens the solenoid valve 104, and a part of the high-pressure liquid refrigerant is throttled by the capillary expansion throttle valve 105, and then lowered into a low-pressure low-temperature liquid, which is injected into the compressor 17 chamber for cooling.
  • the heat pump system shown in Fig. 25 is undergoing a refrigeration cycle with a cylinder piston type accumulator 113.
  • the structure and working principle are shown in Fig. 28. .
  • Figure 26 is a structural view of a cylinder piston type reservoir, which is composed of a cylinder housing 114, a piston 115, a cylinder end cover 118, 123, a refrigerant circulation pipe 119, 120, 121, 122, etc., which is installed in the refrigerant circulation line between the evaporator 8 and the condenser 16, the refrigerant circulation pipe 119, 122 is connected to the drying filter 29, and then connected to the evaporator 8 and the condenser 16, respectively, and the refrigerant circulation pipes 120 and 121 are connected to the bidirectional expansion restrictor 97, and the refrigerant circulation pipe is connected.
  • the piston 115 has an orifice tube 116 and a small amount of high pressure liquid refrigerant can be supplied from the orifice tube 116 Throttle to the low pressure side, there is also a small amount of high pressure liquid refrigerant throttling from the clearance between the piston 115 and the cylinder wall to the low pressure side.
  • the expansion throttle 97 When the system is running at low load, the expansion throttle 97 is closed, and the system relies on the orifice tube 116 throttling operation, or without orifice 170, the system relies entirely on the expansion throttle 97.
  • Orifice tube 116 The ends can be bent with a small tube, which can be made of elastic material, and a heavy object is placed at the mouth to keep it hanging forever, and extends below the liquid level of the refrigerant to ensure liquid cooling at the bottom. The agent is throttled. In the piston 115 There is insulation layer 117 in it to reduce heat transfer.
  • the refrigerant flows in the reverse direction, the left side of the piston 115 becomes the high pressure side, and the right side becomes the low pressure side, which is pushed to the right end, and the top end to the cylinder end cap 123 The excess high pressure liquid refrigerant is then stored in the cylinder on the left side of the piston 115.
  • a refrigerant circulation pipe 119 is connected to a lower portion of the can body 124, 120, 121, 122, the refrigerant circulation pipe 119, 120 is connected to the left space of the diaphragm 125, and the refrigerant circulation pipes 121, 122 and the diaphragm 125 The space on the right side is connected, and the orifice tube 116 connects the spaces on both sides of the diaphragm 125.
  • the diaphragm 125 extends or expands to the left, close to the tank body.
  • the inner wall of 124 forms a large space on the right side, in which the high-pressure liquid refrigerant circulates, and the excess portion is stored therein.
  • the refrigerant circulation pipe 119, 120 Connected to the low pressure end, the throttled refrigerant circulates in a narrow space at the bottom of the diaphragm 125. This narrow space should ensure that the refrigerant does not evaporate and vaporize; conversely, the refrigerant flows in the opposite direction and the diaphragm 125 expands to the right. Grille 126 prevents the diaphragm 125 from extending downward to prevent clogging of the refrigerant circulation tube nozzle.
  • the shared reservoir 129 in Figure 29 is located in the bi-directional expansion restrictor 97 Above, when the right side is the high pressure end and the left side is the low pressure end, the right side solenoid valve 130 is opened, the left side solenoid valve is closed, and the accumulator 129 stores the right side high pressure liquid refrigerant, and vice versa, the left side solenoid valve 130 Open, the solenoid valve on the right side is closed, and the reservoir 129 stores the high pressure liquid refrigerant on the left side.
  • the air supply box, the exhaust fan box, the heat pump system main unit, and the water cooler can be placed indoors or outside; the air supply box can be brought back to the air outlet or without the return air outlet; the exhaust air box can be carried
  • the new air outlet can also be equipped with no fresh air outlets;
  • the multi-unit unit can carry multiple indoor units and outdoor units;
  • the water cooler can be connected in series or in parallel on the high-pressure air pipe or across the refrigerant circulation pipe, and it can also be converted into
  • the water heater provides a heat source for the heat pump system for defrost operation. It can also be used as a liquid reservoir to store excess liquid refrigerant.
  • the expansion throttle can use a two-way valve or a check valve. The two-way valve makes the heat pump system more simplify.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

Disclosed is an air conditioning unit for heat recovery from a heat pump, comprising an air supply box (1), air discharge boxes (2, 59), a heat pump system, and a power distribution control system. The air supply box (1) processes the fresh outdoor air and pumps it in, the air discharge boxes (2, 59) discharge the dirty indoor air outside, an evaporator (8) of the heat pump system is arranged in the air supply box (1), for cooling the air during refrigeration and switching to a condenser to heat the air during heating; a condenser (16) of the heat pump system is arranged in the air discharge boxes (2, 59), for absorbing cold energy from both indoor and outdoor air during refrigeration and switching to the evaporator to absorb heat from both indoor and outdoor air during heating, so that the cold and heat in discharged indoor air is recovered and re-used, achieving the object of energy saving.

Description

热泵热回收空调机组 Heat pump heat recovery air conditioning unit

技术领域 Technical field

本发明属于暖通空调领域,具体涉及采用热泵进行热能回收的空调机组。 The invention belongs to the field of HVAC, and particularly relates to an air conditioning unit that uses a heat pump for heat energy recovery.

背景技术 Background technique

目前,空调排风热能的回收通常采用转轮式、板翅式,换热效率低,排风与新风之间有渗透和接触,对新风造成污染,不卫生,另外,这类空调机组不具备冷热源,要增加换热设备,由外部提供冷热源。 At present, the recovery of air conditioning exhaust heat energy usually adopts rotary wheel type and plate fin type, and the heat exchange efficiency is low. There is penetration and contact between exhaust air and fresh air, which pollutes fresh air and is unsanitary. In addition, such air conditioning units do not have For cold and heat sources, heat exchange equipment should be added, and a cold and heat source should be provided from the outside.

发明内容 Summary of the invention

本发明的目的在于提供一种结构合理,卫生清洁,充分节能的热回收空调机组。 The object of the present invention is to provide a heat recovery air conditioning unit with reasonable structure, hygienic cleaning and sufficient energy saving.

本发明的解决方案是:热泵热回收空调机组是由送风箱、排风箱、热泵系统、配电控制系统组成。送风箱由新风口、回风口、过滤器、送风机、蒸发器、送风口、附加功能段组成。排风箱由进风口、新风口、过滤器、冷凝器、排风机、排风口、附加功能段组成。热泵系统由压缩机、冷凝器、膨胀节流器、蒸发器、辅助装置组成。配电控制系统是由配电设备和自动控制设备组成。 The solution of the invention is that the heat pump heat recovery air conditioning unit is composed of a blower box, a blower box, a heat pump system and a power distribution control system. The air supply box is composed of a fresh air outlet, a return air outlet, a filter, a blower, an evaporator, an air supply port, and an additional functional section. The exhaust fan is composed of an air inlet, a fresh air outlet, a filter, a condenser, an exhaust fan, an air outlet, and an additional functional section. The heat pump system consists of a compressor, a condenser, an expansion throttle, an evaporator, and an auxiliary device. The power distribution control system is composed of power distribution equipment and automatic control equipment.

当设备运行时,室外新风和回风被送风机吸入送风箱内,经过热泵系统蒸发器的冷却(夏季)或加热(冬季),空气被处理到设定的参数,通过送风系统送到各个空调区域。室内排风和室外新风被排风机吸入排风箱,经过热泵系统冷凝器的加热(夏季)或冷却(冬季)后排出室外。 When the equipment is running, the outdoor fresh air and return air are sucked into the air supply box by the blower, and after cooling (summer) or heating (winter) of the heat pump system evaporator, the air is processed to the set parameters and sent to each through the air supply system. Air conditioning area. The indoor exhaust and the outdoor fresh air are sucked into the exhaust box by the exhaust fan, and are discharged to the outside after being heated (summer) or cooled (winter) by the condenser of the heat pump system.

热泵系统夏季工作时,因室内空气温度比室外低,利用室内排风和室外新风冷却排风箱中热泵系统的冷凝器,冷量被冷凝器吸收。在送风箱中,室外新风和室内回风被热泵系统的蒸发器冷却降温后送到空调房间。这样,通过热泵系统的制冷循环,回收利用了室内排风中的冷量。 When the heat pump system works in summer, because the indoor air temperature is lower than that of the outdoor, the indoor exhaust air and the outdoor fresh air are used to cool the condenser of the heat pump system in the air exhaust box, and the cooling capacity is absorbed by the condenser. In the blower box, the outdoor fresh air and the indoor return air are cooled and cooled by the evaporator of the heat pump system and sent to the air-conditioned room. In this way, the cooling capacity in the indoor exhaust air is recovered and utilized by the refrigeration cycle of the heat pump system.

热泵系统冬季工作时,排风箱中热泵系统的冷凝器转换成了蒸发器,因室内空气温度比室外高,利用室内排风和室外新风加热排风箱中热泵系统的蒸发器,热量被蒸发器吸收。在送风箱中,热泵系统的蒸发器转换成了冷凝器,室外新风和室内回风被冷凝器加热升温后送到空调房间。这样,通过热泵系统的制热循环,回收利用了室内排风中的热量。 When the heat pump system works in winter, the condenser of the heat pump system in the exhaust fan is converted into an evaporator. Since the indoor air temperature is higher than the outdoor, the indoor exhaust air and the outdoor fresh air are used to heat the evaporator of the heat pump system in the exhaust fan, and the heat is evaporated. Absorbed. In the blower box, the evaporator of the heat pump system is converted into a condenser, and the outdoor fresh air and the indoor return air are heated by the condenser and sent to the air-conditioned room. In this way, the heat in the indoor exhaust air is recovered and utilized by the heating cycle of the heat pump system.

配电控制系统的配电设备为热泵系统、送风机、排风机、电动风量调节风口、自动控制设备提供电源,自动控制设备根据室内外空气参数的变化,自动调节热泵系统、送风机、排风机、电动风量调节风口的运行状态,保证空调机组的高效和稳定运行。 The power distribution equipment of the power distribution control system provides power for the heat pump system, the blower, the exhaust fan, the electric air volume adjustment air outlet, and the automatic control equipment. The automatic control equipment automatically adjusts the heat pump system, the blower, the exhaust fan, and the electric motor according to the changes of indoor and outdoor air parameters. The air volume adjusts the operating state of the tuyere to ensure efficient and stable operation of the air conditioning unit.

附图说明 DRAWINGS

图1是连体式 热泵热回收空调机组构造图( 1 ) Figure 1 is a structural diagram of a connected heat pump heat recovery air conditioning unit (1)

图2是分体式 热泵热回收空调机组构造图 Figure 2 is a structural diagram of a split heat pump heat recovery air conditioning unit

图3是 热泵系统图( 1 ) Figure 3 is a heat pump system diagram (1)

图4是 热泵系统图( 2 ) Figure 4 is a heat pump system diagram (2)

图5是 热泵系统图( 3 ) Figure 5 is a heat pump system diagram (3)

图6是连体式 热泵热回收空调机组构造图( 2 ) Figure 6 is a structural diagram of a heat exchanger unit for heat recovery of a heat pump (2)

图7是 热泵系统图( 4 ) Figure 7 is a heat pump system diagram (4)

图 8 是热泵系统图( 5 ) Figure 8 is a heat pump system diagram (5)

图 9 是热泵系统图( 6 ) Figure 9 is a heat pump system diagram (6)

图 10 是热泵系统图( 7 ) Figure 10 is a heat pump system diagram (7)

图11是连体式 热泵热回收空调机组构造图( 3 ) Figure 11 is a structural diagram of a heat exchanger unit for heat recovery of a heat pump (3)

图12是 热泵系统图( 8 ) Figure 12 is a heat pump system diagram (8)

图 13 是 热泵系统图( 9 ) Figure 13 is a heat pump system diagram (9)

图 14 是多联 式 热泵热回收空调机组构造图( 1 ) Figure 14 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit (1)

图 15 是热泵系统图( 10 ) Figure 15 is a heat pump system diagram (10)

图 16 是多联 式 热泵热回收空调机组构造图( 2 ) Figure 16 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit ( 2 )

图 17 是多联 式 热泵热回收空调机组构造图( 3 ) Figure 17 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit (3)

图 18 是热泵系统图( 11 ) Figure 18 is a heat pump system diagram (11)

图 19 是热泵系统图( 12 ) Figure 19 is a heat pump system diagram (12)

图 20 是热泵系统图( 13 ) Figure 20 is a heat pump system diagram ( 13 )

图 21 是热泵系统图( 14 ) Figure 21 is a heat pump system diagram ( 14 )

图 22 是热泵系统图( 15 ) Figure 22 is a heat pump system diagram ( 15 )

图 23 是热泵系统图( 16 ) Figure 23 is a heat pump system diagram ( 16 )

图 24 是热泵系统图( 17 ) Figure 24 is a heat pump system diagram ( 17 )

图 25 是热泵系统图( 18 ) Figure 25 is a heat pump system diagram ( 18 )

图 26 是气缸活塞式储液器构造图 Figure 26 is the construction diagram of the cylinder piston type accumulator

图 27 是隔膜式储液器构造图 Figure 27 is a diaphragm type reservoir construction diagram

图 28 是共用 储液器与双向膨胀节流阀在 热泵系统中的连接方式( 1 ) Figure 28 shows the connection between the shared reservoir and the bidirectional expansion throttle in the heat pump system ( 1 )

图 29 是共用 储液器与双向膨胀节流阀在 热泵系统中的连接方式( 2 ) Figure 29 shows the connection between the shared reservoir and the bidirectional expansion throttle valve in the heat pump system ( 2 )

图 30 是共用 储液器与双向膨胀节流阀在 热泵系统中的连接方式( 3 ) Figure 30 shows the connection between the shared reservoir and the bidirectional expansion throttle in the heat pump system (3)

图 31 是共用 储液器与双向膨胀节流阀在 热泵系统中的连接方式( 4 ) Figure 31 shows the connection between the shared reservoir and the bidirectional expansion throttle valve in the heat pump system ( 4 )

附图标记说明: Description of the reference signs:

1 、送风箱, 2 、 59 、排风箱, 3 、 14 、新风口, 4 、回风口, 5 、 15 、过滤器, 6 、送风机, 7 、隔板, 8 、蒸发器, 9 、 119 、 120 、 121 、 122 、制冷剂循环管, 10 、加湿器, 11 、挡水板, 12 、送风口, 13 、进风口, 16 、冷凝器, 17 、压缩机, 18 、 63 、 64 、电控箱, 19 、排风机, 20 、排风口, 21 、 22 、旁通风口, 23 、回油毛细管, 24 、 油分离器,25、98、101、水冷器,26、27、四通换向阀,28、113、129、储液器,29、干燥过滤器,30、视液镜,31、52、53、54、67、72、77、85、86、87、91、92、93、97、105、106、膨胀节流器,32、96、气液分离器,33、34、35、36、57、58、65、66、68、69、70、71、73、74、75、76、89、90、99、100、102、103、104、130、131、132、133、 电磁阀, 39 、 40 、 41 、 42 、 56 、 81 、 82 、 83 、 84 、 94 、 95 、 127 、 128 、 134 、单向阀, 43 、再热器, 37 、 38 、 44 、 45 、电动调节阀, 46 、 47 、 48 、 49 、 50 、 51 、 108 、 109 、 110 、 111 、 112 、阀门, 55 、房间空调器, 60 、低压气管, 61 、高压气管, 62 、高压(或中压)液管, 78 、模式转换器, 79 、室外机, 80 、排风扇, 88 、换向器, 107 、换热器, 114 、气缸外壳, 115 、活塞, 116 、节流孔管, 117 、保温层, 118 、 123 、气缸端盖, 124 、罐体, 125 、隔膜, 126 、格栅 1, air supply box, 2, 59, exhaust box, 3, 14, fresh air outlet, 4, return air, 5, 15 , filter, 6, blower, 7 , partition, 8 , evaporator, 9 , 119 , 120 , 121 , 122 , refrigerant circulation pipe , 10 , humidifier , 11 , flap, 12, air supply, 13 , air inlet, 16 , condenser, 17 , compressor, 18 , 63 , 64 , electric control box , 19 , exhaust fan , 20 , exhaust vent , 21, 22, side vents, 23, oil return capillary, 24, Oil separator, 25, 98, 101, water cooler, 26, 27, four-way reversing valve, 28, 113, 129, accumulator, 29, drying filter, 30, sight glass, 31, 52, 53 , 54, 67, 72, 77, 85, 86, 87, 91, 92, 93, 97, 105, 106, expansion throttle, 32, 96, gas-liquid separator, 33, 34, 35, 36, 57 , 58, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 89, 90, 99, 100, 102, 103, 104, 130, 131, 132, 133, Solenoid valves, 39, 40, 41, 42, 56, 81, 82, 83, 84, 94, 95, 127, 128, 134 , check valve, 43 , reheater, 37 , 38 , 44 , 45 , electric control valve , 46 , 47 , 48 , 49 , 50 , 51 , 108 , 109, 110, 111, 112, valve, 55, room air conditioner, 60, low pressure air pipe, 61, high pressure air pipe, 62, high pressure (or medium pressure) liquid pipe, 78 , mode converter, 79, outdoor unit, 80, exhaust fan, 88, commutator, 107, heat exchanger, 114, cylinder housing, 115, piston, 116, orifice tube, 117 , insulation, 118, 123, cylinder end cap, 124, tank, 125, diaphragm, 126, grille

具体实施办法 Specific implementation

图 1 是一种连体式 热泵热回收空调机组构造图,该设备由送风箱 1 、排风箱 2 、热泵系统、配电控制系统四大部分组成。 Figure 1 is a structural diagram of a connected heat pump heat recovery air conditioning unit, which is provided by a blower box 1 and a blower box 2 The heat pump system and the power distribution control system are composed of four parts.

箱体采用钢板等材料制成,用聚氨酯等保温材料保温。箱体上设有检查门,便于人员进入箱内检修和维护。送风箱 1 与排风箱 2 之间由隔板 7 断开,贴保温材料,防止新风与排风之间窜风和热交换。送风箱 1 、排风箱 2 可以做成整体式的,把所需的设备安装在一个完整的箱体内,整体式的空调机组不便于运输、安装和检修,但节省材料;也可以做成分段组合式的,把不同功能的设备放在若干个功能段内,做成若干个小箱体,到现场后再拼装成一个整体。例如:送风箱 1 中,把新风口 3 、回风口 4 、过滤器 5 做成进风混合过滤段,以此类推,可做成送风机段、蒸发器段、加湿送风段。排风箱 2 可做成进风混合过滤段、冷凝器段、热泵主机和电控箱段、排风机段。每段可以拆卸组装,便于运输、安装和检修。送风箱 1 、排风箱 2 可根据需要附加其它功能段,如附加电加热段、空气消毒段、消声段、检修段等。 The box body is made of steel plate and other materials, and is insulated with a heat insulating material such as polyurethane. An inspection door is provided on the cabinet to facilitate access and maintenance of the personnel. Air supply box 1 Disconnected from the exhaust box 2 by the partition 7 and placed with insulation material to prevent hurricane and heat exchange between fresh air and exhaust air. Air supply box 1 , air exhaust box 2 Can be made in one piece, the required equipment is installed in a complete box, the integrated air conditioning unit is not convenient to transport, install and repair, but saves materials; can also be made into a segmented combination, with different functions The equipment is placed in several functional sections, and is made into a number of small boxes, which are assembled into a whole after being on the scene. For example: air box In 1 , the fresh air outlet 3, the return air outlet 4, and the filter 5 are made into the inlet air mixing filter section, and so on, and can be made into a blower section, an evaporator section, and a humidifying and blowing section. Air exhaust box 2 It can be made into the inlet air mixing filter section, the condenser section, the heat pump main unit, the electric control box section and the exhaust fan section. Each section can be disassembled for easy transportation, installation and overhaul. Air supply box 1 , air exhaust box 2 Other functional sections may be added as needed, such as an additional electric heating section, an air disinfection section, an anechoic section, an inspection section, and the like.

热泵系统主机部分(压缩机 17 等设备)可放在箱体内,也可放在箱体外,蒸发器 8 、冷凝器 16 、制冷剂循环管 9 等设备位于箱体内。蒸发器 8 、冷凝器 16 采用直膨式结构盘管等形式的换热器,保证制冷剂在其中蒸发和冷凝,换热器用铜管和铝翅片制作。 The main part of the heat pump system (compressor 17 and other equipment) can be placed in the box or outside the box, evaporator 8 and condenser 16 The equipment such as the refrigerant circulation pipe 9 is located in the casing. Evaporator 8 , condenser 16 A heat exchanger in the form of a straight-expanded structural coil is used to ensure that the refrigerant evaporates and condenses therein, and the heat exchanger is made of a copper tube and an aluminum fin.

配电控制系统的电控箱 18 装有控制器、显示器、配电设备等,可挂在箱体外,也可嵌入箱体内,或与箱体分体设置,各种配电和控制设备及管线分布于箱体内。穿越隔板 7 的各种管线应做密封处理,防止漏风。 Electrical control box for distribution control system 18 It is equipped with controller, display, power distribution equipment, etc., which can be hung outside the box, or embedded in the box, or separated from the box. Various power distribution and control equipment and pipelines are distributed in the box. Crossing the partition 7 All kinds of pipelines should be sealed to prevent air leakage.

夏季设备工作时,在送风箱 1 中,室外高温高湿的新风和室内回风在送风机 6 的作用下,从新风口 3 和回风口 4 进入箱内,混合后被过滤器 5 除尘过滤,经过送风机 6 ,通过蒸发器 8 ,被冷却降温除湿,达到设定的温湿度后,从送风口 12 送到空调区域;在排风箱 2 中,室外新风和室内排风在排风机 19 的作用下,从进风口 13 、新风口 14 进入箱内,混合后被过滤器 15 除尘过滤,通过冷凝器 16 ,被加热升温,再通过排风机 19 、排风口 20 排至室外。此时,热泵系统进行制冷循环,在送风箱 1 中,蒸发器 8 蒸发吸热,送风被降温除湿,在排风箱 2 中,冷凝器 16 被室内外空气冷却降温,室内排风中的冷量被回收利用。 During the summer equipment operation, in the air supply box 1, the outdoor high temperature and high humidity fresh air and indoor return air are under the action of the blower 6, from the fresh air outlet 3 And the return air inlet 4 enters the box, mixes and is filtered by the filter 5, filtered by the filter 5, passed through the blower 6 , cooled by the evaporator 8 , cooled and dehumidified, after reaching the set temperature and humidity, from the air supply port 12 It is sent to the air-conditioning area; in the air exhaust box 2, the outdoor fresh air and the indoor exhaust air enter the tank from the air inlet 13 and the fresh air outlet 14 under the action of the exhaust fan 19, and are mixed by the filter 15 The dust removal filter is heated by the condenser 16, heated, and discharged to the outside through the exhaust fan 19 and the exhaust port 20. At this time, the heat pump system performs a refrigeration cycle, and in the blower box 1, the evaporator 8 The heat is evaporated and the air is cooled and dehumidified. In the exhaust box 2, the condenser 16 is cooled by the indoor and outdoor air, and the cooling capacity in the indoor exhaust is recycled.

冬季设备工作时,在送风箱 1 中,室外低温的新风和室内回风在送风机 6 的作用下,从新风口 3 和回风口 4 进入箱内,混合后被过滤器 5 除尘过滤,经过送风机 6 ,通过蒸发器 8 ,被加热升温,如果湿度低,还需加湿器 10 加湿,达到设定的温湿度后,经过挡水板 11 从送风口 12 送到空调区域;在排风箱 2 中,室外新风和室内排风在排风机 19 的作用下,从进风口 13 、新风口 14 进入箱内,混合后被过滤器 15 除尘过滤,通过冷凝器 16 ,被冷却降温,再通过排风机 19 、排风口 20 排至室外。此时,热泵系统进行制热循环,系统进行了转换,在送风箱 1 中,蒸发器 8 转换成了冷凝器,送风被加热升温,在排风箱 2 中,冷凝器 16 转换成蒸发器蒸发吸热,室内排风中的热量被回收利用。 When the winter equipment is working, in the air supply box 1, the outdoor low temperature fresh air and the indoor return air are under the action of the blower 6, from the fresh air outlet 3 and the return air outlet. 4 Enter the box, mix and filter by dust filter 5, pass the blower 6 and pass the evaporator 8 to heat up. If the humidity is low, humidifier 10 is needed to humidify. After reaching the set temperature and humidity, pass the water retaining plate. 11 From the air supply port 12 to the air conditioning area; in the air exhaust box 2, the outdoor fresh air and the indoor exhaust air are driven by the exhaust fan 19, enter the box from the air inlet 13 and the fresh air outlet 14, and are mixed by the filter. 15 Dust filtration, through the condenser 16, is cooled and cooled, and then discharged to the outdoor through the exhaust fan 19 and the exhaust vent 20. At this point, the heat pump system performs a heating cycle, and the system is converted in the blower box 1 In the middle, the evaporator 8 is converted into a condenser, and the air is heated and heated. In the exhaust box 2, the condenser 16 is converted into an evaporator to absorb heat, and the heat in the indoor exhaust is recycled.

过渡季节设备工作时,热泵系统停止运行,送风箱 1 中回风口 4 关闭,新风口 3 、送风口 12 打开,送风机 6 运行;排风箱 2 中新风口 14 关闭,进风口 13 、旁通风口 21 、排风口 20 打开,排风机 19 运行,空调机组进行全新风运行。旁通风口 21 同进风口 13 一样接室内排风,它可以减少冷凝器 16 引起的排风阻力,降低排风机 19 的耗电量。 During the transitional season, the heat pump system stops running, and the return air outlet 4 in the air supply box 1 is closed, and the fresh air outlet 3 and the air supply port 12 Open, blower 6 operation; fresh air outlet in the air exhaust box 2 14 closed, air inlet 13 , side air vent 21 , air vent 20 open, exhaust fan 19 Operation, air conditioning unit for new wind operation. The side vent 21 is connected to the indoor exhaust air like the air inlet 13 to reduce the exhaust resistance caused by the condenser 16 and reduce the power consumption of the exhaust fan 19.

设备运行时,配电控制系统的配电设备为热泵系统、送风机 6 、排风机 19 、电动风量调节风口、自动控制系统提供电源。热泵系统为变容量系统,压缩机 17 为变容量压缩机,送风机 6 、排风机 19 为变频调速风机,新风口 3 、 14 、回风口 4 、进风口 13 为电动风量调节风口,也可采用手动、电动两用风量调节风口,旁通风口 21 不常用,可设为手动风口,也可设为手动、电动两用风量调节风口。自动控制设备根据室内外空气参数的变化,控制压缩机 17 的排气量,自动调节热泵系统的制冷量或制热量,控制送风机 6 和排风机 19 的转速、各个风口的开度,自动调节风量,保证空调机组的高效和稳定运行。自动控制系统中有控制器、显示器、传感器、执行器等设备,通常采用微机控制(如 PLC 控制器),具有自主设定参数、故障检测、自动报警等功能,能够通过触摸屏现场控制,也可以通过计算机键盘、鼠标远程控制,以及通过局域网、互联网实现网络控制。 When the equipment is running, the power distribution equipment of the power distribution control system is the heat pump system, the blower 6 , and the exhaust fan 19 The electric air volume adjustment air outlet and the automatic control system provide power. The heat pump system is a variable capacity system, the compressor 17 is a variable capacity compressor, the blower 6 and the exhaust fan 19 are frequency conversion speed control fans, and the fresh air outlets 3, 14 , return air inlet 4, air inlet 13 for electric air volume adjustment air outlet, manual or electric dual-purpose air volume adjustment air outlet, side air vent 21 It is not commonly used, it can be set as manual air outlet, or it can be set as manual and electric dual-purpose air volume adjustment air outlet. The automatic control device controls the compressor according to changes in indoor and outdoor air parameters. The amount of exhaust gas, automatically adjusts the cooling capacity or heating capacity of the heat pump system, controls the blower 6 and exhaust fan 19 The speed of rotation and the opening of each tuyere automatically adjust the air volume to ensure efficient and stable operation of the air conditioning unit. The automatic control system has controllers, displays, sensors, actuators, etc., usually using microcomputer control (such as PLC Controller), with autonomous setting parameters, fault detection, automatic alarm and other functions, can be controlled by the touch screen on-site, remote control through computer keyboard, mouse, and network control through LAN, Internet.

在冬季,当室外气温较低、室内新风需求量较小、没有室内排风时,热泵系统工作效率低,甚至无法启动,可在送风箱 1 中设电加热器,直接加热新风,而不启动热泵系统,或者在排风箱 2 中设电加热器,加热新风,再启动热泵系统,电加热器可用于融霜。 In the winter, when the outdoor temperature is low, the indoor fresh air demand is small, and there is no indoor exhaust, the heat pump system has low working efficiency, and even cannot be started. 1 Set the electric heater to directly heat the fresh air without starting the heat pump system, or set the electric heater in the exhaust box 2 to heat the fresh air, then start the heat pump system, and the electric heater can be used for defrost.

图 1 所示, 送风箱 1 位于 排风箱2的下面,也可把 送风箱 1 放在 排风箱2的上面。夏季运行时,蒸发器8会产生大量的低温冷凝水,为了节能,可以通过重力自流或水泵加压的办法,把这部分低温冷凝水喷洒到排风箱2中,用于冷却排风或冷凝器16。在蒸发器8和冷凝器16的下面装有冷凝水集水盘,收集冷凝水,并排到箱体外。 送风箱 1 、 排风箱2 可以放在室内,也可以放在室外,如放在屋顶上,可减少占地面积。另外,进、排风的方向和 风口的位置也可以根据需要进行调整。 As shown in Figure 1, the blower box 1 is located below the bellows 2, and the blower box 1 can also be placed. The top of the exhaust box 2. During summer operation, the evaporator 8 generates a large amount of low-temperature condensed water. In order to save energy, this part of the low-temperature condensed water can be sprayed into the exhaust box 2 by gravity gravity or water pump pressure for cooling exhaust or condensation. 16. A condensate collecting pan is placed under the evaporator 8 and the condenser 16, and the condensed water is collected and discharged to the outside of the tank. Air supply box 1 , The air exhaust box 2 can be placed indoors or placed outdoors, such as on the roof, to reduce the floor space. In addition, the direction of the intake and exhaust and the position of the tuyere can also be adjusted as needed.

上述设备中,送风箱 1 中带有回风口 4 ,可以处理室内回风,该机组适用于全空气空调系统、变风量空调系统,如大型商场、写字楼。当不带有回风口 4 时,该设备为全新风空调机组,送风为全新风,清洁卫生,适用于空气卫生标准较高的宾馆、医院。 In the above device, the air supply box 1 has a return air inlet 4 It can handle indoor return air. The unit is suitable for all air conditioning systems and variable air volume air conditioning systems, such as large shopping malls and office buildings. When there is no return air outlet 4 At the time, the equipment is a brand-new air-conditioning unit, and the air supply is fresh air, clean and sanitary, and is suitable for hotels and hospitals with high air hygiene standards.

图 2 是一种分体式 热泵热回收空调机组构造图,送风箱 1 与 排风箱2是分开的,设备出厂时,蒸发器8或冷凝器16与热泵系统主机连接的制冷剂循环管9是断开并密封的,与电控箱18连接的各类线路也是断开的,现场安装时,制冷剂循环管9通过快速接头连接,各类线路接入电控箱18,虽然管路和线路增加了,但仍然可以保证机组正常运行。两个箱体可以根据用户的需要放在不同的位置,布置更加灵活,例如可以把排风箱2放在屋顶上,节省占地面积,减少机组噪音的影响。 送风箱 1 上可增加一个送风旁通风口 22 ,能够减少送风阻力。 Figure 2 is a structural diagram of a split heat pump heat recovery air conditioning unit, the air supply box 1 and The exhaust fan box 2 is separated, and when the device is shipped from the factory, the refrigerant circulation pipe 9 connected to the main body of the heat pump system by the evaporator 8 or the condenser 16 is disconnected and sealed, and various types of lines connected to the electric control box 18 are also disconnected. When the site is installed, the refrigerant circulation pipe 9 is connected through the quick joint, and various types of lines are connected to the electric control box 18. Although the pipeline and the line are increased, the normal operation of the unit can be ensured. The two cabinets can be placed in different positions according to the needs of the user, and the arrangement is more flexible. For example, the air exhaust box 2 can be placed on the roof to save floor space and reduce the noise of the unit. An air supply vent 22 can be added to the air supply box 1 to reduce the air supply resistance.

图 3 为上述 热泵热回收空调机组的热泵系统图,所进行的是制冷循环。制冷剂循环过程是这样的:压缩机 17 →油分离器24→水冷器25→四通换向阀26→冷凝器16→四通换向阀27→储液器28→干燥过滤器29→视液镜30→膨胀节流器31→四通换向阀27→蒸发器8→四通换向阀26→气液分离器32→ 压缩机 17 。从压缩机 17 排出的高压高温气态制冷剂在油分离器 24 中与润滑油分离,通过回油毛细管 23 ,润滑油回流到压缩机 17 ,也可以通过其它方式回流润滑油。在夏季,自来水进入 水冷器25,吸收高温制冷剂的热量,成为热水,可以为客户提供生活热水,也节省了燃料费。同时由于制冷剂的热量被自来水吸收,用于冷凝制冷剂的新风量就可以减少,排风机19耗电量降低。当客户不需要生活热水时,可取消或关掉水冷器25,制冷剂的热量被室内排风和室外新风排走。水冷器25可采用螺旋管式、壳管式、套管式等结构形式,使用闭式有压容器或开式无压容器,它离 压缩机 17 排气口越近,热回收效果越好。图 3 中水冷器25串联在制冷剂管道上,由于制冷剂不可控,水冷器25中的水温也难以控制,它最好作为建筑内热水系统的补水预热器使用。膨胀节流器31通常采用电子膨胀阀,调节制冷剂流量比较快速准确,也可采用其它膨胀节流器,如毛细管,适用于小型系统。压缩机17采用变容量压缩机,如:变频转子式、涡旋式、螺杆式压缩机。当系统制冷量、制热量变化时,压缩机17也适时变容量输出,实现节能运行。当 热泵系统中有多台压缩机 17 并联运行时,压缩机 17 全部采用定容量压缩机,或全部采用变容量压缩机,或者采用变容量压缩机与定容量压缩机的组合,上述组合方式都可以实现变容量运行, 达到节能的目的。另外,热泵系统中除了 回油毛细管 23 、 油分离器24、四通换向阀26、27、储液器28、干燥过滤器29、视液镜30、气液分离器32等辅助设备外,还设有其它辅助设备,如:回热器、再冷器、温度、压力传感器等。自控系统根据系统温度、压力的变化,自动调节系统的运行状况,保持热泵系统高效率的运行。 Figure 3 is a diagram of the heat pump system of the above heat pump heat recovery air conditioning unit, which is a refrigeration cycle. The refrigerant cycle process is this: compressor 17 → Oil separator 24 → water cooler 25 → four-way switching valve 26 → condenser 16 → four-way switching valve 27 → accumulator 28 → drying filter 29 → sight glass 30 → expansion throttle 31 → four Through the reversing valve 27 → evaporator 8 → four-way reversing valve 26 → gas-liquid separator 32 → Compressor 17 . The high-pressure, high-temperature gaseous refrigerant discharged from the compressor 17 is separated from the lubricating oil in the oil separator 24, and the lubricating oil is returned to the compressor through the oil return capillary 23 The lubricant can also be reflowed by other means. In the summer, tap water enters The water cooler 25 absorbs the heat of the high-temperature refrigerant and becomes hot water, which can provide customers with domestic hot water and save fuel costs. At the same time, since the heat of the refrigerant is absorbed by the tap water, the amount of fresh air for condensing the refrigerant can be reduced, and the power consumption of the exhaust fan 19 is lowered. When the customer does not need domestic hot water, the water cooler 25 can be cancelled or turned off, and the heat of the refrigerant is exhausted by the indoor exhaust air and the outdoor fresh air. The water cooler 25 can be in the form of a spiral tube type, a shell tube type, a sleeve type or the like, and a closed type pressurized container or an open type pressureless container is used. Compressor 17 The closer the exhaust port is, the better the heat recovery effect. image 3 The medium water cooler 25 is connected in series on the refrigerant pipe. Since the refrigerant is uncontrollable, the water temperature in the water cooler 25 is also difficult to control, and it is preferably used as a water supply preheater for the internal hot water system of the building. The expansion restrictor 31 usually employs an electronic expansion valve to adjust the flow rate of the refrigerant relatively quickly and accurately, and other expansion restrictors, such as capillary tubes, can be used for small systems. The compressor 17 employs a variable capacity compressor such as a variable frequency rotor type, a scroll type, or a screw type compressor. When the system cooling capacity and the heating capacity change, the compressor 17 also changes the capacity output in time to achieve energy-saving operation. when There are multiple compressors in the heat pump system. 17 When operating in parallel, the compressor 17 All of the fixed capacity compressors, or all of the variable capacity compressors, or a combination of variable capacity compressors and fixed capacity compressors, can achieve variable capacity operation. To achieve the purpose of energy saving. In addition, in the heat pump system, in addition to the oil return capillary 23, In addition to the auxiliary devices such as the oil separator 24, the four-way switching valve 26, 27, the accumulator 28, the drying filter 29, the sight glass 30, and the gas-liquid separator 32, other auxiliary equipment such as heat recovery is provided. , recooler, temperature, pressure sensor, etc. The automatic control system automatically adjusts the operating status of the system according to changes in system temperature and pressure, and maintains efficient operation of the heat pump system.

在冬季 热泵系统进行制热循环, 四通换向阀26、27转向后,蒸发器8变成冷凝器,而冷凝器16变成了蒸发器, 制冷剂循环过程是这样的:压缩机 17 →油分离器24→水冷器25→四通换向阀26→蒸发器8→四通换向阀27→储液器28→干燥过滤器29→视液镜30→膨胀节流器31→四通换向阀27→冷凝器16→四通换向阀26→气液分离器32→ 压缩机 17 。在冬季, 水冷器25停止工作,不生产热水,制冷剂在蒸发器8中散热,用于加热室外新风,而在冷凝器16中是吸热,吸收室内排风和室外新风的热量,回收利用了室内排风的热能。如果水冷器25在冬季也能生产热水,需要加大系统容量,提高产热量,如:增大压缩机17的功率,增大排风箱2中室外新风量和排风机19的排风量。在冬季,水冷器25适合在南方使用,而在北方,室外温度低,水冷器25工作时, 热泵系统效率低。以上所述的带 水冷器25的设备也可称为 热水型热泵热回收空调机组。 In the winter, the heat pump system performs a heating cycle, after the four-way switching valves 26, 27 are turned, the evaporator 8 becomes a condenser, and the condenser 16 becomes an evaporator. The refrigerant cycle process is this: compressor 17 → Oil separator 24 → water cooler 25 → four-way switching valve 26 → evaporator 8 → four-way switching valve 27 → accumulator 28 → drying filter 29 → sight glass 30 → expansion throttle 31 → four Through the reversing valve 27 → condenser 16 → four-way reversing valve 26 → gas-liquid separator 32 → Compressor 17 . in winter, The water cooler 25 stops working, does not produce hot water, the refrigerant dissipates heat in the evaporator 8, and is used to heat the outdoor fresh air, and absorbs heat in the condenser 16, absorbs the heat of the indoor exhaust air and the outdoor fresh air, and recycles the indoor Exhaust heat. If the water cooler 25 can also produce hot water in winter, it is necessary to increase the system capacity and increase the heat generation, such as increasing the power of the compressor 17, increasing the amount of fresh air outside the exhaust box 2, and the amount of exhaust air of the exhaust fan 19. . In the winter, the water cooler 25 is suitable for use in the south, while in the north, the outdoor temperature is low, and when the water cooler 25 is in operation, The heat pump system is inefficient. The apparatus with the water cooler 25 described above may also be referred to as a hot water type heat pump heat recovery air conditioning unit.

图4所示的 热泵系统中,电磁阀 33 、 34 、 35 、 36 代替了上述热泵系统中的 四通换向阀27。当 电磁阀 33 、 34 开启,电磁阀 35 、 36 关闭时,系统进行的是制冷循环; 当 电磁阀 33 、 34 关闭,电磁阀 35 、 36 开启时,系统进行的是制热循环。当冬季室外温度低、室内排风量小时,热泵系统进行制热循环,冷凝器 16 作为蒸发器容易结霜,为了融霜, 水冷器25停止输出热水,而是由外部热源(锅炉、电热等)向水冷器25输入热水,水冷器25变成了水热器,为制冷剂蒸发提供热量 。融霜时,打开 排风箱2的 进风口 13 ,关闭新风口 14 ,打开电动调节阀 37 ,关闭电动调节阀 38 ,利用室内排风融霜 ,此时并不影响空调系统的正常运行。 In the heat pump system shown in Figure 4, solenoid valves 33, 34, 35, 36 replace the heat pump system described above. Four-way reversing valve 27. When the solenoid valves 33, 34 are opened and the solenoid valves 35, 36 are closed, the system performs a refrigeration cycle; when the solenoid valves 33, 34 are closed, the solenoid valves 35, 36 When turned on, the system performs a heating cycle. When the outdoor temperature in winter is low and the indoor exhaust air volume is small, the heat pump system performs a heating cycle, and the condenser 16 acts as an evaporator to easily frost, in order to melt the frost, The water cooler 25 stops the output of the hot water, but the hot water is supplied to the water cooler 25 by an external heat source (boiler, electric heat, etc.), and the water cooler 25 becomes a water heater to supply heat for the refrigerant to evaporate. When defrosting, open the air inlet of the bellows 2 13、Close the fresh air outlet 14 , open the electric control valve 37, close the electric control valve 38, and use the indoor exhaust air to melt the frost. At this time, it does not affect the normal operation of the air conditioning system.

图5所示的 热泵系统中,单向阀 39 、 40 、 41 、 42 代替了上述热泵系统中的 四通换向阀27和 电磁阀 33 、 34 、 35 、 36 ,也可采用单向阀与电磁阀组合的方式。系统进行制冷循环时,单向阀 39 、 40 开启,单向阀 41 、 42 关闭;系统进行制热循环时,单向阀 39 、 40 关闭,单向阀 41 、 42 开启。融霜时, 向水冷器25输入热水, 打开 排风箱2的 进风口 13 ,关闭新风口 14 ,打开电动调节阀 37 ,关闭电动调节阀 38 ,利用室内排风融霜 。水冷器25可做成蓄热式容器,加注蓄热材料,把建筑的余热储存其中,用于 融霜和加热热水。 In the heat pump system shown in Figure 5, check valves 39, 40, 41, 42 replace the heat pump system described above. The four-way reversing valve 27 and the solenoid valves 33, 34, 35, 36 can also be combined with a solenoid valve. When the system performs a refrigeration cycle, the check valves 39, 40 are open, and the check valve 41, 42 OFF; when the system performs the heating cycle, the check valves 39, 40 are closed and the check valves 41, 42 are open. When defrosting, input hot water to the water cooler 25, open the air exhaust box 2 Air inlet 13 , close the fresh air port 14 , open the electric control valve 37 , close the electric control valve 38 , use the indoor exhaust air to defrost . The water cooler 25 can be used as a regenerative container, filled with a heat storage material, and stored in the building waste heat for defrosting and heating the hot water.

图 6 是另一种连体式 热泵热回收空调机组构造图,它与上述空调机组不同之处是在送风箱 1 中增加了再热器 43 ,当空气被 蒸发器8降温冷却后,再被 再热器 43 加热,可以提高送风温度,减少送风温差,改善空调舒适度,适用于空调精度高、湿度大的空调场合。该设备也可以做成图 2 所示的分体式 热泵热回收空调机组。 Figure 6 is a structural diagram of another type of heat pump heat recovery air conditioning unit, which differs from the above air conditioning unit in that a reheater is added to the air supply box 1. 43. When the air is cooled by the evaporator 8 and then cooled, it is reheated. Heating can increase the air supply temperature, reduce the air supply temperature difference, improve the air conditioning comfort, and is suitable for air conditioning with high air conditioning precision and humidity. The device can also be constructed as a split heat pump heat recovery air conditioning unit as shown in Figure 2.

图 7 是 图 6 所示设备的 热泵系统图,再热器 43 与冷凝器 16 并联在系统中,电动调节阀 44 、 45 根据负荷变化情况,调节进入再热器 43 、冷凝器 16 的制冷剂流量,当冬季制热循环时,电动调节阀 44 关闭,再热器 43 不工作。电动调节阀 44 、 45 其中一个改为电磁阀也可以分配制冷剂流量。再热器 43 的结构形式同蒸发器 8 和冷凝器 16 。以上所述的带再热器 43 的设备也可称为 再热型热泵热回收空调机组。 Figure 7 is a diagram of the heat pump system of the apparatus shown in Figure 6. The reheater 43 is connected in parallel with the condenser 16 in the system, and the electric control valve 44 45, according to the load change situation, adjust the refrigerant flow into the reheater 43, the condenser 16, when the winter heating cycle, the electric control valve 44 is closed, the reheater 43 does not work. Electric control valve 44, 45 One of them can be assigned to a solenoid valve to distribute the refrigerant flow. The reheater 43 is constructed in the same manner as the evaporator 8 and the condenser 16. The device with reheater 43 described above can also be called Reheat heat pump heat recovery air conditioning unit.

图 8 是另一种 再热型热泵热回收空调机组的热泵系统图,图中所示在进行制冷循环,阀门 46 、 49 、 50 打开,阀门 47 、 48 、 51 关闭。它与图 7 不同的是,再热器43可以转换成蒸发器,当蒸发器8不能工作时,关闭阀门46、49、50、电动调节阀44,用再热器43做备用。制冷时,关闭阀门48, 打开阀门 47 、 51 , 再热器43转换成蒸发器 ;制热时, 关闭阀门47, 打开阀门 48 、 51 , 再热器43转换成冷凝器 。 Figure 8 is a heat pump system diagram of another reheat heat pump heat recovery air conditioning unit, shown in the refrigeration cycle, valves 46, 49, 50 Open, valves 47, 48, 51 are closed. It and Figure 7 The difference is that the reheater 43 can be converted into an evaporator. When the evaporator 8 is inoperable, the valves 46, 49, 50, the electric regulating valve 44 are closed, and the reheater 43 is used as a backup. When cooling, close valve 48 and open the valve 47, 51, the reheater 43 is converted into an evaporator; when heating, the valve 47 is closed, the valves 48, 51 are opened, and the reheater 43 is converted into a condenser.

图9所示的 热泵系统中,电磁阀 33 、 34 、 35 、 36 代替了图 8 中 热泵系统的 四通换向阀27。 In the heat pump system shown in Figure 9, solenoid valves 33, 34, 35, 36 replace the heat pump system of Figure 8. Four-way reversing valve 27.

图10所示的 热泵系统中,单向阀 39 、 40 、 41 、 42 代替了图 8 中 热泵系统的 四通换向阀27。 In the heat pump system shown in Figure 10, the check valves 39, 40, 41, 42 replace the heat pump system of Figure 8. Four-way reversing valve 27.

图 11 是另一种连体式 热泵热回收空调机组构造图,它与上述空调机组不同之处是有两套制冷系统。其中一套是热泵系统,用于冷却或加热空气;另一套为单冷系统,用于再热被冷却的空气,该系统也可做成热泵系统,既可用于再热,也可用于冷却,与前者互为备用,虽然增加了设备,但可靠性提高。该设备也可以做成图 2 所示的分体式 热泵热回收空调机组。上述 设备也可称为 双机型热泵热回收空调机组。 Figure 11 is another conjoined The heat pump heat recovery air conditioning unit structure diagram, which differs from the above air conditioning unit in that there are two sets of refrigeration systems. One of them is a heat pump system for cooling or heating the air; the other is a single cooling system for reheating the cooled air. The system can also be used as a heat pump system for both reheating and cooling. It is a backup to the former, and although the equipment is added, the reliability is improved. The device can also be made into a picture 2 The split heat pump heat recovery air conditioning unit shown. The above equipment can also be called a two-machine heat pump heat recovery air conditioning unit.

图 12 是一种多联式 热泵热回收空调机组的热泵系统图,图中所示为制冷循环, 有两台压缩机17并联运行,制冷剂在膨胀节流器52、53、54中可以双向流动, 冷凝器 16 装在排风箱 2 中,蒸发器 8 装在送风箱 1 中。它有一个排风箱 2 和冷凝器 16 ,可以连接两个及数个送风箱 1 和蒸发器 8 ,以及其它设备,图 12 中仅示意连接两个 送风箱 1 和蒸发器 8 、一个房间空调器 55 、一个水冷器 25 。房间空调器 55 放在空调房间内,它采用直膨式结构盘管等形式的换热器,用铜管和铝翅片制作,它依靠制冷剂的直接蒸发或冷凝,循环冷却或加热房间内的空气,它与送风箱 1 、排风箱 2 有所不同,可称为系统的附加设备,或末端设备,还有其它利用制冷剂冷却或加热的附加设备,如:卫生间的烘手器,可利用制冷剂的冷凝热;利用建筑的污水,夏天冷却制冷剂、冬天加热制冷剂的设备;利用厨房油烟、洗涤废水的废热加热制冷剂的设备;利用太阳能热水或热风加热制冷剂的设备。在送风箱 1 所服务的空调区域中,房间空调器 55 这类附加设备足够多时,送风箱 1 不带回风口 4 ,或关闭回风口 4 ,只送新风。水冷器 25 并联在系统内,当水温达到设定温度时,电磁阀 57 关闭,切断高温制冷剂,电磁阀 58 打开,高温制冷剂通过,电磁阀 57 、 58 也可改成电动调节阀,让制冷剂按比例通过两阀门。排风箱 2 通常放在室外,称为室外机组(因排风箱 2 可以放在室内,也可称为室内机组),室内排风集中送到排风箱 2 中。对于大型机组,可做成两个及数个排风箱 2 和冷凝器 16 ,连接数个送风箱 1 和蒸发器 8 、附加设备、水冷器 25 等室内机组,水冷器 25 也可放在室外,称为室外机组。上述设备中,若干个蒸发器 8 的工况是相同的,要么都是制冷,要么都是制热,因此,可称为同工况型热泵系统。 Figure 12 is a heat pump system diagram of a multi-unit heat pump heat recovery air conditioning unit, showing a refrigeration cycle. Two compressors 17 are operated in parallel, and the refrigerant can flow in both directions in the expansion restrictors 52, 53, 54. The condenser 16 is housed in the exhaust box 2, and the evaporator 8 is installed in the blower box 1. It has a bellows 2 and condenser 16 , can connect two and several air blowers 1 and evaporator 8 , and other equipment. Only the two air blowers 1 and evaporator 8 and one room air conditioner are shown in Figure 12 . , a water cooler 25 . Room air conditioner 55 Housed in an air-conditioned room, it uses a heat exchanger in the form of a straight-expanded structural coil, made of copper tubing and aluminum fins, which rely on direct evaporation or condensation of the refrigerant to circulate cooling or heat the air in the room. With air box 1 and air box 2 Different, it can be called the system's additional equipment, or the end equipment, there are other additional equipment that uses the refrigerant to cool or heat, such as: the bathroom's hand dryer, can use the condensation heat of the refrigerant; use the building's sewage, Equipment for cooling refrigerant in the summer, heating the refrigerant in the winter; equipment for heating the refrigerant by using the kitchen fumes, waste heat of washing the waste water; equipment for heating the refrigerant by using the solar hot water or the hot air. In the blower box 1 In the air-conditioned area served, when there are enough additional devices such as room air conditioners 55, the air supply box 1 does not have a return air outlet 4 or closes the air return port 4 and only sends fresh air. Water cooler 25 Parallel in the system, when the water temperature reaches the set temperature, the solenoid valve 57 is closed, the high temperature refrigerant is turned off, the solenoid valve 58 is opened, the high temperature refrigerant is passed, and the solenoid valves 57, 58 It can also be changed to an electric control valve to allow the refrigerant to pass through the two valves in proportion. The exhaust fan 2 is usually placed outdoors, called an outdoor unit (since the exhaust box 2 can be placed indoors, it can also be called an indoor unit), and the indoor exhaust is concentrated to the exhaust box. 2 in. For large units, two or more exhaust ducts 2 and condensers 16 can be made, and several air blowers 1 and evaporators 8, additional equipment, water coolers 25 and other indoor units, water coolers 25 can be connected. It can also be placed outdoors, called an outdoor unit. In the above-mentioned equipment, the operating conditions of several evaporators 8 are the same, either cooling or heating, and therefore, it can be called the same-type heat pump system.

图 13 是另一种多联式 热泵热回收空调机组的热泵系统图,它在送风箱 1 中增加了再热器 43 ,并设有水冷器 25 ,与冷凝器 16 并联在系统内,依靠电动调节阀 44 调节制冷剂流量。该设备中,两台送风箱 1 中的蒸发器 8 和房间空调器 55 可以同时制冷、同时制热,两台送风箱 1 也可以一台制热,同时另一台制冷,其中制冷的送风箱 1 中的再热器 43 转换成了蒸发器,用于制冷,同箱内的蒸发器 8 不工作。 Figure 13 is a heat pump system diagram of another multi-heat pump heat recovery air conditioning unit, which adds a reheater to the air supply box 1 And a water cooler 25 is provided in parallel with the condenser 16 in the system, and the electric flow regulating valve 44 is used to regulate the refrigerant flow. In this device, the evaporator 8 and the room air conditioner in the two blower boxes 1 are 55 It can be cooled at the same time and heated at the same time. The two blower boxes 1 can also be heated one by one while the other is refrigerated, wherein the reheater 43 in the cooled blower box 1 is converted into an evaporator for cooling, Evaporator in the same box 8 Not working.

图 14 是一种多联式 热泵热回收空调机组构造图。排风箱 2 放在室外,进风口 13 、旁通风口 21 接室内排风,冷凝器 16 也可转换成蒸发器,吸收室内排风和室外新风中的冷热量,压缩机 17 放在箱体内,也可放在箱体外,对于大容量空调系统,可设多台排风箱 2 并联使用;排风箱 59 与上述排风箱 2 有所不同,它不装压缩机 17 、新风口 14 ,只处理室内排风,冷凝器 16 也可转换成蒸发器,回收室内排风中的冷热量,它装在室内,与服务于相同空调区域的送风箱 1 可以做成整体式,也可以做成分体式,图 14 中是分体式,这样布置更加灵活方便;送风箱1中, 蒸发器 8 也可转换成冷凝器,再热器 43 也可转换成蒸发器或冷凝器。排风箱 2 、 59 、 送风箱1、房间空调器55、水冷器25连接到 低压气管 60 、高压气管 61 、高压(或中压)液管 62 上。 水冷器25放在室外,它是一个保温的有压容器,装有制冷剂散热器。 该多联式热泵热回收空调机组可称为再热型、水冷型。图中热泵系统仅示意连接三台室内机组( 送风箱1、 排风箱 59 、房间空调器 55 )、两台室外机(排风箱 2 、 水冷器25 ),它可以连接数台室内外机组。当空调区域有足够大的排风道排向室外时,可不设排风箱 59 ,室内排风全部接入排风箱 2 中。 Figure 14 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit. The air exhaust box 2 is placed outdoors, the air inlet 13 and the side air vent 21 When the indoor air is exhausted, the condenser 16 can also be converted into an evaporator to absorb the indoor heat and the cold heat in the outdoor fresh air. The compressor 17 is placed in the box body and can also be placed outside the box. For a large-capacity air conditioning system, Multiple air vents can be set 2 Parallel use; the exhaust fan 59 is different from the above-mentioned exhaust fan 2, it does not have a compressor 17, fresh air outlet 14, only handles indoor exhaust, condenser 16 It can also be converted into an evaporator to recover the cold heat in the indoor exhaust air. It is installed indoors, and can be made into a unitary or air-cooled box 1 that serves the same air-conditioned area. Figure 14 The middle part is split type, so that the arrangement is more flexible and convenient; in the air supply box 1, the evaporator 8 can also be converted into a condenser, and the reheater 43 can also be converted into an evaporator or a condenser. Air exhaust box 2, 59, The blower box 1, the room air conditioner 55, and the water cooler 25 are connected to the low pressure air pipe 60, the high pressure air pipe 61, and the high pressure (or medium pressure) liquid pipe 62. The water cooler 25 is placed outdoors, which is a heat-insulated pressurized container equipped with a refrigerant radiator. The multi-connected heat pump heat recovery air conditioning unit can be referred to as a reheat type or a water-cooled type. The heat pump system in the figure only shows the connection of three indoor units ( Supply air box 1, exhaust air box 59, room air conditioner 55), two outdoor units (air exhaust box 2, water cooler 25 ), it can connect several indoor and outdoor units. When the air-conditioned area has a large exhaust duct that is discharged to the outside, the air exhaust box 59 may not be provided, and the indoor exhaust air is all connected to the air exhaust box 2.

图 15 是图14所示多联式 热泵热回收空调机组的热泵系统图。排风箱 2 中电磁阀 65 打开,电磁阀 66 关闭,冷凝器 16 制热;电磁阀 65 关闭,电磁阀 66 打开,冷凝器 16 制冷。电磁阀 68 打开,高温制冷剂通过 水冷器25,给水加热,当水温达到设定温度, 电磁阀 68 关闭。当冷凝器 16 需要融霜时,电磁阀 68 关闭,电磁阀 69 打开, 水冷器25转换成水热器,由外部向其提供热源 。排风箱 59 中电磁阀 70 打开,电磁阀 71 关闭,冷凝器 16 制热;电磁阀 71 打开,电磁阀 70 关闭,冷凝器 16 制冷。送风箱 1 中有再热器 43 , 膨胀节流器77控制制冷剂的流量, 通过控制电磁阀 73 、 74 ,再热器 43 也可以转换成蒸发器或冷凝器使用,与蒸发器 8 互为备用。如果不需要转换成蒸发器,仅做再热器使用,可以取消电磁阀 73 、 74 、 膨胀节流器77、干燥过滤器29, 采取图 7 的做法,设电动调节阀 44 ,再热器 43 与高压气管 61 、高压(或中压)液管 62 连接。电磁阀 73 打开,电磁阀 74 关闭,再热器 43 制热;电磁阀 73 关闭,电磁阀 74 打开,再热器 43 制冷。电磁阀 76 打开,电磁阀 75 关闭,蒸发器 8 制冷;电磁阀 76 关闭,电磁阀 75 打开,蒸发器 8 制热。模式转换器 78 控制 房间空调器55 制冷与制热工况的转换。 Figure 15 is a heat pump system diagram of the multi-unit heat pump heat recovery air conditioning unit shown in Figure 14. Solenoid box 2 solenoid valve 65 open, solenoid valve 66 Shutdown, condenser 16 heating; solenoid valve 65 closed, solenoid valve 66 open, condenser 16 cooled. Solenoid valve 68 opens, high temperature refrigerant passes The water cooler 25 heats the water, and when the water temperature reaches the set temperature, the solenoid valve 68 is closed. When the condenser 16 needs to be defrost, the solenoid valve 68 is closed and the solenoid valve 69 is opened. The water cooler 25 is converted into a water heater to which a heat source is supplied from the outside. In the exhaust fan 59, the solenoid valve 70 is open, the solenoid valve 71 is closed, the condenser 16 is heating, the solenoid valve 71 is open, and the solenoid valve is 70 Shut down, condenser 16 is cooled. The blower box 1 has a reheater 43 which controls the flow rate of the refrigerant, and controls the solenoid valves 73, 74 and the reheater 43. It can also be converted to an evaporator or condenser for use with the evaporator 8 for backup. If you do not need to convert to an evaporator, use only the reheater, you can cancel the solenoid valve 73, 74, The expansion restrictor 77 and the drying filter 29 are arranged as shown in Fig. 7, and an electric regulating valve 44 is provided. The reheater 43 is connected to the high pressure gas pipe 61 and the high pressure (or medium pressure) liquid pipe 62. Solenoid valve 73 When the solenoid valve 74 is closed, the reheater 43 is heated; the solenoid valve 73 is closed, the solenoid valve 74 is opened, and the reheater 43 is cooled. Solenoid valve 76 open, solenoid valve 75 closed, evaporator 8 Cooling; solenoid valve 76 is closed, solenoid valve 75 is open, and evaporator 8 is heated. Mode Converter 78 Controls the conversion of room air conditioners 55 to cooling and heating conditions.

图 15 所示系统是三管制系统,蒸发器 8 、再热器 43 、冷凝器 16 、 房间空调器55 、 水冷器25 与低压气管 60 、高压气管 61 、高压(或中压)液管 62 相连,该系统有三种工况:同时制冷、同时制热、或一部分箱体在制冷的同时,其它箱体在制热。假设该系统在冬季进行制热循环,送风箱 1 送冷风,蒸发器 8 制冷、再热器 43 制热; 房间空调器55制热,它与 送风箱 1 不在一个空调区域;排风箱 59 吸热,其中的冷凝器 16 制冷; 水冷器25制热; 排风箱 2 吸热,其中的冷凝器 16 制冷 (它是制冷还是制热,需要通过自动控制系统的运算和判断后执行)。 因此在上述的制冷剂循环过程中, 房间空调器55、水冷器25、 再热器 43 所吸收的冷量传给了蒸发器 8 、冷凝器 16 ,蒸发器 8 、冷凝器 16 所吸收的热量传给了 房间空调器55、水冷器25、 再热器 43 。 The system shown in Figure 15 is a three-control system, evaporator 8, reheater 43, condenser 16 and room air conditioner 55. Water cooler 25 and low pressure air pipe 60, high pressure gas pipe 61, high pressure (or medium pressure) liquid pipe 62 Connected, the system has three operating conditions: simultaneous cooling, simultaneous heating, or a part of the cabinet while cooling, while other cabinets are heating. Assume that the system is heating cycle in winter, the air supply box 1 sends cold air, and the evaporator 8 Refrigeration, reheater 43 heating; room air conditioner 55 heating, it is not in an air conditioning area with the air supply box 1; the air exhaust box 59 absorbs heat, the condenser 16 is cooled; the water cooler 25 heats; 2 Endothermic, where the condenser 16 is cooled (whether it is cooling or heating, it needs to be executed by the operation and judgment of the automatic control system). Therefore, during the above refrigerant cycle, The amount of cold absorbed by the room air conditioner 55, the water cooler 25, and the reheater 43 is transmitted to the evaporator 8, the condenser 16, and the heat absorbed by the evaporator 8 and the condenser 16 is transferred to the heat. Room air conditioner 55, water cooler 25, reheater 43.

因此,通过控制电磁阀开闭、模式转换器的转换,实现了各个机组运行工况的转变,可以满足不同空调场所同时制冷和制热的需求,而且不同空调场所的冷热量又可以互相回收利用,回收总量提高,节能显著,这种 多联式 热泵系统也称为 热回收型 热泵系统。例如进深较大的写字楼,在冬季,外区需要送热风,而内区需要送冷风,采用本设备可以满足要求。 Therefore, by controlling the opening and closing of the solenoid valve and the conversion of the mode converter, the transformation of the operating conditions of each unit can be realized, which can meet the requirements of simultaneous cooling and heating of different air-conditioned places, and the cold heat of different air-conditioned places can be recycled to each other. Utilization, the total amount of recycling is increased, and energy saving is remarkable. Multi-junction heat pump systems are also known as heat recovery heat pump systems. For example, in the office building with a deeper depth, in the winter, the outer zone needs to send hot air, and the inner zone needs to send cold air. This equipment can meet the requirements.

图 16 是另一种多联式 热泵热回收空调机组构造图,一组放在室外(也可放在室内)的送风箱 1 、排风箱 2 、热泵系统带三台以上的 房间空调器55,它是三管制热回收型的 热泵系统。 Figure 16 is a structural diagram of another multi-unit heat pump heat recovery air conditioning unit, a set of air supply boxes 1 and air exhaust boxes 2 placed outdoors (also indoors) The heat pump system has more than three room air conditioners 55, which are three-regulated heat recovery type heat pump systems.

图 17 是另一种多联式 热泵热回收空调机组构造图,它把图 14 中的室外机组排风箱 2 换成了室外机 79 。它是由冷凝器 16 、排风扇 80 、压缩机 17 、制冷剂循环管 9 、制冷系统辅助装置、电控箱 18 等组成,室外机 79 不接室内排风,室外空气在排风扇 80 的作用下,冷却或加热冷凝器 16 ,室内排风的热能回收由室内机组排风箱 59 负责,该机组适用于室内排风道向室外引出不方便,或没有室内排风可利用的场合。 Figure 17 is a structural diagram of another multi-heat pump heat recovery air conditioning unit, which replaces the outdoor unit exhaust box 2 in Figure 14 with an outdoor unit. 79. It is composed of a condenser 16, an exhaust fan 80, a compressor 17, a refrigerant circulation pipe 9, a refrigeration system auxiliary device, an electric control box 18, and the like, and an outdoor unit 79 Without indoor exhaust, the outdoor air is cooled or heated by the exhaust fan 80, and the heat energy of the indoor exhaust is recovered by the indoor unit exhaust fan 59 Responsible, the unit is suitable for indoor air ducts that are inconvenient to lead out to the outside, or where there is no indoor exhaust.

图 18 是一种多联式 热泵热回收空调机组的热泵系统图,包含有室外排风箱 2 的冷凝器 16 、室内排风箱 59 的冷凝器 16 、送风箱 1 的蒸发器 8 和再热器 43 、 房间空调器55、水冷器25。该系统在进行制热循环, 再热器 43 、 房间空调器55、水冷器25在制热, 冷凝器 16 、蒸发器 8 在制冷,通过循环, 蒸发器 8 将所服务的空调区域的热量,传递到 房间空调器55 所服务的空调区域,内部的热量得到回收利用。该系统也称为 热回收型 热泵系统,与上述三管制系统不同之处,它是两管制,通过一根气体管和一根高压液体管,将多个机组连接起来。 Figure 18 is a heat pump system diagram of a multi-unit heat pump heat recovery air conditioning unit, including a condenser 16 of the outdoor exhaust box 2, and an indoor exhaust box The condenser 16 of 59, the evaporator 8 of the blower 1 and the reheater 43, the room air conditioner 55, and the water cooler 25. The system is undergoing a heating cycle, the reheater 43 The room air conditioner 55, the water cooler 25 are heating, the condenser 16 and the evaporator 8 are being cooled, and the heat is transferred to the room air conditioner 55 by the evaporator 8 through the circulation. In the air-conditioned area served, the internal heat is recycled. This system is also called heat recovery type. The heat pump system, unlike the three control systems described above, is a two-control system that connects multiple units through a gas line and a high pressure liquid line.

图19所示的 热泵系统正在进行制冷循环,电子膨胀节流阀 91 打开、 92 关闭,当进行制热循环时,电子膨胀节流阀 91 关闭、 92 打开,在 气液分离器96中,高压液态制冷剂与低温气态制冷剂热交换,可以节能,压缩机17为螺 杆式压缩机,一部分 高压液态制冷剂经过 电子膨胀节流阀 93 节流后,降为低压低温液体,喷入 压缩机17 腔内进行冷却。 The heat pump system shown in Figure 19 is undergoing a refrigeration cycle, and the electronic expansion throttle valve 91 is open, 92 When the heating cycle is performed, the electronic expansion throttle valve 91 is closed and 92 is opened. In the gas-liquid separator 96, the high-pressure liquid refrigerant exchanges heat with the low-temperature gas refrigerant, which can save energy, and the compressor 17 is screwed. In the rod compressor, a part of the high-pressure liquid refrigerant is throttled by the electronic expansion throttle valve 93, and then lowered into a low-pressure low-temperature liquid, which is injected into the compressor 17 chamber for cooling.

图20所示的 热泵系统正在进行制热循环,膨胀节流器 97 采用双向阀,取消了 储液器28, 水冷器 98 可作为储液器使用,高温高压气态制冷剂在其中被冷却水(或冷风)冷却成液态制冷剂,当需要储存或使用制冷剂时,电磁阀 99 打开、 100 关闭,反之,则电磁阀 99 关闭、 100 打开,电磁阀 99 、 100 可采用电动调节阀或电动三通调节阀,水冷器 98 宜采用螺旋管式、壳管式换热器。如果取消专用的 储液器, 多余的制冷剂可储存在蒸发器 8 、冷凝器 16 或管道中,加大蒸发器 8 、冷凝器 16 底部盘管管径或集液箱的尺寸,为冷凝后的液态制冷剂预留储存空间,这样系统得到简化。 The heat pump system shown in Fig. 20 is undergoing a heating cycle, and the expansion restrictor 97 is a two-way valve, and the accumulator 28 and the water cooler 98 are eliminated. It can be used as a liquid storage device in which high-temperature and high-pressure gas refrigerant is cooled into liquid refrigerant by cooling water (or cold air). When it is necessary to store or use refrigerant, solenoid valve 99 is opened, 100 is closed, and vice versa, solenoid valve is used. 99 closed, 100 open, solenoid valve 99, 100 can be used electric throttle valve or electric three-way control valve, water cooler 98 should use spiral tube, shell and tube heat exchanger. If you cancel the dedicated reservoir, Excess refrigerant can be stored in evaporator 8, condenser 16 or piping, and the evaporator 8 and condenser 16 can be enlarged. The size of the bottom coil or the size of the header is reserved for the condensed liquid refrigerant, which simplifies the system.

图21所示的 热泵系统正在进行制热循环,在水冷器 101 后面连接有储液器 28 ,高温高压气态制冷剂在水冷器 101 中被冷却水(或冷风)冷却成液态制冷剂,再流进储液器 28 中,来自蒸发器 8 或冷凝器 16 的低温气态制冷剂通过电磁阀 102 进入到水冷器 101 中,也可以冷却高温高压气态制冷剂,水冷器 101 宜采用双螺旋管式换热器,电磁阀 102 、 103 可采用电动调节阀或电动三通调节阀。 The heat pump system shown in Fig. 21 is undergoing a heating cycle, and a reservoir 28 is connected behind the water cooler 101. The high temperature and high pressure gaseous refrigerant is cooled by the cooling water (or cold air) into a liquid refrigerant in the water cooler 101, and then flows into the accumulator 28, and the low temperature gaseous refrigerant from the evaporator 8 or the condenser 16 passes through the solenoid valve. 102 Entering the water cooler 101, it is also possible to cool the high temperature and high pressure gaseous refrigerant. The water cooler 101 should adopt a double spiral tube heat exchanger, and the solenoid valve 102, 103 An electric control valve or an electric three-way control valve can be used.

图22所示的 热泵系统正在进行制冷循环,膨胀节流器 97 采用双向阀, 压缩机17为螺 杆式压缩机,打开电磁阀 104 ,一部分 高压液态制冷剂经过 毛细管膨胀节流阀 105 节流后,降为低压低温液体,喷入 压缩机17 腔内进行冷却。 The heat pump system shown in Fig. 22 is in a refrigeration cycle, the expansion throttle 97 is a two-way valve, and the compressor 17 is a screw. The rod type compressor opens the solenoid valve 104, and a part of the high-pressure liquid refrigerant is throttled by the capillary expansion throttle valve 105, and then lowered into a low-pressure low-temperature liquid, which is injected into the compressor 17 chamber for cooling.

图23所示的 热泵系统正在进行制热循环, 压缩机17为补气 式涡旋压缩机,在室外低温环境下,打开补气膨胀节流器 106 ,一部分 高压液态制冷剂 节流为低压低温液体 制冷剂,再经过换热器107蒸发气化,进入 压缩机 17 补气腔内,使压缩机 17 的运行状况得到改善,制热量提高。 The heat pump system shown in Fig. 23 is undergoing a heating cycle, and the compressor 17 is qi. The scroll compressor opens an air-filling expansion throttle 106 in an outdoor low-temperature environment, and a part of the high-pressure liquid refrigerant is throttled as a low-pressure low-temperature liquid refrigerant, and then vaporized and vaporized by the heat exchanger 107 to enter the compressor. 17 In the air supply chamber, the operating condition of the compressor 17 is improved, and the heating capacity is increased.

图24所示的 热泵系统正在进行制冷循环,它同 图8、图9、图10所示的 热泵系统功能相同,但由于采用双向膨胀节流器 97 ,使系统得到简化,再热器 43 不仅可以作为冷凝器、蒸发器使用,也可以作为储液器,阀门 108 、 109 、 110 、 111 、 112 可采用电磁阀。 The heat pump system shown in Fig. 24 is undergoing a refrigeration cycle, which is the same as that shown in Figs. 8, 9, and 10. The heat pump system has the same function, but the system is simplified by the use of the bi-directional expansion restrictor 97. The reheater 43 can be used not only as a condenser or an evaporator, but also as a reservoir, valves 108, 109 , 110, 111, 112 can use solenoid valves.

图25所示的 热泵系统正在进行制冷循环,它带有气缸活塞式储液器 113 ,其结构和工作原理见图 28 。 The heat pump system shown in Fig. 25 is undergoing a refrigeration cycle with a cylinder piston type accumulator 113. The structure and working principle are shown in Fig. 28. .

图 26 是气缸活塞式储液器构造图,该储液器是由气缸外壳 114 、活塞 115 、气缸端盖 118 、 123 、制冷剂循环管 119 、 120 、 121 、 122 等组成,它装在蒸发器 8 、冷凝器 16 之间的制冷剂循环管路上,制冷剂循环管 119 、 122 与 干燥过滤器29相连,然后分别与 蒸发器 8 、冷凝器 16 相连, 制冷剂循环管 120 、 121 与双向膨胀节流器 97 相连,制冷剂循环管 119 、 120 和 121 、 122 分别接在气缸端盖 118 、 123 上,与气缸相通,活塞 115 可以在气缸内滑动。当系统进行制冷循环时,来自冷凝器 16 的高压液态制冷剂通过制冷剂循环管 122 从气缸端盖 123 进入气缸,大部分高压液态制冷剂又通过制冷剂循环管 121 进入到双向膨胀节流器 97 ,被节流为低压液态制冷剂,通过制冷剂循环管 120 ,从气缸端盖 118 流回到气缸,最后通过制冷剂循环管 119 又流出气缸,进入到 干燥过滤器29、 蒸发器 8 。由于气缸内一端是高压液态制冷剂,另一端是低压液态制冷剂,在活塞 115 两侧形成压差,从而推动活塞 115 从高压端向低压端移动,图中是从右向左移动,顶到气缸端盖 118 时为止,在活塞 115 左侧与气缸端盖 118 之间形成一个狭小的腔体空间,保证低压液态制冷剂的流通循环,这个狭小空间应保证制冷剂不会蒸发气化,而在活塞 115 右侧与气缸端盖 123 之间形成一个较大的腔体空间,保证高压液态制冷剂的流通循环和储存。活塞 115 带有节流孔管 116 ,少量的高压液态制冷剂可从节流孔管 116 节流到低压侧,也有微量的高压液态制冷剂从活塞 115 与气缸壁之间的配合间隙中节流到低压侧,当系统低负荷运转时,膨胀节流器 97 关闭,系统依靠节流孔管 116 节流运行,也可以不设节流孔管 116 ,系统完全依靠膨胀节流器 97 运行。节流孔管 116 两端可带有向下弯曲的小管,它可用弹性材料制成,在它的口部装一个重物,使它永远保持下垂状态,并伸入到制冷剂液面以下,保证底部的液态制冷剂被节流。在活塞 115 中有保温层 117 ,可减少传热。当系统进行制热循环时,制冷剂反向流动,活塞 115 的左侧变为高压侧,右侧变为低压侧,其被推向右端,顶到气缸端盖 123 时为止,多余的高压液态制冷剂储存在活塞 115 左侧的气缸内。 Figure 26 is a structural view of a cylinder piston type reservoir, which is composed of a cylinder housing 114, a piston 115, a cylinder end cover 118, 123, a refrigerant circulation pipe 119, 120, 121, 122, etc., which is installed in the refrigerant circulation line between the evaporator 8 and the condenser 16, the refrigerant circulation pipe 119, 122 is connected to the drying filter 29, and then connected to the evaporator 8 and the condenser 16, respectively, and the refrigerant circulation pipes 120 and 121 are connected to the bidirectional expansion restrictor 97, and the refrigerant circulation pipe is connected. 119, 120, 121, 122 are connected to the cylinder end caps 118, 123, respectively, communicating with the cylinder, the piston 115 It can slide inside the cylinder. When the system performs a refrigeration cycle, the high pressure liquid refrigerant from the condenser 16 passes through the refrigerant circulation pipe 122 from the cylinder end cap 123. Into the cylinder, most of the high pressure liquid refrigerant enters the bidirectional expansion restrictor 97 through the refrigerant circulation pipe 121, is throttled into a low pressure liquid refrigerant, passes through the refrigerant circulation pipe 120, and from the cylinder end cover 118. It flows back to the cylinder and finally flows out of the cylinder through the refrigerant circulation pipe 119 to the drying filter 29 and the evaporator 8. Since one end of the cylinder is a high-pressure liquid refrigerant, the other end is a low-pressure liquid refrigerant, in the piston 115 A differential pressure is formed on both sides to push the piston 115 from the high pressure end to the low pressure end. In the figure, it moves from right to left, up to the cylinder end cap 118, on the left side of the piston 115 and the cylinder end cap 118 A narrow cavity space is formed to ensure the circulation of the low-pressure liquid refrigerant. This narrow space should ensure that the refrigerant does not evaporate and vaporize, but on the right side of the piston 115 and the cylinder end cap 123 A large cavity space is formed between them to ensure the circulation and storage of the high-pressure liquid refrigerant. The piston 115 has an orifice tube 116 and a small amount of high pressure liquid refrigerant can be supplied from the orifice tube 116 Throttle to the low pressure side, there is also a small amount of high pressure liquid refrigerant throttling from the clearance between the piston 115 and the cylinder wall to the low pressure side. When the system is running at low load, the expansion throttle 97 is closed, and the system relies on the orifice tube 116 throttling operation, or without orifice 170, the system relies entirely on the expansion throttle 97. Orifice tube 116 The ends can be bent with a small tube, which can be made of elastic material, and a heavy object is placed at the mouth to keep it hanging forever, and extends below the liquid level of the refrigerant to ensure liquid cooling at the bottom. The agent is throttled. In the piston 115 There is insulation layer 117 in it to reduce heat transfer. When the system performs the heating cycle, the refrigerant flows in the reverse direction, the left side of the piston 115 becomes the high pressure side, and the right side becomes the low pressure side, which is pushed to the right end, and the top end to the cylinder end cap 123 The excess high pressure liquid refrigerant is then stored in the cylinder on the left side of the piston 115.

图 27 是隔膜式储液器构造图,它是由罐体 124 、隔膜 125 、节流孔管 116 、制冷剂循环管 119 、 120 、 121 、 122 等组成。隔膜 125 是高弹性、高强度、不渗漏的柔性材料,它位于罐体 124 的中央,将其分隔成左右两个独立的空间。当系统停机、压力平衡时,隔膜 125 处于任意形状的松弛状态。在罐体 124 的下部连接有制冷剂循环管 119 、 120 、 121 、 122 ,制冷剂循环管 119 、 120 与隔膜 125 左侧空间相连通,制冷剂循环管 121 、 122 与隔膜 125 右侧空间相连通,节流孔管 116 将隔膜 125 两侧空间相连通。当制冷剂循环管 121 、 122 接高压端时,隔膜 125 向左伸展或膨胀,紧贴罐体 124 的内壁,在右侧形成较大的空间,高压液态制冷剂在其中流通循环,多余的部分储存其中,此时,制冷剂循环管 119 、 120 接低压端,被节流后的制冷剂在隔膜 125 底部狭小空间内流通循环,这个狭小空间应保证制冷剂不会蒸发气化;反之,制冷剂反向流动,隔膜 125 向右膨胀。格栅 126 可阻止隔膜 125 向下伸展,防止堵塞制冷剂循环管管口。 Figure 27 is a structural view of the diaphragm type reservoir, which is composed of a can body 124, a diaphragm 125, an orifice tube 116, and a refrigerant circulation tube. 119, 120, 121, 122, etc. The diaphragm 125 is a flexible material with high elasticity, high strength and no leakage, which is located in the tank 124 The center is divided into two separate spaces. When the system is shut down and the pressure is balanced, the diaphragm 125 is in a relaxed state of any shape. A refrigerant circulation pipe 119 is connected to a lower portion of the can body 124, 120, 121, 122, the refrigerant circulation pipe 119, 120 is connected to the left space of the diaphragm 125, and the refrigerant circulation pipes 121, 122 and the diaphragm 125 The space on the right side is connected, and the orifice tube 116 connects the spaces on both sides of the diaphragm 125. When the refrigerant circulation pipes 121, 122 are connected to the high pressure end, the diaphragm 125 extends or expands to the left, close to the tank body. The inner wall of 124 forms a large space on the right side, in which the high-pressure liquid refrigerant circulates, and the excess portion is stored therein. At this time, the refrigerant circulation pipe 119, 120 Connected to the low pressure end, the throttled refrigerant circulates in a narrow space at the bottom of the diaphragm 125. This narrow space should ensure that the refrigerant does not evaporate and vaporize; conversely, the refrigerant flows in the opposite direction and the diaphragm 125 expands to the right. Grille 126 prevents the diaphragm 125 from extending downward to prevent clogging of the refrigerant circulation tube nozzle.

图 28 中设有两个储液器 28 ,当双向膨胀节流器 97 右侧为高压端、左侧为低压端时,使用右侧的储液器 28 储存高压液态制冷剂,左侧的储液器 28 不使用,反之,使用左侧的储液器 28 ,右侧的不使用。图中的单向阀也可换成电磁阀。 In Figure 28, two reservoirs 28 are provided. When the right side of the bidirectional expansion restrictor 97 is the high pressure side and the left side is the low pressure side, the right side reservoir is used. 28 Store the high pressure liquid refrigerant. The reservoir 28 on the left is not used. Otherwise, use the reservoir 28 on the left and the right side is not used. The check valve in the figure can also be replaced by a solenoid valve.

图 29 中共用储液器 129 位于双向膨胀节流器 97 的上方,当右侧为高压端、左侧为低压端时,右侧电磁阀 130 打开、左侧的电磁阀关闭,储液器 129 储存右侧的高压液态制冷剂,反之,左侧电磁阀 130 打开、右侧的电磁阀关闭,储液器 129 储存左侧的高压液态制冷剂。 The shared reservoir 129 in Figure 29 is located in the bi-directional expansion restrictor 97 Above, when the right side is the high pressure end and the left side is the low pressure end, the right side solenoid valve 130 is opened, the left side solenoid valve is closed, and the accumulator 129 stores the right side high pressure liquid refrigerant, and vice versa, the left side solenoid valve 130 Open, the solenoid valve on the right side is closed, and the reservoir 129 stores the high pressure liquid refrigerant on the left side.

图 30 中,当双向膨胀节流阀 97 右侧为高压端、左侧为低压端时,右侧电磁阀 132 、 133 打开、 131 关闭,左侧电磁阀 132 、 133 关闭、 131 打开,共用储液器 28 储存右侧的高压液态制冷剂,反之,左侧电磁阀 132 、 133 打开、 131 关闭,右侧电磁阀 132 、 133 关闭、 131 打开,共用储液器 28 储存左侧的高压液态制冷剂。 In Fig. 30, when the right side of the bidirectional expansion throttle valve 97 is the high pressure end and the left side is the low pressure end, the right side solenoid valves 132, 133 are opened, 131 Closed, left solenoid valve 132, 133 closed, 131 open, shared reservoir 28 Stores the high pressure liquid refrigerant on the right side, otherwise the left solenoid valves 132, 133 open, 131 Closed, right solenoid valve 132, 133 closed, 131 open, shared reservoir 28 Store the high pressure liquid refrigerant on the left side.

图 31 中,当双向膨胀节流器 97 右侧为高压端、左侧为低压端时,右侧电磁阀 133 打开、左侧电磁阀 133 关闭,共用储液器 28 储存右侧的高压液态制冷剂,反之,左侧电磁阀 133 打开、右侧电磁阀 133 关闭,共用储液器 28 储存左侧的高压液态制冷剂。 In Fig. 31, when the right side of the bidirectional expansion restrictor 97 is the high pressure end and the left side is the low pressure end, the right side solenoid valve 133 is opened, and the left side solenoid valve is opened. 133 Close, share the reservoir 28 Store the high pressure liquid refrigerant on the right side. Otherwise, the left solenoid valve 133 opens, the right solenoid valve 133 closes, and the common reservoir 28 Store the high pressure liquid refrigerant on the left side.

综上所述,送风箱、排风箱、热泵系统主机、水冷器可以放在室内,也可以放在室外;送风箱可以带回风口,也可以不带回风口;排风箱可以带新风口,也可以不带新风口;多联式机组可以带多台室内机组和室外机组;水冷器串联、并联在高压气管上,或跨接在制冷剂循环管之间,它也可以转换成水热器,为热泵系统提供热源,用于融霜运行,它也可以作为储液器,储存多余的液态制冷剂;膨胀节流器可采用双向阀或单向阀,双向阀使热泵系统更加简化。 In summary, the air supply box, the exhaust fan box, the heat pump system main unit, and the water cooler can be placed indoors or outside; the air supply box can be brought back to the air outlet or without the return air outlet; the exhaust air box can be carried The new air outlet can also be equipped with no fresh air outlets; the multi-unit unit can carry multiple indoor units and outdoor units; the water cooler can be connected in series or in parallel on the high-pressure air pipe or across the refrigerant circulation pipe, and it can also be converted into The water heater provides a heat source for the heat pump system for defrost operation. It can also be used as a liquid reservoir to store excess liquid refrigerant. The expansion throttle can use a two-way valve or a check valve. The two-way valve makes the heat pump system more simplify.

以上所述,仅是本发明的较佳实施办法而已,并非对本发明做任何形式上的限制。依据本发明的技术实质对以上实施办法所做的任何简单修改、等同变化及修饰,均属于本发明的保护范围。 The above description is only a preferred embodiment of the present invention and is not intended to limit the invention in any way. Any simple modifications, equivalent changes, and modifications made to the above embodiments in accordance with the technical spirit of the present invention are within the scope of the present invention.

Claims (11)

1.热泵热回收空调机组,它是由送风箱、排风箱、热泵系统、配电控制系统组成,送风箱带有新风口、回风口、送风口、蒸发器、送风机、过滤器、附加功能段;排风箱带有进风口、新风口、排风口、冷凝器、排风机、过滤器、附加功能段;热泵系统是由压缩机、冷凝器、膨胀节流器、蒸发器、辅助装置、制冷剂循环管、制冷剂组成;配电控制系统是由配电设备和自动控制设备组成,其特征在于,新风口接室外空气,回风口接室内回风,送风口接室内空调系统送风管道,进风口接室内排风,排风口接室外空气;室外新风和室内回风被送风机吸入送风箱,经过过滤器、蒸发器、附加功能段的处理,达到设定的空调参数后,通过送风口送到空调区域;室外新风和室内排风被排风机吸入排风箱,经过过滤器、冷凝器、附加功能段的处理后,通过排风口排到室外;送风箱、排风箱是整体式的,或分段组合式的,送风箱与排风箱之间是密闭隔断的;热泵系统的蒸发器装在送风箱中,制冷时,用于冷却空气,制热时,转换成冷凝器,用于加热空气;热泵系统的冷凝器装在排风箱中,制冷时,冷凝热被室内排风和室外新风带走,制热时,转换成蒸发器,吸收室内排风和室外新风中的热量;热泵系统的压缩机及辅助装置装在排风箱中,或装在送风箱中,也可装在送风箱、排风箱之外;配电控制系统的电控箱嵌入排风箱或送风箱中,或挂在送风箱、排风箱外面,或与送风箱、排风箱分体设置;上述风口为可调节风口,送风机、排风机为变频调速风机,热泵系统为变容量系统;送风箱有带回风口的,也有不带回风口的;排风箱有带新风口的,也有不带新风口的。 1. Heat pump heat recovery air conditioning unit, which is composed of air supply box, exhaust air box, heat pump system and power distribution control system. The air supply box has fresh air outlet, return air outlet, air supply port, evaporator, blower, filter, Additional functional section; the exhaust box has an air inlet, a fresh air outlet, an air outlet, a condenser, an exhaust fan, a filter, and an additional functional section; the heat pump system is a compressor, a condenser, an expansion throttle, an evaporator, Auxiliary device, refrigerant circulation pipe, refrigerant composition; power distribution control system is composed of power distribution equipment and automatic control equipment, which is characterized in that the fresh air outlet is connected to the outdoor air, the return air inlet is connected to the indoor return air, and the air supply port is connected to the indoor air conditioning system. Air supply duct, the air inlet is connected to the indoor air exhaust, and the air outlet is connected to the outdoor air; the outdoor fresh air and the indoor return air are sucked into the air supply box by the blower, and processed by the filter, the evaporator and the additional functional section to reach the set air conditioning parameter. After that, it is sent to the air-conditioning area through the air supply port; the outdoor fresh air and the indoor exhaust air are sucked into the air exhaust box by the exhaust fan, and after passing through the filter, the condenser, and the additional functional section, the air outlet is passed through the air outlet. To the outside; the air supply box and the exhaust air box are integral or sectional, and the air supply box and the air exhaust box are sealed and sealed; the evaporator of the heat pump system is installed in the air supply box, during cooling It is used to cool the air. When heating, it is converted into a condenser for heating the air. The condenser of the heat pump system is installed in the exhaust box. When cooling, the heat of condensation is taken away by the indoor exhaust and the outdoor fresh air. When heating Converted into an evaporator to absorb heat from indoor exhaust and outdoor fresh air; the compressor and auxiliary device of the heat pump system are installed in the exhaust box, or installed in the blower box, or installed in the blower box and exhausted Outside the box; the electric control box of the power distribution control system is embedded in the air exhaust box or the air supply box, or is hung outside the air supply box or the air exhaust box, or is arranged separately from the air supply box and the air exhaust box; Adjustable air outlet, blower and exhaust fan are variable frequency speed control fans, heat pump system is variable capacity system; air supply box has air return port, and there is no return air outlet; air exhaust box has new air outlet, but also does not bring new The mouth of the wind. 2. 根据权利要求1所述的热泵热回收空调机组,其特征在于,排风箱与送风箱的连接可以是整体式、分体式、多联式的,相应的,热泵系统也可以是整体式、分体式、多联式的,它们可以放在室内,也可以放在室外。2. The heat pump heat recovery air conditioning unit according to claim 1, wherein the connection between the air distribution box and the air supply box is integral, split, and multi-connected, and correspondingly, the heat pump system may be integral, Split-type, multi-connected, they can be placed indoors or outdoors. 3. 根据权利要求1所述的热泵热回收空调机组,其特征在于,热水型热泵热回收空调机组带有可以提供热水的水冷器,它串联、并联、或跨接在制冷剂管道上,采用闭式有压容器或开式无压容器,它也可以转换成水热器使用,为热泵系统提供热源,它也可以作为储液器使用,储存液态制冷剂。3. The heat pump heat recovery air conditioning unit according to claim 1, wherein the hot water type heat pump heat recovery air conditioning unit is provided with a water cooler capable of providing hot water, which is connected in series, in parallel, or across a refrigerant pipe. Closed pressurized container or open pressureless container, it can also be converted into a hydrothermal heater to provide heat source for the heat pump system. It can also be used as a liquid storage device to store liquid refrigerant. 4. 根据权利要求1所述的热泵热回收空调机组,其特征在于,再热型热泵热回收空调机组带再热器和控制再热器中制冷剂流量的装置,再热器也可以转换成蒸发器。4. The heat pump heat recovery air conditioning unit according to claim 1, wherein the reheat type heat pump heat recovery air conditioning unit has a reheater and a device for controlling a refrigerant flow rate in the reheater, and the reheater can also be converted into an evaporator. . 5. 根据权利要求1所述的热泵热回收空调机组,其特征在于,双机型热泵热回收空调机组带有两套制冷系统,其中一套是热泵系统,用于空气的冷却或加热;另一套是单冷或热泵系统,用于空气的再热或冷却。5. The heat pump heat recovery air conditioning unit according to claim 1, wherein the dual-type heat pump heat recovery air conditioning unit has two sets of refrigeration systems, one of which is a heat pump system for air cooling or heating; and the other set It is a single cold or heat pump system for reheating or cooling of air. 6. 根据权利要求2所述的热泵热回收空调机组,其特征在于,多联式热泵热回收空调机组包含有送风箱、排风箱、热泵系统、室外机、附加设备、水冷器、配电控制系统,热泵系统连接一台或数台排风箱或室外机,连接两台或数台室内机组。6. The heat pump heat recovery air conditioning unit according to claim 2, wherein the multi-unit heat pump heat recovery air conditioning unit comprises a blower box, a fan box, a heat pump system, an outdoor unit, an additional device, a water cooler, and a power distribution control. The system, the heat pump system is connected to one or several air exhaust boxes or outdoor units, and two or several indoor units are connected. 7.根据权利要求2所述的热泵热回收空调机组,其特征在于,多联式热泵热回收空调机组采用同工况型热泵系统,或热回收型热泵系统。The heat pump heat recovery air conditioning unit according to claim 2, wherein the multi-type heat pump heat recovery air conditioning unit adopts a same-type heat pump system or a heat recovery type heat pump system. 8.根据权利要求2所述的热泵热回收空调机组,其特征在于,多联式热泵热回收空调机组的室外机组有室外机或排风箱,室外机带冷凝器,也可以转换成蒸发器,它不与室内排风相连,只与室外空气进行热交换,当室外机组是室外机时,室内的排风箱可以不带新风口,当室外机组是排风箱时,室内可以设、也可以不设排风箱,室内排风箱可以带、也可以不带新风口。 The heat pump heat recovery air conditioning unit according to claim 2, wherein the outdoor unit of the multi-unit heat pump heat recovery air conditioning unit has an outdoor unit or a exhaust fan, and the outdoor unit has a condenser, and can also be converted into an evaporator. It is not connected to the indoor exhaust, only exchanges heat with the outdoor air. When the outdoor unit is an outdoor unit, the indoor exhaust box can be without a fresh air outlet. When the outdoor unit is a exhaust box, the room can be set up. There may be no air exhaust box, and the indoor air exhaust box may or may not have a fresh air outlet. 9. 热泵热回收空调机组,它是由送风箱、排风箱、热泵系统、配电控制系统组成,其中一种热泵系统带有可以储存液态制冷剂的气缸活塞式储液器,其特征在于,气缸活塞式储液器主要由气缸外壳、活塞、气缸端盖、制冷剂循环管组成,气缸端盖带有制冷剂循环管,它连接在热泵系统的冷凝器与蒸发器之间的制冷剂循环管上,并与膨胀节流阀相连,保证制冷剂的循环和节流,活塞可以在气缸内移动,它从高压端移动到低压端,从而在气缸内形成储存高压液态制冷剂的空间,活塞上也可以带有节流孔管,一部分高压液态制冷剂可从此节流到低压端,起到膨胀节流器的作用。9. The heat pump heat recovery air conditioning unit is composed of a blower box, a blower box, a heat pump system and a power distribution control system, wherein one type of heat pump system has a cylinder piston type liquid storage device capable of storing liquid refrigerant, wherein The cylinder piston type accumulator mainly comprises a cylinder casing, a piston, a cylinder end cover and a refrigerant circulation pipe, and the cylinder end cover is provided with a refrigerant circulation pipe, which is connected to a refrigerant cycle between the condenser and the evaporator of the heat pump system. The tube is connected to the expansion throttle valve to ensure the circulation and throttling of the refrigerant. The piston can move in the cylinder, and it moves from the high pressure end to the low pressure end, thereby forming a space for storing the high pressure liquid refrigerant in the cylinder, the piston An orifice tube can also be provided thereon, and a part of the high-pressure liquid refrigerant can be throttled to the low-pressure end to function as an expansion throttle. 10. 热泵热回收空调机组,它是由送风箱、排风箱、热泵系统、配电控制系统组成,其中一种热泵系统带有可以储存液态制冷剂的隔膜式储液器,其特征在于,隔膜式储液器主要由罐体、隔膜、节流孔管、制冷剂循环管组成,隔膜采用不渗漏的弹性或柔性材料,它位于罐体的中央,将其分隔成左右两个独立空间,在罐体的下部连接有制冷剂循环管,这些管道与罐体隔膜两侧的空间相连通,它连接在热泵系统的冷凝器与蒸发器之间,并与膨胀节流器相连,保证制冷剂的循环和节流,当制冷剂循环管一侧接高压端、另一侧接低压端时,隔膜从高压侧向低压侧伸展或膨胀,在高压侧形成较大的空间,高压液态制冷剂在其中流通循环,一部分流向膨胀节流器,多余的部分储存其中,在罐体的下部可以带有节流孔管,它将隔膜两侧空间相连通,一部分高压液态制冷剂可从此节流到低压端,起到膨胀节流器的作用。10. The heat pump heat recovery air conditioning unit is composed of a blower box, a blower box, a heat pump system and a power distribution control system, wherein one type of heat pump system has a diaphragm type liquid storage device capable of storing liquid refrigerant, characterized in that the diaphragm The liquid storage device is mainly composed of a tank body, a diaphragm, an orifice tube and a refrigerant circulation tube. The diaphragm adopts a non-leakage elastic or flexible material, which is located in the center of the tank body and is divided into two independent spaces. A refrigerant circulation pipe is connected to a lower portion of the tank body, and these pipes are connected to a space on both sides of the tank diaphragm, and are connected between the condenser of the heat pump system and the evaporator, and are connected with the expansion throttle to ensure the refrigerant. Cycle and throttling, when the refrigerant circulation pipe is connected to the high pressure end on one side and the low pressure end on the other side, the diaphragm extends or expands from the high pressure side to the low pressure side, forming a large space on the high pressure side, and the high pressure liquid refrigerant is Where the circulation cycle, a part of the flow to the expansion throttle, the excess part is stored therein, and the lower part of the tank body may have an orifice tube, which connects the space on both sides of the diaphragm, a part of the high pressure liquid state From this, the refrigerant can be throttled to the low pressure end to function as an expansion throttle. 11. 热泵热回收空调机组,它是由送风箱、排风箱、热泵系统、配电控制系统组成,其中一种热泵系统带有共用储液器,其特征在于,热泵系统带有双向膨胀节流器,通过多种阀门组合及工况转换,不论系统是制冷运行还是制热运行,都能保证共用储液器运行在高压一侧,用于储存高压液态制冷剂。 11. Heat pump heat recovery air conditioning unit, which is composed of a blower box, a fan box, a heat pump system, and a power distribution control system, wherein one heat pump system has a shared accumulator, characterized in that the heat pump system has bidirectional expansion throttling Through a variety of valve combinations and operating conditions, whether the system is cooling or heating, the shared reservoir can be operated on the high pressure side for storing high pressure liquid refrigerant.
PCT/CN2012/074960 2011-05-06 2012-05-01 Air conditioning unit for heat recovery from heat pump Ceased WO2012152199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120141549 2011-05-06
CN201120141549.4 2011-05-06

Publications (1)

Publication Number Publication Date
WO2012152199A1 true WO2012152199A1 (en) 2012-11-15

Family

ID=47095372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074960 Ceased WO2012152199A1 (en) 2011-05-06 2012-05-01 Air conditioning unit for heat recovery from heat pump

Country Status (2)

Country Link
CN (7) CN102767875A (en)
WO (1) WO2012152199A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371525A (en) * 2015-10-28 2016-03-02 北京格瑞力德空调科技有限公司 Fresh air handling unit provided with cold/heat source without auxiliary heat exchange device and capable of outputting cold/hot water
CN105371526A (en) * 2015-10-28 2016-03-02 北京格瑞力德空调科技有限公司 Fresh air handling unit provided with cold/heat source without auxiliary heat exchange device and capable of outputting refrigerant/heat medium
CN106052057A (en) * 2016-06-01 2016-10-26 苏州格兰斯柯光电科技有限公司 Pipeline
CN106152284A (en) * 2016-08-16 2016-11-23 浙江国祥股份有限公司 A kind of clean air conditioner indoor unit
CN107014172A (en) * 2017-05-27 2017-08-04 中原工学院 A kind of three pressure air-cooled heat pump drying systems with recuperation of heat
CN107726531A (en) * 2017-11-14 2018-02-23 科林贝思(深圳)科技有限公司 A kind of heat pump VMC and its control method
CN107726532A (en) * 2017-11-30 2018-02-23 北京三五二环保科技有限公司 A kind of heat pump fresh air
CN107869928A (en) * 2017-12-12 2018-04-03 陈祖卫 Air-to-air heat exchangers and refrigeration units
CN107940805A (en) * 2017-12-25 2018-04-20 北京中矿博能节能科技有限公司 Direct cooling deep enthalpy extraction heat exhaust air heat pump system
CN109458723A (en) * 2018-12-20 2019-03-12 茂名市茂南区沃航制冷节能科技有限公司 A kind of heat-pump air-conditioner heat utilization device
CN109453611A (en) * 2018-12-21 2019-03-12 江苏格陵兰传热科技有限公司 The condensation water recovery and use system of high temperature cigarette vapour
CN109539406A (en) * 2018-11-02 2019-03-29 广东申菱环境系统股份有限公司 A kind of VRF Air Conditioning System of three-stage
CN109959101A (en) * 2019-05-05 2019-07-02 李社红 Heat-exchanger rig and heat pump air conditioning system with it
CN110345593A (en) * 2019-08-14 2019-10-18 中原工学院 A kind of large space integrated-type unitary air handling unit
CN110454870A (en) * 2019-09-09 2019-11-15 合肥天鹅制冷科技有限公司 Integral combination type air-conditioner set
CN110671835A (en) * 2019-11-11 2020-01-10 恒量电器(厦门)有限公司 Integrated supply system and method based on temperature and humidity control and hot water heating
CN112032889A (en) * 2020-09-28 2020-12-04 江苏华强新能源科技有限公司 Energy-saving environment regulation and control device and control method thereof
CN112594831A (en) * 2020-12-29 2021-04-02 福建瑞博恩环境科技有限公司 Split type heat pipe heat recovery fresh air unit
CN112856869A (en) * 2021-02-24 2021-05-28 辽宁沣知稼农业科技发展有限公司 Efficient parallel oil-free multi-handpiece evaporation refrigeration unit with cold energy recovery function
CN113048587A (en) * 2021-04-15 2021-06-29 福建省建筑设计研究院有限公司 Refrigeration dehumidification and rotary dehumidification coupling condensation heat recovery type temperature and humidity separately-controlled air treatment system
CN113154629A (en) * 2021-05-19 2021-07-23 珠海格力电器股份有限公司 Control method, device and system for multi-connected air handling unit and storage medium
CN113678739A (en) * 2021-08-25 2021-11-23 广东唯金智能环境科技有限公司 Livestock breeding house environment control system and control method thereof
CN113865149A (en) * 2021-08-30 2021-12-31 浙江工业大学 Composite heat pump system for killing new coronavirus at high temperature
CN114623514A (en) * 2022-02-23 2022-06-14 宁波德业日用电器科技有限公司 A kind of full-heat fresh air dehumidifier and operation method thereof
CN114856991A (en) * 2021-01-20 2022-08-05 浙江雪波蓝科技有限公司 Heat pump, Rankine cycle system with heat pump and application of Rankine cycle system
EP4036495A3 (en) * 2021-01-27 2022-10-12 LGL France S.A.S. Thermodynamic heat recovery without an additional thermodynamic circuit
CN115540092A (en) * 2022-09-26 2022-12-30 珠海格力电器股份有限公司 Air-conditioning unit and method for controlling the air-conditioning unit
CN116294009A (en) * 2023-04-28 2023-06-23 重庆海润节能技术股份有限公司 Multi-channel ventilation, environment control and purification all-in-one machine and control method thereof
CN112797493B (en) * 2021-01-13 2023-12-22 青岛海信日立空调系统有限公司 Fresh air conditioner and control method thereof
CN117663564A (en) * 2024-01-31 2024-03-08 荏原冷热系统(中国)有限公司 Centrifugal steam heat pump gas-liquid separator control system

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131436A1 (en) * 2012-03-05 2013-09-12 Rong Guohua Air-conditioning unit with heat recovery
CN102914033A (en) * 2012-11-22 2013-02-06 苏州启山电器技术开发事务所(普通合伙) Fresh air-conditioning system
CN103134130A (en) * 2013-01-10 2013-06-05 广东西屋康达空调有限公司 Constant-temperature constant-humidity type direct current frequency conversion twin-stage heat recovery air conditioner
CN104251548B (en) * 2013-06-28 2018-05-04 海尔集团公司 Unit air conditioner heat-exchange system, unit air conditioner and its control method
CN109386886B (en) * 2014-02-21 2020-12-29 大金工业株式会社 Air conditioner
CN103851707A (en) * 2014-03-21 2014-06-11 无锡市汉马空调与通风设备有限公司 All fresh air power heat recovery temperature-humidity adjusting air purifier
CN107270502A (en) * 2014-04-08 2017-10-20 江苏紫东建筑科技股份有限公司 The secondary recuperation of heat Fresh air handing device and its method of work of central air conditioner system
CN103912947B (en) * 2014-04-13 2018-03-06 荣国华 For fan coil and the heat pump of heat recovery fresh air conditioning group
CN104019513A (en) * 2014-06-26 2014-09-03 湖南日月星能源科技有限公司 Heat pump type fresh air ventilator set
CN105202654B (en) * 2015-09-02 2019-02-22 广东申菱环境系统股份有限公司 A kind of integral air conditioner unit and its control method applied to subway station
CN105135531B (en) * 2015-09-24 2017-09-12 无锡同方人工环境有限公司 A kind of air adjustment unit of low energy building house
CN105509199B (en) * 2016-01-20 2019-02-19 广东申菱环境系统股份有限公司 A kind of subway station one one-driven-many indoor air-conditioner set and its control method
CN105774468B (en) * 2016-03-03 2017-11-24 浙江大学 New-energy electric vehicle waste heat energy storing type air-conditioning system and its method based on solution dehumidification
CN105605756A (en) * 2016-03-17 2016-05-25 南京润慧投资管理有限公司 Super heat recovery fresh air unit
CN105627479A (en) * 2016-03-18 2016-06-01 上海朗绿建筑科技有限公司 Single-evaporator multi-condenser fresh air dehumidification unit and air conditioning method
CN205606685U (en) * 2016-03-31 2016-09-28 荣国华 Indoor new trend and oil extraction cigarette system
CN107461959A (en) * 2016-06-06 2017-12-12 同方人工环境有限公司 A kind of heat pump assembly suitable for wood conditioning room
CN106016629B (en) * 2016-06-30 2022-06-10 于永康 Indoor air quality, temperature and humidity monitoring and adjusting system
CN106052363A (en) * 2016-07-07 2016-10-26 杭州莱鸿能源科技有限公司 Heat recovery hot air drier
CN106208627A (en) * 2016-08-17 2016-12-07 泰兴金江化学工业有限公司 A kind of converter anti-explosion cabinet of band Desuperheating device
CN106196380B (en) * 2016-08-31 2021-11-23 山东华科规划建筑设计有限公司 Refrigerant supercooling heat recycling heat recovery air treatment unit
CN106482303B (en) * 2016-11-25 2022-05-17 广州华凌制冷设备有限公司 Air conditioner and refrigeration control method thereof
CN106524269A (en) * 2016-12-30 2017-03-22 张国华 Range hood
CN106895529A (en) * 2017-04-10 2017-06-27 深圳沃海森科技有限公司 The centrifugal compressor cooling water air conditioner unit of multistage regulation
CN107449033A (en) * 2017-06-29 2017-12-08 斯福朗(北京)环保科技有限公司 A kind of capillary radiation system Fresh air handing unit and its control method
CN107366995A (en) * 2017-07-03 2017-11-21 沈阳建筑大学 A kind of bathroom air exhaust waste heat recycling system
CN107289563A (en) * 2017-07-29 2017-10-24 荣国华 Reheating type heat pump recuperation of heat air-conditioner set
CN207279831U (en) * 2017-09-21 2018-04-27 荣轩平 Multi-connected machine window air conditioning system
CN108128116B (en) * 2017-12-12 2021-03-16 上海交通大学 Automotive Heat Recovery Air Conditioning System
CN108266877A (en) * 2017-12-20 2018-07-10 同济大学 The air-exhaust heat-recovery fresh air handling air-conditioner set of carbon dioxide trans-critical cycle
CN108286755A (en) * 2018-02-28 2018-07-17 广东省建筑科学研究院集团股份有限公司 A kind of air-treatment unit of included low-temperature receiver
CN108317650B (en) * 2018-02-28 2024-05-14 广东省建筑科学研究院集团股份有限公司 Multi-connected air conditioner heat pump system with independent fresh air
CN110360700A (en) * 2018-04-09 2019-10-22 宁波方太厨具有限公司 A kind of air in kitchen regulating system
CN108583206B (en) * 2018-04-20 2023-12-08 珠海格力电器股份有限公司 Air conditioning system, vehicle and air conditioning system control method
CN108954987A (en) * 2018-05-25 2018-12-07 青岛海尔(胶州)空调器有限公司 Air conditioner and pressure stabilizing control method
CN108592495B (en) * 2018-06-25 2024-01-16 中国制浆造纸研究院有限公司 Humidification system of air-cooled refrigerator
CN109297124B (en) * 2018-11-03 2024-02-23 德州学院 High-efficiency energy-saving air conditioning unit
CN109373456A (en) * 2018-11-26 2019-02-22 苏州浩佳节能科技有限公司 A heat recovery air conditioner
CN109405086A (en) * 2018-11-30 2019-03-01 上海朗绿建筑科技股份有限公司 Wall-mounted total-heat recovery type fresh air dehumidifier group
CN109757907B (en) * 2019-01-09 2021-12-21 青岛海尔空调器有限总公司 Energy system, method and apparatus for controlling energy system, and storage medium
WO2020206227A1 (en) 2019-04-04 2020-10-08 Oy Halton Group Ltd. Slide-type range hood
CN112050306A (en) * 2019-06-05 2020-12-08 宁波港菱环境科技股份有限公司 All-fresh-air kitchen air conditioning household dehumidification and disinfection type heat recovery multifunctional integrated machine
CN110500648A (en) * 2019-06-20 2019-11-26 常州工程职业技术学院 Main external air conditioner
CN110285558B (en) * 2019-06-28 2021-05-25 珠海格力电器股份有限公司 Air conditioner fresh air fan with good heat dissipation effect
CN110822559A (en) * 2019-11-08 2020-02-21 星球客(广东)智能科技有限公司 A fresh air conditioning system
CN111351150B (en) * 2020-03-17 2022-02-22 江苏梅萨纳环境科技有限公司 Heat pump heat recovery type water-wind integrated unit
CN111425985A (en) * 2020-04-15 2020-07-17 中信建筑设计研究总院有限公司 Universal air conditioner and ventilation module structure for temporary emergency hospital, use method and application
CN212431129U (en) * 2020-07-02 2021-01-29 王子捷 Multifunctional integrated air conditioner
KR20220011263A (en) 2020-07-20 2022-01-28 엘지전자 주식회사 Multi-air conditioner for heating and cooling operations
CN111727888A (en) * 2020-07-27 2020-10-02 潍坊双翼环保设备有限公司 Indoor environment control unit for breeding and planting
CN114537075B (en) * 2020-11-26 2025-05-30 开利公司 Temperature regulation system, temperature regulation method and storage medium
CN112780362B (en) * 2020-12-30 2023-07-28 国网黑龙江省电力有限公司供电服务中心 A system and method for high-efficiency utilization of electric energy in low-temperature environments based on hierarchical power supply control
CN112594985B (en) * 2020-12-31 2022-04-19 广东积微科技有限公司 Oil return control method of multifunctional multi-split system with double four-way valves
CN112781150A (en) * 2021-02-08 2021-05-11 苏州大学 Radiation type refrigerating and heating passive house
CN113346160A (en) * 2021-06-04 2021-09-03 华北电力大学 Hybrid power battery thermal management system and method
CN113566445B (en) * 2021-07-29 2022-08-02 青岛久远换热科技有限公司 Heat pump dehumidification drying unit
CN113654127B (en) * 2021-08-20 2022-09-27 美的集团武汉暖通设备有限公司 Air conditioner and control method thereof
CN113566307A (en) * 2021-08-20 2021-10-29 美的集团武汉暖通设备有限公司 Air conditioner and control method thereof
CN113757875B (en) * 2021-10-20 2023-01-10 福建工程学院 A heat recovery type phase change energy storage fresh air system and its working method
CN113983586B (en) * 2021-11-17 2025-07-22 北京市京科伦冷冻设备有限公司 Multi-split central air conditioning system capable of simultaneously refrigerating and heating
CN114110982B (en) * 2021-11-24 2023-06-30 广东美的制冷设备有限公司 Fresh air equipment control method and device, storage medium and fresh air equipment
CN114396681B (en) * 2021-12-16 2024-07-19 广东申菱环境系统股份有限公司 Energy-saving fresh air system
CN114562806B (en) * 2021-12-22 2023-03-24 兴鼎工程(深圳)有限公司 Total heat recovery device for energy-saving fresh air system
CN114087702A (en) * 2021-12-27 2022-02-25 陈柏年 Spray evaporation condensation multi-stage heat recovery fresh air handling unit
CN114608093B (en) * 2022-03-04 2025-04-01 张喆 Energy comprehensive recovery and utilization type air treatment system and working method
CN114704974A (en) * 2022-04-12 2022-07-05 广州瑞姆节能设备有限公司 Trigeminy supplies heat pump set with inflation stock solution device
CN115200109B (en) * 2022-07-29 2023-07-25 郑州轻工业大学 An air conditioning system for quickly maintaining clean room temperature and constant humidity
CN115342544B (en) * 2022-08-11 2024-10-18 青岛海尔空调电子有限公司 Economizer and air conditioner refrigerating system
CN115654622B (en) * 2022-10-08 2024-07-16 珠海格力电器股份有限公司 Fresh air unit and control method thereof
CN115823718A (en) * 2022-11-17 2023-03-21 国网河北综合能源服务有限公司 Energy-saving air conditioning system heat pump system
CN117232071B (en) * 2023-11-11 2024-01-16 沧州医学高等专科学校 Building new trend precooling preheats economizer
CN118999025A (en) * 2024-08-30 2024-11-22 宁波奥克斯电气股份有限公司 Control method and device of multi-split system, multi-split system and storage medium
CN118980128A (en) * 2024-09-23 2024-11-19 珠海格力电器股份有限公司 An air conditioning and hot water integrated machine with temperature control and dehumidification functions and control method thereof
CN119022364A (en) * 2024-09-23 2024-11-26 珠海格力电器股份有限公司 An air conditioning and hot water integrated machine with temperature control and dehumidification functions and control method thereof
CN119042708A (en) * 2024-09-23 2024-11-29 珠海格力电器股份有限公司 Air conditioner and hot water integrated machine with temperature control and dehumidification functions and control method thereof
CN119196789B (en) * 2024-10-11 2025-11-21 珠海格力电器股份有限公司 Electric cabinet, control method thereof and air conditioning unit
CN119826392B (en) * 2025-01-13 2025-11-25 珠海格力电器股份有限公司 Air conditioning system control methods
CN120252087B (en) * 2025-06-06 2025-08-15 江苏永昇空调有限公司 Underground space is with integrative fresh air dehumidifier
CN120444690B (en) * 2025-07-14 2025-09-12 春意环境科技有限公司 A temperature-adjustable heat pump dehumidifier and temperature adjustment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228187A (en) * 2001-02-01 2002-08-14 Kimura Kohki Co Ltd Air-cooled heat pump type outside air treatment air conditioner
CN2661630Y (en) * 2003-11-20 2004-12-08 张明亮 Diaphragm type reservoir
JP2006052882A (en) * 2004-08-10 2006-02-23 Kimura Kohki Co Ltd Heat pump air conditioner
CN1963326A (en) * 2006-11-30 2007-05-16 同济大学 Energy utilization and recovery type cell full air air-condition set
CN101363647A (en) * 2007-08-08 2009-02-11 陈德 Integration full fresh air conditioner
US20100018196A1 (en) * 2006-10-10 2010-01-28 Li Perry Y Open accumulator for compact liquid power energy storage
CN201697394U (en) * 2010-05-11 2011-01-05 海信(山东)空调有限公司 A heat recovery type multi-connected heat pump air conditioner with a hot water machine
CN201819476U (en) * 2010-08-27 2011-05-04 宁波奥克斯电气有限公司 Direct-current frequency conversion air-conditioner with waste heat recovery device
CN102042648A (en) * 2010-11-29 2011-05-04 青岛海信日立空调系统有限公司 Heat recovery type multi-connection air condition unit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233378A (en) * 1994-11-29 1996-09-13 Sanyo Electric Co Ltd Air conditioner
JPH10332212A (en) * 1997-06-02 1998-12-15 Toshiba Corp Refrigeration cycle of air conditioner
CN2472117Y (en) * 2001-03-02 2002-01-16 张端桥 Fresh air intaking energy saving air conditioner
EP1422483B1 (en) * 2002-11-21 2015-10-14 LG Electronics Inc. Air conditioner
CN100501250C (en) * 2005-08-10 2009-06-17 严继光 Air conditioner with fresh air and heat recovery device
CN100451468C (en) * 2006-06-15 2009-01-14 清华大学 A heat pump-driven multi-stage solution dehumidification and regeneration fresh air unit
CN101101142B (en) * 2006-10-23 2010-05-12 陈国宝 Rotating wheel type energy-saving environment-friendly air-conditioner without condensed water
CN201066217Y (en) * 2007-07-27 2008-05-28 珠海格力电器股份有限公司 Novel heat pump system with bidirectional liquid storage tank
CN101430149A (en) * 2007-11-08 2009-05-13 无锡同方人工环境有限公司 Bidirectional over-cooling liquid container
JP4931848B2 (en) * 2008-03-31 2012-05-16 三菱電機株式会社 Heat pump type outdoor unit for hot water supply
CN101672512A (en) * 2008-09-11 2010-03-17 同方人工环境有限公司 Heat recovery fresh air unit with distributed cold and heat source
CN201293408Y (en) * 2008-11-10 2009-08-19 上海耘和空调科技有限公司 Cabinet thermal recovery type heat pump fresh air conditioner
CN201311008Y (en) * 2008-11-25 2009-09-16 冉春雨 Air source heat pump fresh air unit for recovery of waste heat of air conditioners in cold regions
CN201540000U (en) * 2009-09-27 2010-08-04 海尔集团公司 Liquid storage device component and heat pump refrigerating machine with same
KR100999400B1 (en) * 2010-09-14 2010-12-09 이동건 Geothermal Heat Pump System
CN101995062A (en) * 2010-11-09 2011-03-30 帝思迈环境设备(上海)有限公司 Total heat recovery humidifying fresh-air heat pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228187A (en) * 2001-02-01 2002-08-14 Kimura Kohki Co Ltd Air-cooled heat pump type outside air treatment air conditioner
CN2661630Y (en) * 2003-11-20 2004-12-08 张明亮 Diaphragm type reservoir
JP2006052882A (en) * 2004-08-10 2006-02-23 Kimura Kohki Co Ltd Heat pump air conditioner
US20100018196A1 (en) * 2006-10-10 2010-01-28 Li Perry Y Open accumulator for compact liquid power energy storage
CN1963326A (en) * 2006-11-30 2007-05-16 同济大学 Energy utilization and recovery type cell full air air-condition set
CN101363647A (en) * 2007-08-08 2009-02-11 陈德 Integration full fresh air conditioner
CN201697394U (en) * 2010-05-11 2011-01-05 海信(山东)空调有限公司 A heat recovery type multi-connected heat pump air conditioner with a hot water machine
CN201819476U (en) * 2010-08-27 2011-05-04 宁波奥克斯电气有限公司 Direct-current frequency conversion air-conditioner with waste heat recovery device
CN102042648A (en) * 2010-11-29 2011-05-04 青岛海信日立空调系统有限公司 Heat recovery type multi-connection air condition unit

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371526A (en) * 2015-10-28 2016-03-02 北京格瑞力德空调科技有限公司 Fresh air handling unit provided with cold/heat source without auxiliary heat exchange device and capable of outputting refrigerant/heat medium
CN105371525A (en) * 2015-10-28 2016-03-02 北京格瑞力德空调科技有限公司 Fresh air handling unit provided with cold/heat source without auxiliary heat exchange device and capable of outputting cold/hot water
CN106052057A (en) * 2016-06-01 2016-10-26 苏州格兰斯柯光电科技有限公司 Pipeline
CN106152284A (en) * 2016-08-16 2016-11-23 浙江国祥股份有限公司 A kind of clean air conditioner indoor unit
CN107014172B (en) * 2017-05-27 2023-04-18 中原工学院 Three-pressure air-cooled heat pump drying system with heat recovery function
CN107014172A (en) * 2017-05-27 2017-08-04 中原工学院 A kind of three pressure air-cooled heat pump drying systems with recuperation of heat
CN107726531A (en) * 2017-11-14 2018-02-23 科林贝思(深圳)科技有限公司 A kind of heat pump VMC and its control method
CN107726531B (en) * 2017-11-14 2023-05-09 科林贝思(深圳)科技有限公司 Heat pump fresh air system and control method thereof
CN107726532A (en) * 2017-11-30 2018-02-23 北京三五二环保科技有限公司 A kind of heat pump fresh air
CN107869928A (en) * 2017-12-12 2018-04-03 陈祖卫 Air-to-air heat exchangers and refrigeration units
CN107940805A (en) * 2017-12-25 2018-04-20 北京中矿博能节能科技有限公司 Direct cooling deep enthalpy extraction heat exhaust air heat pump system
CN109539406B (en) * 2018-11-02 2024-06-04 广东申菱环境系统股份有限公司 Three-section type multi-connected air conditioning unit
CN109539406A (en) * 2018-11-02 2019-03-29 广东申菱环境系统股份有限公司 A kind of VRF Air Conditioning System of three-stage
CN109458723A (en) * 2018-12-20 2019-03-12 茂名市茂南区沃航制冷节能科技有限公司 A kind of heat-pump air-conditioner heat utilization device
CN109453611B (en) * 2018-12-21 2024-01-30 江苏格陵兰传热科技有限公司 Condensate recycling system for high-temperature flue gas
CN109453611A (en) * 2018-12-21 2019-03-12 江苏格陵兰传热科技有限公司 The condensation water recovery and use system of high temperature cigarette vapour
CN109959101A (en) * 2019-05-05 2019-07-02 李社红 Heat-exchanger rig and heat pump air conditioning system with it
CN110345593A (en) * 2019-08-14 2019-10-18 中原工学院 A kind of large space integrated-type unitary air handling unit
CN110345593B (en) * 2019-08-14 2024-04-30 中原工学院 Large-space integrated combined air conditioning unit
CN110454870A (en) * 2019-09-09 2019-11-15 合肥天鹅制冷科技有限公司 Integral combination type air-conditioner set
CN110671835B (en) * 2019-11-11 2023-08-01 恒量电器(厦门)有限公司 Integrated supply system and method based on temperature and humidity control and hot water heating
CN110671835A (en) * 2019-11-11 2020-01-10 恒量电器(厦门)有限公司 Integrated supply system and method based on temperature and humidity control and hot water heating
CN112032889A (en) * 2020-09-28 2020-12-04 江苏华强新能源科技有限公司 Energy-saving environment regulation and control device and control method thereof
CN112594831A (en) * 2020-12-29 2021-04-02 福建瑞博恩环境科技有限公司 Split type heat pipe heat recovery fresh air unit
CN112797493B (en) * 2021-01-13 2023-12-22 青岛海信日立空调系统有限公司 Fresh air conditioner and control method thereof
CN114856991B (en) * 2021-01-20 2024-06-04 浙江雪波蓝科技有限公司 Heat pump, rankine cycle system with heat pump and application of Rankine cycle system
CN114856991A (en) * 2021-01-20 2022-08-05 浙江雪波蓝科技有限公司 Heat pump, Rankine cycle system with heat pump and application of Rankine cycle system
US12442567B2 (en) 2021-01-27 2025-10-14 Lennox Industries Inc. Thermodynamic heat recovery without an additional thermodynamic circuit
US11859875B2 (en) 2021-01-27 2024-01-02 LGL France S.A.S. Thermodynamic heat recovery without an additional thermodynamic circuit
EP4036495A3 (en) * 2021-01-27 2022-10-12 LGL France S.A.S. Thermodynamic heat recovery without an additional thermodynamic circuit
CN112856869A (en) * 2021-02-24 2021-05-28 辽宁沣知稼农业科技发展有限公司 Efficient parallel oil-free multi-handpiece evaporation refrigeration unit with cold energy recovery function
CN113048587A (en) * 2021-04-15 2021-06-29 福建省建筑设计研究院有限公司 Refrigeration dehumidification and rotary dehumidification coupling condensation heat recovery type temperature and humidity separately-controlled air treatment system
CN113154629A (en) * 2021-05-19 2021-07-23 珠海格力电器股份有限公司 Control method, device and system for multi-connected air handling unit and storage medium
CN113154629B (en) * 2021-05-19 2025-08-05 珠海格力电器股份有限公司 Multi-air handling unit control method, device, system and storage medium
CN113678739B (en) * 2021-08-25 2023-11-28 广东唯金智能环境科技有限公司 Environment control system and method for livestock breeding house
CN113678739A (en) * 2021-08-25 2021-11-23 广东唯金智能环境科技有限公司 Livestock breeding house environment control system and control method thereof
CN113865149A (en) * 2021-08-30 2021-12-31 浙江工业大学 Composite heat pump system for killing new coronavirus at high temperature
CN114623514A (en) * 2022-02-23 2022-06-14 宁波德业日用电器科技有限公司 A kind of full-heat fresh air dehumidifier and operation method thereof
CN115540092A (en) * 2022-09-26 2022-12-30 珠海格力电器股份有限公司 Air-conditioning unit and method for controlling the air-conditioning unit
CN116294009A (en) * 2023-04-28 2023-06-23 重庆海润节能技术股份有限公司 Multi-channel ventilation, environment control and purification all-in-one machine and control method thereof
CN117663564B (en) * 2024-01-31 2024-04-02 荏原冷热系统(中国)有限公司 Centrifugal steam heat pump gas-liquid separator control system
CN117663564A (en) * 2024-01-31 2024-03-08 荏原冷热系统(中国)有限公司 Centrifugal steam heat pump gas-liquid separator control system

Also Published As

Publication number Publication date
CN103322656A (en) 2013-09-25
CN103398518B (en) 2016-07-06
CN102767875A (en) 2012-11-07
CN103075786A (en) 2013-05-01
CN102767876A (en) 2012-11-07
CN102767876B (en) 2014-11-12
CN103277950A (en) 2013-09-04
CN102914011A (en) 2013-02-06
CN103398518A (en) 2013-11-20
CN102767876B9 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2012152199A1 (en) Air conditioning unit for heat recovery from heat pump
CN103912947B (en) For fan coil and the heat pump of heat recovery fresh air conditioning group
WO2013131436A1 (en) Air-conditioning unit with heat recovery
WO2013135135A1 (en) Air conditioning system for use in restaurant
CN102538112A (en) Household heat and humidity separate control radiation air conditioning system and control method thereof
CN209341472U (en) Fresh air reheating type heat pump recuperation of heat air-conditioner set
WO2013000335A1 (en) Heat energy recovery device
CN109959099B (en) Multifunctional dehumidifying fresh air waste heat recovery hot water air conditioning device
CN206817624U (en) Heat-recovery heat pump fresh air purifying unit
CN108679870A (en) A kind of warm and humid sub-control air-conditioning system with Fresh air handing function
CN105571017A (en) Fresh air processing unit
CN106839228A (en) A kind of air-conditioning system and its cooling control method with fresh air dehumidification function
CN101614423A (en) A heat recovery fresh air unit
JP2009250528A (en) Ventilation air-conditioning device
CN205332392U (en) Computer room air conditioner
CN108679869A (en) A kind of complete straight swollen warm and humid sub-control air-conditioning system of type of list refrigerant circuit
CN107036194A (en) The double low-temperature receiver dehumidifying fresh-air ventilation units of high-temperature water cooling
CN101498522A (en) Dehumidification air conditioner heat pump water heater
CN203068741U (en) Heat recovery air conditioning unit
CN1210534C (en) Split heat pump air conditioner system
CN211400070U (en) Integrated air conditioner
CN204084622U (en) A kind of modular fresh air processor
CN209214143U (en) Double cold source fresh air dehumidification units
CN206739473U (en) The double low-temperature receiver dehumidifying fresh-air ventilation units of high-temperature water cooling
CN208238089U (en) The air-conditioning system of Temperature and Humidity Control and heat utilization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782932

Country of ref document: EP

Kind code of ref document: A1