[go: up one dir, main page]

WO2011016198A1 - Method for acquiring hair characteristic data and device for acquiring same - Google Patents

Method for acquiring hair characteristic data and device for acquiring same Download PDF

Info

Publication number
WO2011016198A1
WO2011016198A1 PCT/JP2010/004714 JP2010004714W WO2011016198A1 WO 2011016198 A1 WO2011016198 A1 WO 2011016198A1 JP 2010004714 W JP2010004714 W JP 2010004714W WO 2011016198 A1 WO2011016198 A1 WO 2011016198A1
Authority
WO
WIPO (PCT)
Prior art keywords
hair
cells
cell
cross
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2010/004714
Other languages
French (fr)
Japanese (ja)
Inventor
長瀬忍
江澤佑介
儘田明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to US13/388,866 priority Critical patent/US8965081B2/en
Priority to EP10806198.7A priority patent/EP2462870B1/en
Publication of WO2011016198A1 publication Critical patent/WO2011016198A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/448Hair evaluation, e.g. for hair disorder diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8444Fibrous material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/612Specific applications or type of materials biological material

Definitions

  • the present invention relates to a method and apparatus for acquiring hair characteristic data.
  • Non-Patent Document 1 In order to objectively describe the degree of hair combing, curl radius, curl curvature, etc. are used as indices (Non-Patent Document 1). In addition, in order to objectively describe the physical properties of the hair related to the feel such as the firmness, firmness, and softness of the hair, the thickness, tensile elasticity, bending stress, etc. of the hair are used as indices (Non-patent Document 2). ).
  • the curl radius and curl curvature are generally calculated by actually measuring the overall curved shape of a single hair.
  • a method for evaluating comb hair a method of analyzing the penetration rate of organic substances and inorganic salts into hair is known (Patent Document 1).
  • the ratio of absorbance of amide I (C ⁇ O bond) and amide II (NH bond) contained in this bundle is determined from a cross-sectional image of hair.
  • a method for evaluating the degree of comb hair (Patent Document 2).
  • Human hair consists of scaly (layered) cuticle cells that cover the hair surface, fibrous cortex cells that occupy most of the interior of the hair, and a medulla that forms a porous medulla in the center of the hair. It consists of cells.
  • cortex cells existing in the hair are said to have at least two types of cortex cells, cells similar to wool paracortex cells and cells similar to wool orthocortex cells. (Non-patent Document 3).
  • Non-Patent Document 3 describes the relationship between the abundance ratio of these two types of cortex cells and the shape of the hair. Specifically, it is roughly divided into Asian human hair (Mongoloid), Caucasian hair (Caucasian), and Ethiopian human hair (African). It is described that there is a certain tendency between them. Non-patent document 4 will be described later.
  • Non-Patent Document 3 describes the hair characteristics, although it is shown that the abundance ratio of plural types of cortex cells constituting human hair contributes to the hair characteristics. Quantitative considerations have not yet been made.
  • the present invention has been made in view of the above problems, and provides a method and an apparatus for easily obtaining quantitative information for describing hair characteristics.
  • the method for acquiring hair property data of the present invention includes an image acquisition step of acquiring a cross-sectional image of the hair in which a plurality of types of fibrous tissues constituting cortex cells contained in human hair are visualized so as to be distinguishable from each other.
  • the hair characteristic data acquisition device of the present invention is an image acquisition means for acquiring a cross-sectional image of the hair in which a plurality of types of fibrous tissues constituting cortex cells contained in human hair are visualized so as to be distinguishable from each other. And data acquisition means for acquiring numerical information indicating the visualized distribution states of the plurality of types of fibrous tissues from the cross-sectional image.
  • the cross-sectional image of hair refers to an image obtained by capturing part or all of a cross section (transverse cross section) in a direction intersecting the hair axis.
  • the cross-sectional image of hair here is an image in which the distribution state of the tissue in the radial direction of the fibrous tissue constituting the cortex cell of the target hair can be grasped, it relates to the physical cut surface of the hair. It may be an image or a transmission image.
  • the state in which a plurality of types of fibrous tissues are visualized so as to be distinguishable from each other in a cross-sectional image of hair refers to a state in which the plurality of types of fibrous tissues are identified from each other visually or by image processing means.
  • the various components (means) of the present invention do not have to be individually independent, but a plurality of components are formed as a single member, and a single component is formed of a plurality of members. It is possible that a certain component is a part of another component, a part of a certain component overlaps a part of another component, and the like.
  • the hair characteristic data acquisition technology since the distribution state of the fibrous tissue constituting the cortex cell is acquired as numerical information, quantitative evaluation of hair characteristics, an appropriate hair treatment method, Objective selection of hair care agents is possible.
  • FIG. 4 is an enlarged view of FIG. 3 and shows a cuticle cell.
  • FIG. 4 is an enlarged view of FIG. 3 and shows cells classified as para cells (detailed later) among cortex cells.
  • FIG. 4 is an enlarged view of FIG. 3 and shows cells classified as ortho cells (described later in detail) among cortex cells.
  • FIG. 4 is an enlarged view of FIG. 3 and shows a medulla cell. It is a visualization image of Example 1.
  • FIG. It is the whole image of the hair section in Example 2. It is a visualization image of Example 2.
  • FIG. 1 is the whole image of the hair section in Example 2.
  • FIG. 2 is an entire image of a hair cross section in Example 1.
  • FIG. 4 is an enlarged view of FIG. 3 and shows a cuticle cell.
  • FIG. 4 is an enlarged view of FIG. 3 and shows cells classified as para cells (detailed later) among cortex cells.
  • FIG. 4 is an enlarged view of FIG. 3 and shows cells classified as ortho cells (described
  • FIG. (A) is a scatter diagram and calibration curve data showing the relationship between the curl radius and the center-of-gravity distance for the reference hair, and (b) is the relationship between the bending elastic modulus for the reference hair and the abundance ratio of para cells (detailed later). It is a scatter diagram and calibration curve data showing.
  • FIG. 1 is a block diagram illustrating an example of a hair characteristic data acquisition device (data acquisition device 100) according to the present embodiment.
  • the data acquisition device 100 includes an image acquisition unit 10 that acquires a cross-sectional image of hair, in which a plurality of types of fibrous tissues constituting cortex cells of human hair are visualized in a distinguishable manner, and a plurality of types of visualization A data acquisition unit 20 that acquires numerical information indicating the distribution state of the fibrous tissue from the cross-sectional image.
  • a data acquisition apparatus 100 illustrated in FIG. 1 includes a digital camera 11 as an image acquisition unit 10 and a personal computer main body 21 as a data acquisition unit 20 connected by a communication line 30.
  • the image acquisition unit 10 acquires a cross-sectional image of human hair (not shown in FIG. 1) and transmits it to the data acquisition unit 20.
  • Various means can be used as the image acquisition unit 10, and the digital camera 11 is an example.
  • an image scanner 12 may be used instead of the digital camera 11. That is, a cross-sectional photograph of hair may be taken, converted into image information by the image scanner 12, and transmitted to the data acquisition unit 20.
  • the cross-sectional image of hair may transmit the cross-sectional image stored in the web server (not shown) to the data acquisition part 20 via the internet 13 and the communication line 30.
  • the web server and the Internet 13 function as the image acquisition unit 10.
  • the data acquisition unit 20 of the present embodiment is a personal computer main body 21 that has a predetermined calculation function and functions as a calculation unit and a storage unit.
  • the data acquisition unit 20 is accompanied by a keyboard 22 as an information input unit and a display 40 as an information output unit.
  • the information output unit outputs the distribution state of the fibrous tissue constituting the cortex cell and the evaluation result of the hair characteristics.
  • a printer 41 connected to the data acquisition unit 20 via the communication line 30 or the Internet 13 may be used.
  • the method includes an image acquisition process and a data acquisition process.
  • image acquisition step a cross-sectional image of the hair is obtained in which a plurality of types of fibrous tissues constituting cortex cells contained in human hair are visualized so as to be distinguishable from each other.
  • data acquisition step numerical information indicating the distribution state of the plurality of types of visualized fibrous tissues is acquired from the cross-sectional image.
  • ⁇ Image acquisition process> a cross-sectional image of the hair of an arbitrary subject is acquired, and information indicating the morphology or structure of the cells inside the hair, physical properties, protein composition, chemical composition, and the like is acquired as image information. More specifically, a step of visualizing a plurality of types of fibrous tissues constituting cortex cells contained in human hair so that they can be distinguished from each other (visualization step), and a step of acquiring a cross-sectional image of the hair (imaging step) Including.
  • a visualization process may be performed by staining a cross section of the hair, and the cross-sectional image of the hair may be acquired by the image acquisition unit 10 in a state where the fibrous tissues are visualized in advance so as to be distinguishable from each other.
  • the imaging process is performed by the image acquisition unit 10 after the visualization process.
  • the staining method and gene observation method described later correspond to this.
  • the spectrum measurement method and X-ray scattering method described later correspond to this.
  • the cross-sectional image is image
  • the imaging process is performed by the image acquisition unit 10
  • the visualization process is performed by the data acquisition unit 20.
  • the TEM observation method and microprobe observation method described later correspond to this.
  • FIG. 2 is a schematic cross-sectional view showing a part of human hair 50.
  • the hair 50 has a scaly (layered) cuticle cell 51 covering the surface thereof, a fibrous cortex (furty) cell 52 occupying most of the inside of the hair 50, and a hair center portion.
  • medulla cells 54 constituting the medulla (hair medulla) 53 present in the.
  • Japanese hair often has a medulla 53 porous in a sponge-like manner. Wool mainly consists of cuticle cells 51 and cortex cells 52, and in many cases is different from human hair in that it does not contain medulla 53.
  • Cortex cells 52 constitute the main part of human hair and contain cells and intercellular binding substances.
  • the cortex cells 52 include atypical cortex cells in addition to ortho cells 52a and para cells 52b described later.
  • the ortho cells 52a and the para cells 52b form a fibrous tissue around the medulla 53, respectively.
  • the cortex cell 52 is composed of bundles of fiber units called macrofibrils 55 having a diameter of about 0.1 to 0.6 ⁇ m.
  • the macrofibril 55 is constituted by a bundle of intermediate filaments (IF) having a smaller diameter (about 7 nm in diameter) gathered in a bundle.
  • IF intermediate filaments
  • a cell in which a plurality of macrofibrils 55 in the cortex cells are fused to form a relatively large micron-order domain is referred to as a para cell 52b.
  • a large number of intermediate filaments (IF) are oriented substantially parallel to the hair axis direction.
  • an ortho cell 52a a cell in which a plurality of macrofibrils 55 having a submicron order size are gathered together while maintaining their respective forms.
  • the IF is inclined in a spiral shape.
  • the ortho cells 52a and the para cells 52b can be visualized in a distinguishable manner. Further, since the para cells 52b are oriented substantially linearly along the hair axis, the tensile elastic modulus is higher than that of the ortho cells 52a.
  • the para cell 52b of the human hair 50 has a structure similar to the wool paracortex cell or the mesocortex cell from the viewpoint of the macrofibril form and the IF sequence structure, and the human ortho cell 52a The structure is similar to orthocortex cells.
  • human hair 50 ortho cells 52a and wool orthocortex cells, and human hair 50 para cells 52b and wool paracortex cells or mesocortex cells are different from each other. ing. Further, as described above, the occupancy ratio of medulla is greatly different between human hair and wool. For this reason, it is difficult to estimate the relationship between the composition of cortex cells in human hair and the hair characteristics from the relationship between the composition of cortex cells in wool and the hair characteristics.
  • the cross section of the hair 50 can be dyed with one type or two or more types of dyes to identify a plurality of types of fibrous tissues (ortho cells 52a, para cells 52b). It is a method to visualize.
  • the cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and the medulla cell 54 present in the human hair 50 are different from each other in their protein composition and form, and thus are stained with various dyes. Sex is different.
  • a cross-sectional image reflecting the distribution state of each cell can be acquired by using an appropriate dye.
  • the dye used in this method is not particularly limited as long as it dyes only one of the ortho cells 52a and the para cells 52b. Then, by using a dye that substantially colors only the ortho cells 52a and a dye that colors only the para cells 52b, that is, two or more kinds of dyes in combination, both can be clearly distinguished from each other. .
  • a fluorescent dye having fluorescence in a wavelength region different from the fluorescence derived from the hair constituents it is preferable to use a fluorescent dye having fluorescence in a wavelength region different from the fluorescence derived from the hair constituents.
  • the orthocell 52a can be stained with a specific color by sulferodamine having orange fluorescence
  • the paracell 52b can be stained with fluorescein having yellow-green fluorescence or an alkali metal salt thereof. .
  • a second example of the method performed in the image acquisition process is to observe a plurality of types of fibrous tissues (ortho cells 52a and para cells 52b) by observing the hair 50 with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • This is a method for obtaining a cross-sectional image reflecting the distribution state of the cells constituting the cell. Since the cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different protein compositions and forms, they are stained with an electron stain used in a transmission electron microscope. Sex is different. As a result, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the difference in the morphology of each cell observed with a transmission electron microscope.
  • a third example of the method performed in the image acquisition step is to measure an infrared absorption spectrum or a Raman spectrum related to a cross section of the hair 50, and use a plurality of types of fibrous tissues (ortho cells 52a and para cells 52b) as cross section images. This is a method of visualizing them so that they can be distinguished from each other. Since the cuticle cell 51, two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different protein compositions and forms, they are Fourier transform infrared spectrophotometers (FT-IR). The infrared absorption characteristics measured with are different.
  • FT-IR Fourier transform infrared spectrophotometers
  • a cross-sectional image reflecting the distribution state of each cell can be acquired based on the signal intensity or the ratio of a plurality of signal intensities.
  • the cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different Raman spectra obtained by irradiating with a polarized excitation laser. Therefore, if an appropriate Raman spectrum band is selected, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the signal intensity or the ratio of a plurality of signal intensity.
  • a fourth example of the method performed in the image acquisition step is a cross-section reflecting the distribution state of a plurality of types of fibrous tissues (ortho cells 52a and para cells 52b) by observing the cross-section of the hair 50 with a microprobe microscope.
  • This is a method for acquiring an image.
  • the microprobe microscope is a general term for microscopes that obtain information on a fine surface area by scanning a probe (probe) having a sharp tip on a cross section of hair as a measurement sample.
  • an atomic force microscope can be exemplified.
  • the cuticle cell 51, two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different protein compositions and structures. Therefore, a cross-sectional image reflecting the distribution state of each cell can be acquired based on physical properties and morphology observed with a microprobe microscope.
  • the fifth example of the method performed in the image acquisition step is to observe the X-ray scattering image of the hair 50 with microbeam X-rays, thereby distributing the plurality of types of fibrous tissues (ortho cells 52a, para cells 52b).
  • This is a method for acquiring a cross-sectional image reflecting the above.
  • the cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and the medulla cell 54 have different X-ray scattering images because of different microscopic structures. Therefore, by using microbeam X-rays, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the difference in X-ray scattering images.
  • a sixth example of the method performed in the image acquisition step is a cross section reflecting the distribution state of a plurality of types of fibrous tissues (ortho cells 52a, para cells 52b) by observing gene expression behavior in human hair follicles.
  • This is a method for acquiring an image.
  • the cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different protein compositions, and therefore have different genes (mRNA) expressed in the hair follicle. Therefore, by observing the gene expression behavior in the hair follicle, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the difference in gene expression.
  • the specific image acquisition process can be performed by selecting one or more of the above.
  • dyeing method using a fluorescent dye TEM observation method, spectrum measurement method (infrared absorption spectrum method), microprobe observation method, X-ray Scattering methods and gene observation methods are preferred.
  • a staining method, a TEM observation method, a microprobe observation method, an X-ray scattering method, and a gene observation method are preferable.
  • a staining method, a spectrum measurement method (infrared absorption spectrum method, Raman spectrum method), and a microprobe observation method are preferable.
  • the four types of cells refer to cuticle cells 51, ortho cells 52a, para cells 52b, and medulla cells 54.
  • the data acquisition step includes a step of analyzing the photographed cross-sectional image (analysis step) and a step of acquiring numerical information based on the result of the image analysis (numericalization step).
  • the cuticle cell 51, the cortex cell 52, and the medulla cell 54 can be easily distinguished from each other on the cross-sectional image of the hair 50 based on the difference in cell shape and the like.
  • the cuticle cell 51 exists in a layered manner on the surface of the hair 50
  • the cuticle cell 51 and the cortex cell 52 can be mechanically distinguished based on the form.
  • the medulla cell 54 existing in the center of the hair 50 is porous particularly in the case of Japanese, it can be mechanically distinguished from the cortex cell 52 based on its form.
  • the difference in the morphology is different on the submicron order. Therefore, when the spatial resolution of the cross-sectional image is submicron or less, the two can be distinguished from each other based on the difference in form between the ortho cell 52a and the para cell 52b.
  • the ortho cell 52a and the para cell 52b are determined based on the information reflecting them. They can be distinguished from each other.
  • the ortho cells 52a and the para cells 52b are colored or contoured as a whole by a staining method, a spectrum measurement method, an X-ray scattering method, or the like, so that they can be distinguished from each other by the difference in color information or the pattern shape. it can.
  • the data acquisition unit 20 may paint each cell with a plurality of colors by image processing.
  • the numerical information acquired in the numerical process of the present method is not particularly limited, and various parameters for quantitatively describing the hair characteristics can be selected.
  • the distance between the center of gravity of the fibrous tissue refers to the distance between the center of gravity of one fibrous tissue (ortho cell 52a) and the center of gravity of another fibrous tissue (para cell 52b) in the cross-sectional image.
  • the abundance ratio of the fibrous tissue refers to the abundance ratio of the fibrous tissue (either the ortho cell 52a or the para cell 52b) to the cortex cell 52.
  • the cross-sectional secondary moment of the para cell 52b refers to a cross-sectional secondary moment in the weak axis direction in the cross-sectional image.
  • the degree of dispersion of the fibrous tissue refers to the degree to which one fibrous tissue (ortho cell 52a) is mixed with another fibrous tissue (para cell 52b).
  • (I) Distance between center of gravity of fibrous tissue The shape and physical properties of hair 50 differ depending on the location of the four types of cells present in human hair. However, of the four types of cells, the cuticle cell 51 is present near the hair surface in any hair, and the medulla cell 54 is present near the hair center when present. Therefore, regarding the cuticle cell 51 and the medulla cell 54, the difference in the existence site by the hair 50 is small. As a result, the influence on the shape and physical properties of the hair 50 due to the difference in the existence site of the cuticle cell 51 and the medulla cell 54 is small.
  • the distribution of two types of cortex cells (ortho cells 52a and para cells 52b) within the hair is diverse, and the shape and physical properties of the hair vary greatly depending on the location of these cells.
  • the inventors have clarified that the distance between the centers of gravity of the ortho cells 52a and the para cells 52b has a positive correlation with the curl curvature, which is an index value indicating the degree of habit of the hair 50. .
  • the distribution centroid of each of the ortho cells 52a and para cells 52b on the cross section is obtained as a numerical value indicating the difference between the existence sites of these two types of cortex cells, in particular, the bias of the cell distribution, and the ortho cells 52a and 52b. It is effective to calculate the distance between the centers of gravity.
  • the distance between the centers of gravity is close to 0 when the ortho cells 52a and the para cells 52b are uniformly or isotropically distributed on the hair cross section, and is a numerical value when these cells are unevenly distributed unevenly. growing. Therefore, the distance between the centers of gravity of the ortho cells 52a and the para cells 52b can be used as a numerical value indicating the distribution of the ortho cells 52a and the para cells 52b.
  • the coordinate average of the pixels constituting the ortho cell 52a can be calculated to determine the center of gravity (face center) position of the ortho cell 52a.
  • the distance between the centroids of the ortho cell 52a and the para cell 52b can be obtained by calculating the distance between the centroid position of the ortho cell 52a and the centroid position of the para cell 52b.
  • the abundance ratio of these cells can be determined by, for example, the following image analysis. That is, first, the area occupied by the four types of cells in the cross-sectional image of the hair 50 is obtained by integrating the number of pixels included in each cell type. And it is good to calculate the ratio of the area which each cell occupies with respect to the total area (cross-sectional area of the hair 50) of four types of cells. In addition, the ratio of the area occupied by the ortho cells 52a and the para cells 52b to the total area occupied by the two types of cortex cells 52 of the ortho cells 52a and the para cells 52b is obtained, and the existence ratio of these cells may be calculated. .
  • the cross-sectional second moment in the arbitrary axial direction may be integrated from the position and area of the pixel included in the para cell 52b.
  • the degree of dispersion of the para cells 52b can be calculated by various methods.
  • As the first method a method that pays attention to the area ratio of the small clusters of the para cells 52b can be mentioned. Specifically, the total area of the para-cell 52b clusters (aggregates) exceeding the predetermined threshold area is calculated, and the total area of the para-cells 52b is distributed with the area occupied by the small clusters equal to or smaller than the above-described threshold area.
  • Degree As a second method, there is a method in which a cross-sectional image of the hair 50 is divided into segments, and the content of the para cells 52b in each segment is noted.
  • the cross-sectional image of the hair 50 is divided into radial and equal-area segments passing through the center of gravity, and the pixels of the para cells 52b included in each segment are counted.
  • the dispersibility of the para cells 52b in the hair 50 can be quantified by averaging the area ratio of the para cells 52b in each segment.
  • a numerical value related to the physical shape such as the cross-sectional area and flatness (long diameter or short diameter length) of the hair 50 may be acquired.
  • numerical information indicating the distribution state of at least one of the cuticle cell 51 or the medulla cell 54 contained in the hair can be further acquired.
  • numerical information indicating the distribution state of the cuticle cell 51 may be acquired together.
  • the properties of the hair 50 are different depending on the abundance ratio of these cells. Since the cuticle cell 51 has a higher cystine content and a higher density of disulfide bonds inside the cells than other cells, it is generally the hardest cell among the above three types of cells. Since the cuticle cell 51 exists at a position far from the center so as to cover the surface of the hair, it particularly contributes greatly to the bending stress and torsional rigidity of the hair fiber. Therefore, the hair with more cuticle cells 51 exhibits greater bending stress and torsional rigidity. Therefore, by acquiring the distribution state of the cuticle cell 51 as numerical information together with the cortex cell 52, it is possible to evaluate the hair characteristics more accurately.
  • the shape (curvature) of the hair 50 and the mechanical properties of the hair fiber may be evaluated as the characteristics of the hair 50.
  • a reference acquisition process and an evaluation process may be further performed.
  • calibration data indicating the relationship between numerical information and hair characteristics is acquired using a human hair sample as a reference hair.
  • the hair characteristics relating to the hair are evaluated from the numerical information of the hair acquired in the data acquisition step and the calibration data.
  • the reference acquisition process may be performed after the image acquisition process or the data acquisition process, or may be performed before these processes.
  • the above numerical information is acquired using a hair sample whose hair properties such as elastic modulus are known in advance as a reference hair.
  • the reference hair may be one or plural (many).
  • the hair characteristics can be estimated using the newly acquired numerical information of the target hair.
  • the hair characteristics of the target hair may be simply compared using one reference hair as a comparison reference.
  • the relationship between specific numerical information and hair characteristics is acquired as a table or function as a calibration curve. And you may estimate the characteristic of the said hair from the numerical information and calibration curve of object hair.
  • the cross-sectional image is image-analyzed to calculate the distance between the center of gravity of the ortho cell 52a and the para cell 52b.
  • the correlation function may be obtained by statistically processing the relationship between the curl radius or the curl curvature and the distance between the centers of gravity of the ortho cells 52a and the para cells 52b.
  • the numerical information (distance between the centers of gravity of the ortho cells 52a and the para cells 52b) acquired from the cross-sectional image of the target hair 50 is applied to, for example, the correlation function described above, so The curl radius or curl curvature, which is an index value indicating the degree, is calculated.
  • the bending elastic modulus and the existence ratio of the para cells 52b may be obtained for a large number of reference hairs, and the correlation thereof may be calculated statistically. Then, a bending elastic modulus that is an index value indicating the bending rigidity of the hair may be calculated from the existence ratio of the para cells 52b in the hair 50 to be evaluated.
  • the reference acquisition process and the evaluation process can be performed by the data acquisition unit 20 (PC main body 21).
  • calibration data may be stored in the storage unit of the personal computer main body 21 in advance.
  • a captured image of the hair 50, a cross-sectional image in which each cell is visualized, acquired numerical information, and part or all of the information indicating the evaluation result may be output from the data acquisition device 100 by any means.
  • a cross-sectional image in which the hair 50 to be evaluated is visualized and a cross-sectional image in which the reference hair is visualized may be displayed side by side.
  • a display 40 provided in the personal computer main body 21, a display connected to the personal computer main body 21 through the communication line 30 or wirelessly, a print output from the printer 41, and the like can be arbitrarily used.
  • the various components of the data acquisition device 100 of the present embodiment need only be formed so as to realize their functions.
  • the data acquisition unit 20 includes dedicated hardware that exhibits a predetermined function, a data processing device to which the predetermined function is given by a computer program, a predetermined function that is realized in the data processing device by a computer program, and any of these It can be realized as a combination.
  • the data acquisition device 100 of the present embodiment can read a computer program and execute a corresponding processing operation, so that a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O It can be implemented as hardware constructed by a general-purpose device such as an F (Interface) unit, a dedicated logic circuit constructed so as to execute a predetermined processing operation, a combination thereof, or the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • I / O It can be implemented as hardware constructed by a general-purpose device such as an F (Interface) unit, a dedicated logic circuit constructed so as to execute a predetermined processing operation, a combination thereof, or the like.
  • parameters such as the degree of comb hair that greatly affects the gloss of the hair and the flexural modulus that greatly affects the volume and softness of the hair are quantitatively expressed. It can be acquired as information. For this reason, based on numerical information acquired from the target hair, it is possible to evaluate these hair characteristics, or to provide objective information for assisting selection of an appropriate hair treatment method and hair care agent. it can.
  • the hair properties such as curl radius, curl curvature, and bending elastic modulus obtained from a single hair are only one value each. It was.
  • the hair characteristic data acquisition technique of the present embodiment by acquiring a plurality of cross-sectional images and numerical information from different length positions in one hair, the hair for each length position in one hair. Characteristics can be calculated. Thereby, according to this embodiment, the characteristic of one hair can be evaluated from many aspects.
  • a predetermined hair length is required for measurement of hair characteristics.
  • the evaluated hair characteristics are such that, in the current state of hair, the influence of the tip of the hair is strongly influenced when measuring the hair characteristics. No, it shows the characteristics of past hair.
  • the hair characteristic regarding the present hair quality can be evaluated. Then, it is possible to predict future hair characteristics such as the degree of shampoo and bending elastic modulus when the current hair grows.
  • Example 1 Comb hair
  • This example relates to a method of acquiring numerical information describing the shape and physical properties of hair by acquiring a cross-sectional image of hair using a transmission electron microscope (TEM) and performing image analysis.
  • TEM transmission electron microscope
  • the hair of interest was obtained from the root near the scalp of white woman A in her 30s who did not perform chemical hair treatment such as perm, bleach, or hair color.
  • the target hair was cut into a length of about 12 mm from the root to obtain a hair sample.
  • the prepared hair sample was washed with shampoo, thoroughly rinsed with ion exchange water, and then dried. When the curl radius of the dried hair sample was measured, the curl radius was 0.9 cm. Such a curl radius is a value classified as a peculiar hair.
  • the hair sample was dyed by immersing it in a 0.05M phosphate buffer solution (pH 6.7) containing 1.0% by mass of osmic acid for 1 hour, and then rinsed with excess ionized water with ion-exchanged water and dried. I let you.
  • a hair cross section having a thickness of 100 nm was cut out using a microtome and fixed on a copper mesh for a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the hair cross section fixed on the copper mesh was dipped in a 2.0% by mass uranyl acetate aqueous solution for 4 hours, followed by rinsing excess uranyl acetate with ion-exchanged water and drying it.
  • the hair cross-section image was obtained by observing the hair cross-section double-stained with osmic acid and uranyl acetate with a transmission electron microscope (TEM).
  • FIG. 4 to 7 show typical images of the cuticle cell 51, para cell 52b, ortho cell 52a, and medulla cell 54, respectively, taken at high magnification. 3 to 7, scales are shown in the drawings.
  • FIG. 3 is an image obtained by collecting and reconstructing high-magnification images as shown in FIGS.
  • the black granular portion having a diameter of about 0.2 ⁇ m is a melanin granule.
  • the amorphous black portion is a nucleus residue of the cortex cell 52.
  • the part which has fallen white is the cavity inside hair, or the embedding resin outside hair.
  • Cuticle cells 51, para cells 52b, ortho cells 52a and medulla cells 54 were identified using FIGS. 4 to 7 which are high-magnification images, and the results were applied to FIG.
  • the cuticle cell 51 exists in a layered manner near the surface of the hair, two adjacent cortex cells 52 (para cell 52b and ortho cell 52a) are mutually connected based on the difference in form. Can be determined.
  • the medulla cell 54 exists in the center of the hair and has a porous structure, and therefore can be distinguished from the two types of cortex cells 52 based on the difference in form. .
  • the two types of cortex cells 52, the para cell 52b and the ortho cell 52a are different in submicron order, and therefore can be mechanically distinguished from each other based on the form.
  • macrofibrils are fused to form a relatively large micron-order domain.
  • the ortho cell 52 a shows a form in which macrofibrils having a size of submicron order are gathered.
  • the para cell 52b and the ortho cell 52a can be discriminated based on the difference in the form of the macrofibril.
  • FIG. 3 The cross-sectional image of FIG. 3 is image-analyzed according to the discriminant criteria based on the above differences, and the four types of cells inside the hair (cuticle cell 51, ortho cell 52a, para cell 52b, medulla cell 54) are sequentially black.
  • FIG. 8 shows a visualized image obtained by painting with dark gray, light gray, and white. In FIG. 8, regions other than hair are shown in a lattice pattern. Moreover, the scale of FIG. 8 is the same scale as FIG.
  • the hair which is the object of this example is a hair sample of a white woman in the thirties who has not been subjected to chemical hair treatment such as perm, bleach, or hair color, collected from the base near the scalp.
  • chemical hair treatment such as perm, bleach, or hair color
  • FIG. 10 shows a visualized image obtained by painting with light gray and white. In FIG. 10, regions other than hair are shown in a lattice pattern. 10 is the same scale as FIG.
  • the white medulla cells 54 do not exist, but from FIG. 10, in addition to the black cuticle cells 51, the distribution state of the light gray para cells 52b and the dark gray ortho cells 52a on the hair cross section is shown. It was found that it was clearly visualized. The light gray para cells 52b are distributed in the central part on the hair cross section of FIG. 10, while the dark gray ortho cells 52a are visualized in the peripheral part.
  • Cuticle cell area ratio 19.8% Area ratio occupied by ortho cells: 37.1% Area ratio of para cells: 43.1% Medura cell area ratio: 0.0%
  • Example 2 The hair of Example 2 is almost straight hair with a curl radius of 5.0 cm, but the distribution of para cells 52b and ortho cells 52a on the hair cross section was isotropic as shown in FIG.
  • the distance between the centers of gravity of these two types of cortex cells 52 was 2.1 ⁇ m, which was a small value compared to Example 1 (curl radius 0.9 cm, distance between centers of gravity 8.5 ⁇ m).
  • Example 1 Further, comparison between Example 1 and Example 2 revealed that the curl radius of hair and the distance between the centers of gravity of the two types of cortex cells 52 had a positive correlation.
  • a hair cross-section image reflecting the cell distribution state is obtained by dyeing the hair cross-section with two types of dyes, and numerical information describing the shape and physical properties of the hair is obtained by image analysis. Regarding the method.
  • the target hair is the hair of Japanese woman C in her 30s who has not performed chemical hair treatment such as perm, bleach, hair color, etc., collected from the base near the scalp.
  • chemical hair treatment such as perm, bleach, hair color, etc.
  • the hair cross-section fixed on the slide glass was sequentially stained with yellow No. 202 (Acid Yellow 73) and sulferodamine 101 according to the method described in Non-Patent Document 4 described above. Specifically, the hair cross-section was immersed in a 0.002% by weight yellow 202 (Acid Yellow 73) aqueous solution for 18 hours, rinsed with ion-exchanged water, and then dried. Subsequently, it was immersed in 0.0005% by mass of sulfododamine 101 aqueous solution, rinsed with ion-exchanged water, and then dried to obtain a hair cross section dyed with two kinds of dyes.
  • FIG. 11 shows a hair cross-sectional image obtained when a hair cross-section dyed with two types of fluorescent dyes is observed with a fluorescence microscope.
  • FIG. 11 is a black and white binarized image of a hair cross-sectional image acquired as a color image.
  • 12 to 14 show the RGB values of the acquired color image, respectively.
  • FIG. 12 shows an R value image
  • FIG. 13 shows a G value image
  • FIG. 14 shows a B value image.
  • the structure of the hair cross section shown in FIG. 11 can be clearly identified by the G value image (FIG. 13).
  • a portion stained with a yellow-green fluorescent dye (yellow 202) is shown in a relatively light color in FIG.
  • stained with the orange fluorescent dye is shown by the comparatively light color in FIG. That is, it can be seen from FIGS. 11 to 14, particularly FIGS. 12 and 13, that the hair cross-section is dyed into two colors of yellow-green and orange.
  • a site stained with a yellow-green fluorescent dye (yellow 202) is defined as a para cell 52b.
  • the sites stained with the orange fluorescent dye (sulforudamine 101) are ortho cells 52a, cuticle cells 51, and medulla cells 54.
  • These three types of cells that are stained with an orange fluorescent dye can be distinguished from each other because they have different locations and forms. For example, since the cuticle cell 51 is present in a layered manner in the vicinity of the hair surface, it can be distinguished from the adjacent ortho cell 52a based on the difference in form.
  • FIG. 15 shows visualized images obtained by painting four types of cells (cuticle cell 51, ortho cell 52a, para cell 52b, and medulla cell 54) inside the hair in black, dark gray, light gray, and white, respectively.
  • regions other than hair are shown in a lattice pattern.
  • the visualized image shown in FIG. 15 may be created based on FIG.
  • a site where the G value is greater than or equal to a certain threshold value is determined to be yellow-green (para cell 52b), and a region equal to or less than this threshold value is determined to be orange (ortho cell 52a, cuticle cell 51 or medulla cell 54).
  • the orange portion can be identified as the ortho cell 52a, the cuticle cell 51, and the medulla cell 54 based on the difference in form.
  • the hair of Example 3 has a curl radius of 3.9 cm and is slightly straight hair, but the distribution of the para cells 52b and the ortho cells 52a on the hair cross section is slightly biased as shown in FIG.
  • the distance between the centers of gravity of the two types of cortex cells 52 was 4.7 ⁇ m.
  • the order of the curl radii matches the order of the distances between the centers of gravity of the two types of cortex cells 52. Therefore, it was further clarified that there is a positive correlation between the curl radius of the hair and the distance between the centers of gravity of the two types of cortex cells 52.
  • Example 4 Comb hair
  • the target hair is changed, and image analysis is performed in the same manner as in Example 3, and the distance between the centers of gravity of the para cells 52b and the ortho cells 52a is obtained.
  • the hair which is the object of this example was obtained from the roots near the scalp of Japanese female D in his 20s who did not perform chemical hair treatment such as perm, bleach or hair color. After washing and drying in the same manner as in Example 3, the curl radius of the hair sample was measured and found to be 0.55 cm.
  • Example 3 after embedding this hair sample in an epoxy resin, a hair cross-section having a thickness of 1.5 ⁇ m was cut out using a microtome, and yellow No. 202 (Acid Yellow 73) and sulfododamine 101 were used. A dyed hair cross section was obtained.
  • FIG. 16 shows a hair cross-sectional image obtained when a hair cross section dyed with two types of fluorescent dyes is observed with a fluorescence microscope.
  • FIG. 16 is a black and white binarized image of a hair cross-sectional image acquired as a color image.
  • 17 to 19 are images obtained by converting the RGB values of the acquired color image, respectively. Specifically, FIG. 17 shows an R value image, FIG. 18 shows a G value image, and FIG. 19 shows a B value image. Also in this example, like the example 3, the structure of the hair cross section shown in FIG. 16 can be identified particularly clearly by the G value image (FIG. 18).
  • FIG. 16 [Visualization of cell distribution] Similarly to Example 3, the image information of FIG. 16 is image-analyzed, and four types of cells (cuticle cell 51, ortho cell 52a, para cell 52b, medulla cell 54) inside the hair are respectively black, dark gray, and light. A visualized image obtained by painting in gray and white is shown in FIG. In FIG. 20, regions other than hair are shown in a lattice pattern.
  • Example 4 had a curl radius of 0.55 cm and was a very strong peculiar hair, but the distribution of the para cells 52b and the ortho cells 52a on the hair cross section was considerably biased as shown in FIG.
  • the distance between the centers of gravity of these two types of cortex cells 52 was 20.4 ⁇ m.
  • the order of the curl radii matches the order of the distances between the centers of gravity of the two types of cortex cells 52. Therefore, it was further clarified that there is a positive correlation between the curl radius of the hair and the distance between the centers of gravity of the two types of cortex cells 52.
  • Example 5 Comparison with reference hair 1
  • an image information acquisition step for 41 reference hairs with different curl radii, as in the case of the TEM observation method of Example 1, an image information acquisition step, a cell distribution visualization step, and a quantification step for each cell were performed.
  • FIG. 21A is a scatter diagram showing the relationship between the curl radius of the reference hair thus obtained and the distance between the centers of gravity of the para cells 52b and the ortho cells 52a.
  • Example 6 Comparison with reference hair 2
  • the abundance ratio of para cells 52b in the cortex cells 52 and the flexural modulus were determined.
  • FIG. 21 (b) is a scatter diagram showing the relationship between the flexural modulus obtained in this way and the abundance ratio of the para cells 52b.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Disclosed is a method for acquiring hair characteristic data which comprises an image-acquiring step and a data-acquiring step. In the image-acquiring step, a cross-sectional image of human hair (50), in which multiple kinds of fibrous tissues [ortho cells (52a) and para cells (52b)] constituting cortex cells (52) contained in the hair (50) are visualized in such a manner as to be distinguishable from each other, is acquired. In the data-acquiring step, numerical data indicating the distribution state of the visualized multiple kinds of fibrous tissues [ortho cells (52a) and para cells (52b)] is acquired from the cross-sectional image.

Description

毛髪特性データの取得方法および取得装置Method and apparatus for acquiring hair characteristic data

 本発明は、毛髪特性データの取得方法および取得装置に関する。 The present invention relates to a method and apparatus for acquiring hair characteristic data.

 一般に、毛髪のくせ毛の程度を客観的に記述するために、カール半径やカール曲率などがその指標として用いられている(非特許文献1)。また、毛髪のハリ・コシや柔らかさなどの感触に関わる毛髪の物性を客観的に記述するために、毛髪の太さや引張り弾性、曲げ応力などがその指標として用いられている(非特許文献2)。 Generally, in order to objectively describe the degree of hair combing, curl radius, curl curvature, etc. are used as indices (Non-Patent Document 1). In addition, in order to objectively describe the physical properties of the hair related to the feel such as the firmness, firmness, and softness of the hair, the thickness, tensile elasticity, bending stress, etc. of the hair are used as indices (Non-patent Document 2). ).

 カール半径やカール曲率は、一般に、一本の毛髪の全体的な湾曲形状を実測して算出される。このほか、くせ毛の評価方法としては、毛髪に対する有機物や無機塩類の浸透速度を解析する方法が知られている(特許文献1)。また、コルテックス細胞を構成する繊維状組織の束に着目し、毛髪の断面画像から、この束に含まれるアミドI(C=O結合)とアミドII(N-H結合)の吸光度の比を求めてくせ毛の程度を評価する方法も提案されている(特許文献2)。 The curl radius and curl curvature are generally calculated by actually measuring the overall curved shape of a single hair. In addition, as a method for evaluating comb hair, a method of analyzing the penetration rate of organic substances and inorganic salts into hair is known (Patent Document 1). In addition, paying attention to the bundle of fibrous tissues constituting cortex cells, the ratio of absorbance of amide I (C═O bond) and amide II (NH bond) contained in this bundle is determined from a cross-sectional image of hair. There has also been proposed a method for evaluating the degree of comb hair (Patent Document 2).

 ヒトの毛髪(頭髪)は、毛髪表面を覆う鱗状(層状)のキューティクル細胞と、毛髪内部の大部分を占める繊維状のコルテックス細胞と、毛髪中心部に存在する多孔質のメデュラを構成するメデュラ細胞とから成る。このうち、毛髪内部に存在するコルテックス細胞には、羊毛のパラコルテックス細胞に類似した細胞と、羊毛のオルトコルテックス細胞に類似した細胞の少なくとも2種類のコルテックス細胞があると言われている(非特許文献3)。 Human hair (head hair) consists of scaly (layered) cuticle cells that cover the hair surface, fibrous cortex cells that occupy most of the interior of the hair, and a medulla that forms a porous medulla in the center of the hair. It consists of cells. Among these, cortex cells existing in the hair are said to have at least two types of cortex cells, cells similar to wool paracortex cells and cells similar to wool orthocortex cells. (Non-patent Document 3).

 非特許文献3には、これらの2種類のコルテックス細胞の存在比と毛髪の形状との関係について記載されている。具体的には、アジア人毛(モンゴロイド)、白人毛(コーカシアン)、エチオピア人毛(アフリカン)に大別して、人種ごとの毛髪のくせの傾向と、2種類のコルテックス細胞の存在比との間に一定の傾向があることが記載されている。
 非特許文献4に関しては後述する。
Non-Patent Document 3 describes the relationship between the abundance ratio of these two types of cortex cells and the shape of the hair. Specifically, it is roughly divided into Asian human hair (Mongoloid), Caucasian hair (Caucasian), and Ethiopian human hair (African). It is described that there is a certain tendency between them.
Non-patent document 4 will be described later.

特開平9-178738号公報Japanese Patent Laid-Open No. 9-178738 特開2006-170915号公報JP 2006-170915 A

R. De la Mettrie, et al.著,Human Biology,Vol.79 No.3,pp.265-281,2007年R. De la Mettrie, et al., Human Biology, Vol.79 No.3, pp.265-281, 2007 C.R. Robbins著、"Chemical and Physical Behavior of Human Hair" 4th Ed.,Springer-Verlag New York, Inc.,pp.386-473,2002年C.R. Robbins, "Chemical and Physical Behavior of Human Hair" 4th Ed., Springer-Verlag New York, Inc., pp.386-473, 2002 "Morphology and histochemistry of human hair" in "Formation and Structure of Human Hair",J. A. Swift著,P. Jolles, H. Zahn, and H. Hocker, Eds.,Birkhauser Verlag,Basel,pp.149-175,1997年"Morphology and histochemistry of human hair" in "Formation and Structure of Human Hair", by J. A. Swift, P. Jolles, H. Zahn, and H. Hocker, Eds., Birkhauser Verlag, Basel, pp.149- 175, 1997 W. G. Bryson, et al.著,Journal of Structural Biology,Vol.166,pp.46-58,2009年W. G. Bryson, et al., Journal of Structural Biology, Vol.166, pp.46-58, 2009

 特許文献1、2に記載の評価方法では、コルテックス細胞を複数種類の細胞に区別して評価していないため、毛髪特性を正確に定量化することが困難であった。
 また、非特許文献3には、ヒトの毛髪を構成する複数種類のコルテックス細胞の存在比が毛髪特性に対して一定の寄与をしていることが示されているものの、毛髪特性を記述するための定量的な考察は、いまだなされていなかった。
In the evaluation methods described in Patent Documents 1 and 2, it is difficult to accurately quantify hair properties because cortex cells are not evaluated by distinguishing them from a plurality of types of cells.
Non-Patent Document 3 describes the hair characteristics, although it is shown that the abundance ratio of plural types of cortex cells constituting human hair contributes to the hair characteristics. Quantitative considerations have not yet been made.

 本発明は上記課題に鑑みてなされたものであり、毛髪特性を記述するための定量的な情報を簡便に取得するための方法および装置を提供するものである。 The present invention has been made in view of the above problems, and provides a method and an apparatus for easily obtaining quantitative information for describing hair characteristics.

 本発明の毛髪特性データの取得方法は、ヒトの毛髪に含まれるコルテックス細胞を構成する複数種類の繊維状組織が互いに識別可能に可視化された、前記毛髪の断面画像を取得する画像取得工程と、可視化された前記複数種類の繊維状組織の分布状態を示す数値情報を前記断面画像より取得するデータ取得工程と、を含む。 The method for acquiring hair property data of the present invention includes an image acquisition step of acquiring a cross-sectional image of the hair in which a plurality of types of fibrous tissues constituting cortex cells contained in human hair are visualized so as to be distinguishable from each other. A data acquisition step of acquiring numerical information indicating the distribution state of the visualized plural types of fibrous tissues from the cross-sectional image.

 また本発明の毛髪特性データの取得装置は、ヒトの毛髪に含まれるコルテックス細胞を構成する複数種類の繊維状組織が互いに識別可能に可視化された、前記毛髪の断面画像を取得する画像取得手段と、可視化された前記複数種類の繊維状組織の分布状態を示す数値情報を前記断面画像より取得するデータ取得手段と、を含む。 Further, the hair characteristic data acquisition device of the present invention is an image acquisition means for acquiring a cross-sectional image of the hair in which a plurality of types of fibrous tissues constituting cortex cells contained in human hair are visualized so as to be distinguishable from each other. And data acquisition means for acquiring numerical information indicating the visualized distribution states of the plurality of types of fibrous tissues from the cross-sectional image.

 なお、上記発明において、毛髪の断面画像とは、毛髪軸に対して交差する方向の断面(横断面)の一部または全部を撮像した画像をいう。また、ここでいう毛髪の断面画像とは、対象の毛髪のコルテックス細胞を構成する繊維状組織の径方向に関する組織の分布状態が把握できる画像であるかぎり、当該毛髪の物理的な切断面に関する画像であってもよく、または透過画像であってもよい。
 また、毛髪の断面画像において複数種類の繊維状組織が互いに識別可能に可視化されている状態とは、目視または画像処理手段により当該複数種類の繊維状組織が互いに識別される状態をいう。
In the above invention, the cross-sectional image of hair refers to an image obtained by capturing part or all of a cross section (transverse cross section) in a direction intersecting the hair axis. Moreover, as long as the cross-sectional image of hair here is an image in which the distribution state of the tissue in the radial direction of the fibrous tissue constituting the cortex cell of the target hair can be grasped, it relates to the physical cut surface of the hair. It may be an image or a transmission image.
The state in which a plurality of types of fibrous tissues are visualized so as to be distinguishable from each other in a cross-sectional image of hair refers to a state in which the plurality of types of fibrous tissues are identified from each other visually or by image processing means.

 なお、本発明の各種の構成要素(手段)は、個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。 The various components (means) of the present invention do not have to be individually independent, but a plurality of components are formed as a single member, and a single component is formed of a plurality of members. It is possible that a certain component is a part of another component, a part of a certain component overlaps a part of another component, and the like.

 本発明にかかる毛髪特性データの取得技術によれば、コルテックス細胞を構成する繊維状組織の分布状態が数値情報として取得されるため、毛髪特性の定量的な評価や、適切な毛髪処理方法やヘアケア剤の客観的な選択が可能となる。 According to the hair characteristic data acquisition technology according to the present invention, since the distribution state of the fibrous tissue constituting the cortex cell is acquired as numerical information, quantitative evaluation of hair characteristics, an appropriate hair treatment method, Objective selection of hair care agents is possible.

 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.

本発明の第一実施形態にかかるデータ取得装置の一例を示すブロック図である。It is a block diagram which shows an example of the data acquisition apparatus concerning 1st embodiment of this invention. ヒトの毛髪の断面模式図である。It is a cross-sectional schematic diagram of human hair. 実施例1における毛髪断面の全体画像である。2 is an entire image of a hair cross section in Example 1. FIG. 図3の拡大図であり、キューティクル細胞を示す図である。FIG. 4 is an enlarged view of FIG. 3 and shows a cuticle cell. 図3の拡大図であり、コルテックス細胞のうちパラ細胞(詳細後述)に分類される細胞を示す図である。FIG. 4 is an enlarged view of FIG. 3 and shows cells classified as para cells (detailed later) among cortex cells. 図3の拡大図であり、コルテックス細胞のうちオルト細胞(詳細後述)に分類される細胞を示す図である。FIG. 4 is an enlarged view of FIG. 3 and shows cells classified as ortho cells (described later in detail) among cortex cells. 図3の拡大図であり、メデュラ細胞を示す図である。FIG. 4 is an enlarged view of FIG. 3 and shows a medulla cell. 実施例1の可視化画像である。It is a visualization image of Example 1. FIG. 実施例2における毛髪断面の全体画像である。It is the whole image of the hair section in Example 2. 実施例2の可視化画像である。It is a visualization image of Example 2. FIG. 実施例3における毛髪断面の全体画像である。It is a whole image of the hair section in Example 3. 図11のR値の画像である。It is an image of the R value of FIG. 図11のG値の画像である。It is an image of G value of FIG. 図11のB値の画像である。It is an image of B value of FIG. 実施例3の可視化画像である。It is a visualization image of Example 3. 実施例4における毛髪断面の全体画像である。It is a whole image of the hair section in Example 4. 図16のR値の画像である。It is an image of the R value of FIG. 図16のG値の画像である。It is an image of G value of FIG. 図16のB値の画像である。It is an image of B value of FIG. 実施例4の可視化画像である。It is a visualization image of Example 4. FIG. (a)は基準毛に関するカール半径と重心間距離との関係を示す散布図および検量線データであり、(b)は基準毛に関する曲げ弾性率とパラ細胞(詳細後述)の存在比率との関係を示す散布図および検量線データである。(A) is a scatter diagram and calibration curve data showing the relationship between the curl radius and the center-of-gravity distance for the reference hair, and (b) is the relationship between the bending elastic modulus for the reference hair and the abundance ratio of para cells (detailed later). It is a scatter diagram and calibration curve data showing.

 以下、本発明の実施形態を図面に基づいて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

<第一実施形態>
 図1は、本実施形態にかかる毛髪特性データの取得装置(データ取得装置100)の一例を示すブロック図である。
<First embodiment>
FIG. 1 is a block diagram illustrating an example of a hair characteristic data acquisition device (data acquisition device 100) according to the present embodiment.

 はじめに、本実施形態のデータ取得装置100の概要について説明する。
 データ取得装置100は、ヒトの毛髪のコルテックス細胞を構成する複数種類の繊維状組織が互いに識別可能に可視化された、毛髪の断面画像を取得する画像取得部10と、可視化された複数種類の繊維状組織の分布状態を示す数値情報を断面画像より取得するデータ取得部20と、を含む。
First, an outline of the data acquisition apparatus 100 of this embodiment will be described.
The data acquisition device 100 includes an image acquisition unit 10 that acquires a cross-sectional image of hair, in which a plurality of types of fibrous tissues constituting cortex cells of human hair are visualized in a distinguishable manner, and a plurality of types of visualization A data acquisition unit 20 that acquires numerical information indicating the distribution state of the fibrous tissue from the cross-sectional image.

 図1に例示するデータ取得装置100は、画像取得部10としてのデジタルカメラ11と、データ取得部20としてのパソコン本体21とが、通信回線30によって接続されてなる。
 画像取得部10は、ヒトの毛髪(図1には図示せず)の断面画像を取得してデータ取得部20に送信する。画像取得部10としては種々の手段を用いることができ、デジタルカメラ11はその例示である。
 画像取得部10としては、デジタルカメラ11に代えて、イメージスキャナ12を使用してもよい。すなわち、毛髪の断面写真を撮影し、これをイメージスキャナ12によって画像情報に変換してデータ取得部20に送信してもよい。
 また、毛髪の断面画像は、ウェブサーバ(図示せず)に格納された断面画像を、インターネット13および通信回線30を通じてデータ取得部20に送信してもよい。かかる場合、ウェブサーバおよびインターネット13が画像取得部10として機能する。
A data acquisition apparatus 100 illustrated in FIG. 1 includes a digital camera 11 as an image acquisition unit 10 and a personal computer main body 21 as a data acquisition unit 20 connected by a communication line 30.
The image acquisition unit 10 acquires a cross-sectional image of human hair (not shown in FIG. 1) and transmits it to the data acquisition unit 20. Various means can be used as the image acquisition unit 10, and the digital camera 11 is an example.
As the image acquisition unit 10, an image scanner 12 may be used instead of the digital camera 11. That is, a cross-sectional photograph of hair may be taken, converted into image information by the image scanner 12, and transmitted to the data acquisition unit 20.
Moreover, the cross-sectional image of hair may transmit the cross-sectional image stored in the web server (not shown) to the data acquisition part 20 via the internet 13 and the communication line 30. FIG. In such a case, the web server and the Internet 13 function as the image acquisition unit 10.

 本実施形態のデータ取得部20は、具体的には、所定の演算機能を備え、演算部および記憶部として機能するパソコン本体21である。データ取得部20には、情報入力部としてのキーボード22、および情報出力部としてのディスプレイ40が付随している。
 情報出力部は、コルテックス細胞を構成する繊維状組織の分布状態や、毛髪特性の評価結果を出力する。
 情報出力部としては、ディスプレイ40のほか、通信回線30を介してデータ取得部20に接続されたプリンタ41やインターネット13を用いてもよい。
Specifically, the data acquisition unit 20 of the present embodiment is a personal computer main body 21 that has a predetermined calculation function and functions as a calculation unit and a storage unit. The data acquisition unit 20 is accompanied by a keyboard 22 as an information input unit and a display 40 as an information output unit.
The information output unit outputs the distribution state of the fibrous tissue constituting the cortex cell and the evaluation result of the hair characteristics.
As the information output unit, in addition to the display 40, a printer 41 connected to the data acquisition unit 20 via the communication line 30 or the Internet 13 may be used.

 次に、本実施形態の毛髪特性データの取得方法(以下、本方法という場合がある)について詳細に説明する。
 本方法は、画像取得工程とデータ取得工程とを含む。
 画像取得工程では、ヒトの毛髪に含まれるコルテックス細胞を構成する複数種類の繊維状組織が互いに識別可能に可視化された、毛髪の断面画像を取得する。
 データ取得工程では、可視化された複数種類の繊維状組織の分布状態を示す数値情報を断面画像より取得する。
Next, a method for acquiring hair characteristic data according to the present embodiment (hereinafter sometimes referred to as the present method) will be described in detail.
The method includes an image acquisition process and a data acquisition process.
In the image acquisition step, a cross-sectional image of the hair is obtained in which a plurality of types of fibrous tissues constituting cortex cells contained in human hair are visualized so as to be distinguishable from each other.
In the data acquisition step, numerical information indicating the distribution state of the plurality of types of visualized fibrous tissues is acquired from the cross-sectional image.

 以下、各工程について詳細に説明する。 Hereinafter, each process will be described in detail.

<画像取得工程>
 この工程では、任意の被験者の毛髪の断面画像を取得して、毛髪内部の細胞の形態または構造、物性、蛋白組成、化学組成などを示す情報を画像情報として取得する。
 より具体的には、ヒトの毛髪に含まれるコルテックス細胞を構成する複数種類の繊維状組織を互いに識別可能に可視化する工程(可視化工程)と、毛髪の断面画像を取得する工程(撮影工程)とを含む。
<Image acquisition process>
In this step, a cross-sectional image of the hair of an arbitrary subject is acquired, and information indicating the morphology or structure of the cells inside the hair, physical properties, protein composition, chemical composition, and the like is acquired as image information.
More specifically, a step of visualizing a plurality of types of fibrous tissues constituting cortex cells contained in human hair so that they can be distinguished from each other (visualization step), and a step of acquiring a cross-sectional image of the hair (imaging step) Including.

 画像取得工程の具体例は後述する。可視化工程と撮影工程との実施タイミングの先後は任意であり、これらの工程を同時に行ってもよい。
 具体的には、毛髪の断面を染色するなどして可視化工程を行い、予め繊維状組織を互いに識別可能に可視化した状態で、毛髪の断面画像を画像取得部10で取得してもよい。この場合、可視化工程の後に撮影工程が画像取得部10で行われることとなる。後述の染色法、遺伝子観察法がこれに該当する。
 また、毛髪の断面の可視化工程と断面画像の撮影工程を同時に行ってもよい。後述のスペクトル測定法やX線散乱法がこれに該当する。
 また、目視では繊維状組織が互いに識別できない状態の毛髪について、その断面画像を画像取得部10で撮影し、その後に画像処理によって繊維状組織を識別可能に可視化してもよい。この場合、撮影工程を画像取得部10で行い、可視化工程をデータ取得部20で行うこととなる。後述のTEM観察法、マイクロプローブ観察法がこれに該当する。
A specific example of the image acquisition process will be described later. The execution timing of the visualization process and the imaging process is optional, and these processes may be performed simultaneously.
Specifically, a visualization process may be performed by staining a cross section of the hair, and the cross-sectional image of the hair may be acquired by the image acquisition unit 10 in a state where the fibrous tissues are visualized in advance so as to be distinguishable from each other. In this case, the imaging process is performed by the image acquisition unit 10 after the visualization process. The staining method and gene observation method described later correspond to this.
Moreover, you may perform simultaneously the visualization process of the cross section of hair, and the imaging | photography process of a cross-sectional image. The spectrum measurement method and X-ray scattering method described later correspond to this.
Moreover, about the hair in the state which cannot distinguish a fibrous structure visually, the cross-sectional image is image | photographed with the image acquisition part 10, and after that, a fibrous structure may be visualized by image processing so that identification is possible. In this case, the imaging process is performed by the image acquisition unit 10, and the visualization process is performed by the data acquisition unit 20. The TEM observation method and microprobe observation method described later correspond to this.

 ここで、ヒトの毛髪の構造について説明する。図2はヒトの毛髪50の一部を示す断面模式図である。
 図2に示すように、毛髪50は、その表面を覆う鱗状(層状)のキューティクル細胞51と、毛髪50の内部の大部分を占める繊維状のコルテックス(毛皮質)細胞52と、毛髪中心部に存在するメデュラ(毛髄質)53を構成するメデュラ細胞54とからなる。
 日本人の毛髪は、メデュラ53がスポンジ状に多孔質化している場合が多い。また、羊毛は主にキューティクル細胞51とコルテックス細胞52からなり、多くの場合、メデュラ53を含んでいない点でヒトの毛髪と相違する。
Here, the structure of human hair will be described. FIG. 2 is a schematic cross-sectional view showing a part of human hair 50.
As shown in FIG. 2, the hair 50 has a scaly (layered) cuticle cell 51 covering the surface thereof, a fibrous cortex (furty) cell 52 occupying most of the inside of the hair 50, and a hair center portion. And medulla cells 54 constituting the medulla (hair medulla) 53 present in the.
Japanese hair often has a medulla 53 porous in a sponge-like manner. Wool mainly consists of cuticle cells 51 and cortex cells 52, and in many cases is different from human hair in that it does not contain medulla 53.

 コルテックス細胞52は、人毛の主要な部分を構成し、細胞と細胞間結合物質を含んでいる。コルテックス細胞52には、後述するオルト細胞52aおよびパラ細胞52bのほか、異型コルテックス細胞などを含んでいる。オルト細胞52aとパラ細胞52bは、メデュラ53の周囲において、それぞれ繊維状組織を構成している。 Cortex cells 52 constitute the main part of human hair and contain cells and intercellular binding substances. The cortex cells 52 include atypical cortex cells in addition to ortho cells 52a and para cells 52b described later. The ortho cells 52a and the para cells 52b form a fibrous tissue around the medulla 53, respectively.

 コルテックス細胞52は、マクロフィブリル55と呼ばれる直径0.1~0.6μm程度の繊維単位が束状に寄せ集まって構成されている。
 マクロフィブリル55は、さらに細径(直径約7nm)の中間径フィラメント(IF)が束状に寄せ集まって構成されている。
The cortex cell 52 is composed of bundles of fiber units called macrofibrils 55 having a diameter of about 0.1 to 0.6 μm.
The macrofibril 55 is constituted by a bundle of intermediate filaments (IF) having a smaller diameter (about 7 nm in diameter) gathered in a bundle.

 本発明では、ヒトの毛髪50のコルテックス細胞52のうち、コルテックス細胞内の複数のマクロフィブリル55が融合し、比較的大きなミクロンオーダーのドメインを形成している細胞を、パラ細胞52bと呼ぶ。パラ細胞52bを形成するマクロフィブリル55の内部では、多数の中間径フィラメント(IF)が毛髪軸方向にほぼ平行に配向している。
 一方、コルテックス細胞52のうち、サブミクロンオーダーのサイズの複数のマクロフィブリル55が、個々の形態を維持したまま寄せ集まっている細胞をオルト細胞52aと呼ぶ。オルト細胞52aを形成するマクロフィブリル55の内部では、IFが螺旋状に傾斜して配向している。
 それゆえ、マクロフィブリル55の大きさやIFの配向性に基づいて、オルト細胞52aとパラ細胞52bとを互いに識別可能に可視化することができる。
 また、パラ細胞52bは毛髪軸に沿ってほぼ直線状に配向していることから、オルト細胞52aに比べて引張弾性率が高い。
 なお、ヒトの毛髪50のパラ細胞52bは、マクロフィブリル形態やIF配列構造の観点から、羊毛のパラコルテックス細胞またはメソコルテックス細胞に類似の構造であり、ヒトのオルト細胞52aは、羊毛のオルトコルテックス細胞に類似の構造である。しかしながら、ヒトの毛髪50のオルト細胞52aと羊毛のオルトコルテックス細胞、およびヒトの毛髪50のパラ細胞52bと羊毛のパラコルテックス細胞またはメソコルテックス細胞とでは、互いに含有成分や物性が相違している。また、ヒトの毛髪と羊毛とでは、上述のようにメデュラの占有率も大きく相違している。このため、羊毛におけるコルテックス細胞の組成と毛特性との関係から、ヒトの毛髪におけるコルテックス細胞の組成と毛特性との関係を推測することは困難である。
In the present invention, among the cortex cells 52 of the human hair 50, a cell in which a plurality of macrofibrils 55 in the cortex cells are fused to form a relatively large micron-order domain is referred to as a para cell 52b. . Inside the macrofibril 55 forming the para cell 52b, a large number of intermediate filaments (IF) are oriented substantially parallel to the hair axis direction.
On the other hand, among the cortex cells 52, a cell in which a plurality of macrofibrils 55 having a submicron order size are gathered together while maintaining their respective forms is referred to as an ortho cell 52a. In the macrofibril 55 forming the ortho cell 52a, the IF is inclined in a spiral shape.
Therefore, based on the size of the macrofibril 55 and the orientation of IF, the ortho cells 52a and the para cells 52b can be visualized in a distinguishable manner.
Further, since the para cells 52b are oriented substantially linearly along the hair axis, the tensile elastic modulus is higher than that of the ortho cells 52a.
In addition, the para cell 52b of the human hair 50 has a structure similar to the wool paracortex cell or the mesocortex cell from the viewpoint of the macrofibril form and the IF sequence structure, and the human ortho cell 52a The structure is similar to orthocortex cells. However, the components and physical properties of human hair 50 ortho cells 52a and wool orthocortex cells, and human hair 50 para cells 52b and wool paracortex cells or mesocortex cells are different from each other. ing. Further, as described above, the occupancy ratio of medulla is greatly different between human hair and wool. For this reason, it is difficult to estimate the relationship between the composition of cortex cells in human hair and the hair characteristics from the relationship between the composition of cortex cells in wool and the hair characteristics.

 以下、画像取得工程の複数の具体例を詳細に説明する。 Hereinafter, a plurality of specific examples of the image acquisition process will be described in detail.

(画像取得方法1.染色法)
 画像取得工程で行われる方法の第一の例は、毛髪50の断面を1種類または2種類以上の染料で染色して、複数種類の繊維状組織(オルト細胞52a、パラ細胞52b)を識別可能に可視化する方法である。
 ヒトの毛髪50内部に存在するキューティクル細胞51、および2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)、メデュラ細胞54は、それぞれを構成する蛋白組成や形態が異なるため、各種染料による染色性が異なる。その結果、適切な染料を用いることにより、各細胞の分布状態を反映した断面画像を取得することができる。
(Image acquisition method 1. Staining method)
In the first example of the method performed in the image acquisition process, the cross section of the hair 50 can be dyed with one type or two or more types of dyes to identify a plurality of types of fibrous tissues (ortho cells 52a, para cells 52b). It is a method to visualize.
The cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and the medulla cell 54 present in the human hair 50 are different from each other in their protein composition and form, and thus are stained with various dyes. Sex is different. As a result, a cross-sectional image reflecting the distribution state of each cell can be acquired by using an appropriate dye.

 本方法に用いられる染料は、オルト細胞52aとパラ細胞52bの一方のみを専ら着色するものであれば特に限定されない。そして、実質的にオルト細胞52aのみを着色する染料と、パラ細胞52bのみを着色する染料とを、すなわち2種類以上の染料を併せて使用することで、両者を互いに鮮明に識別することができる。但し、髪色の影響を考慮すると、毛髪構成成分に由来する蛍光とは異なる波長領域に蛍光を有する蛍光染料を用いることが好ましい。具体例としては、オルト細胞52aに関しては橙色の蛍光を有するスルフォローダミン、パラ細胞52bに関しては黄緑色の蛍光を有するフルオレセインまたはそのアルカリ金属塩によって、当該細胞のみを特定色に染色することができる。 The dye used in this method is not particularly limited as long as it dyes only one of the ortho cells 52a and the para cells 52b. Then, by using a dye that substantially colors only the ortho cells 52a and a dye that colors only the para cells 52b, that is, two or more kinds of dyes in combination, both can be clearly distinguished from each other. . However, in consideration of the effect of hair color, it is preferable to use a fluorescent dye having fluorescence in a wavelength region different from the fluorescence derived from the hair constituents. As a specific example, the orthocell 52a can be stained with a specific color by sulferodamine having orange fluorescence, and the paracell 52b can be stained with fluorescein having yellow-green fluorescence or an alkali metal salt thereof. .

(画像取得方法2.TEM観察法)
 画像取得工程で行われる方法の第二の例は、毛髪50を透過型電子顕微鏡(TEM:Transmission Electron Microscope)で観察することにより、複数種類の繊維状組織(オルト細胞52a、パラ細胞52b)を構成する細胞の分布状態を反映した断面画像を取得する方法である。
 キューティクル細胞51、および2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)、メデュラ細胞54は、それぞれを構成する蛋白組成や形態が異なるため、透過型電子顕微鏡で用いられる電子染色剤による染色性が異なる。その結果、透過型電子顕微鏡で観察される各細胞の形態の違いに基づいて、各細胞の分布状態を反映した断面画像を取得することができる。
(Image acquisition method 2. TEM observation method)
A second example of the method performed in the image acquisition process is to observe a plurality of types of fibrous tissues (ortho cells 52a and para cells 52b) by observing the hair 50 with a transmission electron microscope (TEM). This is a method for obtaining a cross-sectional image reflecting the distribution state of the cells constituting the cell.
Since the cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different protein compositions and forms, they are stained with an electron stain used in a transmission electron microscope. Sex is different. As a result, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the difference in the morphology of each cell observed with a transmission electron microscope.

(画像取得方法3.スペクトル測定法)
 画像取得工程で行われる方法の第三の例は、毛髪50の断面に関する赤外吸収スペクトルまたはラマンスペクトルを測定して、複数種類の繊維状組織(オルト細胞52a、パラ細胞52b)を断面画像にて互いに識別可能に可視化する方法である。
 キューティクル細胞51、および2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)、メデュラ細胞54は、それぞれを構成する蛋白組成や形態が異なるため、フーリエ変換赤外分光光度計(FT-IR)で測定される赤外吸光特性が異なる。それゆえ、適切な赤外信号を選択すれば、信号強度あるいは複数の信号強度の比に基づいて各細胞の分布状態を反映した断面画像を取得することができる。
 また、キューティクル細胞51、および2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)、メデュラ細胞54は、偏光励起レーザーを照射することにより得られるラマンスペクトルが異なる。それゆえ、適切なラマンスペクトルバンドを選択すれば、信号強度あるいは複数の信号強度の比に基づいて各細胞の分布状態を反映した断面画像を取得することができる。
(Image acquisition method 3. Spectrum measurement method)
A third example of the method performed in the image acquisition step is to measure an infrared absorption spectrum or a Raman spectrum related to a cross section of the hair 50, and use a plurality of types of fibrous tissues (ortho cells 52a and para cells 52b) as cross section images. This is a method of visualizing them so that they can be distinguished from each other.
Since the cuticle cell 51, two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different protein compositions and forms, they are Fourier transform infrared spectrophotometers (FT-IR). The infrared absorption characteristics measured with are different. Therefore, if an appropriate infrared signal is selected, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the signal intensity or the ratio of a plurality of signal intensities.
Further, the cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different Raman spectra obtained by irradiating with a polarized excitation laser. Therefore, if an appropriate Raman spectrum band is selected, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the signal intensity or the ratio of a plurality of signal intensity.

(画像取得方法4.マイクロプローブ観察法)
 画像取得工程で行われる方法の第四の例は、毛髪50の断面をマイクロプローブ顕微鏡で観察することにより、複数種類の繊維状組織(オルト細胞52a、パラ細胞52b)の分布状態を反映した断面画像を取得する方法である。ここで、マイクロプローブ顕微鏡とは、先端を尖らせた探針(プローブ)を、測定試料である毛髪の断面上で走査して、表面の微細な領域の情報を得る顕微鏡の総称である。本方法に用いられるマイクロプローブ顕微鏡としては、原子間力顕微鏡(AFM:Atomic Force Microscope)を例示することができる。
 キューティクル細胞51、および2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)、メデュラ細胞54は、それぞれを構成する蛋白組成や構造が異なる。それゆえ、マイクロプローブ顕微鏡で観測される物性や形態に基づいて各細胞の分布状態を反映した断面画像を取得することができる。
(Image acquisition method 4. Microprobe observation method)
A fourth example of the method performed in the image acquisition step is a cross-section reflecting the distribution state of a plurality of types of fibrous tissues (ortho cells 52a and para cells 52b) by observing the cross-section of the hair 50 with a microprobe microscope. This is a method for acquiring an image. Here, the microprobe microscope is a general term for microscopes that obtain information on a fine surface area by scanning a probe (probe) having a sharp tip on a cross section of hair as a measurement sample. As a microprobe microscope used in this method, an atomic force microscope (AFM) can be exemplified.
The cuticle cell 51, two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different protein compositions and structures. Therefore, a cross-sectional image reflecting the distribution state of each cell can be acquired based on physical properties and morphology observed with a microprobe microscope.

(画像取得方法5.X線散乱法)
 画像取得工程で行われる方法の第五の例は、毛髪50のX線散乱像をミクロビームX線で観測することにより、複数種類の繊維状組織(オルト細胞52a、パラ細胞52b)の分布状態を反映した断面画像を取得する方法である。
 キューティクル細胞51、および2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)、メデュラ細胞54は、ミクロな構造が異なるためX線散乱像が異なる。それゆえ、ミクロビームX線を用いることによりX線散乱像の違いに基づいて各細胞の分布状態を反映した断面画像を取得することができる。
(Image acquisition method 5. X-ray scattering method)
The fifth example of the method performed in the image acquisition step is to observe the X-ray scattering image of the hair 50 with microbeam X-rays, thereby distributing the plurality of types of fibrous tissues (ortho cells 52a, para cells 52b). This is a method for acquiring a cross-sectional image reflecting the above.
The cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and the medulla cell 54 have different X-ray scattering images because of different microscopic structures. Therefore, by using microbeam X-rays, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the difference in X-ray scattering images.

(画像取得方法6.遺伝子観察法)
 画像取得工程で行われる方法の第六の例は、ヒトの毛包における遺伝子発現挙動を観察することにより、複数種類の繊維状組織(オルト細胞52a、パラ細胞52b)の分布状態を反映した断面画像を取得する方法である。
 キューティクル細胞51、および2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)、メデュラ細胞54は、構成する蛋白組成が異なるため毛包において発現する遺伝子(mRNA)が異なる。それゆえ、毛包における遺伝子発現挙動を観察することにより、遺伝子発現の違いに基づいて各細胞の分布状態を反映した断面画像を取得することができる。
(Image acquisition method 6. Gene observation method)
A sixth example of the method performed in the image acquisition step is a cross section reflecting the distribution state of a plurality of types of fibrous tissues (ortho cells 52a, para cells 52b) by observing gene expression behavior in human hair follicles. This is a method for acquiring an image.
The cuticle cell 51, the two types of cortex cells (ortho cell 52a, para cell 52b), and medulla cell 54 have different protein compositions, and therefore have different genes (mRNA) expressed in the hair follicle. Therefore, by observing the gene expression behavior in the hair follicle, a cross-sectional image reflecting the distribution state of each cell can be acquired based on the difference in gene expression.

 具体的な画像取得工程は、上記のいずれか一以上を選択して行うことができる。
 このうち、髪色による影響の受け難さの観点からは、上記のうち、蛍光染料を用いた染色法、TEM観察法、スペクトル測定法(赤外吸収スペクトル法)、マイクロプローブ観察法、X線散乱法、遺伝子観察法が好ましい。また、空間分解能の観点からは、染色法、TEM観察法、マイクロプローブ観察法、X線散乱法、遺伝子観察法が好ましい。また、簡便性の観点からは染色法、スペクトル測定法(赤外吸収スペクトル法、ラマンスペクトル法)、マイクロプローブ観察法が好ましい。
 以上により、キューティクル細胞51および2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)、場合によっては、さらにメデュラ細胞54を含む合計4種類の細胞の分布状態を反映した画像情報を得ることができる。以下、断りなき場合、4種類の細胞とは、キューティクル細胞51、オルト細胞52a、パラ細胞52bおよびメデュラ細胞54をいう
The specific image acquisition process can be performed by selecting one or more of the above.
Among these, from the viewpoint of being hardly affected by hair color, among the above, dyeing method using a fluorescent dye, TEM observation method, spectrum measurement method (infrared absorption spectrum method), microprobe observation method, X-ray Scattering methods and gene observation methods are preferred. From the viewpoint of spatial resolution, a staining method, a TEM observation method, a microprobe observation method, an X-ray scattering method, and a gene observation method are preferable. From the viewpoint of simplicity, a staining method, a spectrum measurement method (infrared absorption spectrum method, Raman spectrum method), and a microprobe observation method are preferable.
As described above, it is possible to obtain image information reflecting the distribution state of a total of four types of cells including the cuticle cell 51 and the two types of cortex cells (ortho cell 52a, para cell 52b) and, in some cases, the medulla cell 54. it can. Hereinafter, unless otherwise noted, the four types of cells refer to cuticle cells 51, ortho cells 52a, para cells 52b, and medulla cells 54.

<データ取得工程>
 この工程では、撮影された断面画像の画像解析によって、複数種類の繊維状組織(オルト細胞52a、パラ細胞52b)の分布状態を示す数値情報を取得する。
 より具体的には、データ取得工程は、撮影された断面画像を画像解析する工程(解析工程)と、画像解析された結果に基づいて数値情報を取得する工程(数値化工程)とを含む。
<Data acquisition process>
In this step, numerical information indicating the distribution state of a plurality of types of fibrous tissues (ortho cells 52a and para cells 52b) is acquired by image analysis of the photographed cross-sectional images.
More specifically, the data acquisition step includes a step of analyzing the photographed cross-sectional image (analysis step) and a step of acquiring numerical information based on the result of the image analysis (numericalization step).

(解析工程)
 解析工程では、断面画像のデジタル処理等により、ヒトの毛髪内部に存在する例えば4種類の細胞分布を画像化する。
 ここで、キューティクル細胞51、コルテックス細胞52およびメデュラ細胞54に関しては、細胞形状等の差異に基づいて、毛髪50の断面画像上で互いに容易に識別することができる。たとえば、キューティクル細胞51は毛髪50の表面に層状に存在するため、その形態に基づいてキューティクル細胞51とコルテックス細胞52とを機械的に判別することができる。また、毛髪50の中心部に存在するメデュラ細胞54は、特に日本人の場合は多孔質であるため、その形態に基づいてコルテックス細胞52と機械的に判別することができる。
(Analysis process)
In the analysis step, for example, four types of cell distribution existing in human hair are imaged by digital processing of the cross-sectional image or the like.
Here, the cuticle cell 51, the cortex cell 52, and the medulla cell 54 can be easily distinguished from each other on the cross-sectional image of the hair 50 based on the difference in cell shape and the like. For example, since the cuticle cell 51 exists in a layered manner on the surface of the hair 50, the cuticle cell 51 and the cortex cell 52 can be mechanically distinguished based on the form. Moreover, since the medulla cell 54 existing in the center of the hair 50 is porous particularly in the case of Japanese, it can be mechanically distinguished from the cortex cell 52 based on its form.

 一方、オルト細胞52aとパラ細胞52bの2種類のコルテックス細胞52に関しては、その形態の差異はサブミクロンオーダーで異なる。したがって、断面画像の空間分解能がサブミクロン以下の場合には、オルト細胞52aとパラ細胞52bとの形態の差異に基づいて両者を互いに識別することができる。 On the other hand, regarding the two types of cortex cells 52 of the ortho cells 52a and the para cells 52b, the difference in the morphology is different on the submicron order. Therefore, when the spatial resolution of the cross-sectional image is submicron or less, the two can be distinguished from each other based on the difference in form between the ortho cell 52a and the para cell 52b.

 断面画像の空間分解能がサブミクロンよりも粗い場合でも、取得した画像情報が細胞の構造や蛋白組成を反映している場合、それらを反映した情報に基づいて、オルト細胞52aとパラ細胞52bとを互いに判別することができる。たとえば、染色法やスペクトル測定法、X線散乱法などにより、オルト細胞52aとパラ細胞52bをそれぞれ全体に着色または輪郭化することで、色情報の違いやパターン形状によって両者を互いに識別することができる。
 判別した4種類の細胞の分布状態をデジタル処理等で明確に画像化するため、データ取得部20(図1を参照)では、画像処理によりそれぞれの細胞を複数の色で塗り分けてもよい。
Even when the spatial resolution of the cross-sectional image is coarser than submicron, when the acquired image information reflects the cell structure and protein composition, the ortho cell 52a and the para cell 52b are determined based on the information reflecting them. They can be distinguished from each other. For example, the ortho cells 52a and the para cells 52b are colored or contoured as a whole by a staining method, a spectrum measurement method, an X-ray scattering method, or the like, so that they can be distinguished from each other by the difference in color information or the pattern shape. it can.
In order to clearly image the determined distribution state of the four types of cells by digital processing or the like, the data acquisition unit 20 (see FIG. 1) may paint each cell with a plurality of colors by image processing.

(数値化工程)
 本方法の数値化工程で取得される数値情報は特に限定されるものではなく、毛髪特性を定量的に記述するためのパラメータを種々に選択することができる。
(Numericalization process)
The numerical information acquired in the numerical process of the present method is not particularly limited, and various parameters for quantitatively describing the hair characteristics can be selected.

 具体的には、本実施形態では、(i)繊維状組織の重心間距離、(ii)繊維状組織の存在比率、(iii)パラ細胞の断面二次モーメント、(iv)繊維状組織の分散度、を数値情報として例示する。以下、(i)から(iv)について具体的に説明する。 Specifically, in this embodiment, (i) the distance between the centers of gravity of the fibrous tissue, (ii) the abundance ratio of the fibrous tissue, (iii) the cross-sectional second moment of the para cells, (iv) the dispersion of the fibrous tissue Degree is exemplified as numerical information. Hereinafter, (i) to (iv) will be specifically described.

 本実施形態において繊維状組織の重心間距離とは、断面画像における一の繊維状組織(オルト細胞52a)の重心と、他の繊維状組織(パラ細胞52b)の重心との距離をいう。
 また、繊維状組織の存在比率とは、コルテックス細胞52に対する繊維状組織(オルト細胞52aまたはパラ細胞52bのいずれか)の存在比率をいう。
In the present embodiment, the distance between the center of gravity of the fibrous tissue refers to the distance between the center of gravity of one fibrous tissue (ortho cell 52a) and the center of gravity of another fibrous tissue (para cell 52b) in the cross-sectional image.
The abundance ratio of the fibrous tissue refers to the abundance ratio of the fibrous tissue (either the ortho cell 52a or the para cell 52b) to the cortex cell 52.

 また、本実施形態においてパラ細胞52bの断面二次モーメントとは、断面画像における弱軸方向の断面二次モーメントをいう。
 また、繊維状組織の分散度とは、一の繊維状組織(オルト細胞52a)が、他の繊維状組織(パラ細胞52b)に対して混じり合っている程度をいう。
In the present embodiment, the cross-sectional secondary moment of the para cell 52b refers to a cross-sectional secondary moment in the weak axis direction in the cross-sectional image.
In addition, the degree of dispersion of the fibrous tissue refers to the degree to which one fibrous tissue (ortho cell 52a) is mixed with another fibrous tissue (para cell 52b).

(i)繊維状組織の重心間距離
 ヒトの毛髪内部に存在する4種類の細胞の存在部位によって、毛髪50の形状や物性は異なる。ただし、4種類の細胞のうち、キューティクル細胞51は、どんな毛髪でも毛髪表面近傍に存在し、メデュラ細胞54は、存在する場合は毛髪中心近傍に存在する。それゆえ、キューティクル細胞51とメデュラ細胞54に関しては、毛髪50による存在部位の違いは小さい。その結果、キューティクル細胞51とメデュラ細胞54の存在部位の違いに起因する毛髪50の形状や物性に対する影響も小さい。
 これに対し、2種類のコルテックス細胞(オルト細胞52aとパラ細胞52b)の毛髪内部での分布は多様であり、これらの細胞の存在部位によって毛髪の形状や物性は大きく異なる。
 特に、オルト細胞52aとパラ細胞52bの重心間距離と、毛髪50のくせの程度を示す指標値であるカール曲率とが正の相関を有することが、発明者らの検討により明らかとなっている。
(I) Distance between center of gravity of fibrous tissue The shape and physical properties of hair 50 differ depending on the location of the four types of cells present in human hair. However, of the four types of cells, the cuticle cell 51 is present near the hair surface in any hair, and the medulla cell 54 is present near the hair center when present. Therefore, regarding the cuticle cell 51 and the medulla cell 54, the difference in the existence site by the hair 50 is small. As a result, the influence on the shape and physical properties of the hair 50 due to the difference in the existence site of the cuticle cell 51 and the medulla cell 54 is small.
On the other hand, the distribution of two types of cortex cells (ortho cells 52a and para cells 52b) within the hair is diverse, and the shape and physical properties of the hair vary greatly depending on the location of these cells.
In particular, the inventors have clarified that the distance between the centers of gravity of the ortho cells 52a and the para cells 52b has a positive correlation with the curl curvature, which is an index value indicating the degree of habit of the hair 50. .

 そこで、これら2種類のコルテックス細胞の存在部位の違い、特に細胞分布の偏りを示す数値として、断面上におけるオルト細胞52aとパラ細胞52bそれぞれの分布重心を求め、オルト細胞52aとパラ細胞52bの重心間距離を算出することが有効である。
 この重心間距離は、毛髪断面上でオルト細胞52aとパラ細胞52bが均一にまたは等方的に分布していれば0に近く、これらの細胞が偏って不均一に分布していれば数値が大きくなる。したがって、オルト細胞52aとパラ細胞52bの分布の偏りを示す数値として、オルト細胞52aとパラ細胞52bの重心間距離を用いることができる。
Therefore, the distribution centroid of each of the ortho cells 52a and para cells 52b on the cross section is obtained as a numerical value indicating the difference between the existence sites of these two types of cortex cells, in particular, the bias of the cell distribution, and the ortho cells 52a and 52b. It is effective to calculate the distance between the centers of gravity.
The distance between the centers of gravity is close to 0 when the ortho cells 52a and the para cells 52b are uniformly or isotropically distributed on the hair cross section, and is a numerical value when these cells are unevenly distributed unevenly. growing. Therefore, the distance between the centers of gravity of the ortho cells 52a and the para cells 52b can be used as a numerical value indicating the distribution of the ortho cells 52a and the para cells 52b.

 具体的には、毛髪50の断面画像において、オルト細胞52aを構成する画素の座標平均を算出して、オルト細胞52aの重心(面心)位置を求めることができる。パラ細胞52bに関しても同様である。そして、オルト細胞52aの重心位置とパラ細胞52bの重心位置との距離を演算することで、オルト細胞52aとパラ細胞52bの重心間距離を求めることができる。 Specifically, in the cross-sectional image of the hair 50, the coordinate average of the pixels constituting the ortho cell 52a can be calculated to determine the center of gravity (face center) position of the ortho cell 52a. The same applies to the para cell 52b. Then, the distance between the centroids of the ortho cell 52a and the para cell 52b can be obtained by calculating the distance between the centroid position of the ortho cell 52a and the centroid position of the para cell 52b.

(ii)繊維状組織の存在比率
 4種類の細胞は、構成する蛋白組成や構造、形態が異なりミクロな物性も異なることから、これらの細胞の存在比率によって毛髪50の物性は異なる。
 特に、コルテックス細胞52に占めるパラ細胞52bの存在比率と、毛髪50の曲げ剛性を示す指標値である曲げ弾性率とが正の相関を有することが、発明者らの検討により明らかとなっている。
(Ii) Fibrous tissue abundance ratio Since the four types of cells have different protein compositions, structures, and forms, and have different microscopic physical properties, the physical properties of the hair 50 differ depending on the abundance ratio of these cells.
In particular, the inventors have clarified that the abundance ratio of the para cells 52b in the cortex cells 52 has a positive correlation with the bending elastic modulus, which is an index value indicating the bending rigidity of the hair 50. Yes.

 これらの細胞の存在比率は、例えば以下のような画像解析で求めることができる。すなわち、まず、毛髪50の断面画像において4種類の細胞が占める面積を、各細胞種に含まれる画素数の積算によってそれぞれ求める。そして、4種類の細胞の総面積(毛髪50の断面積)に対する各細胞の占める面積の比率を演算するとよい。
 また、オルト細胞52aおよびパラ細胞52bの2種類のコルテックス細胞52の占める総面積に対して、オルト細胞52aとパラ細胞52bがそれぞれ占める面積比率を求め、これらの細胞の存在比率を算出するとよい。
The abundance ratio of these cells can be determined by, for example, the following image analysis. That is, first, the area occupied by the four types of cells in the cross-sectional image of the hair 50 is obtained by integrating the number of pixels included in each cell type. And it is good to calculate the ratio of the area which each cell occupies with respect to the total area (cross-sectional area of the hair 50) of four types of cells.
In addition, the ratio of the area occupied by the ortho cells 52a and the para cells 52b to the total area occupied by the two types of cortex cells 52 of the ortho cells 52a and the para cells 52b is obtained, and the existence ratio of these cells may be calculated. .

(iii)繊維状組織の断面二次モーメント
 また、オルト細胞52aとパラ細胞52bの物性の相違により、断面画像におけるこれらの細胞の断面二次モーメントによって毛髪50の物性は異なる。ここで、オルト細胞52aに比べてパラ細胞52bは引張剛性が高いため、断面画像におけるパラ細胞52bの断面二次モーメントが大きいほど、一般に、当該毛髪50の曲げ剛性が高くなる。
 なお、毛髪50の屈曲は弱軸方向に生じることから、毛髪50の重心から放射状に複数本の軸を設定し、各軸方向についての断面二次モーメントを算出するとよい。そして、最小値を示す軸方向を弱軸方向とし、当該方向の断面二次モーメントを、パラ細胞52bの断面二次モーメントとして取得するとよい。
(Iii) Sectional secondary moment of fibrous tissue In addition, due to the difference in physical properties between the ortho cells 52a and the para cells 52b, the physical properties of the hair 50 differ depending on the sectional secondary moments of these cells in the sectional image. Here, since the para cell 52b has higher tensile rigidity than the ortho cell 52a, generally, the bending rigidity of the hair 50 becomes higher as the cross-sectional second moment of the para cell 52b in the cross-sectional image is larger.
Since bending of the hair 50 occurs in the direction of the weak axis, it is preferable to set a plurality of axes radially from the center of gravity of the hair 50 and calculate the cross-sectional secondary moment in each axial direction. And it is good to make the axial direction which shows the minimum value into a weak-axis direction, and to acquire the cross-sectional secondary moment of the said direction as a cross-sectional secondary moment of the para cell 52b.

 具体的には、毛髪50の断面画像においてパラ細胞52bに含まれる画素の位置と面積とから、任意の軸方向に関する断面二次モーメントを積算するとよい。 Specifically, in the cross-sectional image of the hair 50, the cross-sectional second moment in the arbitrary axial direction may be integrated from the position and area of the pixel included in the para cell 52b.

(iv)繊維状組織の分散度
 オルト細胞52aとパラ細胞52bに対するヘアケア剤の浸透性は、オルト細胞52aで速く、パラ細胞52bで遅いことが発明者らの検討により明らかとなっている。それゆえ、一般に、パラ細胞52bの分散性が低くパラ細胞52bの大きなドメインが存在する毛髪50では、パラ細胞52bのドメイン内部へのヘアケア剤の浸透が抑制される。これに対し、パラ細胞52bの分散性が高い毛髪50では、ヘアケア剤の浸透性が良好となる。
 したがって、数値化工程においては、毛髪50におけるパラ細胞52bの分散度を定量化して取得するとよい。
(Iv) Dispersion degree of fibrous tissue It has been revealed by the inventors that the permeability of the hair care agent to the ortho cells 52a and the para cells 52b is fast in the ortho cells 52a and slow in the para cells 52b. Therefore, in general, in the hair 50 in which the dispersibility of the para cells 52b is low and a large domain of the para cells 52b exists, the penetration of the hair care agent into the domain of the para cells 52b is suppressed. On the other hand, in the hair 50 with high dispersibility of the para cells 52b, the permeability of the hair care agent is good.
Therefore, in the quantification step, the degree of dispersion of the para cells 52b in the hair 50 may be quantified and acquired.

 パラ細胞52bの分散度は、種々の方法によって算出することができる。
 第一の方法としては、パラ細胞52bの小クラスターの面積率に着目する方法が挙げられる。具体的には、パラ細胞52bのクラスター(凝集塊)のうち所定の閾値面積を超えるものの総面積を計算し、パラ細胞52bの総面積における、上記の閾値面積以下の小クラスターの占有面積をもって分散度とする。
 第二の方法としては、毛髪50の断面画像をセグメントに分割し、各セグメントにおけるパラ細胞52bの含有率に着目する方法が挙げられる。具体的には、毛髪50の断面画像を、その重心を通る放射状かつ等面積のセグメントに分割し、各セグメントに含まれるパラ細胞52bの画素をカウントする。そして、各セグメントにおける、パラ細胞52bの面積率を二乗平均することで、毛髪50におけるパラ細胞52bの分散性を定量化することができる。
The degree of dispersion of the para cells 52b can be calculated by various methods.
As the first method, a method that pays attention to the area ratio of the small clusters of the para cells 52b can be mentioned. Specifically, the total area of the para-cell 52b clusters (aggregates) exceeding the predetermined threshold area is calculated, and the total area of the para-cells 52b is distributed with the area occupied by the small clusters equal to or smaller than the above-described threshold area. Degree.
As a second method, there is a method in which a cross-sectional image of the hair 50 is divided into segments, and the content of the para cells 52b in each segment is noted. Specifically, the cross-sectional image of the hair 50 is divided into radial and equal-area segments passing through the center of gravity, and the pixels of the para cells 52b included in each segment are counted. The dispersibility of the para cells 52b in the hair 50 can be quantified by averaging the area ratio of the para cells 52b in each segment.

 数値化工程では、このほか、毛髪50の断面積や偏平率(長径または短径長さ)などの物理形状に関する数値を取得してもよい。 In the numerical process, in addition to this, a numerical value related to the physical shape such as the cross-sectional area and flatness (long diameter or short diameter length) of the hair 50 may be acquired.

 本方法においては、コルテックス細胞52に加えて、毛髪に含まれるキューティクル細胞51またはメデュラ細胞54の少なくとも一方の分布状態を示す数値情報をさらに取得することができる。
 特に、コルテックス細胞52に加えて、キューティクル細胞51の分布状態を示す数値情報を併せて取得するとよい。
In this method, in addition to the cortex cell 52, numerical information indicating the distribution state of at least one of the cuticle cell 51 or the medulla cell 54 contained in the hair can be further acquired.
In particular, in addition to the cortex cell 52, numerical information indicating the distribution state of the cuticle cell 51 may be acquired together.

 ここで、ヒトの毛髪50を構成するキューティクル細胞51、コルテックス細胞52およびメデュラ細胞54は、互いにその性質が大きく異なるため、これらの細胞の存在比率によって毛髪50の性質は異なる。
 そして、キューティクル細胞51は他の細胞に比べてシスチン含有量が高く細胞内部のジスルフィド結合密度が高いため、一般に、上記3種類の細胞の中では最も硬い細胞である。このキューティクル細胞51は毛髪の表面を覆う形で中心から遠い位置に存在するため、特に毛髪繊維の曲げ応力やねじり剛性に大きく寄与する。
 したがって、キューティクル細胞51が多く存在する毛髪ほど、大きな曲げ応力やねじり剛性を示す。したがって、コルテックス細胞52と併せてキューティクル細胞51の分布状態を数値情報として取得することで、より正確な毛髪特性の評価が可能になる。
Here, since the cuticle cell 51, cortex cell 52, and medulla cell 54 constituting the human hair 50 are greatly different from each other, the properties of the hair 50 are different depending on the abundance ratio of these cells.
Since the cuticle cell 51 has a higher cystine content and a higher density of disulfide bonds inside the cells than other cells, it is generally the hardest cell among the above three types of cells. Since the cuticle cell 51 exists at a position far from the center so as to cover the surface of the hair, it particularly contributes greatly to the bending stress and torsional rigidity of the hair fiber.
Therefore, the hair with more cuticle cells 51 exhibits greater bending stress and torsional rigidity. Therefore, by acquiring the distribution state of the cuticle cell 51 as numerical information together with the cortex cell 52, it is possible to evaluate the hair characteristics more accurately.

 本方法では、取得した数値情報を用いて、当該毛髪50の特性として、毛髪50の形状(曲率)や毛髪繊維の力学物性を評価してもよい。 In this method, using the acquired numerical information, the shape (curvature) of the hair 50 and the mechanical properties of the hair fiber may be evaluated as the characteristics of the hair 50.

 具体的には、上記の画像取得工程およびデータ取得工程に加えて、基準取得工程と評価工程をさらに行ってもよい。
 基準取得工程では、ヒトの毛髪試料を基準毛として、数値情報と毛髪特性との関係を示す検量データを取得する。
 評価工程では、データ取得工程で取得した毛髪の数値情報と、検量データとから、毛髪に関する毛髪特性を評価する。
Specifically, in addition to the image acquisition process and the data acquisition process, a reference acquisition process and an evaluation process may be further performed.
In the reference acquisition step, calibration data indicating the relationship between numerical information and hair characteristics is acquired using a human hair sample as a reference hair.
In the evaluation step, the hair characteristics relating to the hair are evaluated from the numerical information of the hair acquired in the data acquisition step and the calibration data.

 基準取得工程は、画像取得工程またはデータ取得工程の後に行ってもよく、またはこれらの工程よりも先に行ってもよい。 The reference acquisition process may be performed after the image acquisition process or the data acquisition process, or may be performed before these processes.

<基準取得工程>
 この工程では、予め弾性率等の毛髪特性のわかっている毛髪試料を基準毛として、上記の数値情報を取得しておく。基準毛は一本でもよく、複数本(多数本)でもよい。
 そして、基準毛に関する数値情報と毛髪特性を、基準点データまたは検量データとして取得しておくことで、新たに取得した対象毛髪の数値情報を用いて、その毛髪特性を推定することができる。
 具体的には、一本の基準毛を比較基準として、対象毛髪の毛髪特性を単純比較してもよい。または、多数の基準毛に基づいて、特定の数値情報と毛髪特性との関係を検量線としてテーブルまたは関数としてデータ取得しておく。そして、対象毛髪の数値情報と検量線とから、当該毛髪の特性を推定してもよい。
<Standard acquisition process>
In this step, the above numerical information is acquired using a hair sample whose hair properties such as elastic modulus are known in advance as a reference hair. The reference hair may be one or plural (many).
Then, by acquiring numerical information and hair characteristics related to the reference hair as reference point data or calibration data, the hair characteristics can be estimated using the newly acquired numerical information of the target hair.
Specifically, the hair characteristics of the target hair may be simply compared using one reference hair as a comparison reference. Alternatively, based on a large number of reference hairs, the relationship between specific numerical information and hair characteristics is acquired as a table or function as a calibration curve. And you may estimate the characteristic of the said hair from the numerical information and calibration curve of object hair.

 より具体的には、たとえばカール半径やカール曲率が既知の多数の基準毛に関して、断面画像を画像解析してオルト細胞52aとパラ細胞52bとの重心間距離を算出する。そして、カール半径またはカール曲率と、オルト細胞52aとパラ細胞52bとの重心間距離と、の関係を統計処理して相関関数を求めるとよい。 More specifically, for example, for a large number of reference hairs with known curl radii and curl curvature, the cross-sectional image is image-analyzed to calculate the distance between the center of gravity of the ortho cell 52a and the para cell 52b. Then, the correlation function may be obtained by statistically processing the relationship between the curl radius or the curl curvature and the distance between the centers of gravity of the ortho cells 52a and the para cells 52b.

<評価工程>
 この工程では、対象となる毛髪50の断面画像から取得した数値情報(オルト細胞52aとパラ細胞52bとの重心間距離)を、例えば上記の相関関数に適用して、対象の毛髪50のくせの程度を示す指標値であるカール半径またはカール曲率を算出する。
<Evaluation process>
In this step, the numerical information (distance between the centers of gravity of the ortho cells 52a and the para cells 52b) acquired from the cross-sectional image of the target hair 50 is applied to, for example, the correlation function described above, so The curl radius or curl curvature, which is an index value indicating the degree, is calculated.

 なお、カール半径やカール曲率に代えて、本方法では、多数の基準毛に関して、曲げ弾性率とパラ細胞52bの存在比率とを求め、その相関関係を統計的に算出してもよい。
 そして、評価対象の毛髪50におけるパラ細胞52bの存在比率から、当該毛髪の曲げ剛性を示す指標値である曲げ弾性率を算出してもよい。
In this method, instead of the curl radius and the curl curvature, the bending elastic modulus and the existence ratio of the para cells 52b may be obtained for a large number of reference hairs, and the correlation thereof may be calculated statistically.
Then, a bending elastic modulus that is an index value indicating the bending rigidity of the hair may be calculated from the existence ratio of the para cells 52b in the hair 50 to be evaluated.

 なお、図1に示す本実施形態のデータ取得装置100では、基準取得工程および評価工程はデータ取得部20(パソコン本体21)によって行うことができる。この場合、パソコン本体21の記憶部には、検量データを予め格納しておくとよい。 In the data acquisition apparatus 100 of the present embodiment shown in FIG. 1, the reference acquisition process and the evaluation process can be performed by the data acquisition unit 20 (PC main body 21). In this case, calibration data may be stored in the storage unit of the personal computer main body 21 in advance.

<出力工程>
 毛髪50の撮影画像、各細胞を可視化した断面画像、取得した数値情報、および評価結果を示す情報の一部または全部は、データ取得装置100から任意の手段によって出力するとよい。評価対象の毛髪50を可視化した断面画像と、基準毛を可視化した断面画像とを並べて表示してもよい。
<Output process>
A captured image of the hair 50, a cross-sectional image in which each cell is visualized, acquired numerical information, and part or all of the information indicating the evaluation result may be output from the data acquisition device 100 by any means. A cross-sectional image in which the hair 50 to be evaluated is visualized and a cross-sectional image in which the reference hair is visualized may be displayed side by side.

 出力手段としては、パソコン本体21が備えるディスプレイ40、または通信回線30もしくは無線を通じてパソコン本体21と接続されたディスプレイ、プリンタ41からの印刷出力などを任意で用いることができる。 As the output means, a display 40 provided in the personal computer main body 21, a display connected to the personal computer main body 21 through the communication line 30 or wirelessly, a print output from the printer 41, and the like can be arbitrarily used.

 なお、本実施形態のデータ取得装置100の各種の構成要素は、その機能を実現するように形成されていればよい。たとえば、データ取得部20は、所定の機能を発揮する専用のハードウェア、所定の機能がコンピュータプログラムにより付与されたデータ処理装置、コンピュータプログラムによりデータ処理装置に実現された所定の機能、これらの任意の組み合わせ、等として実現することができる。
 また、本実施形態のデータ取得装置100は、コンピュータプログラムを読み取って対応する処理動作を実行できるように、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、I/F(Interface)ユニット等の汎用デバイスで構築されたハードウェア、または所定の処理動作を実行するように構築された専用の論理回路、これらの組み合わせ、等として実施することができる。
Note that the various components of the data acquisition device 100 of the present embodiment need only be formed so as to realize their functions. For example, the data acquisition unit 20 includes dedicated hardware that exhibits a predetermined function, a data processing device to which the predetermined function is given by a computer program, a predetermined function that is realized in the data processing device by a computer program, and any of these It can be realized as a combination.
In addition, the data acquisition device 100 of the present embodiment can read a computer program and execute a corresponding processing operation, so that a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O It can be implemented as hardware constructed by a general-purpose device such as an F (Interface) unit, a dedicated logic circuit constructed so as to execute a predetermined processing operation, a combination thereof, or the like.

 上記本実施形態の毛髪特性データの取得技術によれば、毛髪のツヤに大きな影響を与えるくせ毛の程度や、毛髪のボリュームや柔らかさに大きな影響を与える曲げ弾性率などのパラメータを定量的な数値情報として取得することができる。このため、対象の毛髪から取得した数値情報に基づいて、これらの毛髪特性を評価したり、適切な毛髪処理方法やヘアケア剤の選択を補助するための客観的な情報を提供したりすることができる。 According to the hair characteristic data acquisition technology of the above embodiment, parameters such as the degree of comb hair that greatly affects the gloss of the hair and the flexural modulus that greatly affects the volume and softness of the hair are quantitatively expressed. It can be acquired as information. For this reason, based on numerical information acquired from the target hair, it is possible to evaluate these hair characteristics, or to provide objective information for assisting selection of an appropriate hair treatment method and hair care agent. it can.

 毛髪の全体的な湾曲形状を実測してカール半径やカール曲率を算出する従来の場合、一本の毛髪から求まるカール半径やカール曲率、曲げ弾性率などの毛髪特性は各一つの値のみであった。これに対し、本実施形態の毛髪特性データの取得技術では、一本の毛髪において異なる長さ位置から複数の断面画像および数値情報を取得することにより、一本の毛髪における長さ位置ごとに毛髪特性を算出することができる。これにより、本実施形態によれば、一本の毛髪の特性をより多面的に評価することができる。 In the conventional case of calculating the curl radius and curl curvature by actually measuring the overall curved shape of the hair, the hair properties such as curl radius, curl curvature, and bending elastic modulus obtained from a single hair are only one value each. It was. On the other hand, in the hair characteristic data acquisition technique of the present embodiment, by acquiring a plurality of cross-sectional images and numerical information from different length positions in one hair, the hair for each length position in one hair. Characteristics can be calculated. Thereby, according to this embodiment, the characteristic of one hair can be evaluated from many aspects.

 さらに、従来の算出方法の場合、毛髪特性の測定には所定の毛髪長さが必要であった。また、一本の毛髪は、毛先部は古い細胞によって構成されていることから、毛髪特性の測定に際して毛先部の影響を強く受けるほど、評価された毛髪特性は、現在の毛髪の状態ではなく、過去の毛髪の特性を示すものとなる。これに対し、本実施形態の場合、毛髪の根元部の断面画像から数値情報を取得することができるため、現在の髪質に関する毛髪特性を評価することができる。そして、現在の毛髪が成長した場合の、将来的なくせ毛の程度や曲げ弾性率などの毛髪特性を予測することができる。 Furthermore, in the case of the conventional calculation method, a predetermined hair length is required for measurement of hair characteristics. In addition, since the tip of a piece of hair is composed of old cells, the evaluated hair characteristics are such that, in the current state of hair, the influence of the tip of the hair is strongly influenced when measuring the hair characteristics. No, it shows the characteristics of past hair. On the other hand, in the case of this embodiment, since numerical information can be acquired from the cross-sectional image of the root part of hair, the hair characteristic regarding the present hair quality can be evaluated. Then, it is possible to predict future hair characteristics such as the degree of shampoo and bending elastic modulus when the current hair grows.

 以下、実施例を用いて本発明をより詳細に説明する。以下、断りなき場合、要素名の符号は図2に対応している。 Hereinafter, the present invention will be described in more detail using examples. Hereinafter, unless otherwise noted, reference numerals of element names correspond to those in FIG.

(実施例1:くせ毛)
 本実施例は、透過型電子顕微鏡(TEM)を用いて毛髪の断面画像を取得し、画像解析を行うことにより毛髪の形状および物性を記述する数値情報を取得する方法に関する。
(Example 1: Comb hair)
This example relates to a method of acquiring numerical information describing the shape and physical properties of hair by acquiring a cross-sectional image of hair using a transmission electron microscope (TEM) and performing image analysis.

[画像情報の取得]
 透過型電子顕微鏡(TEM)を用いて、オスミウム酸および酢酸ウラニルを用いて電子染色した毛髪断面の画像を取得し、細胞の形態の違いに基づいて毛髪内部における細胞の分布状態を反映した画像情報を取得した。
[Get image information]
Using a transmission electron microscope (TEM), an image of hair cross-section that has been electronically stained with osmic acid and uranyl acetate was obtained, and image information reflecting the distribution of cells in the hair based on the difference in cell morphology Acquired.

 対象となる毛髪は、パーマやブリーチ、ヘアカラーなどの化学的な毛髪処理を行っていない30代の白人女性Aの頭髪を、頭皮近くの根元から採取した。対象の毛髪は、根元から約12mmの長さに切断して毛髪サンプルとした。
 用意した毛髪サンプルをシャンプーで洗浄し、イオン交換水で充分に濯いだ後、乾燥した。乾燥した毛髪サンプルのカール半径を測定したところ、カール半径は0.9cmであった。かかるカール半径は、クセ毛に分類される値である。
The hair of interest was obtained from the root near the scalp of white woman A in her 30s who did not perform chemical hair treatment such as perm, bleach, or hair color. The target hair was cut into a length of about 12 mm from the root to obtain a hair sample.
The prepared hair sample was washed with shampoo, thoroughly rinsed with ion exchange water, and then dried. When the curl radius of the dried hair sample was measured, the curl radius was 0.9 cm. Such a curl radius is a value classified as a peculiar hair.

 この毛髪サンプルを、1.0質量%のオスミウム酸を含む0.05Mリン酸緩衝溶液(pH6.7)中に1時間浸漬して染色した後、イオン交換水で過剰なオスミウム酸を濯ぎ、乾燥させた。
 つぎに、オスミウム酸で染色した毛髪サンプルをエポキシ樹脂中に包埋した後、ミクロトームを用いて厚さ100nmの毛髪横断面を切り出し、透過型電子顕微鏡(TEM)用の銅メッシュ上に固定した。
 銅メッシュ上に固定した毛髪断面を、2.0質量%の酢酸ウラニル水溶液中に4時間浸漬して染色を行った後、過剰な酢酸ウラニルをイオン交換水で濯ぎ、さらにこれを乾燥させた。このオスミウム酸と酢酸ウラニルによって二重染色された毛髪断面を透過型電子顕微鏡(TEM)で観察することにより、毛髪断面画像が得られた。
The hair sample was dyed by immersing it in a 0.05M phosphate buffer solution (pH 6.7) containing 1.0% by mass of osmic acid for 1 hour, and then rinsed with excess ionized water with ion-exchanged water and dried. I let you.
Next, after embedding a hair sample dyed with osmic acid in an epoxy resin, a hair cross section having a thickness of 100 nm was cut out using a microtome and fixed on a copper mesh for a transmission electron microscope (TEM).
The hair cross section fixed on the copper mesh was dipped in a 2.0% by mass uranyl acetate aqueous solution for 4 hours, followed by rinsing excess uranyl acetate with ion-exchanged water and drying it. The hair cross-section image was obtained by observing the hair cross-section double-stained with osmic acid and uranyl acetate with a transmission electron microscope (TEM).

[細胞分布の可視化]
 二重染色された毛髪断面を透過型電子顕微鏡(TEM)で観察した場合に得られた毛髪断面の全体画像を図3に示す。
 図4~7は、高倍率で撮影したキューティクル細胞51、パラ細胞52b、オルト細胞52a、メデュラ細胞54の典型的な画像をそれぞれ示している。図3~7には、図中に縮尺を表記している。図3は、図4~7に示したような高倍率の画像を集めて再構成した画像である。
[Visualization of cell distribution]
The whole image of the hair cross section obtained when the double dyed hair cross section is observed with a transmission electron microscope (TEM) is shown in FIG.
4 to 7 show typical images of the cuticle cell 51, para cell 52b, ortho cell 52a, and medulla cell 54, respectively, taken at high magnification. 3 to 7, scales are shown in the drawings. FIG. 3 is an image obtained by collecting and reconstructing high-magnification images as shown in FIGS.

 なお、図3~7において、直径0.2μm前後のサイズの黒い顆粒状の部分はメラニン顆粒である。また、不定形の黒い部分は、コルテックス細胞52の細胞核残渣である。そして、白く抜けている部分は、毛髪内部の空洞、または毛髪外の包埋樹脂である。 In FIGS. 3 to 7, the black granular portion having a diameter of about 0.2 μm is a melanin granule. In addition, the amorphous black portion is a nucleus residue of the cortex cell 52. And the part which has fallen white is the cavity inside hair, or the embedding resin outside hair.

 高倍率画像である図4~7を用いてキューティクル細胞51、パラ細胞52b、オルト細胞52aおよびメデュラ細胞54を判別し、その結果を図3に適用した。 Cuticle cells 51, para cells 52b, ortho cells 52a and medulla cells 54 were identified using FIGS. 4 to 7 which are high-magnification images, and the results were applied to FIG.

 図4に示すように、キューティクル細胞51は毛髪の表面近傍に層状に存在するため、その形態の違いに基づいて、隣接する2種類のコルテックス細胞52(パラ細胞52bとオルト細胞52a)と互いに判別することができる。
 また、図7に示すように、メデュラ細胞54は、毛髪の中心部に存在し、かつ多孔質構造を有するため、同様に形態の違いに基づいて、2種類のコルテックス細胞52と互いに判別できる。
As shown in FIG. 4, since the cuticle cell 51 exists in a layered manner near the surface of the hair, two adjacent cortex cells 52 (para cell 52b and ortho cell 52a) are mutually connected based on the difference in form. Can be determined.
Further, as shown in FIG. 7, the medulla cell 54 exists in the center of the hair and has a porous structure, and therefore can be distinguished from the two types of cortex cells 52 based on the difference in form. .

 そして、パラ細胞52bとオルト細胞52aの2種類のコルテックス細胞52は、その形態がサブミクロンオーダーで異なるため、形態に基づいて互いに機械的に判別することができる。
 図5に示すように、パラ細胞52bではマクロフィブリルが融合して比較的大きなミクロンオーダーのドメインを形成している。
 これに対し、オルト細胞52aでは、図6に示すように、サブミクロンオーダーのサイズのマクロフィブリルが集合した形態を示している。
 このようなマクロフィブリルの形態の違いに基づいて、パラ細胞52bとオルト細胞52aとを判別することができる。
The two types of cortex cells 52, the para cell 52b and the ortho cell 52a, are different in submicron order, and therefore can be mechanically distinguished from each other based on the form.
As shown in FIG. 5, in the para cell 52b, macrofibrils are fused to form a relatively large micron-order domain.
On the other hand, as shown in FIG. 6, the ortho cell 52 a shows a form in which macrofibrils having a size of submicron order are gathered.
The para cell 52b and the ortho cell 52a can be discriminated based on the difference in the form of the macrofibril.

 以上の形態の違いに基づく判別基準に従って、図3の断面画像を画像解析し、毛髪内部の4種類の細胞(キューティクル細胞51、オルト細胞52a、パラ細胞52b、メデュラ細胞54)を、それぞれ順に黒色、濃い灰色、薄い灰色、白色で塗り分けて得た可視化画像を図8に示す。なお、図8中、毛髪以外の領域は格子パターンで示した。また、図8の縮尺は図3と同じスケールである。 The cross-sectional image of FIG. 3 is image-analyzed according to the discriminant criteria based on the above differences, and the four types of cells inside the hair (cuticle cell 51, ortho cell 52a, para cell 52b, medulla cell 54) are sequentially black. FIG. 8 shows a visualized image obtained by painting with dark gray, light gray, and white. In FIG. 8, regions other than hair are shown in a lattice pattern. Moreover, the scale of FIG. 8 is the same scale as FIG.

 図8から、黒色のキューティクル細胞51と白色のメデュラ細胞54に加えて、薄い灰色のパラ細胞52bと、濃い灰色のオルト細胞52aの毛髪断面上での分布状態が明確に可視化されていることがわかる。
 薄い灰色のパラ細胞52bは、図8の毛髪断面上の左上にやや偏って分布しているのに対し、濃い灰色のオルト細胞52aは、毛髪断面の右下に偏って分布している様子が可視化されている。
 すなわち、本実施例に用いた毛髪は、断面画像におけるパラ細胞52bとオルト細胞52aの分布が、図8に示すように偏っていたことが分かった。
From FIG. 8, in addition to the black cuticle cells 51 and the white medulla cells 54, the distribution state of the light gray para cells 52b and the dark gray ortho cells 52a on the hair cross section is clearly visualized. Recognize.
The light gray para cells 52b are slightly distributed in the upper left on the hair cross section in FIG. 8, whereas the dark gray ortho cells 52a are distributed in the lower right on the hair cross section. It is visualized.
That is, in the hair used in this example, it was found that the distribution of the para cells 52b and the ortho cells 52a in the cross-sectional image was biased as shown in FIG.

[細胞の存在比の数値化]
 図8の可視化画像に基づいて、毛髪断面上で4種類の細胞の占める面積および毛髪断面の面積(総断面積)を、画像解析により求めた。結果を下記に示す。
[Numericalization of cell abundance]
Based on the visualized image of FIG. 8, the area occupied by the four types of cells on the hair cross section and the area of the hair cross section (total cross sectional area) were determined by image analysis. The results are shown below.

  キューティクル細胞の占める面積: 491μm
      オルト細胞の占める面積: 984μm
       パラ細胞の占める面積:1681μm
     メデュラ細胞の占める面積:  47μm
          毛髪断面の面積:3202μm
Area occupied by the cuticle cell: 491 μm 2
Area occupied by ortho cells: 984 μm 2
Area occupied by para cells: 1681 μm 2
Area occupied by medulla cells: 47 μm 2
Area of hair cross section: 3202 μm 2

 さらに、それぞれの細胞の占める面積比率を求めた。結果を下記に示す。 Furthermore, the area ratio occupied by each cell was determined. The results are shown below.

  キューティクル細胞の占める面積比率:15.3%
      オルト細胞の占める面積比率:30.7%
       パラ細胞の占める面積比率:52.5%
     メデュラ細胞の占める面積比率: 1.5%
Cuticle cell area ratio: 15.3%
Area ratio of ortho cells: 30.7%
Area ratio of para cells: 52.5%
Medura cell area ratio: 1.5%

 つぎに、2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)の占める総面積に対するパラ細胞52bとオルト細胞52aの面積比率を求めた。結果を下記に示す。 Next, the area ratio of the para cells 52b and the ortho cells 52a to the total area occupied by the two types of cortex cells (ortho cells 52a and para cells 52b) was determined. The results are shown below.

  オルト細胞の面積比率:36.9%
   パラ細胞の面積比率:63.1%
Ortho cell area ratio: 36.9%
Para cell area ratio: 63.1%

[各細胞の存在部位の数値化]
 図8の可視化画像に基づいて、本実施例の毛髪断面上におけるパラ細胞52bとオルト細胞52aの重心位置を画像解析で求め、パラ細胞52bとオルト細胞52aの重心間距離を求めたところ、8.5μmであった。
[Numericalization of the location of each cell]
Based on the visualized image of FIG. 8, the gravity center positions of the para cells 52b and the ortho cells 52a on the hair cross section of the present embodiment are obtained by image analysis, and the distance between the gravity centers of the para cells 52b and the ortho cells 52a is obtained. It was 5 μm.

(実施例2:直毛)
 本実施例は、対象の毛髪を変更して、実施例1と同様の方法で画像解析を行い、パラ細胞52bとオルト細胞52aの重心間距離を求めたものである。
[画像情報の取得]
 本実施例の対象となる毛髪は、パーマやブリーチ、ヘアカラーなどの化学的な毛髪処理を行っていない30代の白人女性Bの頭髪を頭皮近くの根元から採取したものである。
 実施例1と同様に洗浄、乾燥した後、カール半径を測定したところ、カール半径は5.0cmであった。
 この毛髪サンプルから、実施例1と同様にしてオスミウム酸と酢酸ウラニルによって二重染色された毛髪断面を得た。
 二重染色された毛髪断面を透過型電子顕微鏡で観察した場合に得られた毛髪断面画像を図9に示す。
(Example 2: Straight hair)
In the present embodiment, the target hair is changed, image analysis is performed in the same manner as in the first embodiment, and the distance between the centers of gravity of the para cells 52b and the ortho cells 52a is obtained.
[Get image information]
The hair which is the object of this example is a hair sample of a white woman in the thirties who has not been subjected to chemical hair treatment such as perm, bleach, or hair color, collected from the base near the scalp.
When the curl radius was measured after washing and drying in the same manner as in Example 1, the curl radius was 5.0 cm.
From this hair sample, a hair section double-dyed with osmic acid and uranyl acetate was obtained in the same manner as in Example 1.
FIG. 9 shows a hair cross-sectional image obtained when the double-stained hair cross-section is observed with a transmission electron microscope.

[細胞分布の可視化]
 実施例1と同様にして、図9の断面画像を画像解析し、毛髪内部の4種類の細胞(キューティクル細胞51、オルト細胞52a、パラ細胞52b、メデュラ細胞54)を、それぞれ順に黒色、濃い灰色、薄い灰色、白色で塗り分けて得た可視化画像を図10に示す。
 なお図10中、毛髪以外の領域は格子パターンで示した。また、図10の縮尺は図9と同じスケールである。
[Visualization of cell distribution]
In the same manner as in Example 1, the cross-sectional image of FIG. 9 was image-analyzed, and the four types of cells (cuticle cell 51, ortho cell 52a, para cell 52b, medulla cell 54) inside the hair were sequentially black and dark gray, respectively. FIG. 10 shows a visualized image obtained by painting with light gray and white.
In FIG. 10, regions other than hair are shown in a lattice pattern. 10 is the same scale as FIG.

 この毛髪の場合、白色のメデュラ細胞54は存在しないが、図10から、黒色のキューティクル細胞51に加えて、薄い灰色のパラ細胞52bと濃い灰色のオルト細胞52aの毛髪断面上での分布状態が明確に可視化されていることがわかった。薄い灰色のパラ細胞52bは、図10の毛髪断面上の中心部に分布しているのに対し、濃い灰色のオルト細胞52aは、その周辺部に分布している様子が可視化されている。 In the case of this hair, the white medulla cells 54 do not exist, but from FIG. 10, in addition to the black cuticle cells 51, the distribution state of the light gray para cells 52b and the dark gray ortho cells 52a on the hair cross section is shown. It was found that it was clearly visualized. The light gray para cells 52b are distributed in the central part on the hair cross section of FIG. 10, while the dark gray ortho cells 52a are visualized in the peripheral part.

[細胞の存在比の数値化]
 図10の可視化画像に基づいて、毛髪断面上で4種類の細胞の占める面積および毛髪断面の面積を画像解析で求めた。結果を下記に示す。
[Numericalization of cell abundance]
Based on the visualized image of FIG. 10, the area occupied by the four types of cells and the area of the hair cross section on the hair cross section were determined by image analysis. The results are shown below.

  キューティクル細胞の占める面積: 633μm
      オルト細胞の占める面積:1184μm
       パラ細胞の占める面積:1376μm
     メデュラ細胞の占める面積:   0μm
          毛髪断面の面積:3193μm
Area occupied by the cuticle cell: 633 μm 2
Area occupied by ortho cells: 1184 μm 2
Area occupied by para cells: 1376 μm 2
Area occupied by medulla cells: 0 μm 2
Hair cross-sectional area: 3193 μm 2

 さらに、それぞれの細胞の占める面積比率を求めた。結果を下記に示す。 Furthermore, the area ratio occupied by each cell was determined. The results are shown below.

  キューティクル細胞の占める面積比率:19.8%
      オルト細胞の占める面積比率:37.1%
       パラ細胞の占める面積比率:43.1%
     メデュラ細胞の占める面積比率: 0.0%
Cuticle cell area ratio: 19.8%
Area ratio occupied by ortho cells: 37.1%
Area ratio of para cells: 43.1%
Medura cell area ratio: 0.0%

 つぎに、2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)の占める総面積に対するパラ細胞52bとオルト細胞52aの面積比率を求めた。結果を下記に示す。 Next, the area ratio of the para cells 52b and the ortho cells 52a to the total area occupied by the two types of cortex cells (ortho cells 52a and para cells 52b) was determined. The results are shown below.

  オルト細胞の面積比率:46.2%
   パラ細胞の面積比率:53.8%
Ortho cell area ratio: 46.2%
Para cell area ratio: 53.8%

[各細胞の存在部位の数値化]
 図10の可視化画像に基づいて、本実施例の毛髪断面上におけるパラ細胞52bとオルト細胞52aの重心位置を画像解析で求め、パラ細胞52bとオルト細胞52aの重心間距離を求めたところ、2.1μmであった。
[Numericalization of the location of each cell]
Based on the visualized image in FIG. 10, the gravity center positions of the para cells 52b and the ortho cells 52a on the hair cross section of this example were obtained by image analysis, and the distance between the gravity centers of the para cells 52b and the ortho cells 52a was obtained. .1 μm.

 実施例2の毛髪はカール半径5.0cmのほぼ直毛であるが、毛髪断面上におけるパラ細胞52bとオルト細胞52aの分布は、図10に示すように等方的であった。そして、この2種類のコルテックス細胞52の重心間距離は2.1μmと、実施例1(カール半径0.9cm、重心間距離8.5μm)に比べ小さな値であった。 The hair of Example 2 is almost straight hair with a curl radius of 5.0 cm, but the distribution of para cells 52b and ortho cells 52a on the hair cross section was isotropic as shown in FIG. The distance between the centers of gravity of these two types of cortex cells 52 was 2.1 μm, which was a small value compared to Example 1 (curl radius 0.9 cm, distance between centers of gravity 8.5 μm).

 また、実施例1と実施例2との比較により、毛髪のカール半径と、2種類のコルテックス細胞52の重心間距離とは正の相関があることが分かった。 Further, comparison between Example 1 and Example 2 revealed that the curl radius of hair and the distance between the centers of gravity of the two types of cortex cells 52 had a positive correlation.

(実施例3:直毛)
 本実施例は、毛髪断面を2種類の染料で染色することにより細胞の分布状態を反映した毛髪断面画像を取得し、画像解析を行うことにより毛髪の形状および物性を記述する数値情報を取得する方法に関する。
(Example 3: Straight hair)
In this embodiment, a hair cross-section image reflecting the cell distribution state is obtained by dyeing the hair cross-section with two types of dyes, and numerical information describing the shape and physical properties of the hair is obtained by image analysis. Regarding the method.

[画像情報の取得]
 毛髪の断面を、黄緑色の蛍光を有する黄色202号および橙色の蛍光を有するスルフォローダミン101で染色した。これにより、2種類のコルテックス細胞52のうちパラ細胞52bが黄緑色に、そしてオルト細胞52aが橙色に染色された。そして、染色された毛髪内部における細胞の分布状態を反映した画像情報を取得した。
[Get image information]
A cross section of the hair was stained with yellow 202 with yellow-green fluorescence and sulfododamine 101 with orange fluorescence. As a result, of the two types of cortex cells 52, the para cells 52b were stained yellow-green, and the ortho cells 52a were stained orange. And the image information reflecting the distribution state of the cell in the dyed hair inside was acquired.

 対象となる毛髪は、パーマやブリーチ、ヘアカラーなどの化学的な毛髪処理を行っていない30代の日本人女性Cの頭髪を頭皮近くの根元から採取したものである。
 実施例1と同様に洗浄、乾燥した後、カール半径を測定したところ、カール半径は3.9cmであった。
 この毛髪サンプルをエポキシ樹脂中に包埋した後、ミクロトームを用いて厚さ1.5μmの毛髪横断面を切り出し、スライドグラス上に固定した。
The target hair is the hair of Japanese woman C in her 30s who has not performed chemical hair treatment such as perm, bleach, hair color, etc., collected from the base near the scalp.
When the curl radius was measured after washing and drying in the same manner as in Example 1, the curl radius was 3.9 cm.
After embedding this hair sample in an epoxy resin, a hair cross section having a thickness of 1.5 μm was cut out using a microtome and fixed on a slide glass.

 スライドグラス上に固定した毛髪断面を、上記した非特許文献4に記載の方法に従って黄色202号(AcidYellow 73)とスルフォローダミン101で順次染色した。具体的には、かかる毛髪断面を、0.002質量%の黄色202号(Acid Yellow 73)水溶液中に18時間浸漬し、イオン交換水で濯いだ後、乾燥させた。引き続き、0.0005質量%のスルフォローダミン101水溶液中に浸漬し、イオン交換水で濯いだ後、乾燥させることによって、2種類の染料で染色された毛髪断面を得た。 The hair cross-section fixed on the slide glass was sequentially stained with yellow No. 202 (Acid Yellow 73) and sulferodamine 101 according to the method described in Non-Patent Document 4 described above. Specifically, the hair cross-section was immersed in a 0.002% by weight yellow 202 (Acid Yellow 73) aqueous solution for 18 hours, rinsed with ion-exchanged water, and then dried. Subsequently, it was immersed in 0.0005% by mass of sulfododamine 101 aqueous solution, rinsed with ion-exchanged water, and then dried to obtain a hair cross section dyed with two kinds of dyes.

 2種類の蛍光染料で染色された毛髪断面を蛍光顕微鏡で観察した場合に得られた毛髪断面画像を、図11に示す。図11は、カラー画像として取得された毛髪断面画像を白黒二値化処理したものである。
 図12~14は、取得したカラー画像のRGB値をそれぞれ画像化したものである。具体的には、図12はR値の画像、図13はG値の画像、図14はB値の画像を、それぞれ示している。
 本実施例の場合、図11に示された毛髪断面の構造は、G値の画像(図13)によって鮮明に識別することが可能である。具体的には、黄緑色の蛍光染料(黄色202号)で染色された部位が図13において比較的淡色に示されている。なお、橙色の蛍光染料(スルフォローダミン101)で染色された部位は、図12において比較的淡色に示されている。すなわち、図11~14、特に図12および13から、毛髪断面が黄緑色と橙色の2色に染分けられている様子がわかる。
FIG. 11 shows a hair cross-sectional image obtained when a hair cross-section dyed with two types of fluorescent dyes is observed with a fluorescence microscope. FIG. 11 is a black and white binarized image of a hair cross-sectional image acquired as a color image.
12 to 14 show the RGB values of the acquired color image, respectively. Specifically, FIG. 12 shows an R value image, FIG. 13 shows a G value image, and FIG. 14 shows a B value image.
In the case of this example, the structure of the hair cross section shown in FIG. 11 can be clearly identified by the G value image (FIG. 13). Specifically, a portion stained with a yellow-green fluorescent dye (yellow 202) is shown in a relatively light color in FIG. In addition, the site | part dye | stained with the orange fluorescent dye (sulfordamine 101) is shown by the comparatively light color in FIG. That is, it can be seen from FIGS. 11 to 14, particularly FIGS. 12 and 13, that the hair cross-section is dyed into two colors of yellow-green and orange.

[細胞分布の可視化]
 本実施例の場合、黄緑色の蛍光染料(黄色202号)で染色される部位をパラ細胞52bと定義する。
 また、橙色の蛍光染料(スルフォローダミン101)で染色される部位は、オルト細胞52a、キューティクル細胞51およびメデュラ細胞54である。橙色の蛍光染料で染色されるこれら3種類の細胞は、存在部位と形態が異なるため、互いに判別可能である。たとえば、キューティクル細胞51は毛髪表面近傍に層状に存在するため、形態の違いに基づいて、隣接するオルト細胞52aと判別することができる。また、メデュラ細胞54は、毛髪中心部に存在し多孔質構造を有するため、同様に形態の違いに基づいて、オルト細胞52aと判別することができる。
 染色された色の違いと形態の違いに基づく以上の判別基準に従って、図11の画像情報を画像解析した。毛髪内部の4種類の細胞(キューティクル細胞51、オルト細胞52a、パラ細胞52b、メデュラ細胞54)を、それぞれ黒色、濃い灰色、薄い灰色、白色で塗り分けて得た可視化画像を図15に示す。なお、図15中、毛髪以外の領域は格子パターンで示した。
 また、図15に示す可視化画像は、図13に基づいて作成してもよい。この場合、G値がある閾値以上である部位を黄緑色(パラ細胞52b)と判定し、この閾値以下の部位を橙色(オルト細胞52a、キューティクル細胞51またはメデュラ細胞54)と判定するとよい。そして、橙色の部位に関しては、形態の違いに基づいてオルト細胞52a、キューティクル細胞51およびメデュラ細胞54に識別することができる。
[Visualization of cell distribution]
In the case of the present example, a site stained with a yellow-green fluorescent dye (yellow 202) is defined as a para cell 52b.
In addition, the sites stained with the orange fluorescent dye (sulforudamine 101) are ortho cells 52a, cuticle cells 51, and medulla cells 54. These three types of cells that are stained with an orange fluorescent dye can be distinguished from each other because they have different locations and forms. For example, since the cuticle cell 51 is present in a layered manner in the vicinity of the hair surface, it can be distinguished from the adjacent ortho cell 52a based on the difference in form. Further, since the medulla cell 54 exists in the center of the hair and has a porous structure, it can be distinguished from the ortho cell 52a based on the difference in form.
The image information of FIG. 11 was image-analyzed according to the above discrimination criteria based on the difference in stained color and the difference in form. FIG. 15 shows visualized images obtained by painting four types of cells (cuticle cell 51, ortho cell 52a, para cell 52b, and medulla cell 54) inside the hair in black, dark gray, light gray, and white, respectively. In FIG. 15, regions other than hair are shown in a lattice pattern.
Further, the visualized image shown in FIG. 15 may be created based on FIG. In this case, a site where the G value is greater than or equal to a certain threshold value is determined to be yellow-green (para cell 52b), and a region equal to or less than this threshold value is determined to be orange (ortho cell 52a, cuticle cell 51 or medulla cell 54). The orange portion can be identified as the ortho cell 52a, the cuticle cell 51, and the medulla cell 54 based on the difference in form.

[細胞の存在比の数値化]
 図15の可視化画像に基づいて、毛髪断面上で4種類の細胞の占める面積および毛髪断面の面積を画像解析で求めた。結果を下記に示す。
[Numericalization of cell abundance]
Based on the visualized image in FIG. 15, the area occupied by the four types of cells on the hair cross section and the area of the hair cross section were determined by image analysis. The results are shown below.

  キューティクル細胞の占める面積:1132μm
      オルト細胞の占める面積:4412μm
       パラ細胞の占める面積:3022μm
     メデュラ細胞の占める面積: 175μm
          毛髪断面の面積:8741μm
Area occupied by the cuticle cell: 1132 μm 2
Area occupied by ortho cells: 4412 μm 2
Area occupied by para cells: 3022 μm 2
Area occupied by medulla cells: 175 μm 2
Hair cross-sectional area: 8741 μm 2

 さらに、それぞれの細胞の占める面積比率を求めた。結果を下記に示す。 Furthermore, the area ratio occupied by each cell was determined. The results are shown below.

  キューティクル細胞の占める面積比率:12.9%
      オルト細胞の占める面積比率:50.5%
       パラ細胞の占める面積比率:34.6%
     メデュラ細胞の占める面積比率: 2.0%
Cuticle cell area ratio: 12.9%
Area ratio of ortho cells: 50.5%
Area ratio occupied by para cells: 34.6%
Medura cell area ratio: 2.0%

 つぎに、2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)の占める総面積に対するパラ細胞52bとオルト細胞52aの面積比率を求めた。結果を下記に示す。 Next, the area ratio of the para cells 52b and the ortho cells 52a to the total area occupied by the two types of cortex cells (ortho cells 52a and para cells 52b) was determined. The results are shown below.

  オルト細胞の面積比率:59.3%
   パラ細胞の面積比率:40.7%
Ortho cell area ratio: 59.3%
Para cell area ratio: 40.7%

[各細胞の存在部位の数値化]
 図15の可視化画像に基づいて、本実施例の毛髪断面上におけるパラ細胞52bとオルト細胞52aの重心位置を画像解析で求め、パラ細胞52bとオルト細胞52aの重心間距離を求めたところ、4.7μmであった。
[Numericalization of the location of each cell]
Based on the visualized image of FIG. 15, the gravity center positions of the para cells 52b and the ortho cells 52a on the hair cross section of this example were obtained by image analysis, and the distance between the gravity centers of the para cells 52b and the ortho cells 52a was obtained. 0.7 μm.

 実施例3の毛髪はカール半径3.9cmであり、ややクセのある直毛であるが、毛髪断面上におけるパラ細胞52bとオルト細胞52aの分布は、図15に示すようにやや偏っていた。そして、この2種類のコルテックス細胞52の重心間距離は4.7μmであった。
 実施例1、2、3の結果を比較すると、カール半径の順序と、2種類のコルテックス細胞52の重心間距離の順序が一致している。したがって、毛髪のカール半径と、2種類のコルテックス細胞52の重心間距離との間に正の相関があることがさらに明確となった。
The hair of Example 3 has a curl radius of 3.9 cm and is slightly straight hair, but the distribution of the para cells 52b and the ortho cells 52a on the hair cross section is slightly biased as shown in FIG. The distance between the centers of gravity of the two types of cortex cells 52 was 4.7 μm.
When the results of Examples 1, 2, and 3 are compared, the order of the curl radii matches the order of the distances between the centers of gravity of the two types of cortex cells 52. Therefore, it was further clarified that there is a positive correlation between the curl radius of the hair and the distance between the centers of gravity of the two types of cortex cells 52.

(実施例4:くせ毛)
 本実施例は、対象の毛髪を変更して、実施例3と同様の方法で画像解析を行い、パラ細胞52bとオルト細胞52aの重心間距離を求めたものである。
[画像情報の取得]
 本実施例の対象となる毛髪は、パーマやブリーチ、ヘアカラーなどの化学的な毛髪処理を行っていない20代の日本人女性Dの頭髪を頭皮近くの根元から採取したものである。
 実施例3と同様に洗浄、乾燥した後、毛髪サンプルのカール半径を測定したところ、カール半径は0.55cmであった。
 実施例3と同様に、この毛髪サンプルをエポキシ樹脂中に包埋した後、ミクロトームを用いて厚さ1.5μmの毛髪横断面を切り出し、黄色202号(Acid Yellow 73)とスルフォローダミン101で染色された毛髪断面を得た。
(Example 4: Comb hair)
In this example, the target hair is changed, and image analysis is performed in the same manner as in Example 3, and the distance between the centers of gravity of the para cells 52b and the ortho cells 52a is obtained.
[Get image information]
The hair which is the object of this example was obtained from the roots near the scalp of Japanese female D in his 20s who did not perform chemical hair treatment such as perm, bleach or hair color.
After washing and drying in the same manner as in Example 3, the curl radius of the hair sample was measured and found to be 0.55 cm.
As in Example 3, after embedding this hair sample in an epoxy resin, a hair cross-section having a thickness of 1.5 μm was cut out using a microtome, and yellow No. 202 (Acid Yellow 73) and sulfododamine 101 were used. A dyed hair cross section was obtained.

 2種類の蛍光染料で染色された毛髪断面を蛍光顕微鏡で観察した場合に得られた毛髪断面画像を図16に示す。図16は、カラー画像として取得された毛髪断面画像を白黒二値化処理したものである。
 図17~19は、取得したカラー画像のRGB値をそれぞれ画像化したものである。具体的には、図17はR値の画像、図18はG値の画像、図19はB値の画像を、それぞれ示している。
 本実施例に関しても、実施例3と同様に、図16に示された毛髪断面の構造は、G値の画像(図18)によって特に鮮明に識別することが可能である。
FIG. 16 shows a hair cross-sectional image obtained when a hair cross section dyed with two types of fluorescent dyes is observed with a fluorescence microscope. FIG. 16 is a black and white binarized image of a hair cross-sectional image acquired as a color image.
17 to 19 are images obtained by converting the RGB values of the acquired color image, respectively. Specifically, FIG. 17 shows an R value image, FIG. 18 shows a G value image, and FIG. 19 shows a B value image.
Also in this example, like the example 3, the structure of the hair cross section shown in FIG. 16 can be identified particularly clearly by the G value image (FIG. 18).

[細胞分布の可視化]
 実施例3と同様に、図16の画像情報を画像解析し、毛髪内部の4種類の細胞(キューティクル細胞51、オルト細胞52a、パラ細胞52b、メデュラ細胞54)を、それぞれ黒色、濃い灰色、薄い灰色、白色で塗り分けて得た可視化画像を図20に示す。
 なお、図20中、毛髪以外の領域は格子パターンで示した。
[Visualization of cell distribution]
Similarly to Example 3, the image information of FIG. 16 is image-analyzed, and four types of cells (cuticle cell 51, ortho cell 52a, para cell 52b, medulla cell 54) inside the hair are respectively black, dark gray, and light. A visualized image obtained by painting in gray and white is shown in FIG.
In FIG. 20, regions other than hair are shown in a lattice pattern.

[細胞の存在比の数値化]
 図20の可視化画像に基づいて、毛髪断面上で4種類の細胞の占める面積および毛髪断面の面積を画像解析で求めた。結果を下記に示す。
[Numericalization of cell abundance]
Based on the visualized image of FIG. 20, the area occupied by the four types of cells and the area of the hair cross section on the hair cross section were determined by image analysis. The results are shown below.

  キューティクル細胞の占める面積: 847μm
      オルト細胞の占める面積:3181μm
       パラ細胞の占める面積:1959μm
     メデュラ細胞の占める面積: 159μm
          毛髪断面の面積:6145μm
Area occupied by the cuticle cell: 847 μm 2
Area occupied by ortho cells: 3181 μm 2
Area occupied by para cells: 1959 μm 2
Area occupied by medulla cells: 159 μm 2
Area of hair cross section: 6145 μm 2

 さらに、それぞれの細胞の占める面積比率を求めた。結果を下記に示す。 Furthermore, the area ratio occupied by each cell was determined. The results are shown below.

  キューティクル細胞の占める面積比率:13.8%
      オルト細胞の占める面積比率:51.8%
       パラ細胞の占める面積比率:31.9%
     メデュラ細胞の占める面積比率: 2.6%
Cuticle cell area ratio: 13.8%
Area ratio of ortho cells: 51.8%
Area ratio of para cells: 31.9%
Medura cell area ratio: 2.6%

 つぎに、2種類のコルテックス細胞(オルト細胞52a、パラ細胞52b)の占める総面積に対するパラ細胞52bとオルト細胞52aの面積比率を求めた。結果を下記に示す。 Next, the area ratio of the para cells 52b and the ortho cells 52a to the total area occupied by the two types of cortex cells (ortho cells 52a and para cells 52b) was determined. The results are shown below.

  オルト細胞の面積比率:61.9%
   パラ細胞の面積比率:38.1%
Ortho cell area ratio: 61.9%
Para cell area ratio: 38.1%

[各細胞の存在部位の数値化]
 図20の可視化画像に基づいて、本実施例の毛髪断面上におけるパラ細胞52bとオルト細胞52aの重心位置を画像解析で求め、パラ細胞52bとオルト細胞52aの重心間距離を求めたところ、20.4μmであった。
[Numericalization of the location of each cell]
Based on the visualized image of FIG. 20, the gravity center positions of the para cells 52b and the ortho cells 52a on the hair cross section of the present example are obtained by image analysis, and the distance between the gravity centers of the para cells 52b and the ortho cells 52a is obtained. .4 μm.

 実施例4の毛髪はカール半径0.55cmであり、かなりクセの強いクセ毛であるが、毛髪断面上におけるパラ細胞52bとオルト細胞52aの分布は、図20に示すようにかなり偏っていた。そして、この2種類のコルテックス細胞52の重心間距離は20.4μmであった。
 実施例1、2、3、4の結果を比較すると、カール半径の順序と、2種類のコルテックス細胞52の重心間距離の順序が一致している。したがって、毛髪のカール半径と、2種類のコルテックス細胞52の重心間距離との間に正の相関があることがさらに明確となった。
The hair of Example 4 had a curl radius of 0.55 cm and was a very strong peculiar hair, but the distribution of the para cells 52b and the ortho cells 52a on the hair cross section was considerably biased as shown in FIG. The distance between the centers of gravity of these two types of cortex cells 52 was 20.4 μm.
When the results of Examples 1, 2, 3, and 4 are compared, the order of the curl radii matches the order of the distances between the centers of gravity of the two types of cortex cells 52. Therefore, it was further clarified that there is a positive correlation between the curl radius of the hair and the distance between the centers of gravity of the two types of cortex cells 52.

(実施例5:基準毛との比較1)
 カール半径の異なる41本の基準毛について、実施例1のTEM観察法の場合と同様に、画像情報の取得ステップ、細胞分布の可視化ステップ、および各細胞の存在部位の数値化ステップを行った。
 図21(a)は、このようにして得られた基準毛のカール半径と、パラ細胞52bとオルト細胞52aとの重心間距離との関係を示す散布図である。
(Example 5: Comparison with reference hair 1)
For 41 reference hairs with different curl radii, as in the case of the TEM observation method of Example 1, an image information acquisition step, a cell distribution visualization step, and a quantification step for each cell were performed.
FIG. 21A is a scatter diagram showing the relationship between the curl radius of the reference hair thus obtained and the distance between the centers of gravity of the para cells 52b and the ortho cells 52a.

 同図に基づいて最小二乗法によりカール半径と重心間距離との関係式を求めたところ、下式(1)の関係が得られた。同図には、カール半径と重心間距離の検量線データとして、下式(1)のグラフを表示している。 When the relational expression between the curl radius and the distance between the center of gravity was obtained by the least square method based on the figure, the relation of the following expression (1) was obtained. In the figure, a graph of the following formula (1) is displayed as calibration curve data of the curl radius and the distance between the center of gravity.

 カール半径/cm = -0.22×重心間距離/μm+6.3 ・・・式(1) Curl radius / cm = -0.22 x center of gravity distance / μm + 6.3 Equation (1)

 この関係式(1)に基づいて、20代の日本人女性Aの頭髪(重心間距離=4.7μm)のカール半径を推算すると5.4cmとなった。この予測カール半径は、実測したカール半径(6cm)とよく一致した。 Based on this relational expression (1), the curl radius of the hair of a Japanese woman A in her twenties (distance between centers of gravity = 4.7 μm) was estimated to be 5.4 cm. This predicted curl radius was in good agreement with the measured curl radius (6 cm).

(実施例6:基準毛との比較2)
 実施例5に用いた41本の基準毛について、コルテックス細胞52に占めるパラ細胞52bの存在比率と、曲げ弾性率とをそれぞれ求めた。
 図21(b)は、このようにして得られた曲げ弾性率と、パラ細胞52bの存在比率との関係を示す散布図である。
(Example 6: Comparison with reference hair 2)
For the 41 reference hairs used in Example 5, the abundance ratio of para cells 52b in the cortex cells 52 and the flexural modulus were determined.
FIG. 21 (b) is a scatter diagram showing the relationship between the flexural modulus obtained in this way and the abundance ratio of the para cells 52b.

 同図に基づいて最小二乗法により曲げ弾性率とパラ細胞52bの存在比率との関係式を求めたところ、下式(2)の関係が得られた。同図には、曲げ弾性率とパラ細胞の存在比率の検量線データとして、下式(2)のグラフを表示している。 When the relational expression between the flexural modulus and the abundance ratio of the para cells 52b was obtained by the least square method based on the same figure, the relation of the following expression (2) was obtained. In the figure, a graph of the following formula (2) is displayed as calibration curve data of the flexural modulus and the existence ratio of para cells.

 曲げ弾性率/GPa = 0.45×パラ細胞の存在比率+0.67 ・・・式(2) Bending elastic modulus / GPa = 0.45 × para cell existing ratio + 0.67 Equation (2)

 上記の式(1)、(2)を用いれば、対象の毛髪におけるオルト細胞52aとパラ細胞52bとの重心間距離や、コルテックス細胞52に対するパラ細胞52bの存在比率を取得するだけで、当該毛髪のカール半径や曲げ弾性率を評価することができる。
 本実施形態のデータ取得方法およびデータ取得装置100によれば、毛髪サンプルの様々な特性を記述するための定量的な指標を、毛髪の断面画像より取得することができる。
By using the above formulas (1) and (2), it is only necessary to obtain the distance between the center of gravity of the ortho cells 52a and the para cells 52b in the target hair and the existence ratio of the para cells 52b to the cortex cells 52. The curl radius and bending elastic modulus of hair can be evaluated.
According to the data acquisition method and data acquisition device 100 of this embodiment, quantitative indicators for describing various characteristics of a hair sample can be acquired from cross-sectional images of hair.

 この出願は、2009年8月3日に出願された日本出願特願2009-181066を基礎とする優先権を主張し、その開示の総てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-181066 filed on Aug. 3, 2009, the entire disclosure of which is incorporated herein.

Claims (10)

 ヒトの毛髪に含まれるコルテックス細胞を構成する複数種類の繊維状組織が互いに識別可能に可視化された、前記毛髪の断面画像を取得する画像取得工程と、
 可視化された前記複数種類の繊維状組織の分布状態を示す数値情報を前記断面画像より取得するデータ取得工程と、を含む毛髪特性データの取得方法。
An image acquisition step of acquiring a cross-sectional image of the hair, wherein a plurality of types of fibrous tissues constituting cortex cells contained in human hair are visualized so as to be distinguishable from each other;
A data acquisition step of acquiring numerical information indicating the distribution states of the plurality of types of fibrous tissues visualized from the cross-sectional image.
 ヒトの毛髪試料を基準毛として、前記数値情報と毛髪特性との関係を示す検量データを取得する基準取得工程と、
 前記データ取得工程で取得した前記毛髪の前記数値情報と、ヒトの毛髪試料を基準毛として前記数値情報と毛髪特性との関係を示す検量データとから、前記毛髪に関する毛髪特性を評価する評価工程と、をさらに含む請求項1に記載の毛髪特性データの取得方法。
Using a human hair sample as a reference hair, a reference acquisition step for acquiring calibration data indicating the relationship between the numerical information and the hair characteristics;
An evaluation step for evaluating the hair characteristics of the hair from the numerical information of the hair acquired in the data acquisition step, and calibration data indicating the relationship between the numerical information and the hair characteristics using a human hair sample as a reference hair; The method for acquiring hair characteristic data according to claim 1, further comprising:
 前記データ取得工程にて、前記断面画像における一の前記繊維状組織の重心と他の前記繊維状組織の重心との距離を、前記数値情報として取得する請求項2に記載の毛髪特性データの取得方法。 The acquisition of hair characteristic data according to claim 2, wherein in the data acquisition step, a distance between the center of gravity of one fibrous tissue and the center of gravity of another fibrous tissue in the cross-sectional image is acquired as the numerical information. Method.  前記評価工程にて、前記毛髪のくせの程度を示す指標値を算出する請求項3に記載の毛髪特性データの取得方法。 4. The method for acquiring hair characteristic data according to claim 3, wherein an index value indicating a degree of hair habit is calculated in the evaluation step.  前記データ取得工程にて、前記コルテックス細胞に対する前記繊維状組織の存在比率を、前記数値情報として取得する請求項2に記載の毛髪特性データの取得方法。 3. The method for acquiring hair characteristic data according to claim 2, wherein, in the data acquisition step, the ratio of the fibrous tissue to the cortex cells is acquired as the numerical information.  前記評価工程にて、前記毛髪の曲げ剛性を示す指標値を算出する請求項5に記載の毛髪特性データの取得方法。 The method for acquiring hair characteristic data according to claim 5, wherein an index value indicating the bending stiffness of the hair is calculated in the evaluation step.  前記データ取得工程にて、前記毛髪に含まれるキューティクル細胞またはメデュラ細胞の少なくとも一方の分布状態を示す数値情報をさらに取得することを特徴とする請求項1から6のいずれかに記載の毛髪特性データの取得方法。 The hair characteristic data according to any one of claims 1 to 6, wherein in the data acquisition step, numerical information indicating a distribution state of at least one of cuticle cells or medulla cells contained in the hair is further acquired. How to get  前記毛髪の断面を染料で染色して、複数種類の前記繊維状組織を識別可能に可視化する工程をさらに含む請求項1から7のいずれかに記載の毛髪特性データの取得方法。 The method for acquiring hair characteristic data according to any one of claims 1 to 7, further comprising a step of dyeing a cross section of the hair with a dye and visualizing a plurality of types of the fibrous tissues in a distinguishable manner.  前記毛髪の断面に関する赤外吸収スペクトルもしくはラマンスペクトルを測定して、または前記毛髪の断面をマイクロプローブ顕微鏡で走査して、または前記毛髪を透過型電子顕微鏡で観察して、複数種類の前記繊維状組織を前記断面画像にて互いに識別可能に可視化する工程をさらに含む請求項1から7のいずれかに記載の毛髪特性データの取得方法。 By measuring the infrared absorption spectrum or Raman spectrum of the hair cross section, or scanning the hair cross section with a microprobe microscope, or observing the hair with a transmission electron microscope, a plurality of types of the fibrous The method for acquiring hair characteristic data according to any one of claims 1 to 7, further comprising a step of visualizing the tissues so as to be distinguishable from each other in the cross-sectional image.  ヒトの毛髪に含まれるコルテックス細胞を構成する複数種類の繊維状組織が互いに識別可能に可視化された、前記毛髪の断面画像を取得する画像取得手段と、
 可視化された前記複数種類の繊維状組織の分布状態を示す数値情報を前記断面画像より取得するデータ取得手段と、を含む毛髪特性データの取得装置。
An image acquisition means for acquiring a cross-sectional image of the hair, wherein a plurality of types of fibrous tissues constituting cortex cells contained in human hair are visualized so as to be distinguishable from each other;
A data acquisition unit for acquiring numerical information indicating the distribution state of the plurality of types of visualized fibrous tissues from the cross-sectional image.
PCT/JP2010/004714 2009-08-03 2010-07-23 Method for acquiring hair characteristic data and device for acquiring same Ceased WO2011016198A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/388,866 US8965081B2 (en) 2009-08-03 2010-07-23 Method for acquiring hair characteristic data and apparatus for acquiring the same
EP10806198.7A EP2462870B1 (en) 2009-08-03 2010-07-23 Method for acquiring hair characteristic data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-181066 2009-08-03
JP2009181066A JP5295906B2 (en) 2009-08-03 2009-08-03 Acquisition method of hair characteristic data

Publications (1)

Publication Number Publication Date
WO2011016198A1 true WO2011016198A1 (en) 2011-02-10

Family

ID=43544108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004714 Ceased WO2011016198A1 (en) 2009-08-03 2010-07-23 Method for acquiring hair characteristic data and device for acquiring same

Country Status (4)

Country Link
US (1) US8965081B2 (en)
EP (1) EP2462870B1 (en)
JP (1) JP5295906B2 (en)
WO (1) WO2011016198A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222836B2 (en) * 2012-11-01 2015-12-29 Aaron James Conti Hair colorant system and method
JP6314018B2 (en) * 2014-03-31 2018-04-18 株式会社堀場製作所 Glow discharge luminescence analysis method
CN108351969B (en) * 2015-10-30 2022-07-29 联合利华知识产权控股有限公司 Hair curl measurement
JP6129382B1 (en) * 2016-05-18 2017-05-17 クラシエホームプロダクツ株式会社 Method for measuring cuticle peeling amount, and method for evaluating the degree of hair damage using the method
US10511777B2 (en) 2016-11-08 2019-12-17 Thomas Nichols Personal care device with camera
US11122206B2 (en) 2016-11-08 2021-09-14 Preh Holding, Llc Personal care device with camera
DE102016225676B4 (en) 2016-12-20 2025-11-06 Henkel Ag & Co. Kgaa Procedure and arrangement for examining hair
WO2018234412A1 (en) * 2017-06-23 2018-12-27 Unilever Plc METHOD FOR MEASURING HAIR MOVEMENT CHARACTERISTICS
JP6913944B2 (en) * 2017-08-30 2021-08-04 クラシエホームプロダクツ株式会社 Method for measuring the interaction of hair protein with water
JP7076698B2 (en) 2017-11-17 2022-05-30 国立研究開発法人国立がん研究センター Image analysis method, image analysis device, program, learned deep learning algorithm manufacturing method and learned deep learning algorithm
JP7198577B2 (en) 2017-11-17 2023-01-04 シスメックス株式会社 Image analysis method, device, program, and method for manufacturing trained deep learning algorithm
USD1000624S1 (en) 2019-12-27 2023-10-03 Thomas Nichols Personal care device with camera
EP4356398A4 (en) 2021-06-14 2025-04-16 Preh Holding, LLC Connected body surface care module
US20230043674A1 (en) * 2021-08-09 2023-02-09 Techturized, Inc. Scientific and technical systems and methods for providing hair health diagnosis, treatment, and styling recommendations
JP7756419B2 (en) * 2021-09-06 2025-10-20 ホーユー株式会社 Fiber evaluation method, treatment agent or treatment method screening method, and fiber evaluation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178738A (en) 1995-12-26 1997-07-11 Kao Corp False hair diagnostic method
JP2006170915A (en) 2004-12-17 2006-06-29 Kao Corp Image processing method
JP2009181066A (en) 2008-01-31 2009-08-13 Sony Corp Liquid crystal device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0212389A (en) * 2001-08-31 2004-08-17 Keratec Ltd Production of biopolymer materials such as film, fiber, foam or adhesive from soluble s-sulfonated keratin derivatives
JP2005134344A (en) * 2003-10-31 2005-05-26 Kao Corp Sample for evaluating the bending properties of hair
WO2008093735A1 (en) * 2007-01-30 2008-08-07 Kao Corporation Evaluation method and system of hair
WO2008130907A1 (en) * 2007-04-17 2008-10-30 Mikos, Ltd. System and method for using three dimensional infrared imaging to identify individuals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178738A (en) 1995-12-26 1997-07-11 Kao Corp False hair diagnostic method
JP2006170915A (en) 2004-12-17 2006-06-29 Kao Corp Image processing method
JP2009181066A (en) 2008-01-31 2009-08-13 Sony Corp Liquid crystal device

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Morphology and histochemistry of human hair'' in ''Formation and Structure of Human Hair", 1997, BIRKHAUSER VERLAG, pages: 149 - 175
BRYSON WG ET AL.: "Cortical cell types and intermediate filament arrangements correlate with fiber curvature in Japanese human hair", JOURNAL OF STRUCTURAL BIOLOGY, vol. 166, no. 1, April 2009 (2009-04-01), pages 46 - 58, XP026933149 *
C. R. ROBBINS: "Chemical and Physical Behavior of Human Hair", 2002, SPRINGER-VERLAG NEW YORK, INC., pages: 386 - 473
R. DE LA METTRIE ET AL., HUMAN BIOLOGY, vol. 79, no. 3, 2007, pages 265 - 281
See also references of EP2462870A4
W. G. BRYSON ET AL., JOURNAL OF STRUCTURAL BIOLOGY, vol. 166, 2009, pages 46 - 58

Also Published As

Publication number Publication date
US20120128220A1 (en) 2012-05-24
US8965081B2 (en) 2015-02-24
EP2462870A1 (en) 2012-06-13
JP5295906B2 (en) 2013-09-18
EP2462870B1 (en) 2022-03-16
EP2462870A4 (en) 2016-01-06
JP2011030844A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5295906B2 (en) Acquisition method of hair characteristic data
Koch et al. The biology of human hair: A multidisciplinary review
Hillmann et al. Diagnosis of hair disorders
Mostaço-Guidolin et al. Collagen morphology and texture analysis: from statistics to classification
LOSS sample
Deedrick et al. Microscopy of hair part 1: a practical guide and manual for human hairs
Krafft et al. Advances in optical biopsy–correlation of malignancy and cell density of primary brain tumors using Raman microspectroscopic imaging
JP6499823B2 (en) Skin condition discrimination method based on fibrous structure analysis
Korinth et al. New methodology to process shifted excitation Raman difference spectroscopy data: a case study of pollen classification
Adur et al. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy
JP7639199B2 (en) Method for predicting hair and facial characteristics using scalp stratum corneum cell characteristics
JP4071891B2 (en) Hair diagnosis system
Blume-Peytavi et al. Hair growth assessment techniques
Ogura et al. Texture analysis of second‐harmonic‐generation images for quantitative analysis of reticular dermal collagen fibre in vivo in human facial cheek skin
KR101559798B1 (en) How to standardize image of digital pathology
JP5085344B2 (en) Evaluation apparatus, evaluation method, evaluation program, and recording medium on which the program is recorded
Septiana et al. Elastic and collagen fibers discriminant analysis using H&E stained hyperspectral images
Carretta et al. Prediction of local ultimate strain and toughness of trabecular bone tissue by Raman material composition analysis
KR102406640B1 (en) Age evaluating method of scalp and hair
JP2005296352A (en) Method of evaluating gray hair
Aird-Rossiter et al. Decoding Gray Matter: large-scale analysis of brain cell morphometry to inform microstructural modeling of diffusion MR signals
CN115602311B (en) Auxiliary detection tool for pancreatic cancer based on multivariate parameter analysis of collagen fibers
Kurtti et al. New diagnostic tools to evaluate hair loss
Anastassakis Hair growth assessment techniques in AGA/FPHL
Robertson et al. Laboratory Examinations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13388866

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010806198

Country of ref document: EP