[go: up one dir, main page]

WO2011113568A1 - Procédé de traitement de surface - Google Patents

Procédé de traitement de surface Download PDF

Info

Publication number
WO2011113568A1
WO2011113568A1 PCT/EP2011/001249 EP2011001249W WO2011113568A1 WO 2011113568 A1 WO2011113568 A1 WO 2011113568A1 EP 2011001249 W EP2011001249 W EP 2011001249W WO 2011113568 A1 WO2011113568 A1 WO 2011113568A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
implant component
dental
dental prosthesis
dental implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2011/001249
Other languages
English (en)
Inventor
Jenny FÄLDT
Fredrik Osla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nobel Biocare Services AG
Original Assignee
Nobel Biocare Services AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nobel Biocare Services AG filed Critical Nobel Biocare Services AG
Publication of WO2011113568A1 publication Critical patent/WO2011113568A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • A61C8/0015Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating being a conversion layer, e.g. oxide layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C2202/00Packaging for dental appliances
    • A61C2202/01Packaging for light-curable material

Definitions

  • the present invention relates to a method of treating at least one dental implant component and/or dental prosthesis.
  • the present invention also relates to an arrangement comprising at least one dental implant component and/or dental prosthesis and a package.
  • Rapid and sustainable stability and functionality of bone-anchored implants, such as dental implants, as well as optimal soft tissue healing may be achieved by improved surface structures of the implant.
  • the surface of, e.g., dental implants has developed from a machined surface to a structured/rougher surface with better healing properties.
  • One example of the latter is the TiUnite® surface provided by Nobel Biocare on dental implants, which is a more porous surface than a machined surface and that facilitates the integration of the implant compared to an implant with a machined surface by reducing bone resorption.
  • the implant surface can be coated with active substances. Such coatings can reduce inflammatory reactions leading to bone resorption, stimulate bone formation for faster osseointegration, or treat infections locally.
  • WO03030957 an osteophilic implant with a roughened hydroxilated and hydrophilic surface, made from titanium or a titanium alloy and suitable for implantation in bones, whereby the implant is characterized in that said implant is treated in the hydroxilated state with high-energy ultra-violet radiation.
  • embodiments of the present invention preferably seek to mitigate, alleviate or eliminate one or more deficiencies, disadvantages or issues in the art, such as the above identified, singly or in any combination by providing methods and arrangements according to the appended patent claims.
  • a method for treating at least one dental implant component and/or dental prosthesis, the at least one dental implant component and/or dental prosthesis comprising a metal compound and/or a ceramic material, wherein the at least one dental implant component and/or dental prosthesis is still being placed in its unbroken sealed package, said unbroken sealed package comprising a light transmitting package material adapted to allow the passage of radiation with wavelengths at least below 400 nm, said method comprising the step(s) of: irradiating, through said light transmitting package material, a surface of said dental implant component and/or dental prosthesis with radiation having a peak wavelength below 390 nm, wherein the radiation irradiating the surface is generated by at least one artificial radiation source.
  • a method of improving the hydrophilic properties of an implant component or dental prosthesis taking controllable and known data into account in a controlled process has been achieved. Also, antimicrobial, biocompatibility, and/or anti-inflammatory properties may be improved.
  • the treated product is not released from its sealed package until it has been treated according a protocol ensuring accurate properties in a controlled manner.
  • the method may further comprise: discontinuing said irradiation step when a threshold value for one or more photoactive properties of the irradiated surface of said dental implant component and/or dental prosthesis is reached.
  • Said threshold value may for instance be related to a contact angle of less than 30 degrees, preferably less than 5 degrees, and more preferably less than 1 degree.
  • the contact angle can be measured/detected by means of techniques known per se. Also, threshold values other than the contact angle could be used.
  • said irradiation step may be controlled in accordance with one or more parameters presented with said package.
  • said one or more parameters are selected from the group of: package life, type and geometry of content in said package, predetermined irradiation time period, irradiation energy level, and irradiation wavelength. This may make it easier for a person who shall perform the irradiation through the unbroken sealed package to know for instance how long the irradiation should last.
  • said dental implant component and/or dental prosthesis comprises a titanium oxide surface, preferably a thin titanium dioxide or titanium oxide coating.
  • said dental implant component and/or dental prosthesis may comprise any one of the materials selected from the group of aluminum, chromium, cobalt, gold, iron, lithium, nickel, niobium, palladium, platinum, tantalum, zirconium, an alloy thereof, e.g. stainless steel, an oxide thereof, a silicate thereof or combinations thereof.
  • the photoactive generated properties may enhance the bioactive properties of the surface leading to a possibly improved bone in growth capability.
  • the irradiating can be made with a UVC (ultraviolet C) radiation, preferably with a peak wavelength within the range of 150- 300 nm, more preferably within the range of 200-260 nm and most preferably around 250 nm, thereby enhancing the possible bioactivity of the treated (irradiated) surface.
  • an antibacterial surface of said dental implant component and/or dental prosthesis may be activated by irradiating with the UVC radiation.
  • the irradiating can be made with a UVA (ultraviolet A) radiation, preferably with a peak wavelength within the range of 300-390 nm, more preferably within the range of 340-380 nm and most preferably around 360-370 nm, thereby activating an antibacterial surface (i.e. the irradiated surface) of said dental implant component and/or dental prosthesis.
  • a UVA ultraviolet A
  • U V treatment is assumed to alter the molecular structure of surfaces by creating surface oxygen vacancies at bridging sites, resulting in a conversion of relevant sites with the loss of one electron. This is favorable for dissociative water adsorption.
  • UV light energy greater than 3.2eV is needed after transmission through said light transmission package material in order to excite an electron from the valence band to the conduction band during treatment.
  • Decontamination of hydrocarbon from a surface happens at wavelength in the UVA range. Meanwhile the direct decomposition of hydrocarbon by UVC light seems to happen in a lower range around 250 nm which is within the UVC range.
  • the irradiating is made with UVA and UVC in the treatment steps of the surface accomplishing all the above advantages in one treatment and before the seal of the package is broken. Since the object is treated in its original unbroken sealed package the whole process before insertion of the object (e.g. manufacturing, placing object in package, transporting package, etc.) may be certified if proper procedures and equipment is used leading to improved patient security.
  • said irradiating is generated by at least one LED (light emitting diode).
  • the irradiating may be performed in a pulsed manner.
  • the light transmitting material of said package comprises a polymer of polyolefin, such as cyclic olefin copolymer.
  • the light transmitting material of said package comprises a polymer of fluoropolymer, such as Teflon FEPTM.
  • the light transmitting material of said package comprises an ethylene vinyl acetate (EVA) polymer.
  • EVA ethylene vinyl acetate
  • the light transmitting material of said package comprises polyethylene terephtalate glycol (PETG).
  • PETG polyethylene terephtalate glycol
  • the package may comprise quarts glass as light transmitting material.
  • Said package may beneficially comprise a reflective material formed to distribute the incoming radiation within the package saving the energy and time needed to optimally prepare the object in the unbroken sealed original package.
  • the package is positioned in or in front of the irradiating device or arrangement, or it is moved according to a controlled path before an irradiating device or arrangement, until a threshold value is reached based on stipulated criteria.
  • an implant or dental implant component it is preferably held at its bottom end by a detachable pin in said package during treatment.
  • the irradiating may be preceded by the steps of: manufacturing the at least one dental implant component and/or dental prosthesis; placing the manufactured at least one dental implant component and/or dental prosthesis in the package and sealing said package; and optionally transporting the at least one dental implant component and/or dental prosthesis placed in the sealed package to a treatment location.
  • the irradiating may be followed by: breaking the sealed package and removing the at least one dental implant component and/or dental prosthesis from the broken package.
  • the arrangement comprising: at least one dental implant component and/or dental prosthesis, which includes a metal compound and/or a ceramic material; and a sealed package in which the at least one dental implant component and/or dental prosthesis is placed, the sealed package including at a light transmitting package material for wavelengths at least below 400 nm.
  • the package may comprise a reflective material formed to distribute incoming high-energy radiation (e.g. UVA and/or UVC) within the package.
  • said at least one dental implant component and/or dental prosthesis may be held at its bottom end by a detachable pin in said package. This aspect may exhibit the same or similar features and technical effects as the first aspect of the invention, and vice versa.
  • FIGS. 1a and 1b are schematic cross-sectional side views to illustrate various steps in the treatment process of an embodiment
  • Fig. 2 is a side view of a schematic second embodiment of an implant having been treated by the method
  • Figs. 3a and 3b are schematic cross-sectional side views to illustrate how an activated implant according to one embodiment may be detached from its package after treatment according to an aspect of the method
  • Fig. 4 is a perspective view of an alternative embodiment of a package comprising the implant suitable for being treated by the method
  • Fig. 5 is a top plan view of the alternative embodiment in Fig. 4, and
  • Fig. 6 is an alternative embodiment of a package, as seen from the side, being subject to treatment as indicated schematically.
  • Fig. 7 is a flow chart of a method of providing at least one dental implant component and/or dental prosthesis.
  • a dental prosthesis 1 may encompass abutments, cover screws, temporary abutments, copings, etc.
  • the contact angle as used in the present application is the angle at which a liquid/vapor interface meets a solid surface.
  • the contact angle is specific for any given equilibrium system and the Young relation determines the shape of a liquid/vapor droplet. If a liquid is very strongly attracted to the solid surface the droplet will completely spread out on the solid surface an the contact angle will be close to 0 degrees. This is the case for e.g. water on a strongly hydrophilic surface. Less strongly hydrophilic solid surfaces will have a contact angle up to 90 degrees.
  • Fig. 1a illustrates an embodiment of an implant 1 held in a package 2. It is the original package 2, which is still sealed and ready for being treated with UV radiation 3.
  • the UV radiation 3 is schematically disclosed in fig. 1 b in which some package sides are reflective and others are more or less completely translucent for wavelengths in the UVA and UVC range.
  • the at least one dental implant component and/or dental prosthesis 1 comprises a metal compound and/or a ceramic material, and it is still placed in its unbroken sealed package 2.
  • the unbroken sealed package 2 comprises a light transmitting package material 4 adapted to allow the passage of radiation with wavelengths at least below 400 nm.
  • the method comprises the step of: irradiating, through said light transmitting package material 4, a surface of said dental implant component and/or dental prosthesis 1 with radiation 3 having a peak wavelength below 390 nm, wherein the radiation irradiating the surface is generated by at least one artificial radiation source.
  • the package 2 should be sealed such that the contents (i.e. at least one dental implant component and/or dental prosthesis) is kept sterile, at least until the package is broken.
  • the sealed package 2 may for instance be air-tight (hermetically sealed), or at least substantially air-tight.
  • the sealed package may be formed like a blister pack, but it could also be an ampoule or a container sealed with a lid, for example. Further, more than one surface of the at least one dental implant component and/or dental prosthesis can be irradiated before it is removed from the package.
  • the irradiation step may be discontinued when a threshold value for one or more photoactive properties of the irradiated surface of said dental implant component and/or dental prosthesis 1 surface is reached.
  • Photoactive properties' (or photoactive generated properties) may here be construed as properties generated by irradiating the surface which is photoactive.
  • the properties may include hydrophilic, antimicrobial, biocompatibility, and/or anti-inflammatory properties.
  • the irradiation may be controlled based on parameters associated to each individual package 2.
  • the irradiation may for instance be controlled by turning the at least one artificial light source on/off, or by exposing the package to/removing the package from the at least one artificial light source which is constantly turned on for a longer duration.
  • the individual parameters may include package life, type and geometry of content in said package, predetermined irradiation time period, irradiation energy level, and irradiation wavelength.
  • the amount of radiation treatment may vary depending on the desired threshold and the parameter value at the time of treatment.
  • a predetermined irradiation time period may be printed on the package, which instructs the user of how long the at least one dental implant component and/or dental prosthesis should be irradiated to achieve a desired effect.
  • the irradiation time period may be influenced by the other parameters, thus yielding a different actual/final irradiation time period. For instance, a higher irradiation energy level may shorten the predetermined irradiation time period, while a lower irradiation energy level may prolong the predetermined irradiation time period.
  • the predetermined irradiation time period, and any influence from the other parameters may for instance be determined in advance by the provider of the dental implant component/dental prosthesis and/or the package.
  • an implant or an implant component may have a coating, which is especially suitable for being activated.
  • an implant or fixture has been previously immersed in diethylene glycol solvent containing nanoparticles of titanium dioxide and agitated. The fixture or implant was then placed in an oven in order to promote solvent evaporation. In this step the titanium dioxide nanoparticles deposit onto the surface of the screw. Then a heat treatment cycle follows in accordance with e.g. WO
  • the resulting dental implant component and/or dental prosthesis 1 comprise a titanium oxide surface 10.
  • the implant component and/or dental prosthesis 1 may comprise any one of the materials selected from the group of aluminum, chromium, cobalt, gold, iron, lithium, nickel, niobium, palladium, platinum, tantalum, zirconium, an alloy thereof, e.g. stainless steel, an oxide thereof, a silicate thereof or combinations thereof.
  • the desirable state is a super hydrophilic surface where the contact angle is close to zero degrees.
  • the contact angle is below 5 degrees, which represents hydrophilic conditions.
  • the surface advantageously comprises a titanium oxide.
  • the irradiating can be made with a U VC radiation, preferably with a wavelength peak value within the range of 150-300 nm, more preferably within the range of 200-260 nm and most preferably around 250 nm, thereby enhancing the possible bioactivity of the treated surface. Further, the irradiating can be made with a UVA radiation, preferably with a wavelength peak value within the range of 300-390nm, more preferably within the range of 340-380nm and most preferably around 360nm thereby activating an antibacterial surface of said dental implant component and/or dental prosthesis.
  • the irradiating is made with both UVA and UVC.
  • an antibacterial and hydrophilic surface is obtained in a controlled manner, before insertion of the treated implant component or dental prosthesis in the maxillofacial region.
  • the irradiating may be generated by at least one LED, which forms said at least one artificial radiation source. If the irradiating is performed in a pulsed manner, the energy emitted in one pulse can be double as if the same LED is held with a fixed light.
  • a dental implant component and/or dental prosthesis 1 is held at its bottom end 6 by a detachable pin 7.
  • the detachable pin is fixed to the package 2 (not shown here).
  • the bottom most part of the implant is spared for the treatment for enhanced surface properties although still acceptable for that part of an implant.
  • UV- treatment the implant component 1 is detached from the pin.
  • the light transmitting material 4 of said package 2 comprises a polymer selected from the group of polyolefin (such as cyclic olefin copolymer), fluoropolymer (such as Teflon FEPTM), ethylene vinyl acetate (EVA), and polyethylene terephtalate glycol (PETG). These materials are highly translucent to UV light and formed in a curved manner.
  • the reflective material 5 is a metallic foil or a metallic alloy coated bed or some kind of highly UV-reflective surface. As illustrated in fig. 4, the reflective material 5 may be provided on a substantially plane surface to which the dome- shaped light transmitting material 4 is attached.
  • the transmitting material 4 of said package 2 comprises quarts glass.
  • Fig. 7 is a flow chart of a method of providing at least one dental implant component and/or dental prosthesis, wherein the at least one dental implant component and/or dental prosthesis, for instance the implant 1 , is manufactured in step S1.
  • step S2 the manufactured at least one dental implant component and/or dental prosthesis is placed in a package, e.g. package 2, and the package is thereafter sealed.
  • the at least one dental implant component and/or dental prosthesis may also be sterilized, typically after the packaging, and before the forthcoming irradiation step.
  • the sealed package with the at least one dental implant component and/or dental prosthesis may then be transported (step S3) from the facility where steps S1 and S2 took place, to another location where the at least one dental implant component and/or dental prosthesis is to be treated by irradiation.
  • This location may for instance be a dentist's clinic.
  • step S4 irradiation of the at least one dental implant component and/or dental prosthesis still in the unbroken sealed package is performed, as described above.
  • This step is typically performed by a dental technician or the dentist, and it can be executed just before the at least one dental implant component and/or dental prosthesis is to be applied to a patient.
  • the sealed package is broken or opened, and the treated at least one dental implant component and/or dental prosthesis may now be removed from the package (step S5). Following this, the at least one dental implant component and/or dental prosthesis may be ready for application to the patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Ceramic Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Prosthetics (AREA)

Abstract

La présente invention porte sur un procédé de traitement d'au moins un composant d'implant dentaire et/ou d'au moins une prothèse dentaire (1), le ou les composants d'implant dentaire et/ou la ou les prothèses dentaires (1) comprenant un composé métallique et/ou un matériau céramique, le ou les composants d'implant dentaire et/ou la ou les prothèses dentaires (1) étant toujours placés dans leur emballage intact scellé de manière étanche (2), ledit emballage intact scellé de manière étanche (2) comprenant un matériau d'emballage (4) transmettant la lumière, conçu pour permettre le passage d'un rayonnement ayant des longueurs d'onde au moins en dessous de 400 nm, ledit procédé comprenant la ou les étapes consistant à : irradier, par l'intermédiaire dudit matériau d'emballage (4) transmettant la lumière, une surface dudit composant d'implant dentaire et/ou de ladite prothèse dentaire (1) avec un rayonnement (3) ayant une longueur d'onde maximale en dessous de 390 nm, le rayonnement irradiant la surface étant généré par au moins une source de rayonnement artificielle. La présente invention porte également sur un dispositif comprenant au moins un composant d'implant dentaire et/ou au moins une prothèse dentaire (1) et un emballage (2).
PCT/EP2011/001249 2010-03-15 2011-03-14 Procédé de traitement de surface Ceased WO2011113568A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31408910P 2010-03-15 2010-03-15
US61/314,089 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011113568A1 true WO2011113568A1 (fr) 2011-09-22

Family

ID=43977496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/001249 Ceased WO2011113568A1 (fr) 2010-03-15 2011-03-14 Procédé de traitement de surface

Country Status (1)

Country Link
WO (1) WO2011113568A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198427A1 (fr) * 2015-06-12 2016-12-15 Natural Dental Implants Ag Systèmes et procédés de pose stérile de prothèses
CN109069235A (zh) * 2016-05-02 2018-12-21 首尔伟傲世有限公司 种植体包装容器
KR20200101408A (ko) * 2017-12-20 2020-08-27 스트라우만 홀딩 에이쥐 덴탈 임플란트
CN115974390A (zh) * 2021-10-14 2023-04-18 伊沃克拉尔维瓦登特股份公司 用于加热牙体的烘箱及方法
EP4166522A1 (fr) * 2021-10-14 2023-04-19 Ivoclar Vivadent AG Appareil de formage pour un objet dentaire
EP4166523A1 (fr) * 2021-10-14 2023-04-19 Ivoclar Vivadent AG Dispositif d'éclairage permettant d'éclairer un objet dentaire
US11633270B2 (en) 2015-06-12 2023-04-25 Rtrs Investment, Llc Systems and methods for sterile delivery of prostheses
US12492144B2 (en) 2019-12-30 2025-12-09 Ivoclar Vivadent Ag Method for manufacturing a multi-color dental restoration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030957A1 (fr) 2001-10-11 2003-04-17 Straumann Holding Ag Implants osteophiles
US20050013729A1 (en) * 1999-03-01 2005-01-20 Brown-Skrobot Susan K. Method of sterilization
US20050287045A1 (en) * 2004-06-23 2005-12-29 Ricardo Levisman Easy-to-open glass ampoule and device
WO2007035217A2 (fr) * 2005-09-20 2007-03-29 The Regents Of The University Of California Procede permettant de regenerer la surface hydrophile et osteophile d'un implant
WO2007088199A2 (fr) 2006-02-03 2007-08-09 Colorobbia Italia S.P.A. Procede de fonctionnalisation de surfaces metalliques en titane avec des particules nanometriques de titane et produits ainsi fonctionnalises
WO2010058254A1 (fr) * 2008-11-18 2010-05-27 Giovanni Baldi Dispositif de stérilisation de vis dentaires et/ou de prothèses dentaires

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050013729A1 (en) * 1999-03-01 2005-01-20 Brown-Skrobot Susan K. Method of sterilization
WO2003030957A1 (fr) 2001-10-11 2003-04-17 Straumann Holding Ag Implants osteophiles
US20040210309A1 (en) * 2001-10-11 2004-10-21 Denzer Alain J Osteophilic implants
US20050287045A1 (en) * 2004-06-23 2005-12-29 Ricardo Levisman Easy-to-open glass ampoule and device
WO2007035217A2 (fr) * 2005-09-20 2007-03-29 The Regents Of The University Of California Procede permettant de regenerer la surface hydrophile et osteophile d'un implant
WO2007088199A2 (fr) 2006-02-03 2007-08-09 Colorobbia Italia S.P.A. Procede de fonctionnalisation de surfaces metalliques en titane avec des particules nanometriques de titane et produits ainsi fonctionnalises
WO2010058254A1 (fr) * 2008-11-18 2010-05-27 Giovanni Baldi Dispositif de stérilisation de vis dentaires et/ou de prothèses dentaires

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11633270B2 (en) 2015-06-12 2023-04-25 Rtrs Investment, Llc Systems and methods for sterile delivery of prostheses
WO2016198427A1 (fr) * 2015-06-12 2016-12-15 Natural Dental Implants Ag Systèmes et procédés de pose stérile de prothèses
CN109069235A (zh) * 2016-05-02 2018-12-21 首尔伟傲世有限公司 种植体包装容器
US20190159874A1 (en) * 2016-05-02 2019-05-30 Seoul Viosys Co., Ltd. Implant packaging container
JP2019514583A (ja) * 2016-05-02 2019-06-06 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. インプラント包装容器
CN111067654A (zh) * 2016-05-02 2020-04-28 首尔伟傲世有限公司 种植体包装容器
EP3449867A4 (fr) * 2016-05-02 2020-05-06 Seoul Viosys Co. Ltd. Récipient d'emballage d'implant
US12178681B2 (en) 2016-05-02 2024-12-31 Seoul Viosys Co., Ltd. Implant packaging container
JP7002473B2 (ja) 2016-05-02 2022-01-20 ソウル バイオシス カンパニー リミテッド インプラント包装容器
US11857390B2 (en) 2017-12-20 2024-01-02 Straumann Holding Ag Dental implant
JP7287966B2 (ja) 2017-12-20 2023-06-06 シュトラウマン・ホールディング・アクチェンゲゼルシャフト 歯科用インプラント
JP2021506512A (ja) * 2017-12-20 2021-02-22 シュトラウマン・ホールディング・アクチェンゲゼルシャフトStraumann Holding Ag 歯科用インプラント
KR102712256B1 (ko) 2017-12-20 2024-09-30 스트라우만 홀딩 에이쥐 덴탈 임플란트
KR20200101408A (ko) * 2017-12-20 2020-08-27 스트라우만 홀딩 에이쥐 덴탈 임플란트
US12193909B2 (en) 2017-12-20 2025-01-14 Straumann Holding Ag Dental implant
US12492144B2 (en) 2019-12-30 2025-12-09 Ivoclar Vivadent Ag Method for manufacturing a multi-color dental restoration
EP4166524A1 (fr) * 2021-10-14 2023-04-19 Ivoclar Vivadent AG Four permettant de chauffer un objet dentaire
EP4166522A1 (fr) * 2021-10-14 2023-04-19 Ivoclar Vivadent AG Appareil de formage pour un objet dentaire
EP4166523A1 (fr) * 2021-10-14 2023-04-19 Ivoclar Vivadent AG Dispositif d'éclairage permettant d'éclairer un objet dentaire
CN115974390A (zh) * 2021-10-14 2023-04-18 伊沃克拉尔维瓦登特股份公司 用于加热牙体的烘箱及方法

Similar Documents

Publication Publication Date Title
WO2011113568A1 (fr) Procédé de traitement de surface
KR101445819B1 (ko) 치과용 임플란트의 표면노화 회복을 위한 자외선 조사 시스템
Guastaldi et al. Plasma treatment maintains surface energy of the implant surface and enhances osseointegration
Choi et al. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium
Flanagan Photofunctionalization of dental implants
JP7002473B2 (ja) インプラント包装容器
Wang et al. Bioactive effects of low-temperature argon–oxygen plasma on a titanium implant surface
Naujokat et al. Surface conditioning with cold argon plasma and its effect on the osseointegration of dental implants in miniature pigs
JP2008080102A (ja) インプラント
Ueno et al. Gamma ray treatment enhances bioactivity and osseointegration capability of titanium
AU2009324879A1 (en) Functionalized titanium implants and related regenerative materials
Jimbo et al. Accelerated photo‐induced hydrophilicity promotes osseointegration: an animal study
KR101972122B1 (ko) 표면 형태학적 특성 및 골 유착성이 개선된 치과용 임플란트의 제조방법
KR20160065698A (ko) 광학 플라즈마를 이용한 임플란트 표면 처리 방법 및 이를 수행하는 임플란트 표면 처리 장치
JP3203603U (ja) 紫外線照射装置
KR102529279B1 (ko) 플라즈마 처리 용기, 이를 위한 장치 및 이를 이용한 방법
JP2000514343A (ja) 骨固定インプラントの骨結合性を改良する方法
JP2014204867A (ja) 生体インプラントおよびその製造方法
KR102590340B1 (ko) 임플란트의 표면처리용 자외선 조사장치
WO2014007123A1 (fr) Capuchons d'implant dotés d'une fonction de stérilisation
US20100331978A1 (en) Antipathogenic Biomedical Implants, Methods and Kits Employing Photocatalytically Active Material
EP3243479B1 (fr) Procédé pour l'obtention d'implants à surface personnalisée
KR102285769B1 (ko) 의료용 금속의 표면처리용 램프
CN104353092B (zh) 一种提高sla种植体骨结合性的灭菌方法
KR20210003533A (ko) 의료용 금속의 표면처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11712756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11712756

Country of ref document: EP

Kind code of ref document: A1