[go: up one dir, main page]

WO2012033062A1 - Élément électroluminescent organique et matière pour des éléments électroluminescents organiques ayant une structure de dibenzothiophène ou une structure de dibenzofurane - Google Patents

Élément électroluminescent organique et matière pour des éléments électroluminescents organiques ayant une structure de dibenzothiophène ou une structure de dibenzofurane Download PDF

Info

Publication number
WO2012033062A1
WO2012033062A1 PCT/JP2011/070190 JP2011070190W WO2012033062A1 WO 2012033062 A1 WO2012033062 A1 WO 2012033062A1 JP 2011070190 W JP2011070190 W JP 2011070190W WO 2012033062 A1 WO2012033062 A1 WO 2012033062A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
substituent
layer
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2011/070190
Other languages
English (en)
Japanese (ja)
Inventor
陽介 山本
渡辺 康介
外山 弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of WO2012033062A1 publication Critical patent/WO2012033062A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to an organic electroluminescent element and a material for an organic electroluminescent element having a dibenzothiophene structure or a dibenzofuran structure.
  • Organic electroluminescent elements (hereinafter also referred to as “elements” and “organic EL elements”) are actively researched and developed because they can emit light with high luminance when driven at a low voltage.
  • An organic electroluminescent element has an organic layer between a pair of electrodes, and electrons injected from the cathode and holes injected from the anode recombine in the organic layer, and the generated exciton energy is used for light emission. To do.
  • Patent Document 1 discloses the use of a dibenzothiophene-based charge transport material for further improving the light emission efficiency and device durability of the device.
  • Patent Documents 2 and 3 describe organic electroluminescent elements using a compound in which dibenzothiophene is linked by a phenylene group.
  • Patent Document 4 describes an organic electroluminescent device using an iridium compound having a specific structure and dibenzothiophene as a host material in order to provide an organic electroluminescent device having excellent performance.
  • the conventional device has problems that the luminous efficiency is lowered when stored at a high temperature, the chromaticity is greatly changed, and the durability is deteriorated, and the improvement thereof is demanded.
  • an element whose characteristics do not change even after high-temperature storage such as in-vehicle use.
  • an object of the present invention is to provide an organic electroluminescence device having a low driving voltage and a small chromaticity shift even when stored at a high temperature. Furthermore, it is providing the organic electroluminescent element excellent in durability. Another object of the present invention is to provide a compound useful for an organic electroluminescent device, for example, as a charge transport material, a host material, or the like. Furthermore, another object of the present invention is to provide a light emitting device, a display device, and a lighting device including the organic electroluminescent element of the present invention.
  • An organic electroluminescent device having a pair of electrodes consisting of an anode and a cathode on a substrate, and at least one organic layer including a light emitting layer between the electrodes,
  • An organic electroluminescence device comprising: at least one phosphorescent material in the light emitting layer; and at least one of the at least one organic layer including a compound represented by the following general formula (1).
  • X represents an oxygen atom or a sulfur atom.
  • R 101 to R 107 each independently represents a hydrogen atom or a substituent.
  • R 108 represents an alkyl group.
  • n represents an integer of 1 or more.
  • La represents a substituent other than an alkyl group
  • R 109 represents a substituent other than a hydrogen atom or an alkyl group.
  • n is an integer of 2 or more
  • La represents an n-valent aromatic hydrocarbon group
  • R 109 represents a substituent other than a hydrogen atom or an alkyl group.
  • n Regardless of 1 or more, when R 109 is adjacent to R 108, R 108 and R 109 independently represent may form an alicyclic structure bonded.
  • X represents an oxygen atom or a sulfur atom.
  • R 201 to R 207 each independently represents a hydrogen atom or a substituent.
  • R 208 represents an alkyl group.
  • n represents an integer of 1 or more. When n is 1, La represents a substituent other than an alkyl group, and when n is an integer of 2 or more, La represents an n-valent aromatic hydrocarbon group.
  • n is 2 or more
  • the aromatic hydrocarbon group as La is an n-valent linking group represented by the following general formula (A) [1] or [2 ]
  • the organic electroluminescent element of description
  • R 411 each independently represents a substituent.
  • N 411 each independently represents an integer of 0 to 4.
  • m represents an integer of 1 to 6.
  • Z 1 and Z 2 each independently represents a carbon atom or a nitrogen atom.
  • a 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom.
  • B 1 represents an atomic group that forms a 5- or 6-membered ring with Z 2 and a carbon atom.
  • (XY) represents a monoanionic bidentate ligand.
  • n E1 represents an integer of 1 to 3.
  • a E1 to A E8 each independently represents a nitrogen atom or C—R E.
  • R E represents a hydrogen atom or a substituent.
  • (XY) represents a monoanionic bidentate ligand.
  • n E2 represents an integer of 1 to 3.
  • the organic layer adjacent to the light emitting layer is provided between the light emitting layer and the cathode, and the organic layer contains the compound represented by the general formula (1).
  • the present invention it is possible to provide an excellent organic electroluminescence device having a low driving voltage and small chromaticity deviation even when stored at high temperature. Furthermore, a light emitting device, a display device, and a lighting device using the organic electroluminescent element can be provided.
  • FIG. 2 is a 1 H-NMR spectrum diagram of synthesized compound 1B-12.
  • FIG. 2 is a 1 H-NMR spectrum diagram of synthesized compound 1B-21.
  • FIG. 4 is a 1 H-NMR spectrum diagram of synthesized compound 1C-10.
  • the hydrogen atom in the description of the following general formula (1) includes isotopes (such as deuterium atoms), and further, the atoms constituting the substituents also include the isotopes.
  • substituent when referred to as “substituent”, the substituent may be substituted.
  • alkyl group in the present invention includes an alkyl group substituted with a fluorine atom (eg, trifluoromethyl group), an alkyl group substituted with an aryl group (eg, triphenylmethyl group), etc.
  • alkyl group having 1 to 6 carbon atoms it means that all groups including substituted groups have 1 to 6 carbon atoms.
  • substituent groups A, B and Z ′ are defined as follows.
  • An alkenyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, 2-butenyl, 3-pentenyl, etc.
  • Alkynyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl, 3-pentynyl, etc.
  • aryl group preferably carbon 6 to 30, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 14 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, anthranyl, etc.
  • an amino group preferably having a carbon number
  • 0-30 more preferably 0-20 carbon atoms, particularly preferably 0-10 carbon atoms, such as amino, methyla
  • pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. An acyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxycarbonyl A group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group (preferably 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), acyloxy group (preferably 2 to 30 carbon atoms, more preferably Has 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acet
  • An acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as acetylamino and benzoylamino), alkoxycarbonylamino group (Preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryloxycarbonylamino group (preferably having carbon number) 7-30, more preferably 7-20 carbon atoms, particularly preferably 7-12 carbon atoms, such as phenyloxycarbonylamino, and the like, and sulfonylamino groups (preferably having 1-30 carbon atoms, more preferably Has 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms.
  • a sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, and particularly preferably 0 to 12 carbon atoms.
  • a carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • carbamoyl Methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc.
  • an alkylthio group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, Ethylthio etc.
  • arylthio group preferably Has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and the like
  • a heterocyclic thio group preferably 1 to 30 carbon atoms, more
  • it has 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio and the like.
  • a group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms such as mesyl, tosyl, etc.
  • a sulfinyl group preferably having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl and the like. It is.
  • a ureido group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), phosphoric acid
  • An amide group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide), a hydroxy group , Mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group ( An aromatic heterocyclic group is also included, preferably having 1 to 30 carbon atoms, more preferably
  • Is for example, a nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, silicon atom, selenium atom, tellurium atom, specifically pyridyl, pyrazinyl, pyrimidyl, pyridazinyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, And isoxazolyl, isothiazolyl, quinolyl, furyl, thienyl, selenophenyl, tellurophenyl, piperidyl, piperidino, morpholino, pyrrolidyl, pyrrolidino, benzoxazolyl, benzoimidazolyl, benzothiazolyl, carbazolyl group, azepinyl group, silolyl group and the like.
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl).
  • a aryloxy group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyloxy, triphenylsilyloxy, etc.), phosphoryl group (for example, A diphenylphosphoryl group, a dimethylphosphoryl group, etc.).
  • These substituents may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • alkyl group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • alkenyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.
  • alkynyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl , 3-pentynyl, etc.
  • aryl groups preferably having 6 to 30 carbon atoms, more
  • alkyl group preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, such as methyl, ethyl, isopropyl, n-propyl, tert-butyl, isobutyl, n- Butyl, neopentyl, n-pentyl, n-hexyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl group (preferably having 2 to 8 carbon atoms, more preferably 2 to 5 carbon atoms, such as vinyl)
  • Aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, such as phenyl group, naphthyl group, anthracenyl group, tetracenyl group, pyrenyl group, perylenyl group, triphenylenyl group,
  • a hydrogen atom and one of the meta positions (R 108 ) are alkyl groups at two ortho positions with respect to the bond, thereby reducing a low driving voltage.
  • chromaticity shift due to high-temperature storage can be suppressed.
  • the benzene ring to which the dibenzothiophene structure or the dibenzofuran structure is bonded it was found that when only one ortho position with respect to the bond is a hydrogen atom, twisting occurs and the driving voltage increases.
  • the two ortho position is a hydrogen atom and R 108 is an alkyl group, as compared with the case R 108 is a substituent other than a hydrogen atom or an alkyl group, found that the chromaticity shift due to high-temperature storage can be suppressed It was. This is presumed that when R 108 is an alkyl group, the molecular gap is filled and the film quality is improved.
  • X represents an oxygen atom or a sulfur atom.
  • R 101 to R 107 each independently represents a hydrogen atom or a substituent.
  • R 108 represents an alkyl group.
  • n represents an integer of 1 or more.
  • La represents a substituent other than an alkyl group
  • R 109 represents a substituent other than a hydrogen atom or an alkyl group.
  • n is an integer of 2 or more
  • La represents an n-valent aromatic hydrocarbon group
  • R 109 represents a substituent other than a hydrogen atom or an alkyl group.
  • n Regardless of 1 or more, when R 109 is adjacent to R 108, R 108 and R 109 independently represent may form an alicyclic structure bonded.
  • the alicyclic structure formed by combining R 108 and R 109 may have a substituent, but does not form a condensed ring with an aromatic ring.
  • substituents include the substituent group A and an alkyl group as R 101 to R 107 described later.
  • X represents an oxygen atom or a sulfur atom.
  • a sulfur atom having a large van der Faals radius is preferred from the viewpoint of improving charge mobility.
  • Examples of the substituent represented by R 101 to R 107 can include the above-mentioned substituent group A and an alkyl group independently, and the substituent may further have a substituent. The group selected from the said substituent group A and an alkyl group can be mentioned.
  • R 101 to R 107 are preferably a hydrogen atom, an alkyl group, a cyano group, or an aryl group.
  • the alkyl group represented by R 101 to R 107 is a linear, branched, or cyclic alkyl group, preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms. And more preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group represented by R 101 to R 107 is particularly preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a t-butyl group, an i-butyl group, or an n-pentyl group.
  • the aryl group represented by R 101 to R 107 preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • R 101 to R 107 are more preferably a hydrogen atom, a methyl group, a t-butyl group, a cyano group, or a phenyl group, and more preferably a hydrogen atom.
  • substituent when R 101 to R 107 have a further substituent include the substituent group A and an alkyl group, and include a cyano group or a substituted or unsubstituted aryl group (phenyl group or biphenyl group). ) Is preferable, a cyano group or a phenyl group is preferable, and a phenyl group is more preferable.
  • the alkyl group as R 108 is a linear, branched or cyclic alkyl group, preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, An alkyl group having 1 to 6 carbon atoms is preferred. Specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, i-butyl group, n-pentyl group, neopentyl group, t-amyl are particularly preferable.
  • R 109 is preferably a hydrogen atom.
  • substituent other than the alkyl group as R 109 include the substituent group A, and the substituent may further have a substituent.
  • the substituent other than the alkyl group as R 109 is preferably a cyano group or an aryl group.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • a phenyl group, a p-methylphenyl group, a xylyl group, a biphenyl group, a naphthyl group. Group, an anthranyl group, etc. are mentioned, A phenyl group is preferable.
  • R 109 has a further substituent
  • substituents in the case where R 109 has a further substituent include a group selected from the substituent group A and an alkyl group, and include a cyano group or a substituted or unsubstituted aryl group (phenyl group, or Biphenyl group) is preferred, a cyano group or a phenyl group is preferred, and a phenyl group is more preferred.
  • n represents an integer of 1 or more, preferably 1 to 3, more preferably 1 or 2, and still more preferably 2.
  • n represents an integer of 2 or more, a plurality of X and R 101 to R 109 existing in the general formula (1) may be different from each other.
  • n-valent aromatic hydrocarbon group for La a benzene ring which may have a substituent or a structure in which a plurality of the benzene rings are linked by a single bond, and a linking group having n bonds Is mentioned.
  • the coupling group represented by general formula (A) is mentioned.
  • * represents a bond and n exists in the general formula (A).
  • R 411 each independently represents a substituent.
  • n 411 independently represents an integer of 0 to 4.
  • m represents an integer of 1 or more, preferably an integer of 1 to 6.
  • the n-valent aromatic hydrocarbon group as La include a group selected from the following linking group group. Among them, any of L2, L3, L7, L9, L11, L13, and L14 is preferable, L7, L9, L11, L13, and L14 are more preferable, and L13 and L14 are particularly preferable.
  • the number of benzene rings is large in that the glass transition temperature is improved and, as a result, the heat resistance is improved.
  • La may further have a substituent.
  • substituents in the case where La has a further substituent include the above-mentioned substituent group A and an alkyl group, and are preferably a cyano group or a substituted or unsubstituted aryl group (phenyl group or biphenyl group). Group or a phenyl group is preferable, and a cyano group is more preferable.
  • the substituent is preferably a cyano group or a phenyl group.
  • the compound represented by the general formula (1) is a compound represented by the general formula (2).
  • X represents an oxygen atom or a sulfur atom.
  • R 201 to R 207 each independently represents a hydrogen atom or a substituent.
  • R 208 represents an alkyl group.
  • n represents an integer of 1 or more. When n is 1, La represents a substituent other than an alkyl group, and when n is an integer of 2 or more, La represents an n-valent aromatic hydrocarbon group.
  • R 201 to R 207 are defined in the same manner as R 101 to R 107 in general formula (1), and R 108 , La, and n have the same meanings as in general formula (1).
  • the molecular weight of the compound represented by the general formula (1) is usually 400 or more and 1500 or less, preferably 450 or more and 1200 or less, more preferably 500 or more and 1100 or less, and more preferably 550 or more and 1000 or less. Further preferred.
  • the molecular weight is 450 or more, it is advantageous for forming a high-quality amorphous thin film, and when the molecular weight is 1200 or less, the solubility and sublimation property are improved, which is advantageous for improving the purity of the compound.
  • the energy gap (the light emitting material is less than the light emitting material).
  • the energy gap and T 1 energy are not too large.
  • the T 1 energy in the film state of the compound represented by the general formula (1) is preferably 2.00 eV (46 kcal / mol) or more and 3.51 eV (80 kcal / mol) or less, and 2.07 eV (48 kcal / mol). mol) to 3.25 eV (75 kcal / mol), more preferably 2.52 eV (58 kcal / mol) to 3.04 eV (70 kcal / mol).
  • a phosphorescent light emitting material it is preferable from the viewpoint of light emission efficiency that the T 1 energy of the compound represented by the general formula (1) is higher than the T 1 energy of the phosphorescent light emitting material. .
  • the T 1 energy can be obtained from the short wavelength end of a phosphorescence emission spectrum of a thin film of material. For example, a material is deposited on a cleaned quartz glass substrate to a thickness of about 50 nm by vacuum deposition, and the phosphorescence emission spectrum of the thin film is measured at F-7000 Hitachi Spectrofluorimeter (Hitachi High Technologies) under liquid nitrogen temperature. Use to measure.
  • the T 1 energy can be obtained by converting the rising wavelength on the short wavelength side of the obtained emission spectrum into energy units.
  • the glass transition temperature (Tg) of the compound represented by the general formula (1) is 100 ° C. or higher and 400 ° C. or lower from the viewpoint of stably operating the organic electroluminescent device against heat generated during high temperature driving or driving the device.
  • the temperature is 120 ° C. or higher and 400 ° C. or lower, more preferably 140 ° C. or higher and 400 ° C. or lower.
  • the purity of the compound represented by the general formula (1) is high.
  • the purity can be measured by, for example, high performance liquid chromatography (HPLC), and the area ratio of the compound represented by the general formula (1) when detected with a light absorption intensity of 254 nm is preferably 95.0% or more, and more It is preferably 97.0% or more, particularly preferably 99.0% or more, and most preferably 99.9% or more.
  • the compound exemplified as the compound represented by the general formula (1) includes a metal catalyst (for example, Pd) between a corresponding boronic acid or boronic ester or boronic ester salt and a corresponding halogen compound or triflate compound. And Ni) and a ligand (triphenylphosphine, Buchwald ligand, etc.) and the like (for example, Suzuki-Miyaura coupling). For example, it can be synthesized by the methods described in Patent Documents 1 and 3 described above.
  • An alkyl group as a substituent on the phenyl group is a metal catalyst (for example, Pd or Ni) and a ligand (triphenylphosphine or the like) between a halogen-substituted phenyl group and an alkyl boronic acid or alkyl Grignard reagent. It can be synthesized by a coupling reaction using a Buchwald ligand (eg, Suzuki-Miyaura coupling or Kumada coupling). Furthermore, alkyl groups can be introduced by other known methods. For example, it can be synthesized by the following scheme. However, the synthesis of the compound represented by the general formula (1) of the present invention is not limited to the following scheme. In the following scheme, R represents an alkyl group. n represents a natural number.
  • the compound represented by the general formula (1) is not limited in its use and may be contained in any layer in the organic layer.
  • it is more preferably contained in any one of the electron transport layer and the hole blocking layer, further preferably contained in the light emitting layer or the electron transport layer, and particularly preferably contained in the light emitting layer.
  • the compound represented by General formula (1) in said several layer. For example, you may use for both a light emitting layer and an electron carrying layer.
  • the compound represented by the general formula (1) is contained in the light emitting layer, the compound represented by the general formula (1) of the present invention is included in an amount of 0.1 to 99% by mass with respect to the total mass of the light emitting layer.
  • the content is preferably 1 to 97% by mass, more preferably 10 to 96% by mass.
  • the compound represented by the general formula (1) is further contained in a layer other than the light emitting layer, it is preferably contained in an amount of 70 to 100% by mass, and 85 to 100% by mass with respect to the total mass of the layer other than the light emitting layer. % Is more preferable.
  • the present invention also relates to a charge transport material represented by the general formula (1).
  • the compound represented by the general formula (1) and the charge transport material of the present invention are preferably used for organic electronic elements such as electrophotography, organic transistors, organic photoelectric conversion elements (energy conversion applications, sensor applications, etc.), and organic electroluminescence elements. It can be used and is particularly preferably used for an organic electroluminescent device.
  • composition containing the charge transport material of the present invention also relates to a composition comprising the charge transport material.
  • the content of the compound represented by the general formula (1) is preferably 30 to 99% by mass, and 50 to 97% by mass with respect to the total solid content in the composition. More preferred is 70 to 96% by mass.
  • Other components that may be contained in the composition of the present invention may be organic or inorganic, and as organic materials, materials described as host materials, fluorescent light emitting materials, phosphorescent light emitting materials, and hydrocarbon materials described later can be applied. A host material, a phosphorescent material, and a hydrocarbon material are preferable.
  • composition of the present invention can form an organic layer of an organic electroluminescence device by a dry film forming method such as a vapor deposition method or a sputtering method, or a wet film forming method such as a transfer method or a printing method.
  • a dry film forming method such as a vapor deposition method or a sputtering method
  • a wet film forming method such as a transfer method or a printing method.
  • the present invention also relates to a thin film containing the charge transport material represented by the general formula (1).
  • the thin film of the present invention can be formed by using the composition of the present invention by a dry film forming method such as a vapor deposition method or a sputtering method, or a wet film forming method such as a transfer method or a printing method.
  • the thickness of the thin film may be any thickness depending on the application, but is preferably 0.1 nm to 1 mm, more preferably 0.5 nm to 1 ⁇ m, still more preferably 1 nm to 200 nm, and particularly preferably 1 nm to 100 nm. is there.
  • the organic electroluminescent element of the present invention is an organic electroluminescent device having a pair of electrodes comprising an anode and a cathode and at least one organic layer including a light emitting layer between the electrodes on the substrate, wherein the light emitting layer And at least one of the phosphor layers, and at least one of the at least one organic layer contains the compound represented by the general formula (1) of the present invention.
  • at least one of the pair of electrodes, the anode and the cathode is preferably transparent or translucent.
  • Examples of the organic layer include a hole injection layer, a hole transport layer, a block layer (such as a hole block layer and an exciton block layer), and an electron transport layer in addition to the light emitting layer.
  • a plurality of these organic layers may be provided, and when a plurality of layers are provided, they may be formed of the same material, or may be formed of different materials for each layer.
  • FIG. 1 an example of a structure of the organic electroluminescent element which concerns on this invention is shown.
  • the organic electroluminescent element 10 of FIG. 1 has an organic layer including a light emitting layer 6 between a pair of electrodes (anode 3 and cathode 9) on a substrate 2.
  • As the organic layer a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7 and an electron transport layer 8 are laminated in this order from the anode side 3.
  • Anode / hole transport layer / light emitting layer / electron transport layer / cathode Anode / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole transport layer / light emitting layer / block layer / electron transport layer / electron injection layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / electron injection layer / cathode, Anode / hole injection layer / hole transport layer / light emitting
  • the element configuration, the substrate, the cathode, and the anode of the organic electroluminescence element are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-270736, and the matters described in the publication can be applied to the present invention.
  • the substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer.
  • an organic material it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
  • the anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.
  • the anode is usually provided as a transparent anode.
  • the cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element.
  • the electrode material can be selected as appropriate.
  • Organic layer in the present invention will be described.
  • each organic layer is preferably formed by any of dry film forming methods such as vapor deposition and sputtering, and solution coating methods such as transfer, printing, spin coating, and bar coating. Can be formed.
  • the light emitting layer receives holes from the anode, hole injection layer or hole transport layer and receives electrons from the cathode, electron injection layer or electron transport layer when an electric field is applied, and provides a field for recombination of holes and electrons. And a layer having a function of emitting light.
  • the light emitting layer in the organic electroluminescent element of the present invention contains at least one phosphorescent material.
  • Luminescent material in addition to at least one phosphorescent light-emitting material contained in the light-emitting layer, a fluorescent light-emitting material or a phosphorescent light-emitting material different from the phosphorescent light-emitting material contained in the light-emitting layer can be used as the light-emitting material. Details of these fluorescent materials and phosphorescent materials are described in, for example, paragraph numbers [0100] to [0164] of JP-A-2008-270736 and paragraph numbers [0088] to [0090] of JP-A-2007-266458. The matters described in these publications can be applied to the present invention.
  • Examples of phosphorescent light-emitting materials that can be used in the present invention include US Pat. / 19373A2, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP-A No. 2002-1235076, JP-A No. 2003-123684, JP-A No. 2002-170684, EP No. 121157, JP-A No.
  • Examples of such a light emitting material include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, Gd.
  • Examples include phosphorescent metal complex compounds such as complexes, Dy complexes, and Ce complexes.
  • an Ir complex, a Pt complex, or a Re complex among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred. Furthermore, from the viewpoints of luminous efficiency, driving durability, chromaticity and the like, an Ir complex and a Pt complex are particularly preferable, and an Ir complex is most preferable.
  • These phosphorescent metal complex compounds are preferably contained in the light emitting layer together with the compound represented by the general formula (1).
  • Z 1 and Z 2 each independently represent a carbon atom or a nitrogen atom.
  • a 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom.
  • B 1 represents an atomic group that forms a 5- or 6-membered ring with Z 2 and a carbon atom.
  • (XY) represents a monoanionic bidentate ligand.
  • n E1 represents an integer of 1 to 3.
  • n E1 represents an integer of 1 to 3, preferably 2 or 3.
  • Z 1 and Z 2 each independently represent a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 are preferably carbon atoms.
  • a 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom.
  • the 5- or 6-membered heterocycle containing A 1 , Z 1 and a nitrogen atom includes a pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadiazole Ring, thiadiazole ring and the like.
  • the 5- or 6-membered heterocycle formed by A 1 , Z 1 and a nitrogen atom is preferably a pyridine ring, a pyrazine ring, an imidazole ring, or a pyrazole.
  • the 5- or 6-membered heterocycle formed by A 1 , Z 1 and a nitrogen atom may have a substituent, and the substituent group A can be applied as a substituent.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of shortening the wavelength, an electron donating group, a fluorine atom, and an aromatic ring group are preferable.
  • an alkyl group, a dialkylamino group, an alkoxy group, A fluorine atom, an aryl group, an aromatic heterocyclic group and the like are selected.
  • an electron withdrawing group is preferable, and for example, a cyano group or a perfluoroalkyl group is preferably selected.
  • an alkyl group, a cycloalkyl group, an aryl group or the like is preferably selected.
  • Preferred examples of the substituent on carbon include an alkyl group, a perfluoroalkyl group, an aryl group, an aromatic heterocyclic group, a dialkylamino group, a diarylamino group, an alkoxy group, a cyano group, and a fluorine atom.
  • the substituent on the nitrogen atom is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like. These formed rings may have a substituent, and examples of the substituent include the substituent on the carbon atom and the substituent on the nitrogen atom.
  • B 1 represents a 5- or 6-membered ring containing Z 2 and a carbon atom.
  • Examples of the 5- or 6-membered ring formed by B 1 , Z 2 and a carbon atom include a benzene ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, Examples include a triazole ring, an oxadiazole ring, a thiadiazole ring, a thiophene ring, and a furan ring.
  • the benzene ring, pyridine ring, pyrazine ring, imidazole ring, pyrazole is preferable as the 5- or 6-membered ring formed by B 1 , Z 2 and carbon atom.
  • the 5- or 6-membered ring formed of B 1 , Z 2 and a carbon atom may have a substituent, and the substituent group A is a substituent on a nitrogen atom as the substituent on the carbon atom.
  • the substituent group B can be applied.
  • Preferred substituents on carbon are alkyl groups, perfluoroalkyl groups, aryl groups, aromatic heterocyclic groups, dialkylamino groups, diarylamino groups, alkoxy groups, cyano groups, and fluorine atoms.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of increasing the wavelength, an electron donating group and an aromatic ring group are preferable, for example, an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, An aromatic heterocyclic group or the like is selected.
  • an electron withdrawing group is preferable, and for example, a fluorine atom, a cyano group, a perfluoroalkyl group, and the like are selected.
  • an alkyl group, a cycloalkyl group, an aryl group or the like is preferably selected.
  • the substituent on the nitrogen atom is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
  • These formed rings may have a substituent, and examples of the substituent include the substituent on the carbon atom and the substituent on the nitrogen atom.
  • a 5- or 6-membered heterocyclic substituent formed by A 1 , Z 1 and a nitrogen atom and a 5- or 6-membered substituent formed by B 1 , Z 2 and a carbon atom are linked. Then, the same condensed ring as described above may be formed.
  • (XY) represents a bidentate monoanionic ligand. Examples of bidentate monoanionic ligands are described on pages 89-90 of Lamansky et al., WO 02/15645.
  • the bidentate monoanionic ligand represented by (XY) is preferably a bidentate monoanionic ligand represented by the following general formula (L-1).
  • R L1 and R L2 each independently represent an alkyl group, an aryl group, or a heteroaryl group.
  • R L3 represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group.
  • the alkyl group represented by R L1 to R L3 may have a substituent, and may be saturated or unsaturated.
  • substituent in the case of having a substituent include the above-described substituent Z ′, and preferred substituent Z ′ includes a phenyl group, an aromatic heterocyclic group, a fluorine atom, a silyl group, an amino group, a cyano group, or these. And a phenyl group, a fluorine atom, and a cyano group are more preferable.
  • the alkyl group represented by R L1 to R L3 is preferably an alkyl group having 1 to 8 carbon atoms, and more preferably an alkyl group having 1 to 5 carbon atoms.
  • the aryl group represented by R L1 to R L3 may be condensed or may have a substituent.
  • substituents include the above-described substituent Z ′, and the substituent Z ′ is preferably an alkyl group or an aryl group, and more preferably an alkyl group.
  • the aryl group represented by R L1 to R L3 is preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms.
  • the heteroaryl group represented by R L1 to R L3 may be condensed or may have a substituent.
  • substituent Z ′ examples include the above-described substituent Z ′, and the substituent Z ′ is preferably an alkyl group or an aryl group, and more preferably an alkyl group.
  • the heteroaryl group represented by R L1 to R L3 is preferably a heteroaryl group having 4 to 12 carbon atoms, and more preferably a heteroaryl group having 4 to 10 carbon atoms.
  • R L1 and R L2 are preferably an alkyl group or an aryl group, more preferably an alkyl group or a phenyl group, and particularly preferably an alkyl group.
  • the alkyl group represented by R L1 and R L2 is preferably an alkyl group having 1 to 8 carbon atoms in total, more preferably an alkyl group having 1 to 5 carbon atoms in total, such as a methyl group or an ethyl group N-propyl group, iso-propyl group, iso-butyl group, t-butyl group, n-butyl group, cyclohexyl group and the like, and methyl group, ethyl group, iso-butyl group, or t-butyl group A methyl group is preferable, and a methyl group is particularly preferable.
  • R L3 is preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom.
  • a preferred embodiment of the Ir complex represented by the general formula (E-1) is an Ir complex material represented by the general formula (E-2). Next, general formula (E-2) will be described.
  • a E1 to A E8 each independently represent a nitrogen atom or C—R E.
  • R E represents a hydrogen atom or a substituent.
  • (XY) represents a monoanionic bidentate ligand.
  • n E2 represents an integer of 1 to 3.
  • a E1 to A E8 each independently represents a nitrogen atom or C—R E.
  • R E represents a hydrogen atom or a substituent, and R E may be connected to each other to form a ring.
  • Examples of the ring formed include the same ring as the condensed ring described in the general formula (E-1).
  • Examples of the substituent represented by R E we are the same as those mentioned above substituent group A.
  • a E1 ⁇ A E4 is C-R E, if A E1 ⁇ A E4 is C-R E, preferably a hydrogen atom R E of A E3, alkyl group, aryl group, amino group, An alkoxy group, an aryloxy group, a fluorine atom, or a cyano group, more preferably a hydrogen atom, an alkyl group, an amino group, an alkoxy group, an aryloxy group, or a fluorine atom, and particularly preferably a hydrogen atom or a fluorine atom.
  • R E of A E1 , A E2 and A E4 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably a hydrogen atom, An alkyl group, an amino group, an alkoxy group, an aryloxy group, or a fluorine atom, particularly preferably a hydrogen atom.
  • a E5 to A E8 are preferably C—R E , and when A E5 to A E8 are C—R E , R E is preferably a hydrogen atom, alkyl group, perfluoroalkyl group, aryl group, aromatic A heterocyclic group, a dialkylamino group, a diarylamino group, an alkyloxy group, a cyano group, or a fluorine atom, more preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, a dialkylamino group, a cyano group, Or a fluorine atom, and more preferably a hydrogen atom, an alkyl group, a trifluoromethyl group, or a fluorine atom.
  • a E6 is preferably a nitrogen atom.
  • (X-Y) and n E2 of the general formula in (E1) (X-Y) , and has the same meaning as n E1 preferable ranges are also the same.
  • a more preferred form of the compound represented by the general formula (E-2) is a compound represented by the following general formula (E-3).
  • R T1 , R T2 , R T3 , R T4 , R T5 , R T6 and R T7 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and further a substituent Z may be included.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • A represents CR ′ or a nitrogen atom
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O ) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, which may further have a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R T1 to R T7 and R ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or heteroaryl.
  • the condensed 4- to 7-membered ring may further have a substituent Z.
  • a case where a ring is condensed with R T1 and R T7 , or R T5 and R T6 to form a benzene ring is preferable, and a case where a ring is condensed with R T5 and R T6 to form a benzene ring is particularly preferable.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R “, or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • (XY) represents a monoanionic bidentate ligand.
  • n E3 represents an integer of 1 to 3.
  • the alkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent Z.
  • the alkyl group represented by R T1 to R T7 and R ′ is preferably an alkyl group having 1 to 8 carbon atoms in total, more preferably an alkyl group having 1 to 6 carbon atoms in total, such as methyl Group, ethyl group, i-propyl group, cyclohexyl group, t-butyl group and the like.
  • the cycloalkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent Z.
  • the cycloalkyl group represented by R T1 to R T7 and R ′ is preferably a cycloalkyl group having 4 to 7 ring members, more preferably a cycloalkyl group having 5 to 6 carbon atoms in total, A cyclopentyl group, a cyclohexyl group, etc. are mentioned.
  • the alkenyl group represented by R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • vinyl, allyl Examples include 1-propenyl, 1-isopropenyl, 1-butenyl, 2-butenyl, 3-pentenyl and the like.
  • the alkynyl group represented by R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • Examples of the perfluoroalkyl group represented by R T1 to R T7 and R ′ include those in which all the hydrogen atoms of the aforementioned alkyl group are replaced with fluorine atoms.
  • the aryl group represented by R T1 to R T7 and R ′ is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, or a naphthyl group.
  • the heteroaryl group represented by R T1 to R T7 and R ′ is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group.
  • Groups such as pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, quinolinyl, isoquinolinyl, quinazolinyl, cinnolinyl, phthalazinyl, quinoxalinyl, pyrrolyl, indolyl, furyl, benzofuryl , Thienyl group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, isothiazolyl group, benzis
  • R T1 to R T7 and R ′ are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group or a heteroaryl group, more preferably A hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluoro group, and an aryl group are preferable, and a hydrogen atom, an alkyl group, and an aryl group are more preferable.
  • substituent Z an alkyl group, an alkoxy group, a fluoro group, a cyano group, and a dialkylamino group are preferable, and a hydrogen atom is more preferable.
  • R T1 to R T7 and R ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl;
  • the condensed 4- to 7-membered ring may further have a substituent Z.
  • the definition and preferred range of cycloalkyl, aryl, and heteroaryl formed are the same as the cycloalkyl group, aryl group, and heteroaryl group defined by R T1 to R T7 and R ′.
  • A represents CR ′, and among R T1 to R T7 and R ′, 0 to 2 are alkyl groups or phenyl groups, and the rest are all hydrogen atoms, and R T1 to R T7 , And R ′ are particularly preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
  • n E3 is preferably 2 or 3.
  • the type of ligand in the complex is preferably composed of 1 to 2 types, more preferably 1 type.
  • the ligand consists of two types from the viewpoint of ease of synthesis.
  • (XY) has the same meaning as (XY) in formula (E-1), and the preferred range is also the same.
  • One preferred form of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-4).
  • R T1 to R T4 , A, (XY) and n E4 in the general formula (E-4) are R T1 to R T4 , A, (XY) and n E3 in the general formula (E-3).
  • the preferred range is also the same.
  • R 1 ′ to R 5 ′ are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, —CN, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R 1 ′ to R 5 ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl;
  • the condensed 4- to 7-membered ring may further have a substituent Z.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R “, or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • R 1 ′ to R 5 ′ are the same as R T1 to R T7 and R ′ in formula (E-3).
  • A represents CR ′, and 0 to 2 of R T1 to R T4 , R ′, and R 1 ′ to R 5 ′ are alkyl groups or phenyl groups, and the rest are all hydrogen atoms.
  • R T1 to R T4 , R ′, and R 1 ′ to R 5 ′ are more preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
  • Another preferred embodiment of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-5).
  • R T2 to R T6 , A, (XY) and n E5 in the general formula (E-5) are R T2 to R T6 , A, (XY) and n E3 in the general formula (E-3).
  • the preferred range is also the same.
  • R 6 ′ to R 8 ′ are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, —CN, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R , —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and optionally having a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R T5 , R T6 , R 6 ′ to R 8 ′ may be combined with each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or It is a heteroaryl, and the condensed 4- to 7-membered ring may further have a substituent Z.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R “, or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • R 6 ′ to R 8 ′ are the same as R T1 to R T7 and R ′ in formula (E-3).
  • A represents CR ′, and among R T2 to R T6 , R ′, and R 6 ′ to R 8 ′, 0 to 2 are alkyl groups or phenyl groups, and the rest are all hydrogen atoms.
  • R T2 to R T6 , R ′, and R 6 ′ to R 8 ′ are more preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
  • Another preferred embodiment of the compound represented by the general formula (E-1) is a case represented by the following general formula (E-6).
  • R 1a to R 1k each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group, or a heteroaryl group, which may further have a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group. Any two of R 1a to R 1k may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl; The 7-membered ring may further have a substituent Z. Of these, the case where R 1j and R 1k are linked to form a single bond is particularly preferred.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R “, or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • (XY) represents a monoanionic bidentate ligand.
  • n E6 represents an integer of 1 to 3.
  • R 1a to R 1k are the same as those in R T1 to R T7 and R ′ in the general formula (E-3). Further, it is particularly preferred that 0 to 2 of R 1a to R 1k are alkyl groups or phenyl groups and the rest are all hydrogen atoms, and 0 to 2 of R 1a to R 1k are alkyl groups and the rest are all hydrogen atoms. More preferably, it is an atom.
  • the preferred range of (XY) and n E6 is the same as (XY) and n E3 in general formula (E-3).
  • a more preferable form of the compound represented by the general formula (E-6) is a case represented by the following general formula (E-7).
  • R 1a ⁇ R 1i definition and preferable ranges of R 1a ⁇ R 1i are the same as R 1a ⁇ R 1i in the formula (E-6). Further, it is particularly preferable that 0 to 2 of R 1a to R 1i are alkyl groups or aryl groups and the rest are all hydrogen atoms.
  • the definitions and preferred ranges of (XY) and n E7 are the same as (XY) and n E3 in general formula (E-3).
  • the compounds exemplified as the compound represented by the general formula (E-1) can be synthesized by the method described in JP2009-99783A, various methods described in US Pat. No. 7,279,232 and the like. After synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the compound represented by the general formula (E-1) is contained in the light emitting layer, but its use is not limited and may be further contained in any layer in the organic layer.
  • the compound represented by the general formula (E-1) in the light emitting layer is contained in an amount of 0.1% by mass to 50% by mass with respect to the total mass of the compound generally forming the light emitting layer in the light emitting layer.
  • the content is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 40% by mass.
  • the thickness of the light emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm, and more preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. More preferably.
  • the light emitting layer in the element of the present invention may be composed of only a light emitting material, or may be a mixed layer of a host material and a light emitting material.
  • the kind of the light emitting material may be one kind or two or more kinds.
  • the host material is preferably a charge transport material.
  • the host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • the light emitting layer may contain a material that does not have charge transporting properties and does not emit light.
  • the light emitting layer may be a single layer or a multilayer of two or more layers, and each layer may contain the same light emitting material or host material, or each layer may contain a different material. When there are a plurality of light emitting layers, each of the light emitting layers may emit light with different emission colors.
  • the host material is a compound mainly responsible for charge injection and transport in the light emitting layer, and itself is a compound that does not substantially emit light.
  • “substantially does not emit light” means that the amount of light emitted from the compound that does not substantially emit light is preferably 5% or less, more preferably 3% or less of the total amount of light emitted from the entire device. Preferably it says 1% or less.
  • the host material a compound represented by the general formula (1) of the present invention can be used as the host material.
  • Examples of other host materials that can be used in the present invention include compounds having the following structure as a partial structure.
  • the charge transport layer is a layer in which charge transfer occurs when a voltage is applied to the organic electroluminescent element.
  • Specific examples include a hole injection layer, a hole transport layer, an electron block layer, a light emitting layer, a hole block layer, an electron transport layer, and an electron injection layer. If the charge transport layer formed by the coating method is a hole injection layer, a hole transport layer, an electron blocking layer, or a light emitting layer, it is possible to manufacture an organic electroluminescent element with low cost and high efficiency.
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the hole injection layer and the hole transport layer the matters described in paragraph numbers [0165] to [0167] of JP-A-2008-270736 can be applied to the present invention.
  • the hole injection layer preferably contains an electron accepting dopant.
  • an electron-accepting dopant may be any organic material or inorganic material as long as it can extract electrons from the doped material and generate radical cations.
  • TCNQ tetracyanoquinodimethane
  • F 4 -TCNQ tetrafluorotetracyanoquinodimethane
  • molybdenum oxide and the like.
  • the electron-accepting dopant in the hole injection layer is preferably contained in an amount of 0.01% by mass to 50% by mass, and preferably 0.1% by mass to 40% by mass with respect to the total mass of the compound forming the hole injection layer. %, More preferably 0.2% by mass to 30% by mass.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
  • an electron transport material the compound represented by General formula (1) of this invention can be used.
  • Other materials include pyridine derivatives, quinoline derivatives, pyrimidine derivatives, pyrazine derivatives, phthalazine derivatives, phenanthroline derivatives, triazine derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, Metal complexes of anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, naphthalene, perylene, and other aromatic ring tetracarboxylic anhydrides, phthalocyanine derivatives, 8-quinolinol derivatives And metal phthalocyanines, various metal complexes represented by metal complexes with benzoxazole and benzothiazole ligands, It is preferable that a layer
  • the thicknesses of the electron injection layer and the electron transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
  • the thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the thickness of the electron injection layer is preferably from 0.1 nm to 200 nm, more preferably from 0.2 nm to 100 nm, and even more preferably from 0.5 nm to 50 nm.
  • the electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the electron injection layer preferably contains an electron donating dopant.
  • an electron donating dopant may be any organic material or inorganic material as long as it can give electrons to the doped material and generate radical anions.
  • TTF tetrathiafulvalene
  • TTT Dithiaimidazole compounds
  • TTT tetrathianaphthacene
  • bis- [1,3 diethyl-2-methyl-1,2-dihydrobenzimidazolyl] lithium, cesium and the like.
  • the electron donating dopant in the electron injection layer is preferably contained in an amount of 0.01% by mass to 50% by mass, and 0.1% by mass to 40% by mass with respect to the total mass of the compound forming the electron injection layer. More preferably, the content is 0.5 to 30% by mass.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • the T 1 energy in the film state of the organic compound constituting the hole blocking layer is higher than the T 1 energy of the light emitting material in order to prevent energy transfer of excitons generated in the light emitting layer and not to reduce the light emission efficiency. It is preferable.
  • organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as Balq)), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP)) and the like.
  • BCP phenanthroline
  • the thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side.
  • an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the T 1 energy in the film state of the organic compound constituting the electron blocking layer must be higher than the T 1 energy of the light emitting material in order to prevent the energy transfer of excitons generated in the light emitting layer and not to reduce the light emission efficiency. Is preferred.
  • the organic compound constituting the electron blocking layer for example, those mentioned as the hole transport material described above can be applied.
  • the thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the pair of electrodes include an anode, and at least one organic layer is included between the light emitting layer and the anode, and at least one of the following general formulas ( It is preferable to contain a compound represented by M-1).
  • the compound represented by the general formula (M-1) is more preferably contained in an organic layer adjacent to the light emitting layer between the light emitting layer and the anode, but its use is not limited, and It may be further contained in any of these layers.
  • any of a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and a charge blocking layer can contain in two or more.
  • the organic layer adjacent to the light emitting layer between the light emitting layer and the anode and containing the compound represented by formula (M-1) is more preferably an electron block layer or a hole transport layer.
  • Ar 1 and Ar 2 are each independently one or more selected from alkyl, aryl, heteroaryl, arylamino, alkylamino, morpholino, thiomorpholino, N, O, and S It represents a 5- or 6-membered heterocycloalkyl or cycloalkyl containing a hetero atom, and may further have a substituent Z.
  • Ar 1 and Ar 2 may be bonded to each other by a single bond, alkylene, or alkenylene (with or without a condensed ring) to form a condensed 5- to 9-membered ring.
  • Ar 3 represents P-valent alkyl, aryl, heteroaryl, or arylamino, and may further have a substituent Z.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R ", or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • p is an integer of 1 to 4, and when p is 2 or more, Ar 1 and Ar 2 may be the same or different.
  • Another preferred embodiment of the compound represented by the general formula (M-1) is a case represented by the following general formula (M-2).
  • R M1 represents an alkyl group, an aryl group, or a heteroaryl group.
  • R M2 to R M23 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, an amino group, a silyl group, a cyano group, a nitro group, or a fluorine atom.
  • R M1 represents an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), or a heteroaryl group (preferably having 4 to 12 carbon atoms). Which may have the aforementioned substituent Z.
  • R M1 is preferably an aryl group or a heteroaryl group, and more preferably an aryl group. Preferred substituents when the aryl group of R M1 has a substituent include an alkyl group, a halogen atom, a cyano group, an aryl group, and an alkoxy group, and an alkyl group, a halogen atom, a cyano group, and an aryl group are more preferable.
  • the aryl group of R M1 is preferably a phenyl group that may have a substituent Z, and more preferably a phenyl group that may have an alkyl group or a cyano group.
  • R M2 to R M23 are each independently a hydrogen atom, an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), a heteroaryl group (preferably having 4 to 12 carbon atoms), Alkoxy group (preferably having 1 to 8 carbon atoms), aryloxy group (preferably having 6 to 30 carbon atoms), amino group (preferably having 0 to 24 carbon atoms), silyl group (preferably having 0 to 18 carbon atoms), cyano Represents a group, a nitro group, or a fluorine atom, and these may have the aforementioned substituent Z.
  • R M2 , R M7 , R M8 , R M15 , R M16 and R M23 are preferably a hydrogen atom or an alkyl group or an aryl group which may have a substituent Z, more preferably a hydrogen atom.
  • R M4 , R M5 , R M11 , R M12 , R M19, and R M20 are preferably a hydrogen atom, an alkyl or aryl group optionally having substituent Z, or a fluorine atom, more preferably a hydrogen atom. Is an atom.
  • R M3 , R M6 , R M9 , R M14 , R M17 and R M22 are preferably a hydrogen atom, an alkyl or aryl group optionally having substituent Z, a fluorine atom, or a cyano group, and more A hydrogen atom or an alkyl group which may have a substituent Z is preferable, and a hydrogen atom is more preferable.
  • R M10 , R M13 , R M18 and R M21 are preferably a hydrogen atom, an alkyl group optionally having a substituent Z, an aryl group, a heteroaryl group or an amino group, a nitro group, a fluorine atom, or a cyano group More preferably a hydrogen atom, an alkyl or aryl group optionally having a substituent Z, a nitro group, a fluorine atom, or a cyano group, still more preferably a hydrogen atom or a substituent Z. It is an alkyl group that may be present.
  • the substituent is preferably a fluorine atom
  • the alkyl group which may have the substituent Z preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms. is there.
  • Another preferred embodiment of the compound represented by the general formula (M-1) is a case represented by the following general formula (M-3).
  • R S1 to R S5 are each independently an alkyl group, cycloalkyl group, alkenyl group, alkynyl group, —CN, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) represents R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and may further have a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R S1 to R S5 When a plurality of R S1 to R S5 are present, they may be bonded to each other to form a ring, and may further have a substituent Z.
  • a represents an integer of 0 to 4, and when a plurality of R S1 are present, they may be the same or different and may be bonded to each other to form a ring.
  • b to e each independently represent an integer of 0 to 5, and when there are a plurality of R S2 to R S5 , they may be the same or different, and any two may combine to form a ring.
  • q is an integer of 1 to 5, and when q is 2 or more, a plurality of R S1 may be the same or different, and may be bonded to each other to form a ring.
  • the alkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent Z.
  • the alkyl group represented by R S1 to R S5 is preferably an alkyl group having 1 to 8 carbon atoms in total, more preferably an alkyl group having 1 to 6 carbon atoms in total, such as a methyl group or an ethyl group. , I-propyl group, cyclohexyl group, t-butyl group and the like.
  • the cycloalkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent Z.
  • the cycloalkyl group represented by R S1 to R S5 is preferably a cycloalkyl group having 4 to 7 ring members, more preferably a cycloalkyl group having 5 to 6 carbon atoms in total, such as a cyclopentyl group and cyclohexyl group. Groups and the like.
  • the alkenyl group represented by R S1 to R S5 preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • vinyl, allyl, 1-propenyl Examples include 1-isopropenyl, 1-butenyl, 2-butenyl, 3-pentenyl and the like.
  • the alkynyl group represented by R S1 to R S5 preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • Examples of the perfluoroalkyl group represented by R S1 to R S5 include those in which all hydrogen atoms of the aforementioned alkyl group are replaced with fluorine atoms.
  • the aryl group represented by R S1 to R S5 is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, a biphenyl group, and a terphenyl group.
  • the heteroaryl group represented by R S1 to R S5 is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group,
  • R S1 to R S5 are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom or an alkyl group.
  • Group, cyano group, trifluoromethyl group, fluoro group and aryl group more preferably a hydrogen atom, an alkyl group and an aryl group.
  • substituent Z an alkyl group, an alkoxy group, a fluoro group, a cyano group, and a dialkylamino group are preferable, and a hydrogen atom and an alkyl group are more preferable.
  • R S1 to R S5 may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl;
  • the 7-membered ring may further have a substituent Z.
  • the definition and preferred range of cycloalkyl, aryl, and heteroaryl formed are the same as the cycloalkyl group, aryl group, and heteroaryl group defined by R S1 to R S5 .
  • the compound represented by the general formula (M-1) is preferably contained in an amount of 50 to 100% by mass, The content is preferably 100% by mass, and particularly preferably 95 to 100% by mass.
  • each layer contains the above-mentioned range.
  • the compound represented by the general formula (M-1) may contain only one kind in any organic layer, and the compound represented by the plurality of general formulas (M-1) You may contain in combination.
  • the thickness of the hole transport layer containing the compound represented by the general formula (M-1) is preferably 1 nm to 500 nm, more preferably 3 nm to 200 nm, and more preferably 5 nm to 100 nm. Further preferred.
  • the hole transport layer is preferably provided in contact with the light emitting layer.
  • the lowest excited triplet (T 1 ) energy in the film state of the compound represented by the general formula (M-1) is preferably 2.52 eV (58 kcal / mol) or more and 3.47 eV (80 kcal / mol) or less. It is more preferably 2.60 eV (60 kcal / mol) or more and 3.25 eV (75 kcal / mol) or less, and further preferably 2.69 eV (62 kcal / mol) or more and 3.04 eV (70 kcal / mol) or less. .
  • the hydrogen atom constituting the general formula (M-1) includes hydrogen isotopes (such as deuterium atoms). In this case, all hydrogen atoms in the compound may be replaced with hydrogen isotopes, or a mixture in which a part is a compound containing hydrogen isotopes may be used.
  • the compound represented by the general formula (M-1) can be synthesized by combining various known synthesis methods.
  • carbazole compounds are synthesized by dehydroaromatization after the Athercorp rearrangement reaction of a condensate of an aryl hydrazine and a cyclohexane derivative (LF Tieze, by Th. Eicher, translated by Takano, Ogasawara, Precision organic synthesis, page 339 (published by Nankodo).
  • LF Tieze by Th. Eicher, translated by Takano, Ogasawara, Precision organic synthesis, page 339 (published by Nankodo).
  • LF Tieze by Th. Eicher
  • Takano, Ogasawara, Precision organic synthesis page 339 (published by Nankodo).
  • Tetrahedron Letters 39: 617 (1998), 39: 2367 (1998) and 40: 6393 (1999) and the like Tetrahedron Letters 39: 617 (1998), 39: 2367 (1998) and 40
  • the compound represented by the general formula (M-1) of the present invention is preferably formed into a thin layer by a vacuum deposition process, but a wet process such as solution coating can also be suitably used.
  • the molecular weight of the compound is preferably 2000 or less, more preferably 1200 or less, and particularly preferably 800 or less from the viewpoints of deposition suitability and solubility. Also, from the viewpoint of vapor deposition suitability, if the molecular weight is too small, the vapor pressure becomes small, the change from the gas phase to the solid phase does not occur, and it is difficult to form an organic layer. Particularly preferred.
  • the pair of electrodes preferably include a cathode, and preferably includes at least one organic layer between the light emitting layer and the cathode. It is preferable to contain a compound represented by (1) or an aromatic hydrocarbon compound (particularly the following general formula (Tp-1)) or a compound represented by the following general formula (O-1).
  • the aromatic hydrocarbon compound is more preferably contained in an organic layer adjacent to the light emitting layer between the light emitting layer and the cathode, but its use is not limited, and any of the organic layers may be further added. It may be contained.
  • any one or more of a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an exciton block layer, and a charge block layer are used. It can contain.
  • the organic layer adjacent to the light emitting layer between the light emitting layer and the cathode and containing the aromatic hydrocarbon compound is preferably a charge blocking layer or an electron transporting layer, and more preferably an electron transporting layer.
  • the aromatic hydrocarbon compound preferably comprises only carbon atoms and hydrogen atoms from the viewpoint of ease of synthesis.
  • the aromatic hydrocarbon compound is contained in a layer other than the light emitting layer, it is preferably contained in an amount of 70 to 100% by mass, more preferably 85 to 100% by mass.
  • the aromatic hydrocarbon compound is contained in the light emitting layer, it is preferably contained in an amount of 0.1 to 99% by weight, more preferably 1 to 95% by weight, based on the total weight of the light emitting layer. It is more preferable to include the mass%.
  • the condensed polycyclic skeleton having 13 to 22 carbon atoms is preferably any one of fluorene, anthracene, phenanthrene, tetracene, chrysene, pentacene, pyrene, perylene, and triphenylene.
  • fluorene, triphenylene, phenanthrene Is more preferable, and triphenylene is more preferable from the viewpoint of stability of the compound and charge injection / transport properties, and a compound represented by the general formula (Tp-1) is particularly preferable.
  • the hydrocarbon compound represented by the general formula (Tp-1) preferably has a molecular weight in the range of 400 to 1200, more preferably 400 to 1000, and still more preferably 400 to 800. If the molecular weight is 400 or more, a high-quality amorphous thin film can be formed, and if the molecular weight is 1200 or less, it is preferable in terms of solubility in a solvent, sublimation, and appropriate deposition.
  • hydrocarbon compound represented by the general formula (Tp-1) is not limited, and it may be further contained not only in the organic layer adjacent to the light emitting layer but also in any layer within the organic layer.
  • R 12 to R 23 are each independently a hydrogen atom, an alkyl group or an alkyl group, a phenyl group optionally substituted with a phenyl group, a fluorenyl group, a naphthyl group, or a triphenylenyl group, Represents a fluorenyl group, a naphthyl group, or a triphenylenyl group, provided that R 12 to R 23 are not all hydrogen atoms.
  • Examples of the alkyl group represented by R 12 to R 23 are substituted or unsubstituted, for example, methyl group, ethyl group, isopropyl group, n-butyl group, tert-butyl group, n-octyl group, n-decyl group, and an n-hexadecyl group, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like, preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, and a cyclohexyl group, more preferably a methyl group, an ethyl group, or A tert-butyl group.
  • R 12 to R 23 are preferably an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms, a phenyl group, a fluorenyl group, a naphthyl group, or a triphenylenyl group (these are further an alkyl group, a phenyl group, a fluorenyl group). More preferably a phenyl group, a fluorenyl group, a naphthyl group, or a triphenylenyl group, which may be substituted with a group, a naphthyl group, or a triphenylenyl group.
  • a benzene ring that may be substituted with a phenyl group, a fluorenyl group, a naphthyl group, or a triphenylenyl group (which may be further substituted with an alkyl group, a phenyl group, a fluorenyl group, a naphthyl group, or a triphenylenyl group); It is particularly preferred.
  • the total number of aryl rings is preferably 2 to 8, and preferably 3 to 5. By setting it as this range, a high-quality amorphous thin film can be formed, and solubility in a solvent, sublimation, and deposition suitability are improved.
  • R 12 to R 23 each independently preferably has a total carbon number of 20 to 50, more preferably a total carbon number of 20 to 36. By setting it as this range, a high-quality amorphous thin film can be formed, and solubility in a solvent, sublimation, and deposition suitability are improved.
  • the hydrocarbon compound represented by the general formula (Tp-1) is preferably a hydrocarbon compound represented by the following general formula (Tp-2).
  • a plurality of Ar 1 are the same, and a phenyl group, a fluorenyl group, a naphthyl group, which may be substituted with an alkyl group, a phenyl group, a fluorenyl group, a naphthyl group, or a triphenylenyl group, Or represents a triphenylenyl group.
  • An alkyl group and an alkyl group represented by Ar 1 , a phenyl group, a fluorenyl group, a naphthyl group, or a phenyl group, a fluorenyl group, a naphthyl group, or a triphenylenyl group that may be substituted with a triphenylenyl group include R 12 to R 23 . It is synonymous with what was mentioned, and a preferable thing is also the same.
  • the hydrocarbon compound represented by the general formula (Tp-1) is preferably a hydrocarbon compound represented by the following general formula (Tp-3).
  • L represents an alkyl group, a phenyl group, a fluorenyl group, a naphthyl group, or a phenyl group, a fluorenyl group, a naphthyl group, a triphenylenyl group, which may be substituted with a triphenylenyl group, or a combination thereof.
  • n represents an integer of 1 to 6.
  • the alkyl group, phenyl group, fluorenyl group, naphthyl group, or triphenylenyl group that forms the n-valent linking group represented by L has the same meaning as that described for R 12 to R 23 .
  • L is preferably an alkyl group or an n-valent linking group formed by combining a benzene ring, a fluorene ring, or a combination thereof, which may be substituted with a benzene ring.
  • L is bonded to the triphenylene ring by *.
  • N is preferably 1 to 5, and more preferably 1 to 4.
  • the hydrocarbon compound according to the present invention is used as a host material of a light emitting layer of an organic electroluminescent device or a charge transport material of a layer adjacent to the light emitting layer, the energy gap in a thin film state than the light emitting material (the light emitting material is a phosphorescent light emitting material)
  • the energy gap and T 1 energy are not too large.
  • the T 1 energy in the film state of the hydrocarbon compound represented by the general formula (Tp-1) is preferably 52 kcal / mol or more and 80 kcal / mol or less, and 55 kcal / mol or more and 68 kcal / mol or less. Is more preferable, and it is still more preferable that they are 58 kcal / mol or more and 63 kcal / mol or less. In particular, when a phosphorescent light emitting material is used as the light emitting material, the T 1 energy is preferably in the above range.
  • the T 1 energy can be obtained by a method similar to the method in the description of the general formula (1) described above.
  • the glass transition temperature (Tg) of the hydrocarbon compound according to the present invention is 80 ° C. or more and 400 ° C. or less from the viewpoint of stably operating the organic electroluminescence device against heat generated during high temperature driving or during device driving. Preferably, it is 100 degreeC or more and 400 degrees C or less, More preferably, it is 120 degreeC or more and 400 degrees C or less.
  • the compounds exemplified as the hydrocarbon compounds according to the present invention include those described in International Publication No. 05/013388, International Publication No. 06/130598, International Publication No. 09/021107, US2009 / 0009065, International Publication No. 09 / It can be synthesized by the methods described in the 008311 pamphlet and the international publication 04/018587 pamphlet. After synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the light emitting device of the present invention preferably includes at least one organic layer between the light emitting layer and the cathode, and the organic layer contains at least one compound represented by the following general formula (O-1). Is preferable from the viewpoints of element efficiency and driving voltage.
  • the general formula (O-1) will be described below.
  • R O1 represents an alkyl group, an aryl group, or each independently .A O1 ⁇ A O4 representing the heteroaryl group, the C-R A or .R A representing the nitrogen atom Represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and a plurality of R A may be the same or different, and L O1 represents a divalent to hexavalent linking group comprising an aryl ring or a heteroaryl ring.
  • N O1 represents an integer of 2 to 6.
  • R O1 represents an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), or a heteroaryl group (preferably having 4 to 12 carbon atoms). You may have the group A.
  • R O1 is preferably an aryl group or a heteroaryl group, more preferably an aryl group.
  • an alkyl group, an aryl group or a cyano group can be mentioned, an alkyl group or an aryl group is more preferable, and an aryl group is still more preferable.
  • the aryl group of R O1 When the aryl group of R O1 has a plurality of substituents, the plurality of substituents may be bonded to each other to form a 5- or 6-membered ring.
  • the aryl group of R O1 is preferably a phenyl group which may have a substituent A, more preferably a phenyl group which may be substituted with an alkyl group or an aryl group, and even more preferably an unsubstituted group.
  • a O1 to A O4 each independently represent C—R A or a nitrogen atom.
  • 0 to 2 are preferably nitrogen atoms, and 0 or 1 is more preferably a nitrogen atom.
  • all of A O1 ⁇ A O4 is C-R A, or A O1 be a nitrogen atom, is preferably A O2 ⁇ A O4 is C-R A, A O1 be a nitrogen atom, A O2 ⁇ More preferably, A O4 is C—R A , more preferably A O1 is a nitrogen atom, A O2 to A O4 are C—R A , and R A is all a hydrogen atom.
  • R A represents a hydrogen atom, an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), or a heteroaryl group (preferably having 4 to 12 carbon atoms). It may have a substituent Z ′.
  • the plurality of RA may be the same or different.
  • R A is preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • L O1 represents a divalent to hexavalent linking group composed of an aryl ring (preferably having 6 to 30 carbon atoms) or a heteroaryl ring (preferably having 4 to 12 carbon atoms).
  • L O1 is preferably an arylene group, heteroarylene group, aryltriyl group, or heteroaryltriyl group, more preferably a phenylene group, a biphenylene group, or a benzenetriyl group, still more preferably a biphenylene group, Or it is a benzenetriyl group.
  • L O1 may have the above-described substituent Z ′, and when it has a substituent, the substituent is preferably an alkyl group, an aryl group, or a cyano group. Specific examples of L O1 include the following.
  • n O1 represents an integer of 2 to 6, preferably an integer of 2 to 4, more preferably 2 or 3. n O1 is most preferably 3 from the viewpoint of device efficiency, and most preferably 2 from the viewpoint of device durability.
  • the compound represented by the general formula (O-1) is more preferably a compound represented by the following general formula (O-2).
  • R O1 independently represents an alkyl group, an aryl group, or a heteroaryl group.
  • R O2 to R O4 each independently represent a hydrogen atom, an alkyl group, an aryl group, or a hetero group.
  • a O1 to A O4 each independently represents C—R A or a nitrogen atom, R A represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and a plurality of R A are the same But it may be different.
  • R O1 and A O1 ⁇ A O4 the general formula (O1) in the same meaning as R O1 and A O1 ⁇ A O4 of, also the same preferable ranges thereof.
  • R 02 to R 04 are each independently a hydrogen atom, an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), or a heteroaryl group (preferably having 4 to 12 carbon atoms). These may have the substituent group A described above.
  • R 02 to R 04 are preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an aryl group, and most preferably a hydrogen atom.
  • the compound represented by the general formula (O-1) has a glass transition temperature (Tg) of 100 ° C. from the viewpoint of stable operation at high temperature storage, stable operation against high temperature driving, and heat generation during driving. It is preferably from ⁇ 400 ° C., more preferably from 120 ° C. to 400 ° C., still more preferably from 140 ° C. to 400 ° C.
  • the compound represented by the general formula (O-1) can be synthesized by the method described in JP-A No. 2001-335776. After synthesis, purification by column chromatography, recrystallization, reprecipitation, etc., followed by purification by sublimation is preferred. Not only can organic impurities be separated by sublimation purification, but inorganic salts, residual solvents, moisture, and the like can be effectively removed.
  • the compound represented by the general formula (O-1) is contained in an organic layer between the light emitting layer and the cathode, but is contained in a layer on the cathode side adjacent to the light emitting layer. Is preferred.
  • the entire organic EL element may be protected by a protective layer.
  • the protective layer the matters described in JP-A-2008-270736, paragraphs [0169] to [0170] can be applied to the present invention.
  • the element of this invention may seal the whole element using a sealing container.
  • the sealing container the matters described in paragraph [0171] of JP-A-2008-270736 can be applied to the present invention.
  • the organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode.
  • a direct current which may include an alternating current component as necessary
  • the driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047.
  • the driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429 and 6,023,308 can be applied.
  • the external quantum efficiency of the organic electroluminescent device of the present invention is preferably 7% or more, and more preferably 10% or more.
  • the value of the external quantum efficiency should be the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or the value of the external quantum efficiency around 300 to 400 cd / m 2 when the device is driven at 20 ° C. Can do.
  • the internal quantum efficiency of the organic electroluminescence device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more.
  • the internal quantum efficiency of the device is calculated by dividing the external quantum efficiency by the light extraction efficiency. In a normal organic EL element, the light extraction efficiency is about 20%.
  • the element of the present invention can be suitably used for a display element, a display, a backlight, electrophotography, an illumination light source, a recording light source, an exposure light source, a reading light source, a sign, a signboard, an interior, or optical communication.
  • a device driven in a region having a high light emission luminance such as a lighting device or a display device.
  • FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light emitting device 20 in FIG. 2 includes a transparent substrate (support substrate) 2, an organic electroluminescent element 10, a sealing container 16, and the like.
  • the organic electroluminescent device 10 is configured by sequentially laminating an anode (first electrode) 3, an organic layer 11, and a cathode (second electrode) 9 on a substrate 2.
  • a protective layer 12 is laminated on the cathode 9, and a sealing container 16 is provided on the protective layer 12 with an adhesive layer 14 interposed therebetween.
  • a part of each electrode 3 and 9, a partition, an insulating layer, etc. are abbreviate
  • the adhesive layer 14 a photocurable adhesive such as an epoxy resin or a thermosetting adhesive can be used, and for example, a thermosetting adhesive sheet can also be used.
  • the use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
  • FIG. 3 is a cross-sectional view schematically showing an example of the illumination device of the present invention.
  • the illumination device 40 of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
  • the light scattering member 30 is not particularly limited as long as it can scatter light.
  • the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31.
  • the transparent substrate 31 for example, a glass substrate can be preferably cited.
  • transparent resin fine particles can be preferably exemplified.
  • the glass substrate and the transparent resin fine particles known ones can be used.
  • the incident light is scattered by the light scattering member 30, and the scattered light is emitted from the light emitting surface 30B. It is emitted as illumination light.
  • Compound 1B-12 was synthesized according to the above scheme.
  • Compounds 1B-21 and 1C-10 were also synthesized by a similar method.
  • Other compounds can also be synthesized by the same means as described above.
  • 4 to 6 show 1 H-NMR data of the synthesized compounds 1B-12, 1B-21, and 1C-10.
  • Comparative Example 1 A glass substrate having a thickness of 0.5 mm and a 2.5 cm square ITO film (manufactured by Geomat Co., Ltd., surface resistance 10 ⁇ / ⁇ (sqr)) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV for 30 minutes. -Ozone treatment was performed. The following organic layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
  • ITO film transparent anode
  • First layer LG101: film thickness 10 nm
  • Second layer NPD: film thickness 30 nm
  • Third layer Comparative compound 1 and GD-1 (mass ratio 90:10): film thickness 30 nm
  • Fourth layer TpH-17: film thickness 10 nm
  • Fifth layer Alq: film thickness 40 nm
  • 0.1 nm of lithium fluoride and 200 nm of metallic aluminum were vapor-deposited in this order to form a cathode.
  • This laminated body is put in a glove box substituted with nitrogen gas without being exposed to the atmosphere, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • the device of Comparative Example 1 was obtained.
  • Examples A1 to A12 and Comparative Examples 2 and 3 Instead of the comparative compound 1 which is the material of the third layer in the comparative example 1, as shown in Table 1, the compounds 1A-8, 1B-4, 1B-8, 1B-9, 1B-12, 2B- 16, 1B-17, 1B-20, 1B-21, 1C-8, 1C-10, 1C-21, Comparative Compound 2 or Comparative Compound 3 Elements of A1 to A12, Comparative Example 2 and Comparative Example 3 were obtained. Table 1 shows the results of evaluating these elements by the following method.
  • (B) Driving voltage Each element is caused to emit light by applying a DC voltage so that the luminance becomes 1000 cd / m 2 .
  • the applied voltage is 8V or more
  • x is 6V or more and less than 8V
  • ⁇ ⁇ is less than 6V.
  • Comparative Example 4 is the same as Comparative Example 1 except that LG101 used for the first layer of the element of Comparative Example 1 is replaced with GD-1 and GD-1 used for the third layer is replaced with RD-1. An element was produced.
  • Example B1 to B6 and Comparative Examples 5 to 6 instead of the comparative compound 1 which is the material of the third layer in the comparative example 4, the compounds 1B-8, 1B-12, 1B-20, 1B-21, 1C-10, 1C-21, comparative compound 2, Alternatively, devices of Examples B1 to B6, Comparative Example 5 and Comparative Example 6 were obtained in the same manner as Comparative Example 4 except that Comparative Compound 3 was used. Table 2 shows the results of evaluating these devices by the same methods as in Examples A1 to A12 and Comparative Examples 1 to 3.
  • Comparative Example 7 A device of Comparative Example 7 was produced in the same manner as Comparative Example 1 except that TpH-17 used for the fourth layer of the device of Comparative Example 1 was replaced with OM-8.
  • Examples C1 to C7 and Comparative Examples 8 to 9 instead of the comparative compound 1 which is the material of the third layer in the comparative example 7, the compounds 1A-8, 1B-8, 2B-16, 1B-20, 1B-21, 1C-8, 1C-21, The devices of Examples C1 to C7, Comparative Example 8, and Comparative Example 9 were obtained in the same manner as Comparative Example 7 except that Comparative Compound 2 or Comparative Compound 3 was used. Table 3 shows the results of evaluating these devices by the same methods as in Examples A1 to A12 and Comparative Examples 1 to 3.
  • Comparative Example 10 A device of Comparative Example 10 was produced in the same manner as Comparative Example 4 except that TpH-17 used for the fourth layer of the device of Comparative Example 4 was changed to OM-8.
  • Examples D1 to D6 and Comparative Examples 11 to 12 instead of the comparative compound 1 which is the material of the third layer in the comparative example 10, the compounds 1B-8, 1B-12, 1B-20, 1B-21, 1C-10, 1C-21, comparative compound 2, Alternatively, devices of Examples D1 to D6, Comparative Examples, 11 and 12 were obtained in the same manner as Comparative Example 10 except that Comparative Compound 3 was used. Table 4 shows the results of evaluating these devices in the same manner as in Examples A1 to A12 and Comparative Examples 1 to 3.
  • Comparative Example 13 A device of Comparative Example 13 was produced in the same manner as Comparative Example 1 except that TpH-17 used in the fourth layer of the device of Comparative Example 1 was replaced with Comparative Compound 1.
  • Examples E1 to E4 and Comparative Examples 14 to 15 In place of Comparative Compound 1 which is the host material of the third layer in Comparative Example 1 and TpH-17 used in the fourth layer, the compounds 1B-8, 1B-21, 1C-8, 1C-21 of the present invention were compared.
  • Devices of Examples E1 to E4 and Comparative Examples 11 and 12 were obtained in the same manner as Comparative Example 1 except that Compound 2 or Comparative Compound 3 was used for the third layer host material and the fourth layer.
  • Table 5 shows the results of evaluating these devices in the same manner as in Examples A1 to A12 and Comparative Examples 1 to 3.
  • the voltage of Comparative Example 13 was set to 100, the voltage having a relative value of 100 or more was evaluated as x, the voltage of 90 or more and less than 100 was evaluated as ⁇ , and the voltage of less than 90 was evaluated as ⁇ .
  • the driving voltage is preferably as small as possible.
  • Comparative Example 13 is a reference, “ ⁇ ” is described.
  • the device of the present invention using the compound represented by the general formula (1) of the present invention has a lower driving voltage than the device of the comparative example, and the color even when stored at high temperature. It can be seen that the degree of deviation is small and has excellent performance.
  • the organic electroluminescent element can be used for a display element, a display, a backlight, electrophotography, an illumination light source, a recording light source, an exposure light source, a reading light source, a sign, a signboard, an interior, or optical communication.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

L'invention concerne un élément électroluminescent organique supérieur ayant une tension de commande faible avec un petit décalage de chromaticité même lorsqu'il est stocké à température élevée. L'élément électroluminescent organique ayant, sur un substrat, une paire d'électrodes comprenant une anode et une cathode et au moins une couche organique comprenant une couche luminescente entre lesdites électrodes, contient au moins une sorte de matière phosphorescente dans la couche luminescente et au moins une couche de la ou des couches organiques contient un composé représenté par la formule (1). X représente un atome d'oxygène ou un atome de soufre. R101-R107 représentent chacun indépendamment des atomes d'hydrogène ou des groupes substituants. R108 représente un groupe alkyle. Lorsque n est 1, La représente un groupe substituant groupe non-alkyle et R109 représente un atome d'hydrogène ou un groupe substituant groupe non-alkyle. Lorsque n est un entier de 2 ou plus, La représente un groupe hydrocarboné aromatique n-valent, et R109 représente un atome d'hydrogène ou un groupe substituant groupe non-alkyle. Indépendamment du fait que n soit 1 ou plus, si R109 et R108 sont adjacents l'un à l'autre, R108 et R109 peuvent se lier pour former une structure alicyclique.
PCT/JP2011/070190 2010-09-08 2011-09-05 Élément électroluminescent organique et matière pour des éléments électroluminescents organiques ayant une structure de dibenzothiophène ou une structure de dibenzofurane Ceased WO2012033062A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-201489 2010-09-08
JP2010201489A JP5650961B2 (ja) 2010-09-08 2010-09-08 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材料

Publications (1)

Publication Number Publication Date
WO2012033062A1 true WO2012033062A1 (fr) 2012-03-15

Family

ID=45810661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070190 Ceased WO2012033062A1 (fr) 2010-09-08 2011-09-05 Élément électroluminescent organique et matière pour des éléments électroluminescents organiques ayant une structure de dibenzothiophène ou une structure de dibenzofurane

Country Status (2)

Country Link
JP (1) JP5650961B2 (fr)
WO (1) WO2012033062A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133644A1 (fr) * 2011-03-31 2012-10-04 富士フイルム株式会社 Élément électroluminescent organique, dispositif émetteur de lumière, dispositif d'affichage et dispositif d'éclairage utilisant un élément électroluminescent organique, et composé pour élément électroluminescent organique
US10158085B2 (en) 2013-12-17 2018-12-18 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10985329B2 (en) 2013-12-17 2021-04-20 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109137B2 (ja) * 2014-11-14 2017-04-05 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069569A1 (fr) * 2005-12-15 2007-06-21 Idemitsu Kosan Co., Ltd. Materiau pour element a electroluminescence organique et element electroluminescent organique correspondant
JP2009170817A (ja) * 2008-01-18 2009-07-30 Mitsui Chemicals Inc 化合物、およびそれを含む有機電界発光素子
WO2010001817A1 (fr) * 2008-07-01 2010-01-07 東レ株式会社 Élément électroluminescent
US20110057559A1 (en) * 2007-12-28 2011-03-10 Universal Display Corporation Phosphorescent emitters and host materials with improved stability

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
JP5047134B2 (ja) * 2008-03-28 2012-10-10 三菱電機株式会社 太陽電池モジュール
JP2009291593A (ja) * 2008-11-05 2009-12-17 Yoshihiro Anpo 男子小便器用履物
US8771840B2 (en) * 2009-11-13 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device
EP2354135B1 (fr) * 2009-12-23 2013-09-18 Semiconductor Energy Laboratory Co., Ltd. Composé de benzimidazol-2-yl-phényle, élément luminescent, dispositif luminescent, dispositif électronique et dispositif d'éclairage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069569A1 (fr) * 2005-12-15 2007-06-21 Idemitsu Kosan Co., Ltd. Materiau pour element a electroluminescence organique et element electroluminescent organique correspondant
US20110057559A1 (en) * 2007-12-28 2011-03-10 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
JP2009170817A (ja) * 2008-01-18 2009-07-30 Mitsui Chemicals Inc 化合物、およびそれを含む有機電界発光素子
WO2010001817A1 (fr) * 2008-07-01 2010-01-07 東レ株式会社 Élément électroluminescent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133644A1 (fr) * 2011-03-31 2012-10-04 富士フイルム株式会社 Élément électroluminescent organique, dispositif émetteur de lumière, dispositif d'affichage et dispositif d'éclairage utilisant un élément électroluminescent organique, et composé pour élément électroluminescent organique
JP2012216817A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 有機電界発光素子、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子用の化合物
US10158085B2 (en) 2013-12-17 2018-12-18 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10985329B2 (en) 2013-12-17 2021-04-20 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US12150380B2 (en) 2013-12-17 2024-11-19 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US12384766B2 (en) 2013-12-17 2025-08-12 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
JP5650961B2 (ja) 2015-01-07
JP2013214539A (ja) 2013-10-17

Similar Documents

Publication Publication Date Title
JP7379619B2 (ja) 有機電界発光素子、有機電界発光素子用材料、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子に用いられる化合物
JP5814031B2 (ja) 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材料
KR102310693B1 (ko) 유기 전계 발광 소자, 그리고 그 소자를 사용한 발광 장치, 표시 장치, 조명 장치 및 그 소자용 화합물
JP5981770B2 (ja) 有機電界発光素子、有機電界発光素子用電荷輸送材料、並びに、該素子を用いた発光装置、表示装置及び照明装置
KR101985026B1 (ko) 유기 전계 발광 소자, 유기 전계 발광 소자용 재료, 그리고 그 소자를 사용한 발광 장치, 표시 장치, 조명 장치 및 그 소자에 사용되는 화합물
JP6132470B2 (ja) 有機電界発光素子、該素子に用いる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP5814141B2 (ja) 合成法、その合成法を用いて合成された化合物および有機電界発光素子
WO2012133649A1 (fr) Matériau de transport de charges, élément électroluminescent organique, dispositif émetteur de lumière, appareil d'affichage, et appareil d'éclairage
JP6009816B2 (ja) 電荷輸送材料、有機電界発光素子、発光装置、表示装置および照明装置
JP5658478B2 (ja) 有機電界発光素子、並びにm−キンクフェニル構造を有する電荷輸送材料及び化合物
JP2013093541A (ja) 有機電界発光素子とそれに用いることができる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
WO2012014779A1 (fr) Elément électroluminescent organique, et composé associé
JP5563399B2 (ja) 有機電界発光素子及びp−ジシアノベンゼン構造を有する化合物
JP5650961B2 (ja) 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材料
JP5990385B2 (ja) 化合物、有機電界発光素子用材料、電荷輸送材料、有機電界発光素子
JP6109137B2 (ja) 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材
WO2012014822A1 (fr) Élément électroluminescent organique et matériau de transport de charge
JP6113136B2 (ja) 有機電界発光素子、並びにm−キンクフェニル構造を有する電荷輸送材料及び化合物
KR20130132257A (ko) 유기 전계 발광 소자, 유기 전계 발광 소자용 전하 수송 재료, 그리고 그 소자를 사용한 발광 장치, 표시 장치 및 조명 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11823537

Country of ref document: EP

Kind code of ref document: A1