WO2011066058A1 - Composition de carburant mélangé ayant des propriétés d'écoulement à froid améliorées - Google Patents
Composition de carburant mélangé ayant des propriétés d'écoulement à froid améliorées Download PDFInfo
- Publication number
- WO2011066058A1 WO2011066058A1 PCT/US2010/054757 US2010054757W WO2011066058A1 WO 2011066058 A1 WO2011066058 A1 WO 2011066058A1 US 2010054757 W US2010054757 W US 2010054757W WO 2011066058 A1 WO2011066058 A1 WO 2011066058A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- renewable
- fuel
- diesel
- based component
- fuel composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/14—Use of additives to fuels or fires for particular purposes for improving low temperature properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/50—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
- C10L1/08—Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1616—Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/1802—Organic compounds containing oxygen natural products, e.g. waxes, extracts, fatty oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/1822—Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
- C10L1/191—Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
- C10G2300/1014—Biomass of vegetal origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
- C10G2300/1018—Biomass of animal origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1022—Fischer-Tropsch products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1051—Kerosene having a boiling range of about 180 - 230 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1055—Diesel having a boiling range of about 230 - 330 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/301—Boiling range
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/304—Pour point, cloud point, cold flow properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/043—Kerosene, jet fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0438—Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0438—Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
- C10L2200/0446—Diesel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
- C10L2200/0476—Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
- C10L2200/0484—Vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
- C10L2200/0492—Fischer-Tropsch products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates generally to fuel compositions. More specifically, the present invention relates to a blended fuel composition comprising petroleum based fuel and renewable fuel which exhibit improved cold flow properties. The present invention also relates to the method of making such compositions.
- hydrocarbons for producing fuels and chemicals
- natural carbon resources or renewable hydrocarbons
- oils and fats are widely available, and remain a target alternative source for the production of hydrocarbons.
- oils and fats have been successfully hydrotreated to produce hydrocarbons/fuel range hydrocarbons which is also called “Renewable fuel” such as renewable diesel fuels.
- renewable diesel fuels are gaining greater market acceptance as a cutter stock to extend petroleum diesel market capacity.
- the blends of renewable diesel fuels with petroleum diesel are being used as fuel for diesel engines, utilized for heating, power generation, and for locomotion with ships, boats, as well as motor vehicles.
- renewable diesel may be prepared by reacting vegetable oils and/or animal fats with a hydrogenation and deoxygenation catalyst at the hydrogenation and deoxygenation conditions.
- the main components in renewable diesel are n-C15 to n-C18 paraffins.
- renewable diesel exhibits poor cold flow properties, e.g., cloud point, pour point and Cold Filter Plugging Point (CFPP).
- CFPP Cold Filter Plugging Point
- the cold flow properties of renewable diesel can be improved by using dewaxing technology, either cracking or isomerization, to lower the cold flow properties, thereby minimizing the impact of renewable diesel on the cold flow proerties of petroleum diesel.
- dewaxing technology either cracking or isomerization
- the cold flow properties of renewable diesel can also be improved by adding cold flow additives.
- cold flow additives are expensive. With the implementation of renewable diesel, the use of cold flow additives is expected to increase. Therefore, using cold flow additive is economically unfavorable.
- the present invention relates generally to fuel compositions. More specifically, the present invention relates to a blended fuel composition comprising petroleum based fuel and renewable based fuel which exhibit improved cold flow properties.
- a composition comprising a petroleum based component and a renewable based component, wherein at least 20% of the compounds in the petroleum based component having boiling point range equal or greater than the boiling point of the renewable based component.
- the amount of the renewable based component is in the range between 0.1 vol. % to 50 vol. %, based on the total volume of the fuel composition.
- the renewable based component comprises hydrocarbons that are derived from natural, replenishable feed stock which can be utilized as source of energy.
- the petroleum based component comprises hydrocarbons derived from petroleum refining process.
- the petroleum based component can be a diesel base fuel having boiling points within the range of 150° C to 400° C.
- a method for preparing a fuel composition comprising blending a petroleum based fuel and a renewable based fuel, wherein at least 20 % of the compounds in the petroleum based component having boiling point range equal or greater than the boiling point of the renewable based component.
- the present invention relates generally to fuel compositions. More specifically, the present invention relates to a blended fuel composition comprising petroleum based fuel and renewable based fuel which exhibit improved cold flow properties. The present invention also relates to the method of making such compositions. [00018] According to one embodiment of the current invention, there is provided a fuel composition comprising petroleum based component and a renewable based component, wherein at least 20% of the compounds in said petroleum based component having boiling point range equal or greater than the boiling point of said renewable based component.
- a process for preparing a fuel composition comprising blending a petroleum based fuel and a renewable based fuel, wherein at least 20%> of the compounds in the petroleum based component having boiling point range equal or greater than the boiling point of the renewable based component.
- the petroleum based component is a hydrocarbon derived from petroleum refining process.
- Petroleum based fuel refers to a fuel that includes a fractional distillate of petroleum.
- the distillate fuel in many cases can be described as a gasoline or middle distillate fuel oil.
- middle distillate fuels typically are divided into several types fuels including: jet or turbine fuels, automotive diesel fuels, railroad diesel fuels, and heating oils. These products are blended from a variety of refinery streams to meet the desired specifications.
- Other examples of middle distillate fuel may include industrial gas oils, distillate marine fuels, kerosene fuels such as aviation fuels or heating kerosene, light and heavy cycle oils as obtained in a fluid catalytic cracking unit, a Fisher-Tropsch derived fuel, in particular a Fischer-Tropsch derived diesel fuel.
- Petroleum derived gas oil may be obtained from refining and optionally hydroprocessing crude petroleum source. It may be a single gas oil stream obtained from such a refinery process or a blend of several gas oil fractions obtained in the refinery process via different processing routes. Examples of such gas oil fractions are straight run gas oil, atmospheric gas oil, vacuum gas oil, gas oil as obtained in a thermal cracking process, and gas oil as obtained from a hydrocracker unit.
- the fuel composition to which the present invention is preferably to use is for an internal combustion engine, for example a diesel fuel composition which is used in an automotive diesel engine.
- the petroleum based component may be any known diesel base fuel, and it may itself comprise a mixture of diesel fuel components. It may have a sulfur content of 0 to 20,000 ppmw (parts per million by weight). It may also have a sulfur content of 0 to 15 ppmw.
- Typical diesel fuel components comprise liquid hydrocarbon middle distillate fuel oils, for instance petroleum jet or turbine fuels, automotive diesel fuels, railroad diesel fuels, heating oils and gas oil They will typically have boiling points within the usual diesel range of 150° C to 400° C, depending on grade and use.
- a renewable based component is a hydrocarbon that is derived from natural, replenishable feed stock which can be utilized as source of energy.
- Suitable examples of a renewable based component include, but not limited to, bio-diesel which is a product derived from the transesterification of a material of biological origin with an alcohol or from reacting a fatty acid with an alcohol; renewable diesel which is a product derived from hydrotreating a material of biological origin; alcohol; other oxygenate; vegetable oil or vegetable oil derivatives; a biomass pyrolysis bio-oils, or any combinations thereof.
- the above mentioned material of biological origin can be selected from any triglyceride containing feedstock e.g. vegetable oils, vegetable fats, animal fats, fish oils, algae oil; any mixtures thereof.
- alcohols used here include methanol, ethanol, and mixtures thereof, although virtually any Cl-10 alcohol can be used.
- Bio-diesel is commonly produced by the reaction of a material of biological origin with alcohols in the presence of a suitable catalyst.
- a material of biological origin is natural triglycerides derived from plant or animal sources.
- the reaction of natural triglycerides with an alcohol to produce a fatty acid ester and glycerin is commonly referred to as transesterification.
- bio-diesel can be produced by the reaction of a fatty acid with an alcohol to form the fatty acid ester.
- the fatty acid segments of triglycerides are typically composed of C10-C24 fatty acids, where the fatty acid composition can be uniform or a mixture of various chain lengths.
- the bio-diesel may be produced from single sourced components, or blends of multiple triglyceride containing feed stocks.
- triglyceride is used generally to refer to any naturally occurring ester of a fatty acid and/or glycerol having the general formula CH 2 (OCORi)CH(OCOR2)CH2(OCOR 3 ), where R h R 2 , and R 3 are the same or different, and may vary in chain length.
- Vegetable oils such as for example, canola and soybean oils contain triglycerides with three fatty acid chains.
- Useful triglycerides in the present invention include, but are not limited to, triglycerides that may be converted to hydrocarbons when contacted under suitable reaction conditions.
- triglycerides useful in the present invention include, but are not limited to, vegetable oils including soybean and corn oil, peanut oil, sunflower seed oil, coconut oil, babassu oil, grape seed oil, poppy seed oil, almond oil, hazelnut oil, walnut oil, olive oil, avocado oil, sesame oil, tall oil, cottonseed oil, palm oil, rice bran oil, canola oil, cocoa butter, shea butter, butyrospermum, wheat germ oil, illipse butter, meadowfoam, seed oil, rapeseed oil, borange seed oil, linseed oil, castor oil, vernoia oil, tung oil, jojoba oil, ongokea oil, Jatropha oil, algae oil, yellow grease (for example, as those derived from used cooking oils), and animal fats, such as tallow animal fat, beef fat, and milk fat, and the like and mixtures and combinations thereof.
- vegetable oils including soybean and corn oil, peanut oil, sunflower seed oil, coconut oil, babassu oil, grape
- a renewable based component may be a renewable diesel that is produced by hydrotreating triglyceride containing feedstock in the presence of a suitable catalyst.
- Useful catalyst compositions for the hydrotreating process include any catalysts which may be effective in the conversion of triglycerides to hydrocarbons (e.g. renewable diesel) when contacted under suitable reaction conditions.
- suitable catalysts include hydrotreating catalysts.
- hydrotreating catalysts useful in one embodiment of the present invention include, but are not limited to, materials containing compounds selected from Group VI and Group VIII metals, and their oxides and sulfides.
- suitable support materials for the hydrogenation catalysts include, but are not limited to, silica, silica-alumina, aluminum oxide (A1 2 0 3 ), silica-magnesia, silica-titania and acidic zeolites of natural or synthetic origin.
- hydrotreating catalysts include but are not limited to alumina supported cobalt- molybdenum, nickel sulfide, nickel-tungsten, cobalt-tungsten and nickel-molybdenum.
- Other catalysts useful in the present invention are sorbent compositions. Sorbent compositions can be used in either the fixed-bed reactor or the fluidized bed reactor embodiments.
- the reaction zone may comprise any suitable type of reactor.
- Exemplary reactors include fixed bed reactors and fluidized bed reactors.
- the reaction conditions at which the reaction zone is maintained generally include a temperature in the range of from about 260°C to about 430°C. In another embodiment, the temperature is in the range of from about 300°C to about 400°C.
- the reaction conditions at which the reaction zone is maintained generally include a pressure less than about 2000 psig, and more particularly between about 100 psig to about 750 psig.
- the pressure is maintained between about 100 psig to about 350 psig.
- the pressure is maintained between about 400 psig to about 750 psig.
- a cold flow property of fuel is a measure of the inherent handling and the use characteristics of a fuel at diminished temperature.
- the cold flow property of a given fuel is generally considered as the lowest temperature at which the given fuel can be utilized without causing operational difficulties.
- the cold flow properties of a given fuel is estimated by its cloud point (CP), pour point (PP) and its CFPP.
- the CP of a fuel is the point at which first visible crystals are detected in the fuel.
- the PP is a standardized term for the temperature at which oil, for example, mineral oil, diesel fuel or hydraulic oil, stops flowing upon cooling.
- the Cold Filter Plugging Point (CFPP) of a fuel is the temperature at and below which wax in the fuel will cause severe restrictions to flow through a filter screen. CFPP is believed to correlate well with vehicle operability at lower temperatures.
- the invention can be practiced at high renewable based fuel concentration, wherein the renewable based component is up to 100% by volume of the finished fuel blend.
- the renewable based component is typically up to about 50% by volume of the finished fuel blend, more typically up to about 35%) by volume of the finished fuel blend, and alternatively up to about 20%> by volume of the finished fuel blend.
- the invention is also applicable at renewable based component concentrations as low as about 15, 10, and 5%> by volume of the finished fuel blend, and even at very low renewable fuel concentrations as low as about 4, 3, 2, 1, and 0.5%) by volume of the finished fuel blend.
- the main components in renewable diesel are n-C15 to n-C18 paraffins.
- renewable diesel exhibits poor cold flow properties, e.g., CP, PP and CFPP.
- CP cold flow properties
- PP PP
- CFPP CFPP
- renewable diesel has little impact on the cold flow properties of petroleum diesel. This phenomenon has been successfully demonstrated on the blended fuel composition containing up to 20%> renewable based diesel. It is therefore discovered that the impact of renewable diesel on the cold flow properties of petroleum diesels depends on the boiling point range of the petroleum diesels. The higher the boiling point of petroleum diesel, the less the impact of renewable diesel on the cold flow properties.
- petroleum diesel has high percentage (e.g., > 20 %) of compounds with boiling points higher than renewable diesel (e.g. 626 °F)
- renewable diesel has little impact on the cold flow properties of petroleum diesel.
- petroleum diesel has high percentage (e.g., > 50%) products with boiling temperatures lower than renewable diesel (e.g., 519°F)
- blending renewable diesel has a big impact on the cold flow properties of petroleum diesel.
- the present invention is able to provide a more optimized method for improving the cold flow performance of a diesel fuel composition comprising renewable based component. It has now been found that by controlling the selection of the boiling point of the petroleum based diesel, the impact of the renewable based diesel on the cold flow properties of petroleum based diesels may be minimized or eliminated.
- Table 1 shows the CP, PP, CFPP and boiling point of tallow renewable diesel.
- tallow renewable diesel ⁇ 99% of the compounds boil below 626.2 °F. This is because the main components of renewable diesel are n-C15 to n-C18 paraffins, which have boiling points between 519°F and 602 °F, respectively.
- CP, PP and CFPP are 60 °F, 54 °F and 10 °C, respectively.
- Table 2 shows the impact of renewable diesel on the cold flow properties of diesel 1.
- CP, PP and CFPP all increased rapidly with renewable diesel concentration.
- Boiling point of diesel 1 is shown in Table 3.
- boiling point of diesel 1 is low.
- 50%> of the compounds in diesel 1 is lighter than tallow renewable diesel and less than 5% is heavier than renewable diesel. Therefore, blending renewable diesel has a big impact on cold flow properties of petroleum diesel.
- Table 4 shows the impact of renewable diesel on the cold flow properties of diesel 2.
- CP, PP and CFPP all increased with renewable diesel concentration.
- the impact of renewable diesel on the cold flow properties of diesel 2 is smaller than that of diesel 1.
- Boiling point of diesel 2 is shown in Table 5.
- the boiling point of diesel 2 is still low. For example, ⁇ 45% of the compounds in diesel 2 are lighter than tallow renewable diesel and ⁇ 10% is heavier than renewable diesel. Therefore, blending renewable diesel still has impact on cold flow properties of petroleum diesel.
- the boiling point of diesel 2 is higher than that of diesel 1 , the impact of renewable diesel on the cold flow properties of diesel 2 is smaller than that of diesel 1.
- Table 6 shows the impact of renewable diesel on the cold flow properties of diesel 3.
- Renewable diesel has little impact on the cold flow properties of petroleum diesel up to 20 volume%>.
- Boiling point of diesel 3 is shown in Table 7.
- renewable diesel on the cold flow properties of petroleum diesels depends on the boiling point range of the petroleum diesels. The higher the boiling point of petroleum diesel, the less the impact of renewable diesel on the cold flow properties.
- petroleum diesel has high percentage (e.g., > 20 %) of compounds with boiling points higher than renewable diesel (e.g. 626 °F), renewable diesel has little impact on the cold flow properties of petroleum diesel.
- petroleum diesel has high percentage (e.g., > 50%>) products with boiling temperatures lower than renewable diesel (e.g., 519°F)
- blending renewable diesel has a big impact on the cold flow properties of petroleum diesel.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Combustion & Propulsion (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2010325135A AU2010325135A1 (en) | 2009-11-30 | 2010-10-29 | A blended fuel composition having improved cold flow properties |
| CA2775148A CA2775148A1 (fr) | 2009-11-30 | 2010-10-29 | Composition de carburant melange ayant des proprietes d'ecoulement a froid ameliorees |
| BR112012013032A BR112012013032A2 (pt) | 2009-11-30 | 2010-10-29 | composição de combustível misturada com propriedades de fluxo a frio melhoradas |
| EP10833750.2A EP2507348A4 (fr) | 2009-11-30 | 2010-10-29 | Composition de carburant mélangé ayant des propriétés d'écoulement à froid améliorées |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US26507609P | 2009-11-30 | 2009-11-30 | |
| US61/265,076 | 2009-11-30 | ||
| US12/915,502 US20110126449A1 (en) | 2009-11-30 | 2010-10-29 | Blended fuel composition having improved cold flow properties |
| US12/915,502 | 2010-10-29 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011066058A1 true WO2011066058A1 (fr) | 2011-06-03 |
Family
ID=44066849
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2010/054757 Ceased WO2011066058A1 (fr) | 2009-11-30 | 2010-10-29 | Composition de carburant mélangé ayant des propriétés d'écoulement à froid améliorées |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20110126449A1 (fr) |
| EP (1) | EP2507348A4 (fr) |
| AU (1) | AU2010325135A1 (fr) |
| BR (1) | BR112012013032A2 (fr) |
| CA (1) | CA2775148A1 (fr) |
| WO (1) | WO2011066058A1 (fr) |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2651470A1 (fr) * | 2006-05-05 | 2007-11-15 | Bioecon International Holding N.V. | Materiau polymere d'origine photosynthetique comprenant un materiau inorganique particulaire |
| US9447350B2 (en) | 2010-10-29 | 2016-09-20 | Inaeris Technologies, Llc | Production of renewable bio-distillate |
| US9382489B2 (en) | 2010-10-29 | 2016-07-05 | Inaeris Technologies, Llc | Renewable heating fuel oil |
| US9315739B2 (en) | 2011-08-18 | 2016-04-19 | Kior, Llc | Process for upgrading biomass derived products |
| US20130118058A1 (en) * | 2011-05-10 | 2013-05-16 | Thu Thi Le Nguyen | Diesel microemulsion biofuels |
| US10427069B2 (en) | 2011-08-18 | 2019-10-01 | Inaeris Technologies, Llc | Process for upgrading biomass derived products using liquid-liquid extraction |
| FI20110300A0 (fi) * | 2011-09-11 | 2011-09-11 | Neste Oil Oyj | Bensiinikoostumukset ja menetelmä niiden valmistamiseksi |
| US20130212931A1 (en) * | 2012-02-16 | 2013-08-22 | Baker Hughes Incorporated | Biofuel having improved cold flow properties |
| US9534181B2 (en) | 2012-06-19 | 2017-01-03 | Inaeris Technologies, Llc | Method of using renewable fuel composition |
| US9624446B2 (en) | 2012-06-19 | 2017-04-18 | Inaeris Technologies, Llc | Low temperature property value reducing compositions |
| WO2014149117A2 (fr) | 2012-12-28 | 2014-09-25 | Exxonmobil Research And Engineering Company | Mélange de biocarburants déparaffinés avec des fractions de distillats de kérosène (aviation) minéraux pour former des carburants aviation répondant aux spécifications |
| US9051525B2 (en) * | 2013-01-25 | 2015-06-09 | Kior, Inc. | Composition for reducing polynuclear aromatic hydrocarbon emissions |
| FI127519B (en) * | 2015-12-31 | 2018-08-15 | Neste Oyj | Process for producing high octane fuel component from renewable raw material |
| CN109642167A (zh) * | 2016-08-26 | 2019-04-16 | 奈斯特化学公司 | 一种用于制造燃料组分的方法 |
| FI127307B2 (en) | 2017-01-27 | 2024-12-10 | Neste Oyj | Fuel compositions with improved cold properties and methods for their production |
| FI131083B1 (en) | 2018-11-28 | 2024-09-16 | Neste Oyj | A method of preparing a marine fuel mixture |
| EP3969543A1 (fr) * | 2019-05-15 | 2022-03-23 | Steeper Energy ApS | Mélange d'hydrocarbures contenant des constituants fossiles et renouvelables et procédé de production d'un tel mélange |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4992605A (en) * | 1988-02-16 | 1991-02-12 | Craig Wayne K | Production of hydrocarbons with a relatively high cetane rating |
| US20040231237A1 (en) * | 2001-07-02 | 2004-11-25 | Boer Jake De | Biodiesel-fischer-tropsch hydrocarbon blend |
| US20050210739A1 (en) * | 2004-03-09 | 2005-09-29 | Conocophillips Company | Blends of synthetic distillate and biodiesel for low nitrogen oxide emissions from diesel engines |
| US7014668B2 (en) * | 1999-09-06 | 2006-03-21 | Agrofuel Ab | Motor fuel for diesel, gas-turbine and turbojet engines |
| US20090145392A1 (en) * | 2007-11-30 | 2009-06-11 | Clark Richard Hugh | Fuel formulations |
| US20090300974A1 (en) * | 2006-07-11 | 2009-12-10 | Innospec, Inc. | Stabilizer compositions for blends of petroleum and renewable fuels |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7754931B2 (en) * | 2005-09-26 | 2010-07-13 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources | Production of high-cetane diesel fuel from low-quality biomass-derived feedstocks |
| EP1956070A4 (fr) * | 2005-11-30 | 2013-06-19 | Nippon Oil Corp | Composition de gasoil |
| DE102006016588A1 (de) * | 2006-04-06 | 2007-10-18 | Rohmax Additives Gmbh | Kraftstoffzusammensetzungen umfassend nachwachsende Rohstoffe |
| EP2099884A4 (fr) * | 2006-11-21 | 2011-08-10 | Amyris Inc | Compositions de carburant pour aviation et leurs procédés de fabrication et d'utilisation |
| US20080163542A1 (en) * | 2007-01-08 | 2008-07-10 | Innospec, Inc. | Synergistic fuel composition for enhancing fuel cold flow properties |
| WO2009014859A2 (fr) * | 2007-06-29 | 2009-01-29 | Energy & Environmental Research Center Foundation | Kérosène de qualité aviation obtenu à partir de mélanges produits indépendamment |
| US8152868B2 (en) * | 2007-12-20 | 2012-04-10 | Shell Oil Company | Fuel compositions |
| NZ588113A (en) * | 2008-04-07 | 2012-05-25 | Gunnerman Rudolf W | Process for conversion of biogas to liquid fuel by passing it through a heated petroleum fraction with a transition metal catalyst |
-
2010
- 2010-10-29 EP EP10833750.2A patent/EP2507348A4/fr not_active Withdrawn
- 2010-10-29 CA CA2775148A patent/CA2775148A1/fr not_active Abandoned
- 2010-10-29 US US12/915,502 patent/US20110126449A1/en not_active Abandoned
- 2010-10-29 WO PCT/US2010/054757 patent/WO2011066058A1/fr not_active Ceased
- 2010-10-29 BR BR112012013032A patent/BR112012013032A2/pt not_active IP Right Cessation
- 2010-10-29 AU AU2010325135A patent/AU2010325135A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4992605A (en) * | 1988-02-16 | 1991-02-12 | Craig Wayne K | Production of hydrocarbons with a relatively high cetane rating |
| US7014668B2 (en) * | 1999-09-06 | 2006-03-21 | Agrofuel Ab | Motor fuel for diesel, gas-turbine and turbojet engines |
| US20040231237A1 (en) * | 2001-07-02 | 2004-11-25 | Boer Jake De | Biodiesel-fischer-tropsch hydrocarbon blend |
| US20050210739A1 (en) * | 2004-03-09 | 2005-09-29 | Conocophillips Company | Blends of synthetic distillate and biodiesel for low nitrogen oxide emissions from diesel engines |
| US20090300974A1 (en) * | 2006-07-11 | 2009-12-10 | Innospec, Inc. | Stabilizer compositions for blends of petroleum and renewable fuels |
| US20090145392A1 (en) * | 2007-11-30 | 2009-06-11 | Clark Richard Hugh | Fuel formulations |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2507348A4 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2775148A1 (fr) | 2011-06-03 |
| EP2507348A4 (fr) | 2014-12-10 |
| BR112012013032A2 (pt) | 2016-11-22 |
| AU2010325135A1 (en) | 2012-05-10 |
| EP2507348A1 (fr) | 2012-10-10 |
| US20110126449A1 (en) | 2011-06-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20110126449A1 (en) | Blended fuel composition having improved cold flow properties | |
| JP7693735B2 (ja) | 炭化水素組成物 | |
| Sotelo-Boyás et al. | Hydroconversion of triglycerides into green liquid fuels | |
| Maher et al. | Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals | |
| US7550634B2 (en) | Process for converting triglycerides to hydrocarbons | |
| EP1795576B1 (fr) | Procédé de préparation d'hydrocarbures | |
| AU2008363825B2 (en) | Hydroprocessing of biodiesel fuels and blends | |
| RU2567241C2 (ru) | Биогенное топливо для турбореактивных двигателей и дизелей | |
| KR20080012831A (ko) | 식물성 또는 동물성 오일로부터 디젤 연료의 제조 | |
| KR20110081246A (ko) | 운점이 낮은 하이브리드 디젤 바이오연료의 생산을 위한 디젤 연료와 식물유의 코프로세싱 | |
| CA2832285C (fr) | Melange de carburant renouvelable a point d'ecoulement bas | |
| US20110077436A1 (en) | Pretreatment of oils and/or fats | |
| da Silva et al. | Catalytic upgrading of fats and vegetable oils for the production of fuels | |
| CN101768465A (zh) | 一种清洁柴油制备方法及其产品 | |
| JP6085298B2 (ja) | 再生可能な供給原料の改善された水素化処理 | |
| El Khatib et al. | Hydrocracking of jojoba oil for green fuel production | |
| Usman et al. | Nickel-Based Catalysts for Deoxygenation of Biorefinery Products to Renewable Fuels: A Mini Review | |
| WO2014065765A1 (fr) | Procédé de production de carburant diesel en utilisant une ou plusieurs sources de carburant dérivé de matières renouvelables | |
| WO2024126893A1 (fr) | Composition d'hydrocarbures | |
| WO2025247757A1 (fr) | Composant de carburéacteur | |
| Solymosi et al. | Investigations of bio-gasoil production | |
| US20110237851A1 (en) | Thermal cracking of impurities in triglyceride feedstock |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10833750 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010833750 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2775148 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010325135 Country of ref document: AU |
|
| ENP | Entry into the national phase |
Ref document number: 2010325135 Country of ref document: AU Date of ref document: 20101029 Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012013032 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112012013032 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120530 |