[go: up one dir, main page]

WO2011017752A1 - Procede de formation de tuyau sans soudure en titane et/ou alliage de titane - Google Patents

Procede de formation de tuyau sans soudure en titane et/ou alliage de titane Download PDF

Info

Publication number
WO2011017752A1
WO2011017752A1 PCT/AU2010/001020 AU2010001020W WO2011017752A1 WO 2011017752 A1 WO2011017752 A1 WO 2011017752A1 AU 2010001020 W AU2010001020 W AU 2010001020W WO 2011017752 A1 WO2011017752 A1 WO 2011017752A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
titanium
forming substrate
titanium alloy
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/AU2010/001020
Other languages
English (en)
Inventor
Saden Zahiri
Mahnaz Jahedi
Kevin Hooper
William Bardsley
Stefan Gulizia
Caixian Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontline Australasia Pty Ltd
Original Assignee
Frontline Australasia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009903761A external-priority patent/AU2009903761A0/en
Application filed by Frontline Australasia Pty Ltd filed Critical Frontline Australasia Pty Ltd
Publication of WO2011017752A1 publication Critical patent/WO2011017752A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/006Continuous casting of metals, i.e. casting in indefinite lengths of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes

Definitions

  • the present invention relates to a method of forming metal pipes and relates particularly to forming seamless metal pipes. More particularly, the invention relates to forming pipe of titanium and/or titanium alloys.
  • One method for forming metal pipes involves forming metal plate, and rolling the plate to bring opposite edges together to form a tube . The edges are welded together forming a seam. This technique is not expensive and there is little waste produced.
  • Pipes are typically formed of steel due to its tensile strength which provides pipes with a high band strength . This means that steel pipes are well suited to high pressure applications. Steel is also used due to its low cost relative to other metals and alloys and due to its weldability which makes steel well suited to forming pipes with seams by the method of rolling and welding plates .
  • titanium or titanium alloy is difficult because titanium and titanium alloy has a high affinity for oxygen and readily forms surface oxides. This means that welding titanium or titanium alloy plate to form pipe is difficult because welding must be performed in an inert atmosphere to prevent oxides occurring in the weld seam which will degrade the strength of the weld. If the weld is compromised by oxides, the pipe will not have
  • titanium and titanium alloys have a hexagonal atomic structure and is more difficult to roll into tubes than steel .
  • titanium and titanium alloy pipe by rolling and welding is costly due to the steps required to ensure that the weld seam is free of oxides.
  • the same problem applies to joining together sections of titanium or titanium alloy pipe by welding in order to form lengths required in, for example, chemical processing plants .
  • a current alternative method for forming titanium and titanium alloy pipe without welding involves punching a core out of a solid bar of titanium or titanium alloy to leave a seamless pipe. Being a seamless pipe, there is no weld to compromise the band strength.
  • forming pipe by this method requires specialised equipment to generate the considerable forces required to punch through a bar of titanium or titanium alloy . The equipment is costly and, therefore, contributes to the overall cost of the pipe. Accordingly, titanium or titanium alloy pipe produced by this method is
  • the cost is also affected by the waste produced in forming the pipe. Specifically, the core of titanium or titanium alloy must be melted down and reformed as a solid bar before being punched again to form another pipe . This process is on-going as cores are melted and bars are reformed. Processing of cores adds to the overall cost of the final formed pipe .
  • This alternative method involves spraying fine particles of titanium or titanium alloy onto a cylindrical
  • the particles are sprayed at supersonic velocities and bond together upon impact to build up a layer of titanium or titanium alloy. The extent of the build up determines the wall thickness of the pipe .
  • this alternative method does not produce titanium or titanium alloy pipe in lengths that are practical as a replacement for long sections of steel pipe. Short sections of titanium or titanium alloy pipe may be used to form an overall longer pipe. However, there is considerable cost involved in assembling a longer pipe because the short sections are difficult to weld together. While this alternative method can produce titanium or titanium alloy pipe more cost effectively than other methods, this cost benefit is off-set by the cost
  • a method of forming sections of seamless titanium or titanium alloy pipe comprises the steps of : (a) providing an elongate substrate for forming a pipe;
  • pipe-forming substrate to remove formed pipe from the pipe-forming substrate and continuing to spray titanium or titanium alloy particles to cause further pipe to form continuously and integrally with the formed pipe, thereby enabling formation of a seamless titanium or titanium alloy pipe of a desired length.
  • the term "pipe-forming substrate” is a reference to a surface portion of a substrate. An underlying portion of the substrate may be formed of a different material , include heating or cooling structures or may be hollow .
  • the method enables formation of titanium or titanium alloy pipe to a desired length because the pipe is continuously formed and removed from the substrate .
  • the pipe may be formed in lengths suitable for transport, such as up to 16 metres or longer, or may be continuously formed and cut to predetermined lengths after the desired length has moved from the substrate during the forming process .
  • the method in conjunction with the spray-forming method disclosed in the CSIRO International application, also enables pipes to be formed with a diameter in the range of lmm to 1000mm (typically) .
  • the method in conjunction with the spray-forming method disclosed in the CSIRO International application, enables pipes to be formed with a wall thickness in the range of 0.1mm to 50mm (typically) .
  • the applicant recognises that an important aspect of moving the formed pipe relative to the pipe-forming substrate is the extent to which the formed pipe bonds to the pipe-forming substrate. Without wishing to be bound by any particular theory, experimental work carried out by the applicant suggests, and it is the belief of the applicant, that bonding is affected by the following factors :
  • the method may involve controlling the extent of bonding between formed titanium or titanium alloy pipe and the pipe-forming substrate to enable formed pipe to be moved relative to the substrate.
  • factor (a) it is believed that thermal bonding occurs when the titanium or titanium alloy
  • One option for counteracting the thermal bonding effect may involve controlling the extent of bonding by heating the formed titanium or titanium alloy pipe to cause differential thermal expansion of the formed pipe relative to the pipe-forming substrate, thereby releasing the formed pipe from the pipe forming substrate and enabling the formed pipe to be moved relative to the pipe-forming si ⁇ bstrate .
  • the thermal differential may be caused
  • the thermal differential may be caused by cooling the pipe-forming substrate causing a thermal differential between the formed pipe and the pipe forming substrate relative to the pipe .
  • Another option for counteracting the thermal bonding effect may involve controlling the extent of bonding by selecting a substrate having a co-efficient of thermal expansion that is less than the co-efficient of thermal expansion of the titanium or titanium alloy.
  • the substrate may be ceramic, glass, metal or composite.
  • suitable substrates may be : Pyrex®
  • an option for reducing the impact of surface morphology and, hence overall bonding may involve controlling the extent of bonding by selecting a substrate having a surface
  • the surface roughness may provide low mechanical bonding in a longitudinal direction of the substrate to enable formed piped to be removed from the substrate.
  • the average surface roughness may be R a ⁇ l.Oum.
  • the surface roughness may be R a ⁇ 0.5 ⁇ m.
  • an option for reducing the effect of chemical bonding may involve controlling the extent of bonding by selecting a substrate having a low potential for chemically bonding with titanium or titanium alloy.
  • the substrate may be formed of a material that has little or no chemical potential for bonding with titanium or titanium alloy.
  • the applicant believes that bonding is affected by mechanical reactions of titanium or titanium alloy alloys particles impacting on the pipe- forming substrate or on a section of forming pipe.
  • the titanium or titanium alloy particles elastically deform on impact by flattening to an extent. For example, generally spherical particles deform to produce a disc or elongated shape. It is though that, while in that deformed shape, the particles are impacted with and bind with other particles that are also
  • the method may involve initially spray forming pipe on a first pipe-forming substrate dimensioned to form the pipe with a predetermined diameter and transitioning the particle spray to a second pipe-forming substrate that is smaller than the first pipe-forming substrate so that the second pipe-forming substrate is in contact with the forming and formed pipe in only a section of a side wall of the forming and formed pipe, whereby rotation of the forming pipe and the second pipe-forming substrate cause divergence between them.
  • the tensile strength of the forming pipe as it is integrally formed with the formed pipe causes the forming pipe to lift off the second pipe-forming substrate as they diverge .
  • the advantage of this option is that thermal and particle relaxation factors are reduced or resolved.
  • the first pipe-forming substrate is moved longitudinally away from the second pipe-forming substrate in order to continuously form pipe on the end of the formed pipe .
  • Additional pipe thickness may be built up by a plurality of particle spraying sources operating simultaneously.
  • the method may involve forming a layer of titanium or titanium alloy as a transition section between an
  • the method may involve selecting the initiating substrate to cause the transition section to bond to the initiating substrate, whereby moving the initiating substrate relative to the pipe-forming substrate causes pipe formed on the pipe-forming substrate to move relative to the pipe-forming substrate, thereby removing formed pipe from the pipe-forming substrate.
  • Spraying particles of titanium or titanium alloy in steps (b) and (c) may be in accordance with a cold-spray process disclosed in the CSIRO International application in order to form titanium or titanium alloy pipe .
  • the titanium or titanium alloy pipe may have a composition comprising: titanium: 99.8 wt%;
  • the titanium alloy pipe may alternatively have a
  • composition comprising: titanium: 90 to 94 wt%;
  • the pipe may be formed by spraying particles selected to have different compositions .
  • pipe may be formed in accordance with the first aspect from particles having one or more different alloy compositions .
  • the pipe may be formed of particles of titanium and particles of one or more different alloy compositions .
  • the pipe may be formed with a generally homogenous composition or the pipe may be formed with a composition that is graded or otherwise varies along the length of the pipe .
  • a pipe-forming substrate for spray-forming titanium or titanium alloy pipe on the substrate, the substrate being formed of material for and having properties for controlling the extent of bonding between titanium or titanium alloy pipe and the pipe-forming substrate to enable formed pipe to be removed from the pipe-forming substrate by relative movement of the formed pipe and the pipe-forming
  • the pipe-forming substrate may have a co-efficient of thermal expansion that is less than the co-efficient of thermal expansion of the titanium or titanium alloy.
  • the pipe-forming substrate may have a surface roughness such that low mechanical bonding occurs between the formed pipe and the substrate.
  • the pipe-forming substrate may have a low potential for chemically bonding with titanium or titanium alloy.
  • the pipe-forming substrate may be elongate.
  • the pipe-forming substrate is in the form of an elongate cylinder .
  • Figure 1 is a schematic cross section view of a pipe- forming substrate and spraying arrangement before movement of the titanium or titanium alloy pipe relative to the pipe-forming substrate.
  • Figure 2 is a schematic cross section view of the pipe- forming substrate and spraying arrangement in Figure 1 during movement of the titanium or titanium alloy pipe relative to the pipe-forming substrate .
  • Figure 3 is a schematic side view of a pipe-forming substrate and spraying arrangement according to an alternative method for forming seamless titanium or titanium alloy pipe .
  • Figure 4 is a schematic end view of the pipe-forming substrate and formed pipe in Figure 3.
  • One embodiment for forming seamless pipe of titanium alloys involves providing a pipe-forming substrate, in the form of a mandrel 10, and an initiating substrate, in the form of a starter pipe 30.
  • the starter pipe 30 is a tube having an internal diameter that closely receives the mandrel 10.
  • the starter pipe 30 can be moved from a position with the mandrel 10 located within the starter pipe 30 ( Figure 1) and in a direction that is co-axial with a longitudinal axis of the mandrel 10. During operation, the starter pipe 30 is moved away from the mandrel 10 so the starter pipe 30 and the mandrel 10 are remote from each other.
  • Titanium alloy pipe 40 is formed by placing the mandrel 10 within the starter pipe 50 and rotating both in the same direction and at the same rate of rotation. Spraying of titanium alloy particles from a nozzle 20 is commenced when the nozzle 20 is positioned such that a deposition zone 14 for the titanium alloy particles coincides with a position wholly on and adjacent to the end of the starter pipe 30.
  • the nozzle 20 is connected to a spray apparatus 22 that supplies a source of inert carrier gas and titanium alloy feed particles.
  • the apparatus 22 and nozzle 20 used for spaying the titanium alloy particles is likely to be of conventional form and, in general terms, the basis of the equipment is as described and illustrated in US patent 5,302,414.
  • the titanium alloy particles are entrained in the carrier gas and pass through a series of stages to accelerate the carrier gas and particles to supersonic velocities. Accordingly, the spray 12 exiting the nozzle comprises a jet of carrier gas and entrained titanium alloy particles .
  • the spraying conditions such as spray angle, temperature, velocity, particle size and shape and distance between the nozzle 20 and the deposition zone 14, are in accordance with the spray forming method disclosed in the CSIRO
  • the spraying conditions may be
  • Spray material CP Titanium and/or titanium alloy powder
  • Carrier gas Helium, nitrogen, argon or air or
  • the nozzle 20 is typically positioned opposite the mandrel 10.
  • the mandrel 10 is formed of a material and has properties selected to facilitate release of formed pipe
  • the mandrel 10 is formed of Pyrex® (borosilicate glass) and has a hardness of 418kg/mm 2 (Knoop 100) and a surface roughness R a ⁇ 0.5 ⁇ m.
  • the diameter of the mandrel 10 is 10cm, but is selected according to the desired internal diameter of the formed pipe.
  • the position of the starter pipe 30 and mandrel 10 are moved relative to the nozzle 20, or vice versa, to extend the layer of titanium alloy from the position adjacent the end of the starter pipe 30 to over the end of the starter pipe 30 and onto the substrate 10. This movement causes a transition pipe 32 , in the form of a continuous layer of titanium alloy, to be created over the end of the starter pipe 30 and on the mandrel 10.
  • Such movement of the starter pipe 30 and mandrel 10, or the nozzle 20, continues until a small section of titanium pipe 40 is formed on the mandrel 10 and the deposition zone 14 is spaced a small distance from the transition pipe 32 , as in Figure 1.
  • the starter pipe 30 is moved in the direction of arrow A ( Figure 2) and the longitudinal position of the nozzle 20 relative to the mandrel 10 is maintained.
  • movement of the starter pipe 30 is understood to cause formed titanium pipe 40 that is integral with the transition pipe 32 to move also in the direction of arrow A.
  • This movement slowly drags formed titanium pipe 40 out of or to the edge of the deposition zone 14.
  • the movement of the pipe 40 in the direction of arrow A is performed continuously at a slow rate that is equivalent to the rate of deposition titanium alloy particles required to build up the desired wall thickness of the titanium alloy pipe 40.
  • titanium pipe 40 is formed continuously and can be formed in any desired length provided the formed pipe 40 continuously moves in the direction of arrow A and spray 12
  • the applicant believes that the primary cause of bonding between the mandrel 10 and the pipe 40 is thermal bonding caused by thermal expansion of the mandrel 10 relative to the formed pipe 40.
  • the applicant also believes that surface roughness of the mandrel 10, particle relaxation and chemical bonding of the titanium pipe 40 to the mandrel 10 contribute to bonding.
  • the applicant is not aware of the extent to which mechanical and chemical bonding and particle relaxation contribute to overall bonding of the titanium pipe 40 to the mandrel 10.
  • thermal bonding may be controlled by selecting a material for the mandrel 10 that has a co-efficient of thermal expansion that is less than the co-efficient of thermal expansion of titanium alloy. Expansion of the mandrel 10 is caused by spray 12 which is at an elevated temperature. Although not confirmed, it is thought that a steel mandrel is heated to a temperature of around 300 0 C. Steel has a coefficient of thermal expansion that is greater than the co-efficient of thermal expansion of titanium alloy and, therefore, a steel mandrel 10 will expand more than the titanium alloy pipe 40, thereby causing thermal bonding.
  • the mandrel 10 may be cooled so that it contracts away from the alloy pipe 40.
  • removal of the titanium alloy pipe 40 may be assisted or caused by heating the titanium pipe 40 in preference to the mandrel 10. The heating causes the titanium alloy pipe 40 to expand more than the mandrel 10, thereby releasing the titanium alloy pipe 40 from the mandrel 10.
  • Such removal of titanium alloy pipe 40 is suitable in the circumstances that the mandrel 10 has a coefficient of thermal expansion greater than that of the titanium alloy pipe 40.
  • the mandrel 10 may be formed of hard, wear resistant material to reduce surface erosion . Such material may be glass, ceramic or metal. It is also anticipated that chemical bonding plays a role in the overall process, but the material of the mandrel 10 may be selected to reduce or eliminate the effect of chemical bonding.
  • An alternative method of forming seamless titanium alloy pipe to ameliorate the effects of thermal bonding and particle relaxation involves adopting a mandrel 50 having a smaller circumference than the inner circumference of the tube 40 to be formed ( Figures 3 and 4) . This is shown in Figure 4 with the mandrel 50 having an outer radius R M less than the inner radius of the formed pipe Rp .
  • an axis of rotation of the mandrel 50 is off-set from an axis of rotation of the formed titanium alloy pipe 40 so that the outer surface of the mandrel 50 is in contact with or is closely spaced from an inside surface of the formed titanium alloy tube 40 in the deposition zone 14. In other regions, the mandrel 50 is spaced from the inside surface of the formed titanium alloy tube 40.
  • the smaller size of the mandrel 50 is selected to reduce, and preferably avoid, the bonding effects produced by thermal bonding and particle relaxation.
  • the size of the mandrel is selected to be smaller than the size of the formed pipe 40 after particle relaxation and after thermal contraction of the formed pipe 40.
  • the mandrel 50 and the formed pipe 40 are rotated at respective rates so the surface of the mandrel 50 passes through the deposition zone 14 at the point of contact between the formed pipe 40 and the mandrel 50 generally at a circumferential speed that is the same as the inner circumferential speed of the formed pipe 40.
  • the process may involve preferential heating of the bound particles in a heating zone 60 to assist with separation of the bound particles from the mandrel 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

L'invention concerne un procédé de formation de tuyau sans soudure en titane et/ou alliage de titane. L'invention concerne également un tuyau obtenu par la mise en oeuvre de ce procédé, ainsi qu'un substrat sur lequel est formé le tuyau. Le procédé selon l'invention consiste à obtenir un substrat sur lequel former le tuyau et à pulvériser des particules de titane ou d'alliage de titane sur le substrat pour obtenir la liaison des particules entre elles et initier la formation du tuyau. Le procédé consiste également à déplacer le tuyau formé par rapport au substrat tout en continuant la pulvérisation de particules, de sorte à poursuivre la formation de tuyau de façon continue et solidaire du tuyau déjà formé.
PCT/AU2010/001020 2009-08-11 2010-08-11 Procede de formation de tuyau sans soudure en titane et/ou alliage de titane Ceased WO2011017752A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US23290109P 2009-08-11 2009-08-11
US61/232,901 2009-08-11
AU2009903761 2009-08-12
AU2009903761A AU2009903761A0 (en) 2009-08-12 Method of forming seamless pipe of titanium and titanium alloys

Publications (1)

Publication Number Publication Date
WO2011017752A1 true WO2011017752A1 (fr) 2011-02-17

Family

ID=43585771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2010/001020 Ceased WO2011017752A1 (fr) 2009-08-11 2010-08-11 Procede de formation de tuyau sans soudure en titane et/ou alliage de titane

Country Status (1)

Country Link
WO (1) WO2011017752A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014085846A1 (fr) * 2012-12-03 2014-06-12 Future Titanium Technology Pty Ltd Procédé de formation de tuyau sans soudure en titane et/ou alliages de titane
DE102014206073A1 (de) * 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Verfahren zum Herstellen eines Hohlkörpers mittels Kaltgasspritzen und zur Durchführung dieses Verfahrens geeigneter Formkern
CN106583490A (zh) * 2016-12-02 2017-04-26 鑫鹏源智能装备集团有限公司 一种钛及钛合金无缝管的生产工艺及所用的轧机前台受料结构
CN107716587A (zh) * 2017-10-24 2018-02-23 宝鸡市金海源钛标准件制品有限公司 一种薄壁钛合金管的加工方法
WO2020038929A1 (fr) 2018-08-21 2020-02-27 Sascha Larch Procédé pour produire un corps à enveloppe tubulaire légère et corps à enveloppe tubulaire légère
DE102018120293A1 (de) * 2018-08-21 2020-02-27 Sascha Larch Verfahren zur Herstellung eines Leichtbau-Rohrmantelkörpers und Leichtbau-Rohrmantelkörper
CN116352091A (zh) * 2023-04-28 2023-06-30 华中科技大学 一种钛合金管材及其制备方法和系统
US12084776B2 (en) 2017-06-20 2024-09-10 Commonwealth Scientific And Industrial Research Organisation Process for forming wrought structures using cold spray
US12140109B2 (en) 2023-03-30 2024-11-12 Blue Origin, Llc Transpiration-cooled systems having permeable and non-permeable portions
US12172229B2 (en) 2023-03-30 2024-12-24 Blue Origin, Llc Friction stir additive manufacturing devices and methods for forming in-situ rivets
US12246392B2 (en) 2023-03-30 2025-03-11 Blue Origin Manufacturing, LLC Deposition head for friction stir additive manufacturing devices and methods
US12303994B2 (en) 2023-08-03 2025-05-20 Blue Origin Manufacturing, LLC Friction stir additive manufacturing formed parts and structures with integrated passages
US12383975B2 (en) 2023-08-03 2025-08-12 Blue Origin Manufacturing, LLC Friction stir additive manufacturing formed parts and structures with integrated passages
US12415229B2 (en) 2020-07-29 2025-09-16 Blue Origin Manufacturing, LLC Friction stir welding systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141566A (en) * 1990-05-31 1992-08-25 Sumitomo Metal Industries, Ltd. Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
WO2000020146A1 (fr) * 1998-10-08 2000-04-13 Promet Technologies, Inc. Tubes sans soudure en alliage nickel-titane
US20040166247A1 (en) * 2001-05-29 2004-08-26 Peter Heinrich Method and system for cold gas spraying
WO2009109016A1 (fr) * 2008-03-06 2009-09-11 Commonwealth Scientific And Industrial Research Organisation Fabrication de tuyaux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141566A (en) * 1990-05-31 1992-08-25 Sumitomo Metal Industries, Ltd. Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
WO2000020146A1 (fr) * 1998-10-08 2000-04-13 Promet Technologies, Inc. Tubes sans soudure en alliage nickel-titane
US20040166247A1 (en) * 2001-05-29 2004-08-26 Peter Heinrich Method and system for cold gas spraying
WO2009109016A1 (fr) * 2008-03-06 2009-09-11 Commonwealth Scientific And Industrial Research Organisation Fabrication de tuyaux

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014085846A1 (fr) * 2012-12-03 2014-06-12 Future Titanium Technology Pty Ltd Procédé de formation de tuyau sans soudure en titane et/ou alliages de titane
US20150345669A1 (en) * 2012-12-03 2015-12-03 Future Titanium Technology Pty Ltd Method of forming sealess pipe of titanium and/or titanium alloys
EP2925904A4 (fr) * 2012-12-03 2016-08-17 Future Titanium Technology Pty Ltd Procédé de formation de tuyau sans soudure en titane et/ou alliages de titane
AU2013354884B2 (en) * 2012-12-03 2018-03-08 Commonwealth Scientific And Industrial Research Organisation Method of forming seamless pipe of titanium and/or titanium alloys
US10005129B2 (en) 2012-12-03 2018-06-26 Future Titanium Technology Pty Ltd Method of forming seamless pipe of titanium and/or titanium alloys
DE102014206073A1 (de) * 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Verfahren zum Herstellen eines Hohlkörpers mittels Kaltgasspritzen und zur Durchführung dieses Verfahrens geeigneter Formkern
WO2015150071A3 (fr) * 2014-03-31 2015-11-26 Siemens Aktiengesellschaft Procédé de fabrication d'un corps creux par pulvérisation par gaz froid et noyau de formage approprié pour la mise en œuvre dudit procédé
CN106583490A (zh) * 2016-12-02 2017-04-26 鑫鹏源智能装备集团有限公司 一种钛及钛合金无缝管的生产工艺及所用的轧机前台受料结构
US12084776B2 (en) 2017-06-20 2024-09-10 Commonwealth Scientific And Industrial Research Organisation Process for forming wrought structures using cold spray
CN107716587A (zh) * 2017-10-24 2018-02-23 宝鸡市金海源钛标准件制品有限公司 一种薄壁钛合金管的加工方法
DE102018120293A1 (de) * 2018-08-21 2020-02-27 Sascha Larch Verfahren zur Herstellung eines Leichtbau-Rohrmantelkörpers und Leichtbau-Rohrmantelkörper
WO2020038929A1 (fr) 2018-08-21 2020-02-27 Sascha Larch Procédé pour produire un corps à enveloppe tubulaire légère et corps à enveloppe tubulaire légère
US12194532B2 (en) 2018-08-21 2025-01-14 Sasha Larch Method for producing a light-weight pressure tank and light-weight pressure tank
US12415229B2 (en) 2020-07-29 2025-09-16 Blue Origin Manufacturing, LLC Friction stir welding systems and methods
US12140109B2 (en) 2023-03-30 2024-11-12 Blue Origin, Llc Transpiration-cooled systems having permeable and non-permeable portions
US12172229B2 (en) 2023-03-30 2024-12-24 Blue Origin, Llc Friction stir additive manufacturing devices and methods for forming in-situ rivets
US12209559B2 (en) 2023-03-30 2025-01-28 Blue Origin, Llc Transpiration-cooled systems having permeable and non-permeable portions
US12246392B2 (en) 2023-03-30 2025-03-11 Blue Origin Manufacturing, LLC Deposition head for friction stir additive manufacturing devices and methods
CN116352091A (zh) * 2023-04-28 2023-06-30 华中科技大学 一种钛合金管材及其制备方法和系统
CN116352091B (zh) * 2023-04-28 2023-10-20 华中科技大学 一种钛合金管材及其制备方法和系统
US12303994B2 (en) 2023-08-03 2025-05-20 Blue Origin Manufacturing, LLC Friction stir additive manufacturing formed parts and structures with integrated passages
US12383975B2 (en) 2023-08-03 2025-08-12 Blue Origin Manufacturing, LLC Friction stir additive manufacturing formed parts and structures with integrated passages

Similar Documents

Publication Publication Date Title
WO2011017752A1 (fr) Procede de formation de tuyau sans soudure en titane et/ou alliage de titane
JP6140131B2 (ja) パイプの製造
EP3131684B1 (fr) Procédé de production d'une préforme à l'aide d'une pulvérisation à froid
Miranda et al. Rapid prototyping with high power fiber lasers
US8613139B2 (en) Manufacture of a portion of a metal part using the MIG method with pulsed current and wire
CN102011463B (zh) 一种不锈钢复合耐腐蚀钢筋及其制备方法
AU728282B2 (en) Roll of winding equipment in rolling factory
NZ292977A (en) Depositing atomised metal onto a substrate, metal deposited in layers
WO2018232451A1 (fr) Procédé pour former des structures corroyées par projection à froid
US11826805B2 (en) Systems and methods for production of metallurgically bonded clad billet and products thereof, and metallurgically bonded clad billet
EP2925904B1 (fr) Procédé de formation de tuyau sans soudure en titane et/ou alliages de titane
CN1296513C (zh) 管靶
CN101333637B (zh) 一种连铸结晶辊的修复方法
KR20170040769A (ko) 재료의 접합방법 및 이를 이용한 재료의 접합체
WO2014078535A1 (fr) Procédés d'application de couches de revêtement d'aluminium à une âme de fil de cuivre
JP4369330B2 (ja) 犠牲穿孔部付熱処理金属管の製造方法
CN107206442B (zh) 热成型工具
US20220259744A1 (en) Composition for producing corrosion resistant alloy clad metal pipes
WO2020242312A1 (fr) Procédé de production de tuyaux métalliques revêtus d'alliage résistant à la corrosion
JP2004344904A (ja) Zn系めっき鋼板の溶融溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 2009903761

Country of ref document: AU

Date of ref document: 20120206

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 61/232,901

Country of ref document: US

Date of ref document: 20120210

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

122 Ep: pct application non-entry in european phase

Ref document number: 10807790

Country of ref document: EP

Kind code of ref document: A1