WO2012081987A1 - Agencement et procédé de fermeture des eaux dans un puits de pétrole et/ou de gaz - Google Patents
Agencement et procédé de fermeture des eaux dans un puits de pétrole et/ou de gaz Download PDFInfo
- Publication number
- WO2012081987A1 WO2012081987A1 PCT/NO2010/000469 NO2010000469W WO2012081987A1 WO 2012081987 A1 WO2012081987 A1 WO 2012081987A1 NO 2010000469 W NO2010000469 W NO 2010000469W WO 2012081987 A1 WO2012081987 A1 WO 2012081987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shut
- swellable element
- swellable
- pipe
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/08—Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
Definitions
- the present invention relates to an arrangement and method for water shut-off in an oil and/or gas well.
- WO 2008004875 Al discloses method for flow control and a self-adjusting valve or flow control device, in particular useful in a production pipe for producing oil and/or gas from a well in an oil and/or gas reservoir, which production pipe includes a lower drainage pipe preferably being divided into at least two sections each including one or more inflow control devices which communicates the geological production formation with the flow space of the drainage pipe.
- the fluid flows through an inlet and further through a flow path of the control device passing by a movable disc or movable device which is designed to move relative to the opening of the inlet and thereby reduce or increase the flow-through area by exploiting the
- the flow control device in WO 2008004875 Al may for instance be used to reduce inflow of water.
- a problem with the flow control device in WO 2008004875 Al is that it may not be completely closed if the fluid contains water.
- WO 2005080750 Al discloses a method and a device in connection with an actuator intended for use in connection with a fluid flow or fluid reservoir, in particular an actuator that is designed to be used in connection with a drainage pipe for the production of oil and/or gas in an oil and/or gas reservoir.
- An osmotic cell is used to operate the actuator.
- the osmotic cell is placed in the fluid flow, whereby the necessary force and motion for the actuator to adjust or drive a fluid control device or valve are achieved by utilising the osmotic pressure difference between the solution in the cell and the external fluid flow/reservoir in relation to the cell.
- the method and device in WO 2005080750 Al supposedly keep water production to a minimum level.
- a problem with the device in WO 2005080750 Al is that it is not reversible in case the (pressure) drawdown is high.
- a hydrocarbon production pipe having a pipe wall with at least one opening; a swellable element adapted to expand when subjected to water; and a shut-off element, wherein the swellable element is arranged to come into contact with fluid from the well or an associated reservoir and to actuate the shut-off element when expanded so that the shut- off element at least partly closes the at least one opening in the pipe wall.
- the present invention allows for automatic shut-off of the (inlet) opening should the fluid from the well/reservoir contain water, whereby the yield of the oil/gas production may be increased. Further, the present arrangement can cope with high drawdown.
- the arrangement may further comprise a sleeve fitted over a section of the hydrocarbon production pipe, wherein the swellable element is interposed between the hydrocarbon production pipe and the sleeve such that it is forced to expand mainly in the longitudinal or axial direction of the hydrocarbon production pipe.
- the sleeve may be perforated to allow fluid from the well or associated reservoir to come into contact with the swellable element.
- the shut-off element may include a sliding ring provided around the hydrocarbon production pipe, wherein one end of the swellable element is fixed and the other end is directly or indirectly in contact with the sliding ring, for pushing the sliding ring along the hydrocarbon production pipe to a position where the sliding ring covers the at least one opening in the pipe wall when the swellable element is expanded.
- the arrangement may further comprise a housing adapted to accommodate at least the swellable element and the shut-off element, wherein the housing has an inlet for fluid from the well or associated reservoir.
- the arrangement may further comprise a sand screen arranged upstream of the swellable element with respect to the fluid from the well or associated reservoir.
- An additional opening out of reach for the shut-off element may be provided in the pipe wall of the hydrocarbon production pipe.
- the swellable element may include a hygroscopic material.
- the swelling or expansion of the swellable element may be reversible.
- the sensitivity of the water shut-off function may be set by selecting at least one of: the type or material of the swellable element; the dimension(s) of the swellable element; and the initial distance between the shut-off element and the at least one opening in the pipe wall.
- a method for water shut-off in an oil and/or gas well in which a hydrocarbon production pipe having a pipe wall with at least one opening is provided, wherein the method comprises: providing a swellable element adapted to expand when subjected to water; and providing a shut-off element, wherein the swellable element is arranged to receive fluid from the well or an associated reservoir and to actuate the shut-off element when expanded so that the shut-off element closes the at least one opening in the pipe wall.
- This aspect may exhibit the same or similar features and technical effects as the previously described aspect of the invention.
- Fig. 1 is a cross-sectional side view of an embodiment of the present invention.
- Figs. 2a-2b are detailed views of a portion C of Fig. 1.
- Fig. 1 shows an arrangement for water shut-off in an oil and/or (natural) gas well according to an embodiment of the present invention.
- the present application may be applied onshore or offshore (subsea).
- the arrangement comprises a pipe 1.
- the pipe 1 may be a hydrocarbon production pipe, and it is placed in the oil and/or (natural) gas well.
- the pipe 1 comprises at least one opening or hole 9 in the pipe wall.
- holes 9 may for instance be arranged in a "ring" around the pipe 1.
- the holes 9 are generally adapted to allow fluid from a reservoir associated with the well into the pipe 1.
- the fluid from the reservoir typically includes oil, gas, and/or water.
- the arrangement further comprises a swellable element 5.
- the swellable element 5 is adapted to expand when subjected or exposed to water, but not to expand when subjected to oil or gas.
- the swellable element 5 may include a hygroscopic material.
- the swellable element 5 can for instance be made of or include one or more polymers that swell under the influence of water.
- the swelling or expansion of the swellable element 5 may be reversible. That is, the swellable element 5 may return to an initial state from an expanded state if it no longer is subjected to water.
- the swellable element 5 may be sub-divided in several smaller swellable elements.
- the swellable element 5 is interposed between the pipe 1 and a perforated sleeve
- the swellable element 5 may have the form of a cylinder provided around the pipe 1.
- the sleeve 7 may for instance be made of steel, and its perforations allow fluid from the well or the associated reservoir to moisten or wet the swellable element 5. Further, the sleeve 7 may protect the swellable element 5 from bending and buckling. Also, the sleeve 7 serves to limit the direction of expansion of the swellable element 5, as will be explained further below.
- the swellable element 5 (to the left in fig. 1) is clamped by a retaining ring 4.
- the retaining ring 4 may for instance be made of steel.
- the other free end (to the right in fig. 1) of the swellable element 5 is connected to a shut-off element forming part of the present arrangement.
- the shut-off element includes a sliding ring 6 and optional O-rings 8.
- the sliding ring 6 may slide along the pipe 1 from the position shown in fig. 2a to the position shown in fig. 2b. In this working area of the sliding ring 6, the outer surface of the pipe 1 may be smoothed to facilitate the sliding.
- the arrangement may further comprise a housing 3.
- the housing 3
- the housing 3 has an inlet 11 for allowing fluid from the well/reservoir into the housing 3, whereby the fluid received in the housing 3 may moisten or wet the swellable element 5.
- An optional sand screen 2 may also be included in the arrangement. The sand screen 2 is arranged before the inlet 11, upstream of the swellable element 5 with respect to the fluid from the well/reservoir. The sand screen 2 may prevent sand erosion in the hole 9.
- fluid from the well/reservoir passes the sand screen 2 and enters the housing 3 through the inlet 11.
- the fluid comes into contact with the swellable element 5 via the perforations of the sleeve 7.
- the swellable element 5 may be in a non-swelled state, as shown in fig. 1 and fig. 2a. In this state, the sliding ring 6 does not cover the hole 9. If the fluid mainly contains oil and/or gas, and no water or just a small amount of water, the swellable element 5 will remain in this state. Hence, the fluid (i.e. mainly oil/gas) may pass through the hole 9 into the pipe 1. However, if the amount of water in the fluid increases, the swellable element 5 will start to expand (swell). The sleeve 7 forces the swellable element 5 to expand mainly in the
- the additional hole 10 which is out of reach for the sliding ring 6 even when the swellable element 5 is fully expanded, provides for the reversibility of the arrangement. Namely, the additional hole 10 allows a small flow of fluid over the swellable element 5, even when the hole 9 is closed. If the incoming fluid again contains more oil/gas and less or no water, the swelled element 5 will contract or shrink back towards the initial state and pull back the sliding ring 6 so that the hole 9 is opened.
- the sensitivity of the water shut-off function may be set or controlled in various ways.
- the sensitivity of the water shut-off function' is basically meant the swellable element's sensitivity to water or at what amount or percentage of water in the fluid that the hole 9 should be closed/opened. This can be controlled e.g. by selecting a particular type or material of the swellable element 5. Also, dimensions, in particular the length, of the swellable element 5 may be selected accordingly. Also, the initial distance between the sliding ring 6 and the hole 9 influences the water shut-off function and may be set accordingly: a longer distances makes the shut-off function less sensitive to water while a shorter distance makes it more sensitive.
- the swellable element could in at least some embodiments be replaced by an osmotic cell or another element adapted to expand when exposed to water.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Pipe Accessories (AREA)
Abstract
La présente invention porte sur un agencement et sur un procédé de fermeture des eaux dans un puits de pétrole et/ou de gaz. L'agencement comprend : un tuyau de production d'hydrocarbures (1) ayant une paroi de tuyau à au moins une ouverture (9) ; un élément gonflable (5) conçu de façon à subir une expansion lorsqu'il est soumis à de l'eau ; et un élément de fermeture (6), l'élément gonflable étant agencé de façon à venir en contact avec un fluide venant du puits ou d'un réservoir associé et à actionner l'élément de fermeture lorsqu'il subit une expansion, de sorte que l'élément de fermeture ferme au moins partiellement la ou les ouvertures dans la paroi de tuyau.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/NO2010/000469 WO2012081987A1 (fr) | 2010-12-16 | 2010-12-16 | Agencement et procédé de fermeture des eaux dans un puits de pétrole et/ou de gaz |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/NO2010/000469 WO2012081987A1 (fr) | 2010-12-16 | 2010-12-16 | Agencement et procédé de fermeture des eaux dans un puits de pétrole et/ou de gaz |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012081987A1 true WO2012081987A1 (fr) | 2012-06-21 |
Family
ID=44278790
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/NO2010/000469 Ceased WO2012081987A1 (fr) | 2010-12-16 | 2010-12-16 | Agencement et procédé de fermeture des eaux dans un puits de pétrole et/ou de gaz |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2012081987A1 (fr) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005080750A1 (fr) | 2004-02-20 | 2005-09-01 | Norsk Hydro Asa | Procédé et dispositif associés à un récepteur |
| WO2007094897A2 (fr) * | 2006-02-10 | 2007-08-23 | Exxonmobil Upstream Research Company | Controle de la conformite par des materiaux repondant a un stimulus |
| US20070246225A1 (en) * | 2006-04-20 | 2007-10-25 | Hailey Travis T Jr | Well tools with actuators utilizing swellable materials |
| WO2008004875A1 (fr) | 2006-07-07 | 2008-01-10 | Norsk Hydro Asa | Procédé de régulation de flux et soupape autonome ou dispositif de régulation de flux |
| WO2008143784A2 (fr) * | 2007-05-16 | 2008-11-27 | Halliburton Energy Services, Inc. | Appareil pour commander de façon autonome l'entrée de fluides de production à partir d'un puits souterrain |
| US20090283275A1 (en) * | 2008-05-13 | 2009-11-19 | Baker Hughes Incorporated | Flow Control Device Utilizing a Reactive Media |
| WO2010062417A1 (fr) * | 2008-10-31 | 2010-06-03 | Services Petroliers Schlumberger | Utilisation de matériaux pouvant gonfler pour commander un écoulement de fluide |
-
2010
- 2010-12-16 WO PCT/NO2010/000469 patent/WO2012081987A1/fr not_active Ceased
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005080750A1 (fr) | 2004-02-20 | 2005-09-01 | Norsk Hydro Asa | Procédé et dispositif associés à un récepteur |
| WO2007094897A2 (fr) * | 2006-02-10 | 2007-08-23 | Exxonmobil Upstream Research Company | Controle de la conformite par des materiaux repondant a un stimulus |
| US20070246225A1 (en) * | 2006-04-20 | 2007-10-25 | Hailey Travis T Jr | Well tools with actuators utilizing swellable materials |
| WO2008004875A1 (fr) | 2006-07-07 | 2008-01-10 | Norsk Hydro Asa | Procédé de régulation de flux et soupape autonome ou dispositif de régulation de flux |
| WO2008143784A2 (fr) * | 2007-05-16 | 2008-11-27 | Halliburton Energy Services, Inc. | Appareil pour commander de façon autonome l'entrée de fluides de production à partir d'un puits souterrain |
| US20090283275A1 (en) * | 2008-05-13 | 2009-11-19 | Baker Hughes Incorporated | Flow Control Device Utilizing a Reactive Media |
| WO2010062417A1 (fr) * | 2008-10-31 | 2010-06-03 | Services Petroliers Schlumberger | Utilisation de matériaux pouvant gonfler pour commander un écoulement de fluide |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4161219A (en) | Piston actuated well safety valve | |
| CA2793722C (fr) | Dispositif de regulation du debit et procede de regulation du debit | |
| US7909088B2 (en) | Material sensitive downhole flow control device | |
| US7980265B2 (en) | Valve responsive to fluid properties | |
| US3993129A (en) | Fluid injection valve for wells | |
| CA2717858C (fr) | Systeme et procede destines a commander un ecoulement de fluide dans des puits ramifies | |
| MY163991A (en) | Method for flow control and autonomous valve or flow control device | |
| US9752698B2 (en) | Autonomous valve with temperature responsive device | |
| NO333068B1 (no) | Fremgangsmate for a styre stromningen av hydrokarbonfluid fra en produksjonssone inn i en produksjonsbronn og bronnverktoy for a styre stromningsmengden av fluid fra en undergrunns produksjonssone | |
| EP2561178A2 (fr) | Système de complétion intelligente pour puits de forage à portée étendue | |
| DK200601295A (da) | Reguleringsventil med omskiftelig strömning | |
| US8602112B2 (en) | Control apparatus for downhole valves | |
| WO2009052103A3 (fr) | Dispositifs détecteurs d'eau et procédé les utilisant pour commander le flux de fluides souterrains | |
| US20110056700A1 (en) | System and method for recompletion of old wells | |
| US20150048267A1 (en) | Anti cavitation control valve | |
| US7740075B2 (en) | Pressure relief actuated valves | |
| AU2003203441B2 (en) | Valve | |
| WO2012081987A1 (fr) | Agencement et procédé de fermeture des eaux dans un puits de pétrole et/ou de gaz | |
| CA2389732C (fr) | Systeme de forage muni d'un clapet de non-retour | |
| US20090032237A1 (en) | Shape Memory Alloy Closure Spring for Subsurface Safety Valves Triggered by Well Fluids | |
| RU2374541C1 (ru) | Клапан отсекающий автоматический | |
| OA12503A (en) | Method and apparatus for controlling downhole flow. | |
| CA2821841A1 (fr) | Completion de fond de trou | |
| US10954733B2 (en) | Single-line control system for a well tool | |
| WO2010059062A1 (fr) | Procédé et appareil pour commander l'écoulement de fluide dans la production de pétrole et/ou de gaz |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10801473 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 10801473 Country of ref document: EP Kind code of ref document: A1 |