[go: up one dir, main page]

WO2011116394A1 - Dispositif de chargement sans fil pour véhicules hybrides électriques et rechargeables - Google Patents

Dispositif de chargement sans fil pour véhicules hybrides électriques et rechargeables Download PDF

Info

Publication number
WO2011116394A1
WO2011116394A1 PCT/US2011/029266 US2011029266W WO2011116394A1 WO 2011116394 A1 WO2011116394 A1 WO 2011116394A1 US 2011029266 W US2011029266 W US 2011029266W WO 2011116394 A1 WO2011116394 A1 WO 2011116394A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
vehicle
transmitter
receiver
inductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2011/029266
Other languages
English (en)
Inventor
J. Axel Radermacher
Andrew Shune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisker Automotive Inc
Original Assignee
Fisker Automotive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisker Automotive Inc filed Critical Fisker Automotive Inc
Publication of WO2011116394A1 publication Critical patent/WO2011116394A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates generally to a wireless charging device for vehicles. More specifically, the present disclosure relates to a wireless charging device for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs).
  • EVs electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • EVs are vehicles which utilize one or more electric motors for propulsion.
  • PHEVs utilize one or more electric motors in combination with a conventional (e.g., combustion powered) powertrain.
  • the electric motors of EVs and PHEVs may receive their power from a number of sources including fossil fuels, nuclear power, or renewable sources such as solar power, wind power, and the like.
  • the energy derived from these sources may be transmitted to the vehicle through various means such as overhead lines or direct connection through an electrical cable.
  • EVs and PHEVs typically require the user to plug the vehicle into a charger or wall outlet prior to use when the vehicle is idle in order to recharge the vehicle. This is known as direct wired contact or direct coupling or conductive charging and requires direct electrical contact between the batteries and the charger.
  • Conductive charging is achieved by connecting a device (e.g., vehicle battery, etc.) to a power source with plug-in wires, such as a docking station, or by moving batteries from a device to the charger.
  • the present disclosure relates to a wireless charging system for a vehicle including a power transmitter having a power source and a first inductive element for transmitting inductive power.
  • the transmitter is positioned in a location to allow for proximity placement to the vehicle.
  • the system includes a power receiver having a second inductive element adjacent the vehicle and is adapted to wirelessly absorb inductive power transmitted from the power transmitter and convert the absorbed power to electrical current that is delivered to an electric storage device in the vehicle when the power receiver and power transmitter are within a predetermined proximity of each other.
  • the wireless charging system can transmit inductive power to the vehicle with no active involvement of the user.
  • the wireless charging system also includes an interactive visual display system that guides the vehicle operator to move the vehicle into position for recharging.
  • the wireless power transmitter can be mobile and automatically align itself with the wireless power receiver to initiate electrical charging.
  • the present disclosure further provides for a method of wireless charging for a vehicle, the method includes the steps of locating a power transmitter having a power source and a first inductive element for transmitting inductive power to the vehicle.
  • a wireless power receiver having a second inductive element is mounted adjacent the vehicle, and the vehicle includes an energy storage device in communication with the power receiver, to wirelessly absorb inductive power transmitted from the power transmitter and convert the absorbed power to electrical current.
  • the relative position of the vehicle and the receiver is adjusted with respect to the transmitter to allow for wireless inductive power transfer between the vehicle and the transmitter using the interactive display device.
  • the electrical current is delivered to the vehicle electrical storage device by the power transmitter after the power transmitter and power receiver are within a predetermined proximity of each other.
  • An advantage of the present disclosure is that the wireless charging device is provided with improved safety features as compared to a conventional plug in charger. Another advantage of the present disclosure is that the wireless charging device can be used in the presence of liquids, such as water, with no risk of electrical shock. Yet another advantage of the present disclosure is that the wireless charging device does not require active involvement by the operator and therefore does not require the operator to remember to plug the vehicle into a charger. Still another advantage of the present disclosure is that the wireless charging device has a simple and compact design which does not require a large amount of space or extraneous secondary structures. A further advantage of the present disclosure is that the power transmitter and power receiver can by positioned relative to each other using an interactive display device associated with the vehicle. Still a further advantage of the present disclosure is that each of the power transmitter or power receiver includes a moveable portion so that finite positional adjustments can made to optimize charging.
  • FIG. 1 is a perspective view of an exemplary electric powered vehicle.
  • FIG. 2 is a perspective cut-away view showing a battery.
  • FIG. 3 is front view of an instrument panel for the vehicle.
  • FIGS. 4A-4B are front views of an information display for a vehicle.
  • FIG. 5 is a diagram of a wireless charging device.
  • FIG. 6 is diagram of a wireless charging device.
  • FIG. 7 is a side view of an electric vehicle positioned over a wireless charging device.
  • FIG. 8 is a flow diagram illustrating a method of charging of the present disclosure.
  • vehicle 10 having one or more rechargeable electric motors according to an exemplary embodiment is shown.
  • the vehicle 10 may be any type of vehicle, such as an EV, or PHEV, or the like.
  • vehicle 10 shown is a 2-door sedan, it should be understood that vehicle 10 may be a mini-van, sport utility vehicle or any other means in or by which someone travels.
  • Vehicle 10 can be any hybrid vehicle including a solar and electric powered vehicle, a combustion engine and electric vehicle, a plug-in hybrid vehicle having a battery that obtains an electrical charge from a standard electrical outlet, or a fully electric battery powered vehicle.
  • vehicle 10 includes a body structure 1 1 having a frame surrounding and typically enclosing an interior space 17 referred to as a passenger compartment 17.
  • a rear compartment 13, often used as a trunk or luggage compartment 13 extends rearwardly from the passenger compartment 17.
  • the passenger compartment 17 and luggage compartment 13 are separated by passenger seats 14.
  • the seats 14 are foldable and/or removable to allow for storing and carrying larger objects thereby effectively extending the size of the rear compartment 13.
  • a front or engine compartment 15 typically extends forwardly from the passenger compartment 17 and is covered from above by a hood 19.
  • the hood is pivotably mounted at a proximal end 19A of the front compartment 15 adjacent the passenger compartment 17 to allow access to mechanical and electrical components mounted in the front compartment 15.
  • a power source such as an engine, typically engage a drive shaft (not shown) and in combination with the wheels W define a drive train (i.e., also referred to as a power train), commonly referred to as a group of components that generate power and deliver it to the road surface.
  • a drive train i.e., also referred to as a power train
  • the engine may be located in or below the rear compartment 13.
  • the vehicle 10 includes a power train that controls the operation of the vehicle.
  • the power train is a plug-in hybrid, and includes an electrically powered motor and motor controller, although the power train could be of a dedicated electric type.
  • the vehicle may also include a gasoline powered engine that supplements the electric motor when required under certain operating conditions.
  • the electrical energy used to operate the vehicle is stored in an energy storage device, such as the battery 18.
  • the battery 18 may be a single unit, or a plurality of modules arranged in a predetermined manner, such as in series to be described in more detail below. Various types of batteries are available, such as lead acid, or lithium-ion or the like.
  • the battery 18 is contained within a battery housing 12.
  • the vehicle 10 may include more than one type of battery 18 or energy storage device.
  • the battery 18 supplies the power in the form of electricity to operate various vehicle components.
  • the battery may be in communication with a control system that regulates the distribution of power within the vehicle, such as to the electric drive motor, or a vehicle component or other accessories or the like.
  • the high voltage battery receives electrical energy from a plug- in source
  • the low voltage battery receives electrical energy from a solar source and from the higher voltage battery as needed.
  • the battery 18 can be supported within the vehicle by a battery tray 16.
  • the battery 18 and battery tray 16 extend longitudinally along the length of the vehicle.
  • the battery tray can be fabricated from a metal material, such as Aluminum or the like.
  • the battery tray can be secured to the vehicle frame 1 1 using a fastener, such as a bolt.
  • a seal is applied between a flange portion of the base member and the battery housing to prevent the intrusion of elements such as moisture or dirt or like into the interior of the battery.
  • An example of a sealant is rubber or foam or adhesive, or the like.
  • the housing 12 is a generally box-like structure that provides additional protection to the battery 18.
  • the housing 12 is secured to the battery tray, such as using a fastener.
  • an instrument panel (IP) (or dashboard, instrument cluster (IC), etc.) 30 and a display device (e.g., interactive interface, human machine interface (HMI), touch screen interface, etc.) 32 is shown which is interchangeably referred to as a display and/or visual display.
  • the instrument panel 30 extends laterally in the front portion of the vehicle 10 from one side of the vehicle 10 to the other side of the vehicle 10 in the passenger compartment 17, as shown in FIG. 3.
  • the instrument panel 30 may support a variety of visual displays 32 that provide a variety of information pertaining to the vehicle 10, such as safety, performance, entertainment options, or the like.
  • the display 32 may also be an interactive display device that enables the operator and/or occupant of the vehicle 10 to control and regulate the features of the vehicle 10, such as the interior climate, audio system, phone, navigation, system, battery recharging system, or the like, as shown in FIGS. 4A and 4B.
  • the display 32 may also include a variety of visual and/or audible indicators informing/warning the operator or occupant of the vehicle 10 of issues such as low tire pressure, low fuel, low battery power, battery level, recharging progress, or the like.
  • the display 32 may also include a visual and/or audible indicator that guides or navigates the operator or occupant of the vehicle to a particular location or position, such as a position proximate a wireless charging device 50, or the like.
  • the display device 32 is operatively in
  • the wireless charging device 50 operates on induction charging, although other types of energy transfer is contemplated.
  • the wireless charging device 50 includes a charging base station 52 and a power transmitter 54 having a first induction coil 56.
  • a power receiver 70 having a second induction coil 72 is is hosted on the vehicle 10.
  • the power receiver 70 can be located either on or within the frame or the like.
  • receiver 70 is positioned within direct physical proximity of transmitter 54.
  • the power transmitter 54 can be connected to the charging base station 52 via a cable 58.
  • the transmitter can create an alternating electromagnetic field.
  • the power transmitter 50 can be located on or located within the charging base station 52 as shown in FIG. 6.
  • the power receiver 70 is secured to the vehicle 10 and in electrical communication with a charging system of the vehicle 10.
  • the power receiver (receiver) 70 can be located on or located within the vehicle 10.
  • the power receiver 70 takes power from the electromagnetic field and converts it back into electrical current to charge the vehicle battery 18.
  • the first induction coil 56 of the power transmitter 54 and the second induction coil 72of the power receiver 70 are in proximity of one another, they combine to effectively form an electrical transformer.
  • the wireless charging device 50 can be positioned on a stationary surface (S) (e.g., garage floor, wall, ceiling, etc.), as shown in FIG. 5.
  • the wireless charging device 50 can be positioned within a stationary surface (S) (e.g., garage floor, wall, ceiling, etc.), as shown in FIG. 6.
  • the wireless charging device 50 transmits power to a rechargeable battery 18 located within the vehicle 10, such as the inductive power of this example.
  • Charging device can be designed to be simple and compact in design if desirable.
  • the wireless charging device 50 may be positioned on a surface such as a floor of an area, such as a garage, parking space, or the like.
  • a vehicle 10 may be parked within the vicinity (e.g., over, etc.) of the wireless charging device 50, and the relative position of the wireless charging device and power receiver automatically initiates the charging process.
  • the wireless charging device 50 begins to wirelessly transmit power from the first induction coil 56 associated with the power transmitter 54 to the second induction coil 72 associated with the power receiver device 70 mounted on the vehicle 10.
  • the power receiver 70 absorbs the conductive power from the wireless charging device 50 the power receiver 70 converts the power to electrical power in a manner that it can effectively capture the inductive power transmitted from the wireless charging device 50.
  • an operator need merely to park his or her vehicle 10 within the vicinity of the wireless charging device 50, the likelihood that the vehicle 10 is charged between uses and reduces the burden on the operator to initiate the charging process.
  • the transfer of energy or recharging can be initiated automatically by the vehicle (e.g., vehicle control system, vehicle computer, vehicle recharging system, etc.) under
  • predetermined conditions e.g., battery low, vehicle in proximity of battery recharging system, etc.
  • the transfer of energy or recharging can be initiated manually (e.g., by the vehicle operator, etc.) by using the interactive display device 32.
  • the wireless charging device 50 may be placed in other locations other than the floor, such as the ceiling, wall, and the like.
  • the wireless charging device 50 operates using inductive charging and is designed to have no exposed electrical conductors and therefore can be positioned and used on virtually any surface even surfaces having a liquid, such as a garage floor covered in water, with no risk of electrical shock.
  • the wireless charging device 50 may also include a moveable portion to facilitate finite adjustment of the wireless charging device.
  • a moveable member 57 i.e. arm, plate, portion, extension member, etc. disposed on the power base 54 may be used to vary the relative position of the power transmitter with respect to the power receiver.
  • the power receiver 70 can be moved to be in contact or in close proximity to the power transmitter for optimal performance (e.g., higher energy transfer efficiency, etc.).
  • the power receiver 70 includes a moveable portion 71 , such as an arm, plate, portion, extension member or the like to locate the to the puck 54 to optimize performance (e.g., maximize energy transfer efficiency, decrease the distance between the power transmitter and the power receiver to enhance energy transfer, etc.).
  • both the power transmitter 54 and the power receiver 70 may each have a portion 57, 71 respectively that can be manipulated to control the proximity between the power transmitter 54 and the power receiver 70 and thereby improve electrical charging.
  • the wireless charging device 50 may also includes a mobile power transmission device 54 that automatically moves to the proper location (similar to a robotic device which maneuvers on its own, or the like) to minimize the burden on the vehicle operator and to ensure that the power transmission device 54 and the vehicle power receiver 70 are aligned.
  • a mobile power transmission device 54 that automatically moves to the proper location (similar to a robotic device which maneuvers on its own, or the like) to minimize the burden on the vehicle operator and to ensure that the power transmission device 54 and the vehicle power receiver 70 are aligned.
  • the system also includes an interactive visual display device 3 may be used that guides the vehicle operator to position/park the vehicle 10 in the most suitable location in relation to the charger 50 and more specifically, to the power transmitter 54.
  • the visual display system 14 may include a navigation or other interface screen, directional arrows (e.g., turn signal, etc.), and/or audible indicators to indicate the vehicle's position in relation to the wireless charging device 50 or the power transmitter 54 and/or to guide the driver to the optimal location for alignment, charging, or the like.
  • the visual display system of this example is located within the vehicle, it could also be located external to the vehicle 10, such as on a wall, or other location.
  • a method of charging a vehicle is provided using the system previously described.
  • the methodology starts with box 100 with the step of locating a power transmitter having a power source.
  • the power transmitter may be permanently positioned on a wall, or on a floor, or beneath a floor.
  • the power transmitter is portable.
  • a wireless power receiver as previously described, is mounted adjacent the vehicle.
  • the receiver can be mounted within the vehicle frame.
  • the wireless power receiver is mounted adjacent the vehicle frame.
  • the wireless power receiver may be fixed or removable mounted.
  • the methodology advances to box 120 and the relative position of the vehicle and the receiver can be adjusted with respect to the transmitter using the interactive display device.
  • the interactive display device For example, an image of the vehicle and the power receiver with respect to the power transmitter is displayed on the display device.
  • the display device may include other icons to assist the user with maneuvering the vehicle so that charging may be initiated.
  • the methodology advances to box 125 and the position of the receiver and/or the transmitter may be adjusted using a moveable element to provide closer proximity of each to each other. Once the proximity of the transmitter and receiver is achieved and inductive power is transferred between them, the electric current generated in the receiver is delivered to the vehicle electric storage device as represented in box 130.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un système de chargement sans fil, lequel système comprend un émetteur de puissance comprenant une source de puissance et un premier élément inducteur afin de transmettre une puissance inductive. L'émetteur est disposé dans un endroit permettant le placement du véhicule à proximité. Le système comprend un récepteur de puissance comprenant un second élément inducteur adjacent au véhicule et conçu pour absorber par voie sans fil la puissance inductive transmise depuis l'émetteur de puissance, et pour convertir la puissance absorbée en courant électrique qui est envoyé à un dispositif de stockage électrique dans le véhicule lorsque le récepteur de puissance et l'émetteur de puissance sont à une distance prédéterminée l'un de l'autre.
PCT/US2011/029266 2010-03-19 2011-03-21 Dispositif de chargement sans fil pour véhicules hybrides électriques et rechargeables Ceased WO2011116394A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31554710P 2010-03-19 2010-03-19
US61/315,547 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011116394A1 true WO2011116394A1 (fr) 2011-09-22

Family

ID=44649640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/029266 Ceased WO2011116394A1 (fr) 2010-03-19 2011-03-21 Dispositif de chargement sans fil pour véhicules hybrides électriques et rechargeables

Country Status (1)

Country Link
WO (1) WO2011116394A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103029652A (zh) * 2011-10-06 2013-04-10 福特全球技术公司 具有交界面的车辆导引系统以及车辆
US20140015328A1 (en) * 2012-07-16 2014-01-16 Qualcomm, Incorporated Device alignment and identification in inductive power transfer systems
KR20140073545A (ko) * 2011-11-08 2014-06-16 도요타지도샤가부시키가이샤 차량의 수전 장치, 송전 장치 및 비접촉 송수전 시스템
US8823551B1 (en) 2013-03-07 2014-09-02 Delphi Technologies, Inc. System to align a vehicle within a parking location using thermal targets
GB2512855A (en) * 2013-04-09 2014-10-15 Bombardier Transp Gmbh Receiving device for receiving a magnetic field and for producing electric energy by magnetic induction
US9024578B2 (en) 2012-11-15 2015-05-05 Delphi Technologies, Inc. Alignment system for wireless electrical power transfer
GB2520555A (en) * 2013-11-26 2015-05-27 Ford Global Tech Llc A motor vehicle having an energy storage device
EP2784907A4 (fr) * 2011-11-24 2015-09-16 Toyota Motor Co Ltd Dispositif de transmission d'énergie, véhicule et système de transmission/réception d'énergie sans contact
US9236758B2 (en) 2012-11-15 2016-01-12 Delphi Technologies, Inc. System and method to align a source resonator and a capture resonator for wireless electrical power transfer
EP2985162A4 (fr) * 2013-04-12 2016-06-29 Nissan Motor Dispositif d'alimentation électrique sans contact
EP2985163A4 (fr) * 2013-04-12 2016-07-06 Nissan Motor Dispositif d'alimentation électrique sans contact
JPWO2015162725A1 (ja) * 2014-04-23 2017-04-13 日産自動車株式会社 非接触受電装置の車載構造
US9800079B2 (en) 2014-06-06 2017-10-24 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles and vehicle systems for wirelessly charging portable electronic devices
US9899845B2 (en) 2013-04-09 2018-02-20 Bombardier Transportation Gmbh Receiving device with coil of electric line for receiving a magnetic field and for producing electric energy by magnetic induction and with magnetizable material
US9908423B2 (en) 2014-02-25 2018-03-06 Ford Global Technologies, Llc Vehicle charging system
CN107791862A (zh) * 2016-09-07 2018-03-13 昶洧新能源汽车发展有限公司 无线车辆充电系统
WO2018127825A1 (fr) * 2017-01-05 2018-07-12 Dumarey Guido Lieven P Système de charge sans fil intégré
US10144300B2 (en) 2013-04-12 2018-12-04 Nissan Motor Co., Ltd. Contactless power supply device
GB2515876B (en) * 2013-08-30 2021-03-24 Ford Global Tech Llc A method to aid inductive battery charging of a motor vehicle
US11161421B2 (en) 2017-08-29 2021-11-02 Toyota Motor Engineering & Manufacturing North America, Inc. Auxiliary wireless power transfer system
WO2023194749A1 (fr) * 2022-04-07 2023-10-12 Scanstrut Limited Système d'alimentation sans fil pour dispositifs électriques portables sur des navires et des véhicules terrestres

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498948A (en) * 1994-10-14 1996-03-12 Delco Electornics Self-aligning inductive charger
US5617003A (en) * 1995-03-24 1997-04-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for charging a battery of an electric vehicle
US5654621A (en) * 1992-10-28 1997-08-05 Daimler-Benz Aktiengesellschaft Method and arrangement for automatic contactless charging
US6879889B2 (en) * 1994-05-05 2005-04-12 H.R. Ross Industries, Inc. Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features
US20090166103A1 (en) * 2007-12-28 2009-07-02 Searete Llc Limbed vehicles, systems and methods using same, and post networks on which limbed vehicles travel
WO2010022059A1 (fr) * 2008-08-18 2010-02-25 Austin Christopher B Chargeur de batterie de véhicule, système de charge, et procédé

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654621A (en) * 1992-10-28 1997-08-05 Daimler-Benz Aktiengesellschaft Method and arrangement for automatic contactless charging
US6879889B2 (en) * 1994-05-05 2005-04-12 H.R. Ross Industries, Inc. Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features
US5498948A (en) * 1994-10-14 1996-03-12 Delco Electornics Self-aligning inductive charger
US5617003A (en) * 1995-03-24 1997-04-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for charging a battery of an electric vehicle
US20090166103A1 (en) * 2007-12-28 2009-07-02 Searete Llc Limbed vehicles, systems and methods using same, and post networks on which limbed vehicles travel
WO2010022059A1 (fr) * 2008-08-18 2010-02-25 Austin Christopher B Chargeur de batterie de véhicule, système de charge, et procédé

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103029652A (zh) * 2011-10-06 2013-04-10 福特全球技术公司 具有交界面的车辆导引系统以及车辆
KR101659673B1 (ko) * 2011-11-08 2016-09-26 도요타지도샤가부시키가이샤 차량의 수전 장치, 송전 장치 및 비접촉 송수전 시스템
KR20140073545A (ko) * 2011-11-08 2014-06-16 도요타지도샤가부시키가이샤 차량의 수전 장치, 송전 장치 및 비접촉 송수전 시스템
US10500964B2 (en) 2011-11-08 2019-12-10 Toyota Jidosha Kabushiki Kaisha Electric power reception device for vehicle, electric power transmission device, and non-contact electric power transmission/reception system
CN107089150A (zh) * 2011-11-08 2017-08-25 丰田自动车株式会社 车辆的送电装置和非接触送受电系统
EP2777976A4 (fr) * 2011-11-08 2015-09-30 Toyota Motor Co Ltd Dispositif de réception de puissance de véhicule, dispositif de transmission de puissance et système de transmission/de réception de puissance sans contact
US10513191B2 (en) 2011-11-24 2019-12-24 Toyota Jidosha Kabushiki Kaisha Electric power transmission device, vehicle, and non-contact electric power transmission and reception system
EP2784907A4 (fr) * 2011-11-24 2015-09-16 Toyota Motor Co Ltd Dispositif de transmission d'énergie, véhicule et système de transmission/réception d'énergie sans contact
US20140015328A1 (en) * 2012-07-16 2014-01-16 Qualcomm, Incorporated Device alignment and identification in inductive power transfer systems
US9859755B2 (en) 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
US9236758B2 (en) 2012-11-15 2016-01-12 Delphi Technologies, Inc. System and method to align a source resonator and a capture resonator for wireless electrical power transfer
US9024578B2 (en) 2012-11-15 2015-05-05 Delphi Technologies, Inc. Alignment system for wireless electrical power transfer
US8823551B1 (en) 2013-03-07 2014-09-02 Delphi Technologies, Inc. System to align a vehicle within a parking location using thermal targets
GB2512855A (en) * 2013-04-09 2014-10-15 Bombardier Transp Gmbh Receiving device for receiving a magnetic field and for producing electric energy by magnetic induction
US9899845B2 (en) 2013-04-09 2018-02-20 Bombardier Transportation Gmbh Receiving device with coil of electric line for receiving a magnetic field and for producing electric energy by magnetic induction and with magnetizable material
US9806540B2 (en) 2013-04-09 2017-10-31 Bombardier Transportation Gmbh Receiving device for receiving a magnetic field and for producing electric energy by magnetic induction
US9539908B2 (en) 2013-04-12 2017-01-10 Nissan Motor Co., Ltd. Contactless power supply device
EP2985188B1 (fr) * 2013-04-12 2021-06-02 Nissan Motor Co., Ltd. Dispositif d'alimentation électrique sans contact
JPWO2014167978A1 (ja) * 2013-04-12 2017-02-16 日産自動車株式会社 非接触給電装置
US10144300B2 (en) 2013-04-12 2018-12-04 Nissan Motor Co., Ltd. Contactless power supply device
EP2985162A4 (fr) * 2013-04-12 2016-06-29 Nissan Motor Dispositif d'alimentation électrique sans contact
US9415697B2 (en) 2013-04-12 2016-08-16 Nissan Motor Co., Ltd. Contactless power supply system
EP2985163A4 (fr) * 2013-04-12 2016-07-06 Nissan Motor Dispositif d'alimentation électrique sans contact
GB2515876B (en) * 2013-08-30 2021-03-24 Ford Global Tech Llc A method to aid inductive battery charging of a motor vehicle
GB2520555A (en) * 2013-11-26 2015-05-27 Ford Global Tech Llc A motor vehicle having an energy storage device
GB2520555B (en) * 2013-11-26 2021-03-10 Ford Global Tech Llc A motor vehicle having an energy storage device
US10272790B2 (en) 2014-02-25 2019-04-30 Ford Global Technologies, Llc Vehicle charging system
US9908423B2 (en) 2014-02-25 2018-03-06 Ford Global Technologies, Llc Vehicle charging system
US9774213B2 (en) 2014-04-23 2017-09-26 Nissan Motor Co., Ltd. Vehicle-mounting structure for wireless power reception device
EP3136406A4 (fr) * 2014-04-23 2017-04-26 Nissan Motor Co., Ltd Structure de montage sur véhicule pour dispositif de réception d'énergie sans contact
JPWO2015162725A1 (ja) * 2014-04-23 2017-04-13 日産自動車株式会社 非接触受電装置の車載構造
US9800079B2 (en) 2014-06-06 2017-10-24 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles and vehicle systems for wirelessly charging portable electronic devices
EP3293038A1 (fr) * 2016-09-07 2018-03-14 Thunder Power New Energy Vehicle Development Company Limited Système de recharge de véhicule sans fil
CN107791862A (zh) * 2016-09-07 2018-03-13 昶洧新能源汽车发展有限公司 无线车辆充电系统
US10298061B2 (en) 2016-09-07 2019-05-21 Thunder Power New Energy Vehicle Development Company Limited Wireless vehicle recharging system
WO2018127825A1 (fr) * 2017-01-05 2018-07-12 Dumarey Guido Lieven P Système de charge sans fil intégré
US11161421B2 (en) 2017-08-29 2021-11-02 Toyota Motor Engineering & Manufacturing North America, Inc. Auxiliary wireless power transfer system
WO2023194749A1 (fr) * 2022-04-07 2023-10-12 Scanstrut Limited Système d'alimentation sans fil pour dispositifs électriques portables sur des navires et des véhicules terrestres

Similar Documents

Publication Publication Date Title
WO2011116394A1 (fr) Dispositif de chargement sans fil pour véhicules hybrides électriques et rechargeables
US12233733B2 (en) Electrified vehicle charging station configured to provide parking guidance to electrified vehicles
US8816637B2 (en) Vehicle guidance system with interface
CN109017340B (zh) 用于仲裁车辆充电的车辆架构、电气系统和控制算法
JP5291909B2 (ja) 電気自動車の充電装置
US8483899B2 (en) Vehicle guidance system
KR101586133B1 (ko) 차량 및 전력 송수전 시스템
US9365104B2 (en) Parking assist device for vehicle and electrically powered vehicle including the same
US8655530B2 (en) Parking assist device for vehicle and electrically powered vehicle including the same
EP2347928B1 (fr) Système d'alimentation en énergie pour véhicule, et véhicule électrique
US8183821B2 (en) Charging device for electric automobile
US11167643B2 (en) Electric-drive vehicles, powertrains, and logic for comprehensive vehicle control during towing
KR101561761B1 (ko) 차량
US10384547B2 (en) Vehicle
US7973424B2 (en) Method and apparatus for producing tractive effort with interface to other apparatus
WO2011158107A1 (fr) Système d'aide au stationnement de véhicule et véhicule électrique équipé de celui-ci
US20150336464A1 (en) Ultrasonic location for electric vehicle charging system
CN101837779A (zh) 用于插电式混合动力电动车辆的自动寻找电连接的系统
US9994255B2 (en) Vehicle guidance apparatus and vehicle guidance method
JP5906691B2 (ja) 非接触電力伝送装置及び移動車両
CN103326447B (zh) 电动车无线充电系统
CN104859469A (zh) 车辆充电系统
KR20210043238A (ko) 전기차를 위한 이동형 충전장치
US11945329B2 (en) Intelligent vehicle systems and control logic for battery charge control and information display
CN205970886U (zh) 用于电驱动的车辆的充电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11757132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.01.13)

122 Ep: pct application non-entry in european phase

Ref document number: 11757132

Country of ref document: EP

Kind code of ref document: A1