WO2011056740A1 - Quinazoline compounds - Google Patents
Quinazoline compounds Download PDFInfo
- Publication number
- WO2011056740A1 WO2011056740A1 PCT/US2010/054927 US2010054927W WO2011056740A1 WO 2011056740 A1 WO2011056740 A1 WO 2011056740A1 US 2010054927 W US2010054927 W US 2010054927W WO 2011056740 A1 WO2011056740 A1 WO 2011056740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino
- methyl
- alkyl
- quinazolinyl
- methyloxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 CNS(c1cc(Nc2c(C=C*(C=C3)[N+]([O-])=O)c3ncn2)c(*)cc1)(=O)=O Chemical compound CNS(c1cc(Nc2c(C=C*(C=C3)[N+]([O-])=O)c3ncn2)c(*)cc1)(=O)=O 0.000 description 4
- CUTDVRNTTBYVDZ-UHFFFAOYSA-N CNS(c(cc1)cc(Nc2ncnc(cc3OCc4ccccc4)c2cc3OC)c1OCC(F)(F)F)(=O)=O Chemical compound CNS(c(cc1)cc(Nc2ncnc(cc3OCc4ccccc4)c2cc3OC)c1OCC(F)(F)F)(=O)=O CUTDVRNTTBYVDZ-UHFFFAOYSA-N 0.000 description 1
- AWWJQWXSWOWSQP-UHFFFAOYSA-N CNS(c(cc1N)ccc1OCC(F)(F)F)(=O)=O Chemical compound CNS(c(cc1N)ccc1OCC(F)(F)F)(=O)=O AWWJQWXSWOWSQP-UHFFFAOYSA-N 0.000 description 1
- RMNSHLCXEJWRHQ-UHFFFAOYSA-N COC(c(c(OC)c(c(OC)c1)OC)c1N)=O Chemical compound COC(c(c(OC)c(c(OC)c1)OC)c1N)=O RMNSHLCXEJWRHQ-UHFFFAOYSA-N 0.000 description 1
- JLFAHVDBMXMNLK-UHFFFAOYSA-N COc(c(OC)c1OC)cc(N=CN2)c1C2=O Chemical compound COc(c(OC)c1OC)cc(N=CN2)c1C2=O JLFAHVDBMXMNLK-UHFFFAOYSA-N 0.000 description 1
- LBGIYCBNJBHZSZ-UHFFFAOYSA-N COc(c(OCc1ccccc1)c1)cc2c1ncnc2Cl Chemical compound COc(c(OCc1ccccc1)c1)cc2c1ncnc2Cl LBGIYCBNJBHZSZ-UHFFFAOYSA-N 0.000 description 1
- GQBCDMUMKMBTME-UHFFFAOYSA-N COc1cc(N)c(C(O)=O)c(OC)c1OC Chemical compound COc1cc(N)c(C(O)=O)c(OC)c1OC GQBCDMUMKMBTME-UHFFFAOYSA-N 0.000 description 1
- XEFRNCLPPFDWAC-UHFFFAOYSA-N COc1cc(N)cc(OC)c1OC Chemical compound COc1cc(N)cc(OC)c1OC XEFRNCLPPFDWAC-UHFFFAOYSA-N 0.000 description 1
- XZLYLEIECXYKNJ-UHFFFAOYSA-N COc1cc(NC(C2=O)=O)c2c(OC)c1OC Chemical compound COc1cc(NC(C2=O)=O)c2c(OC)c1OC XZLYLEIECXYKNJ-UHFFFAOYSA-N 0.000 description 1
- MUIRIRMDOFREES-UHFFFAOYSA-N COc1cc2ncnc(Cl)c2c(OC)c1OC Chemical compound COc1cc2ncnc(Cl)c2c(OC)c1OC MUIRIRMDOFREES-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/70—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
- C07D239/72—Quinazolines; Hydrogenated quinazolines
- C07D239/86—Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
- C07D239/94—Nitrogen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/517—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/056—Ortho-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring
Definitions
- the present invention relates to compounds that inhibit TNNI3K and methods of making and using the same. Specifically, the present invention relates to quinazolines as TNNI3K inhibitors.
- Cardiac troponin l-interacting kinase (TNNI3K), also known as CARK (for cardiac ankyrin repeat kinase), is a protein kinase that exhibits highly selective expression for cardiac tissues and has been shown to interact with components of the sarcomere, including troponin I (Zhao, Y. et al., J. Mol. Med., 2003, 81, 297-304; Feng, Y. et al., Gen. Physiol. Biophys., 2007, 26, 104-109; Wang, H. et al., J. Cell. Mol. Med., 2008, 12, 304- 315).
- TNNI3K a cardiac-specific kinase, promotes cardiac hypertrophy in vivo
- Inhibition of the kinase activity of TNNI3K may disrupt these signaling pathways, and enable the mitigation and/or reversal of cardiac hypertrophy seen in patients with progressively worsening heart failure.
- the heart In response to mechanical, neurohormonal, and genetic stimuli, the heart will undergo hypertrophy, or muscle growth and remodeling, in order to maintain sufficient cardiac output to meet tissue oxygen demands. While these structural changes are initially seen as compensatory, sustained dysregulation of hypertrophic signaling can lead to heart failure, the pathophysiogical state in which the heart can no longer adequately function as a pump (Mudd, J. O. and Kass, D. A., Nature, 2008, 451, 919-928).
- Heart failure is responsible for a reduced quality of life and premature death in a significant proportion of sufferers, and is characterized by impaired cardiac function either due to reduced pump function (systolic dysfunction) or reduced filling (diastolic
- Congestive heart failure is characterized by impaired left ventricular function, increased peripheral and pulmonary vascular resistance and reduced exercise tolerance and dyspnea. The prevalence of heart failure is anticipated to increase with ageing populations, prompting a need for new and improved methods of treating heart failure.
- the invention is directed to novel quinazolines. Specifically, the invention is directed to a compound according to Formula I:
- R 1 is (C 1 -C 4 )alkyl
- R 2 is H or halogen
- R 3 is H, halogen, (C 1 -C 8 )alkyl, (C 1 -C 8 )haloalkyl, hydroxyl, hydroxy(C 1 -C 8 )alkyl-,
- phenyl or heteroaryl is optionally substituted one to three times, independently, by halogen, (d-C 6 )alkyl, (C 1 -C 4 )haloalkyl, (C 1 -C 6 )alkoxy,
- each R a is independently (C 1 -C 4 )alkyl, wherein said (C 1 -C 4 )alkyl is optionally substituted one to three times, independently, by halogen, hydroxyl, (C 1 -C 6 )alkoxy, amino, (C 1 -C 6 )alkylamino, ((C 1 -C 6 )alkyl)((C 1 -C 6 )alkyl)amino, -C0 2 H, -C0 2 (C 1 -C 6 )alkyl, -CONH 2 , -CONH(C 1 -C 6 )alkyl, or -CON((C 1 -C 6 )alkyl)((C 1 -C 6 )alkyl), and
- R b is (C 1 -C 4 )alkyl
- R a and R b taken together with the nitrogen atom to which they are attached form a 5-membered or 6-membered heterocyclic ring, optionally containing one additional heteroatom selected from nitrogen, oxygen and sulfur, wherein said ring is optionally substituted one or two times, independently, by halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, amino, (C 1 -C 4 )alkylamino, ((C 1 -C 4 )alkyl)((C 1 -C 4 )alkyl)amino, hydroxyl,
- R 4 is H
- R 5 , R 6 , and R 7 are each, independently, H, halogen, nitro, amino,
- each R c is, independently, (C 1 -C 8 )alkyl or a 5-6 membered heterocycloalkyl, wherein said (C 1 -C 8 )alkyl is optionally substituted one to three times, independently, by halogen, hydroxyl, (C 1 -C 4 )alkoxy, amino, (C 1 -C 4 )alkylamino, or -N(R a )(R b );
- R 6 and R 7 taken together represent -0(C 1 -C 2 )alkylO-;
- the compounds of the invention are inhibitors of TNNI3K and can be useful for the treatment of cardiac diseases and disorders, particularly heart failure. Accordingly, the invention is further directed to pharmaceutical compositions comprising a compound of the invention. The invention is still further directed to methods of inhibiting TNNI3K and treatment of conditions associated therewith using a compound of the invention or a pharmaceutical composition comprising a compound of the invention.
- alkyl represents a saturated, straight or branched hydrocarbon moiety, which may be unsubstituted or substituted by one, or more of the substituents defined herein.
- exemplary alkyls include, but are not limited to methyl (Me), ethyl (Et), propyl, isopropyl, butyl, isobutyl, f-butyl and pentyl.
- C 1 -C 4 refers to an alkyl containing from 1 to 4 carbon atoms.
- alkyl When the term “alkyl” is used in combination with other substituent groups, such as “haloalkyl” or “hydroxyalkyl” or “arylalkyl”, the term “alkyl” is intended to encompass a divalent straight or branched-chain hydrocarbon radical.
- arylalkyl is intended to mean the radical -alkylaryl, wherein the alkyl moiety thereof is a divalent straight or branched-chain carbon radical and the aryl moiety thereof is as defined herein, and is represented by the bonding arrangement present in a benzyl group (-CH 2 -phenyl).
- cycloalkyl refers to a non-aromatic, saturated, cyclic hydrocarbon ring.
- (C 3 -C 8 )cycloalkyl refers to a non-aromatic cyclic
- hydrocarbon ring having from three to eight ring carbon atoms.
- (C 3 -C 8 )cycloalkyl groups useful in the present invention include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
- Alkoxy refers to a group containing an alkyl radical attached through an oxygen linking atom.
- (C 1 -C 4 )alkoxy refers to a straight- or branched-chain hydrocarbon radical having at least 1 and up to 4 carbon atoms attached through an oxygen linking atom.
- Exemplary "(d-C 4 )alkoxy" groups useful in the present invention include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, s-butoxy, and f-butoxy.
- Alkylthio- refers to a group containing an alkyl radical attached through a sulfur linking atom.
- the term "(C 1 -C 4 )alkylthio-” refers to a straight- or branched-chain hydrocarbon radical having at least 1 and up to 4 carbon atoms attached through a sulfur linking atom.
- Exemplary "(C 1 -C 4 )alkylthio-” groups useful in the present invention include, but are not limited to, methylthio-, ethylthio-, n-propylthio-, isopropylthio-, n-butylthio-, s-butylthio-, and f-butylthio-.
- the term "(C 1 -C 4 )alkylsulfonyl” refers to a straight- or branched-chain hydrocarbon radical having at least 1 and up to 4 carbon atoms attached through a sulfonyl radical.
- Exemplary "(C 1 -C 4 )alkylsulfonyl” groups useful in the present invention include, but are not limited to, methanesulfonyl, ethanesulfonyl, propanesulfonyl, and butanesulfonyl.
- Cycloalkyloxy and “cycloalkylthio” refers to a group containing a saturated carbocyclic ring atoms attached through an oxygen or sulfur linking atom, respectively.
- Examples of “cycloalkyloxy” moieties include, but are not limited to, cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy, and the like.
- Aryl represents a group or moiety comprising an aromatic, monovalent monocyclic or bicyclic hydrocarbon radical containing from 6 to 10 carbon ring atoms, which may be unsubstituted or substituted by one or more of the substituents defined herein, and to which may be fused one or more cycloalkyl rings, which may be
- aryl is phenyl
- Heterocyclic groups may be heteroaryl or heterocycloalkyl groups.
- Heterocycloalkyl represents a group or moiety comprising a non-aromatic, monovalent monocyclic or bicyclic radical, which is saturated or partially unsaturated, containing 3 to 10 ring atoms, which includes 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur, and which may be unsubstituted or substituted by one or more of the substituents defined herein.
- heterocycloalkyls include, but are not limited to, azetidinyl, pyrrolidyl (or pyrrolidinyl), piperidinyl, piperazinyl, morpholinyl, tetrahydro-4H-1 ,4-thiazinyl, tetrahydrofuryl (or tetrahydrofuranyl), dihydrofuryl, oxazolinyl, thiazolinyl, pyrazolinyl, tetrahydropyranyl, dihydropyranyl, 1 ,3-dioxolanyl, 1 ,3-dioxanyl, 1 ,4- dioxanyl, 1 ,3-oxathiolanyl, 1 ,3-oxathianyl, 1 ,3-dithianyl, azabicylo[3.2.1 ]octyl,
- heterocycloalkyi groups are
- 5-membered and/or 6-membered heterocycloalkyi groups such as pyrrolidyl (or pyrrolidinyl), tetrahydrofuryl (or tetrahydrofuranyl), tetrahydrothienyl, dihydrofuryl, oxazolinyl, thiazolinyl, pyrazolinyl, piperidyl (or piperidinyl), piperazinyl, morpholinyl, tetrahydropyranyl, dihydropyranyl, 1 ,3-dioxanyl, tetrahydro-4H-1 ,4-thiazinyl, 1 ,4-dioxanyl, 1 ,3-oxathianyl, and 1 ,3-dithianyl.
- pyrrolidyl or pyrrolidinyl
- tetrahydrofuryl or tetrahydrofuranyl
- Heteroaryl represents a group or moiety comprising an aromatic monovalent monocyclic or bicyclic radical, containing 5 to 10 ring atoms, including 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur, which may be unsubstituted or substituted by one or more of the substituents defined herein.
- This term also encompasses bicyclic heterocyclic-aryl compounds containing an aryl ring moiety fused to a heterocycloalkyi ring moiety, containing 5 to 10 ring atoms, including 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur, which may be unsubstituted or substituted by one or more of the substituents defined herein.
- heteroaryls include, but are not limited to, thienyl, pyrrolyl, imidazolyl, pyrazolyl, furyl (or furanyl), isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridyl (or pyridinyl), pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, benzo[b]thienyl, isobenzofuryl, 2,3- dihydrobenzofuryl, chromenyl, chromanyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, isoquinolyl, quinolyl, phthalazinyl, naphthridinyl, quinazolinyl,
- benzimidazolyl tetrahydroquinolinyl, cinnolinyl, pteridinyl, and isothiazolyl.
- heteroaryl groups present in the compounds of this invention are 5-membered and/or 6-memebred monocyclic heteroaryl groups.
- Selected 5-membered heteroaryl groups contain one nitrogen, oxygen or sulfur ring heteroatom, and optionally contain 1 , 2 or 3 additional nitrogen ring atoms.
- Selected 6-membered heteroaryl groups contain 1 , 2, 3 or 4 nitrogen ring heteroatoms.
- Selected 5- or 6-membered heteroaryl groups include thienyl, pyrrolyl, imidazolyl, pyrazolyl, furyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, thiazolyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl.
- halogen and halo represent chloro, fluoro, bromo or iodo substituents.
- Hydrox or hydroxyl is intended to mean the radical -OH.
- compound(s) of the invention means a compound of formula (I) (as defined above) in any form, i.e., any salt or non-salt form (e.g., as a free acid or base form, or as a pharmaceutically acceptable salt thereof) and any physical form thereof (e.g., including non-solid forms (e.g., liquid or semi-solid forms), and solid forms (e.g., amorphous or crystalline forms, specific polymorphic forms, solvates, including hydrates (e.g., mono-, di- and hemi- hydrates)), and mixtures of various forms.
- any salt or non-salt form e.g., as a free acid or base form, or as a pharmaceutically acceptable salt thereof
- any physical form thereof e.g., including non-solid forms (
- the invention is further directed to a compound according to Formula I, wherein: R 1 is (C 1 -C 4 )alkyl;
- R 2 is H or halogen
- R 3 is H, halogen, (d-C 4 )alkoxy, (C 5 -C 6 )cycloalkyloxy, (C 1 -C 4 )haloalkoxy,
- each R a is independently (C 1 -C 4 )alkyl, wherein said (C 1 -C 4 )alkyl is optionally substituted one to three times, independently, by halogen, hydroxyl, (C 1 -C 4 )alkoxy, amino, (C 1 -C 4 )alkylamino, ((C 1 -C 4 )alkyl)((C 1 -C 4 )alkyl)amino, -C0 2 H, -C0 2 (C 1 -C 4 )alkyl, -CONH 2 , -CONH(C 1 -C 4 )alkyl, or -CON((C 1 -C 4 )alkyl)((C 1 -C 4 )alkyl), and
- R b is (C 1 -C 4 )alkyl
- R a and R b taken together with the nitrogen atom to which they are attached form a 5-membered or 6-membered heterocyclic ring, optionally containing one additional heteroatom selected from nitrogen, oxygen and sulfur, wherein said ring is optionally substituted one or two times, independently, by halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, amino, (C 1 -C 4 )alkylamino, ((C 1 -C 4 )alkyl)((C 1 -C 4 )alkyl)amino, hydroxyl,
- R 4 is H
- R 5 , R 6 , and R 7 are each, independently, H, halogen, nitro, amino,
- each R c is, independently, (C 1 -C 4 )alkyl, pyrrolidinyl, tetrahydrofuranyl,
- R 6 and R 7 taken together represent -0(C 1 -C 2 )alkylO-;
- R 1 is (C 1 -C 4 )alkyl
- R 2 is H
- R 3 is H, halogen, (d-C 8 )alkyl, (C 1 -C 8 )haloalkyl, hydroxyl, hydroxy(C 1 -C 8 )alkyl-, (C 1 -C 8 )alkoxy, (C 3 -C 8 )cycloalkyloxy, (C 1 -C 8 )haloalkoxy, (C 1 -C 8 )alkylthio-,
- each R a is independently (C 1 -C 4 )alkyl, wherein said (C 1 -C 4 )alkyl is optionally substituted one to three times, independently, by halogen, hydroxyl, (C 1 -C 6 )alkoxy, amino, (C 1 -C 6 )alkylamino, ((C 1 -C 6 )alkyl)((C 1 -C 6 )alkyl)amino, -C0 2 H, -C0 2 (C 1 -C 6 )alkyl, -CONH 2 , -CONH(C C 6 )alkyl, or -CON((C 1 -C 6 )alkyl)((C 1 -C 6 )alkyl), and
- R b is (C C 4 )alkyl
- R a and R b taken together with the nitrogen atom to which they are attached form a 5-membered or 6-membered heterocyclic ring, optionally containing one additional heteroatom selected from nitrogen, oxygen and sulfur, wherein said ring is optionally substituted one or two times, independently, by halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, amino, (C 1 -C 4 )alkylamino, ((C 1 -C 4 )alkyl)((C 1 -C 4 )alkyl)amino, hydroxyl,
- R 4 is H
- R 5 is H
- R 6 and R 7 are each OR c ;
- each R c is, independently, (C 1 -C 8 )alkyl, optionally substituted one to three times, independently, by halogen, hydroxyl, (C 1 -C 4 )alkoxy, amino, (C 1 -C 4 )alkylamino, or
- R 1 is (C1-C3 alkyl);
- R 2 is H
- R 3 is H, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, hydroxyC 1 -Ce alkyl-, C 1 -C 6 alkoxy, (C 3 -C 6 )cycloalkyloxy, C 1 -C 6 haloalkoxy, C 1 -C 6 alkylthio-, (C 3 -C 6 )cycloalkylthio-,
- heteroaryl contains one heteroatom selected from N, O and S, or contains one nitrogen atom and optionally contains 1 additional heteroatom selected from N, O and S, or contains two nitrogen atoms and optionally contains 1 additional heteroatom selected from N, O and S; and said phenyl or heteroaryl is optionally substituted one to three times, independently, by halogen, (C 1 -C 6 )alkyl, (C 1 -C 4 )haloalkyl, or -N(R a )(R b );
- each R a is independently (C 1 -C 4 )alkyl, wherein said (C 1 -C 4 )alkyl is optionally substituted by hydroxyl, trifluoromethyl, (C 1 -C 6 )alkoxy, amino, ( C 1 -C 6 )alkylamino, or ((C 1 -C 6 )alkyl)(( C 1 -C 6 )alkyl)amino, and
- R b is (C 1 -C 4 )alkyl
- R a and R b taken together with the nitrogen atom to which they are attached form a 5-membered or 6-membered heterocyclic ring, optionally containing one additional heteroatom selected from nitrogen, oxygen and sulfur, wherein said ring is optionally substituted one or two times, independently, by (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl,
- R 4 is H
- R 5 is H
- R 6 and R 7 are each OR c ;
- each R c is, independently, (C 1 -C 4 )alkyl, optionally substituted one to three times, independently, by halogen;
- R 1 is -CH 3 .
- R 2 is H or F. In a further specific embodiment of this invention, R 2 is H.
- R 3 is H, halogen, (C 1 -C 6 )alkyl,
- R 3 is H, halogen, (C 1 -C 8 )alkyl
- R 3 is H, halogen, C 1 -C 6 alkyl,
- C 1 -C 6 haloalkyl hydroxyC 1 -C 6 alkyl-, C 1 -C 6 alkoxy, (C 3 -C 6 )cycloalkyloxy, C 1 -C 6 haloalkoxy, C 1 -C 6 alkylthio-, (C 3 -C 6 )cycloalkylthio-, C 1 -C 6 haloalkylthio-, phenyl, 5-membered heteroaryl, or -N(R a )(R b ), wherein said heteroaryl contains one heteroatom selected from N, O and S, or contains one nitrogen atom and optionally contains 1 additional heteroatom selected from N, O and S, or contains two nitrogen atoms and optionally contains 1 additional heteroatom selected from N, O and S; and said phenyl or heteroaryl is optionally substituted one to three times, independently, by halogen, (C 1 -C 6 )alkyl,
- R 3 is H, halogen, (C 1 -C 4 )alkoxy, (C 5 -C 6 )cycloalkyloxy, (C C 4 )haloalkoxy, (d-d)alkylthio-, (d-d)haloalkylthio-,
- each R a is independently -CH 3 , -CH 2 CH 3 , or -CH 2 CF 3
- R b is -CH 3
- R a and R b taken together with the nitrogen to which they are attached represent pyrrolidin-1-yl, piperidin-1 -yl, or morpholin-4-yl, wherein said pyrrolidin-1 -yl, piperidin-1-yl, or morpholin-4-yl is optionally substituted one or two times, independently, by F, -CH 3 , or -CF 3 .
- R 3 is H, F, CI, -OCH 3 ,
- R 5 , R 6 , and R 7 are each, independently,
- R c is, independently, (d-d)alkyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, piperidinyl, piperazinyl, morpholinyl, tetrahydropyranyl, tetrahydro-4H-
- R 5 is H, CI, -OCH 3 , -OCH 2 CH 3 ,
- R 5 is H.
- R 6 and R 7 are each OR c ; and each R c is, independently, (d-C 8 )alkyl, optionally substituted one to three times, independently, by halogen, hydroxyl, (C 1 -C 4 )alkoxy, amino, (C 1 -C 4 )alkylamino, or
- R 6 and R 7 are each OR c ; and each R c is, independently, (C 1 -C 4 )alkyl, optionally substituted one to three times, independently, by halogen.
- R 6 and R 7 are each OR c ; and each R c is, independently, (C 1 -C 4 )alkyl, optionally substituted by (C 1 -C 4 )alkoxy.
- R 6 is H, CI, I, -OCH 3 , -OCH 2 CH 3 , -OCH(CH 3 ) 2 , -0(CH 2 ) 2 OCH 3 , -0(CH 2 ) 3 -morpholin-4-yl, -NH 2 , -NHCH 3 , or -N(CH 3 ) 2 .
- R 6 is H.
- R 7 is H, -OH, -OCH 3 ,
- R 6 and R 7 taken together represent -0(CH 2 ) 2 0-.
- Representative compounds of this invention include the compounds of Examples
- the compounds according to Formula I may contain one or more asymmetric center (also referred to as a chiral center) and may, therefore, exist as individual enantiomers, diastereomers, or other stereoisomeric forms, or as mixtures thereof.
- Chiral centers such as chiral carbon atoms, may also be present in a substituent such as an alkyl group.
- the stereochemistry of a chiral center present in Formula I, or in any chemical structure illustrated herein, is not specified the structure is intended to encompass all individual stereoisomers and all mixtures thereof.
- compounds according to Formula I containing one or more chiral center may be used as racemic mixtures, enantiomerically enriched mixtures, or as enantiomerically pure individual stereoisomers.
- Individual stereoisomers of a compound according to Formula I which contain one or more asymmetric center may be resolved by methods known to those skilled in the art. For example, such resolution may be carried out (1 ) by formation of diastereoisomeric salts, complexes or other derivatives; (2) by selective reaction with a stereoisomer-specific reagent, for example by enzymatic oxidation or reduction; or (3) by gas-liquid or liquid chromatography in a chiral environment, for example, on a chiral support such as silica with a bound chiral ligand or in the presence of a chiral solvent.
- stereoisomers may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer to the other by asymmetric transformation.
- polymorphism i.e. the capacity to occur in different crystalline forms. These different crystalline forms are typically known as "polymorphs.” It is to be understood that when named or depicted by structure, the disclosed compound, or solvates (particularly, hydrates) thereof, also include all polymorphs thereof. Polymorphs have the same chemical composition but differ in packing, geometrical arrangement, and other descriptive properties of the crystalline solid state. Polymorphs, therefore, may have different physical properties such as shape, density, hardness, deformability, stability, and dissolution properties. Polymorphs typically exhibit different melting points, IR spectra, and X-ray powder diffraction patterns, which may be used for identification. One of ordinary skill in the art will appreciate that different polymorphs may be produced, for example, by changing or adjusting the conditions used in crystallizing/recrystallizing the compound.
- solvates of the compounds of the invention, or salts thereof, that are in crystalline form may involve nonaqueous solvents such as ethanol, isopropanol, DMSO, acetic acid, ethanolamine, and ethyl acetate, or they may involve water as the solvent that is incorporated into the crystalline lattice.
- Solvates wherein water is the solvent that is incorporated into the crystalline lattice are typically referred to as "hydrates.” Hydrates include stoichiometric hydrates as well as compositions containing variable amounts of water. The invention includes all such solvates.
- the compounds of this invention are bases, wherein a desired salt form may be prepared by any suitable method known in the art, including treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, or with an organic acid, such as acetic acid, trifluoroacetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, pyranosidyl acid, such as glucuronic acid or galacturonic acid, alpha-hydroxy acid, such as citric acid or tartaric acid, amino acid, such as aspartic acid or glutamic acid, aromatic acid, such as benzoic acid or cinnamic acid, sulfonic acid, such as p-toluenesul
- an inorganic acid such as hydrochloric acid, hydrobromic acid, sulfuric acid
- Examples of pharmaceutically acceptable salts include sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, chlorides, bromides, iodides, acetates, propionates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates succinates, suberates, sebacates, fumarates, maleates, butyne-1 ,4-dioates, hexyne-1 ,6- dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates,
- hydroxybenzoates methoxybenzoates, phthalates, phenylacetates, phenylpropionates, phenylbutrates, citrates, lactates, ⁇ -hydroxybutyrates, glycollates, tartrates mandelates, and sulfonates, such as xylenesulfonates, methanesulfonates, propanesulfonates, naphthalene-1 -sulfonates and naphthalene-2-sulfonates.
- an inventive basic compound is isolated as a salt
- the corresponding free base form of that compound may be prepared by any suitable method known to the art, including treatment of the salt with an inorganic or organic base, suitably an inorganic or organic base having a higher pK a than the free base form of the compound.
- the compounds of Formula I may be obtained by using synthetic procedures illustrated in the Schemes below or by drawing on the knowledge of a skilled organic chemist.
- the synthesis provided in these Schemes are applicable for producing compounds of the invention having a variety of different R 1 and R 2 groups employing appropriate precursors, which are suitably protected if needed, to achieve compatibility with the reactions outlined herein. Subsequent deprotection, where needed, affords compounds of the nature generally disclosed. While the Schemes are shown with compounds only of Formula I, they are illustrative of processes that may be used to make the compounds of the invention.
- the compounds of Formula I can be prepared via common functional group transformations on advanced intermediates.
- the invention also includes various deuterated forms of the compounds of Formula I.
- Each available hydrogen atom attached to a carbon atom may be independently replaced with a deuterium atom.
- a person of ordinary skill in the art will know how to synthesize deuterated forms of the compounds of Formula I.
- deuterated alkyl groups e.g., A/-(deuteromethyl)amines or R a /R b alkyls
- R a /R b alkyls may be prepared by conventional techniques (see for example: methyl-c/3-amine available from Aldrich
- the present invention is directed to a method of inhibiting TNNI3K which comprises contacting the kinase with a compound of Formula I or a salt thereof, particularly a pharmaceutically acceptable salt thereof.
- This invention is also directed to a method of treatment of a TNNI3K-mediated disease or disorder comprising administering an effective amount of the compound of Formula I or a salt thereof, particularly a pharmaceutically acceptable salt thereof, to a patient, specifically a human, in need thereof.
- patient refers to a human or other mammal.
- this invention is directed to a method of inhibiting TNNI3K activity, comprising contacting the kinase with an effective amount of a compound of Formula I or a pharmaceutically acceptable salt thereof.
- TNNI3K activity may be inhibited in mammalian cardiac tissue by administering to a patient in need thereof, an effective amount a compound of Formula I or a pharmaceutically acceptable salt thereof.
- the compounds of this invention may be particularly useful for treatment of TNNI3K-mediated diseases or disorders, specifically by inhibition of TNNI3K activity, where such diseases or disorders are selected from heart failure, particularly congestive heart failure; cardiac hypertrophy; and heart failure or congestive heart failure resulting from cardiac hypertrophy.
- diseases or disorders are selected from heart failure, particularly congestive heart failure; cardiac hypertrophy; and heart failure or congestive heart failure resulting from cardiac hypertrophy.
- the compounds of this invention may also be useful for the treatment of heart failure or congestive heart failure resulting from myocardial ischemia or myocardial infarction.
- a therapeutically "effective amount” is intended to mean that amount of a compound that, when administered to a patient in need of such treatment, is sufficient to effect treatment, as defined herein.
- a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof is a quantity of an inventive agent that, when administered to a human in need thereof, is sufficient to modulate or inhibit the activity of TNNI3K such that a disease condition which is mediated by that activity is reduced, alleviated or prevented.
- the amount of a given compound that will correspond to such an amount will vary depending upon factors such as the particular compound (e.g., the potency (pXC 5 o), efficacy (EC 5 o), and the biological half-life of the particular compound), disease condition and its severity, the identity (e.g., age, size and weight) of the patient in need of treatment, but can nevertheless be routinely determined by one skilled in the art.
- the particular compound e.g., the potency (pXC 5 o), efficacy (EC 5 o), and the biological half-life of the particular compound
- disease condition and its severity e.g., the identity of the patient in need of treatment, but can nevertheless be routinely determined by one skilled in the art.
- duration of treatment and the time period of administration (time period between dosages and the timing of the dosages, e.g., before/with/after meals) of the compound will vary according to the identity of the mammal in need of treatment (e.g., weight), the particular compound and its properties (e.g., pharmaceutical characteristics), disease or condition and its severity and the specific composition and method being used, but can nevertheless be determined by one of skill in the art.
- Treating is intended to mean at least the mitigation of a disease condition in a patient, where the disease condition is caused or mediated by TNNI3K.
- the methods of treatment for mitigation of a disease condition include the use of the compounds in this invention in any conventionally acceptable manner, for example for prevention, retardation, prophylaxis, therapy or cure of a disease.
- the compounds of Formula I of this invention may be useful for the treatment of heart failure, particularly congestive heart failure.
- the compounds of Formula I of this invention may be useful for the treatment of cardiac hypertrophy, and heart failure or congestive heart failure resulting from cardiac hypertrophy, myocardial ischemia or myocardial infarction.
- the compounds of the invention may be administered by any suitable route of administration, including both systemic administration and topical administration.
- Systemic administration includes oral administration, parenteral administration, transdermal administration, rectal administration, and administration by inhalation.
- Parenteral administration refers to routes of administration other than enteral, transdermal, or by inhalation, and is typically by injection or infusion.
- Parenteral administration includes intravenous, intramuscular, and subcutaneous injection or infusion.
- Inhalation refers to administration into the patient's lungs whether inhaled through the mouth or through the nasal passages.
- Topical administration includes application to the skin.
- the compounds of the invention may be administered once or according to a dosing regimen wherein a number of doses are administered at varying intervals of time for a given period of time. For example, doses may be administered one, two, three, or four times per day. Doses may be administered until the desired therapeutic effect is achieved or indefinitely to maintain the desired therapeutic effect. Suitable dosing regimens for a compound of the invention depend on the pharmacokinetic properties of that compound, such as absorption, distribution, and half-life, which can be determined by the skilled artisan.
- suitable dosing regimens including the duration such regimens are administered, for a compound of the invention depend on the condition being treated, the severity of the condition being treated, the age and physical condition of the patient being treated, the medical history of the patient to be treated, the nature of concurrent therapy, the desired therapeutic effect, and like factors within the knowledge and expertise of the skilled artisan. It will be further understood by such skilled artisans that suitable dosing regimens may require adjustment given an individual patient's response to the dosing regimen or over time as individual patient needs change.
- Treatment of TNNI3K-mediated disease conditions may be achieved using the compounds of this invention as a monotherapy, or in dual or multiple combination therapy, such as in combination with other cardiovascular agents, for example, in combination with one or more of the following agents: a beta-blocker, an ACE inhibitor, an angiotensin receptor blocker (ARB), a calcium channel blocker, a diuretic, a renin inhibitor, a centrally acting antihypertensive, a dual ACE/NEP inhibitor, an aldosterone synthase inhibitor, and an aldosterone-receptor antagonist, which are administered in effective amounts as is known in the art.
- a beta-blocker an ACE inhibitor
- ARB angiotensin receptor blocker
- beta blockers examples include timolol (such as BLOCARDENTM), carteolol (such as CARTROLTM), carvedilol (such as COREGTM), nadolol (such as CORGARDTM), propanolol (such as INNOPRAN XLTM), betaxolol (such as KERLONETM), penbutolol (such as LEVATOLTM), metoprolol (such as LOPRESSORTM and TOPROL- XLTM), atenolol (such as TENORMINTM), pindolol (such as VISKENTM), bisoprolol, bucindolol, esmolol, acebutolol, labetalol, nebivolol, celiprolol, sotalol, and oxprenolol.
- timolol such as BLOCARDENTM
- carteolol such
- ACE inhibitors examples include alacepril, benazepril, benazaprilat, captopril, ceronapril, cilazapril, delapril, enalapril, enalaprilat, fosinopril, lisinopril, moexipiril, moveltopril, perindopril, quinapril, quinaprilat, ramipril, ramiprilat, spirapril, temocapril, trandolapril, and zofenopril.
- Preferred ACE inhibitors are benazepril, enalpril, lisinopril, and ramipril.
- angiotensin receptor blockers examples include candesartan, eprosartan, irbesartan, losartan, olmesartan, tasosartan, telmisartan, and valsartan.
- suitable calcium channel blockers include dihydropyridines (DHPs) and non- DHPs.
- DHPs include amlodipine, felodipine, ryosidine, isradipine, lacidipine, nicardipine, nifedipine, nigulpidine, niludipine, nimodiphine, nisoldipine, nitrendipine, and nivaldipine, and their pharmaceutically acceptable salts.
- Suitable non-DHPs are flunarizine, prenylamine, diltiazem, fendiline, gallopamil, mibefradil, anipamil, tiapamil, and verampimil, and their pharmaceutically acceptable salts.
- a suitable diuretic is a thiazide derivative selected from amiloride, chlorothiazide, hydrochlorothiazide,
- a suitable renin inhibitor is aliskiren.
- suitable centrally acting antiphypertensives include clonidine, guanabenz, guanfacine and methyldopa.
- suitable dual ACE/NEP inhibitors include omapatrilat, fasidotril, and fasidotrilat.
- suitable aldosterone synthase inhibitors include anastrozole, fadrozole, and exemestane.
- suitable aldosterone-receptor antagonists include spironolactone and eplerenone.
- the invention further includes the use of compounds of the invention as an active therapeutic substance, in particular in the treatment of diseases mediated by TNNI3K.
- the invention includes the use of compounds of the invention in the treatment of heart failure, particularly congestive heart failure; cardiac hypertrophy; heart failure or congestive heart failure resulting from cardiac hypertrophy; and heart failure or congestive heart failure resulting from myocardial ischemia or myocardial infarction.
- the invention includes the use of compounds of the invention in the manufacture of a medicament for use in the treatment of the above disorders.
- the compounds of the invention will normally, but not necessarily, be formulated into a pharmaceutical composition prior to administration to a patient. Accordingly, in another aspect the invention is directed to pharmaceutical compositions comprising a compound of the invention and a pharmaceutically-acceptable excipient.
- compositions of the invention may be prepared and packaged in bulk form wherein an effective amount of a compound of the invention can be extracted and then given to the patient such as with powders, syrups, and solutions for injection.
- the pharmaceutical compositions of the invention may be prepared and packaged in unit dosage form.
- a dose of the pharmaceutical composition contains at least a therapeutically effective amount of a compound of this invention (i.e., a compound of Formula I or a salt, particularly a pharmaceutically acceptable salt, thereof).
- the pharmaceutical compositions may contain from 1 mg to 1000 mg of a compound of this invention.
- compositions of the invention typically contain one compound of the invention. However, in certain embodiments, the pharmaceutical compositions of the invention contain more than one compound of the invention. In addition, the pharmaceutical compositions of the invention may optionally further comprise one or more additional pharmaceutically active compounds.
- pharmaceutically-acceptable excipient means a material, composition or vehicle involved in giving form or consistency to the composition.
- Each excipient must be compatible with the other ingredients of the pharmaceutical composition when commingled such that interactions which would substantially reduce the efficacy of the compound of the invention when administered to a patient and interactions which would result in pharmaceutical compositions that are not pharmaceutically-acceptable are avoided.
- each excipient must of course be of sufficiently high purity to render it pharmaceutically-acceptable.
- the compounds of the invention and the pharmaceutically-acceptable excipient or excipients will typically be formulated into a dosage form adapted for administration to the patient by the desired route of administration.
- Conventional dosage forms include those adapted for (1 ) oral administration such as tablets, capsules, caplets, pills, troches, powders, syrups, elixirs, suspensions, solutions, emulsions, sachets, and cachets; (2) parenteral administration such as sterile solutions, suspensions, and powders for reconstitution; (3) transdermal administration such as transdermal patches; (4) rectal administration such as suppositories; (5) inhalation such as aerosols and solutions; and (6) topical administration such as creams, ointments, lotions, solutions, pastes, sprays, foams, and gels.
- Suitable pharmaceutically-acceptable excipients will vary depending upon the particular dosage form chosen.
- suitable pharmaceutically-acceptable excipients may be chosen for a particular function that they may serve in the composition.
- certain pharmaceutically-acceptable excipients may be chosen for their ability to facilitate the production of uniform dosage forms.
- Certain pharmaceutically- acceptable excipients may be chosen for their ability to facilitate the production of stable dosage forms.
- Certain pharmaceutically-acceptable excipients may be chosen for their ability to facilitate the carrying or transporting the compound or compounds of the invention once administered to the patient from one organ, or portion of the body, to another organ, or portion of the body.
- Certain pharmaceutically-acceptable excipients may be chosen for their ability to enhance patient compliance.
- Suitable pharmaceutically-acceptable excipients include the following types of excipients: diluents, fillers, binders, disintegrants, lubricants, glidants, granulating agents, coating agents, wetting agents, solvents, co-solvents, suspending agents, emulsifiers, sweeteners, flavoring agents, flavor masking agents, coloring agents, anti-caking agents, humectants, chelating agents, plasticizers, viscosity increasing agents, antioxidants, preservatives, stabilizers, surfactants, and buffering agents.
- excipients include the following types of excipients: diluents, fillers, binders, disintegrants, lubricants, glidants, granulating agents, coating agents, wetting agents, solvents, co-solvents, suspending agents, emulsifiers, sweeteners, flavoring agents, flavor masking agents, coloring agents, anti-caking agents, humectants,
- Skilled artisans possess the knowledge and skill in the art to enable them to select suitable pharmaceutically-acceptable excipients in appropriate amounts for use in the invention.
- resources that are available to the skilled artisan which describe pharmaceutically-acceptable excipients and may be useful in selecting suitable pharmaceutically-acceptable excipients. Examples include Remington's Pharmaceutical Sciences (Mack Publishing Company), The Handbook of Pharmaceutical Additives (Gower Publishing Limited), and The Handbook of Pharmaceutical Excipients (the American Pharmaceutical Association and the Pharmaceutical Press).
- compositions of the invention are prepared using techniques and methods known to those skilled in the art. Some of the methods commonly used in the art are described in Remington's Pharmaceutical Sciences (Mack Publishing
- the invention is directed to a solid oral dosage form such as a tablet or capsule comprising an effective amount of a compound of the invention and a diluent or filler.
- Suitable diluents and fillers include lactose, sucrose, dextrose, mannitol, sorbitol, starch (e.g. corn starch, potato starch, and pre-gelatinized starch), cellulose and its derivatives (e.g. microcrystalline cellulose), calcium sulfate, and dibasic calcium phosphate.
- the oral solid dosage form may further comprise a binder. Suitable binders include starch (e.g.
- the oral solid dosage form may further comprise a disintegrant. Suitable disintegrants include crospovidone, sodium starch glycolate, croscarmelose, alginic acid, and sodium carboxymethyl cellulose.
- the oral solid dosage form may further comprise a lubricant. Suitable lubricants include stearic acid, magnesium stearate, calcium stearate, and talc.
- Step 1 phenylmethyl [(4-fluoro-3-nitrophenyl)sulfonyl]methylcarbamate
- Tablets are prepared using conventional methods and are formulated as follows:
- Capsules are prepared using conventional methods and are formulated as follows:
- hTNNI3K His-MBP-TEV-Full length human TNNI3K (hTNNI3K) was expressed in Baculokinase system and purified from amylase affinity column followed by Superdex200.
- the preparation of this fluorescent ligand is disclosed in U.S. Provisional Patent Application No.
- the other buffer components including MgCI 2 (Catalog Number M1028), Bis-Tris (Catalog Number B7535), DTT (Catalog Number D9779) and Chaps (Catalog Number C3023) were purchased from Sigma-Aldrich.
- a fluorescent polarization assay was used to determine does response of compound inhibition on hTNNI3K ATP binding.
- the binding of 5-( ⁇ [2-( ⁇ [3-( ⁇ 4-[(5-hydroxy- 2-methylphenyl)amino]-2-pyrimidinyl ⁇ amino)phenyl]carbonyl ⁇ amino)ethyl]amino ⁇ carbonyl)- 2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid to the hTNNI3K ATP binding pocket results in increase of fluorescent polarization and the displacement of 5-( ⁇ [2-( ⁇ [3-( ⁇ 4-[(5- hydroxy-2-methylphenyl)amino]-2-pyrimidinyl ⁇ amino)phenyl]carbonyl ⁇ amino)ethyl]amino ⁇ carbonyl)-2-(6-hydroxy-3-oxo-3/-/-xanthen-9-yl)benzoic acid by a competitive compound leads to fluorescent
- Solution 1 Ten (10) ml. of a 5 nM 5-( ⁇ [2-( ⁇ [3-( ⁇ 4-[(5-hydroxy-2-methylphenyl) amino]-2-pyrimidinyl ⁇ amino)phenyl]carbonyl ⁇ amino)ethyl]amino ⁇ carbonyl)-2-(6-hydroxy-3- oxo-3H-xanthen-9-yl)benzoic acid solution (Solution 1 ) was prepared by mixing 5 ⁇ _ of 1 M DTT and 80 ⁇ ⁇ _ of 10% (w/v) Chaps and 5 ⁇ ⁇ _ of a 10 ⁇ 5-( ⁇ [2-( ⁇ [3-( ⁇ 4-[(5-hydroxy-2- methylphenyl)amino]-2-pyrimidinyl ⁇ amino)phenyl]carbonyl ⁇ amino) ethyl]amino ⁇ carbonyl)- 2-(6-hydroxy-3-oxo-3/-/-xanthen-9-yl)benzo
- Solution 2 was formed by mixing 53.8 ⁇ _ of 2.6 ⁇ hTNNI3K with a 6946.2 ⁇ _ aliquot of Solution 1 (the above 5-( ⁇ [2-( ⁇ [3-( ⁇ 4-[(5-hydroxy-2-methylphenyl)amino]-2- pyrimidinyl ⁇ amino)phenyl]carbonyl ⁇ amino)ethyl]amino ⁇ carbonyl)-2-(6-hydroxy-3-oxo-3/-/- xanthen-9-yl)benzoic acid solution) to make up a 7 ml.
- nl_ of inhibitors in DMSO were stamped into a 384-well low volume Greiner black plate, followed by addition of 5 ⁇ _ of Solution 1 to column 18 and 5 ⁇ _ Solution 2 to columns 1-17 and 19-24 of the plate. The plate was then spun at 500 rpm for 30 seconds and incubated at room temperature for 60 minutes. After that, the fluorescent polarization was measured on Analyst (ex/em: 485/530 nm, Dichroic: 505).
- the pXC 50 s are averaged to determine a mean value, for a minimum of 2 experiments. As determined using the above method, the compounds of Examples 1 -88 exhibited a pXC 50 greater than or equal to 6.0.
- Preferred compounds of the invention including the compounds of Examples 1 , 3, 4, 5, 10, 1 1 , 14, 16, 17, 18, 19, 20, 22, 26, 28, 30, 36, 38, 39, 40, 42, 44, 45, 47, 50, 51 , 53, 55, 58, 59, 60, 61 , 64, 65, 67, 69, 70, 74, 75, 77, 80, 81 , 84, 85, 86, 87, and 88, exhibited a pXC 5 o of between approximately 7.0 and approximately 8.0.
- the compound of Example 3 inhibited hTNNI3K in the above method with a mean pXC 50 of approximately 7.1 .
- More preferred compounds of the invention including the compounds of Examples 21 , 25, 27, 31 , 32, 35, 37, 46, 48, 49, 54, 56, 62, 66, 68, 71 , 73, 76, 82, and 83, exhibited a pXC 50 of between approximately 8.0 and approximately 9.0.
- the compound of Example 68 inhibited hTNNI3K in the above method with a mean pXC 50 of approximately 8.4.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Cardiology (AREA)
- Hospice & Palliative Care (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BR112012010524A BR112012010524A2 (en) | 2009-11-03 | 2010-11-01 | quinazoline derivatives |
| US13/505,324 US8859571B2 (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
| ES10828947.1T ES2523465T3 (en) | 2009-11-03 | 2010-11-01 | Quinazoline Compounds |
| CN201080060451.4A CN102711474B (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
| EA201290243A EA021439B1 (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
| KR1020127014231A KR101736521B1 (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
| JP2012537925A JP5836963B2 (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
| AU2010315361A AU2010315361B2 (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
| EP10828947.1A EP2501233B1 (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
| MX2012005155A MX2012005155A (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds. |
| CA2779989A CA2779989A1 (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
| IL219504A IL219504A (en) | 2009-11-03 | 2012-04-30 | Quinazoline compounds, pharmaceutical compositions comprising the same and use thereof in the preparation of medicaments for treating congestive heart failure |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US25764609P | 2009-11-03 | 2009-11-03 | |
| US61/257,646 | 2009-11-03 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011056740A1 true WO2011056740A1 (en) | 2011-05-12 |
Family
ID=43970282
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2010/054927 Ceased WO2011056740A1 (en) | 2009-11-03 | 2010-11-01 | Quinazoline compounds |
Country Status (13)
| Country | Link |
|---|---|
| US (1) | US8859571B2 (en) |
| EP (1) | EP2501233B1 (en) |
| JP (1) | JP5836963B2 (en) |
| KR (1) | KR101736521B1 (en) |
| CN (1) | CN102711474B (en) |
| AU (1) | AU2010315361B2 (en) |
| BR (1) | BR112012010524A2 (en) |
| CA (1) | CA2779989A1 (en) |
| EA (1) | EA021439B1 (en) |
| ES (1) | ES2523465T3 (en) |
| IL (1) | IL219504A (en) |
| MX (1) | MX2012005155A (en) |
| WO (1) | WO2011056740A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015077375A1 (en) | 2013-11-20 | 2015-05-28 | Signalchem Lifesciences Corp. | Quinazoline derivatives as tam family kinase inhibitors |
| US9873614B2 (en) | 2013-12-26 | 2018-01-23 | Exxonmobil Research And Engineering Company | Synthesis of ZSM-48 crystals |
| WO2021053495A1 (en) | 2019-09-16 | 2021-03-25 | Novartis Ag | Bifunctional degraders and their methods of use |
| AU2018341454B2 (en) * | 2017-09-26 | 2023-09-28 | The Regents Of The University Of California | Compositions and methods for treating cancer |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8569316B2 (en) * | 2009-02-17 | 2013-10-29 | Boehringer Ingelheim International Gmbh | Pyrimido [5,4-D] pyrimidine derivatives for the inhibition of tyrosine kinases |
| CN103159685A (en) * | 2013-04-11 | 2013-06-19 | 苏州立新制药有限公司 | Preparation method of 4-chloro-6, 7-di(2-methoxyl ethoxyl) quinazoline |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6015814A (en) * | 1995-04-27 | 2000-01-18 | Zeneca Limited | Quinazoline derivative |
| US20070259904A1 (en) | 2005-11-01 | 2007-11-08 | Targegen, Inc. | Bi-aryl meta-pyrimidine inhibitors of kinases |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005030140A2 (en) | 2003-09-26 | 2005-04-07 | Exelixis, Inc. | C-met modulators and methods of use |
-
2010
- 2010-11-01 CN CN201080060451.4A patent/CN102711474B/en not_active Expired - Fee Related
- 2010-11-01 WO PCT/US2010/054927 patent/WO2011056740A1/en not_active Ceased
- 2010-11-01 MX MX2012005155A patent/MX2012005155A/en active IP Right Grant
- 2010-11-01 US US13/505,324 patent/US8859571B2/en not_active Expired - Fee Related
- 2010-11-01 KR KR1020127014231A patent/KR101736521B1/en not_active Expired - Fee Related
- 2010-11-01 AU AU2010315361A patent/AU2010315361B2/en not_active Ceased
- 2010-11-01 ES ES10828947.1T patent/ES2523465T3/en active Active
- 2010-11-01 CA CA2779989A patent/CA2779989A1/en not_active Abandoned
- 2010-11-01 JP JP2012537925A patent/JP5836963B2/en not_active Expired - Fee Related
- 2010-11-01 EP EP10828947.1A patent/EP2501233B1/en active Active
- 2010-11-01 EA EA201290243A patent/EA021439B1/en not_active IP Right Cessation
- 2010-11-01 BR BR112012010524A patent/BR112012010524A2/en not_active IP Right Cessation
-
2012
- 2012-04-30 IL IL219504A patent/IL219504A/en not_active IP Right Cessation
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6015814A (en) * | 1995-04-27 | 2000-01-18 | Zeneca Limited | Quinazoline derivative |
| US20070259904A1 (en) | 2005-11-01 | 2007-11-08 | Targegen, Inc. | Bi-aryl meta-pyrimidine inhibitors of kinases |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2501233A4 |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015077375A1 (en) | 2013-11-20 | 2015-05-28 | Signalchem Lifesciences Corp. | Quinazoline derivatives as tam family kinase inhibitors |
| CN105916506A (en) * | 2013-11-20 | 2016-08-31 | 圣诺康生命科学公司 | Quinazoline derivatives as TAM family kinase inhibitors |
| EP3071204A4 (en) * | 2013-11-20 | 2017-04-19 | SignalChem Lifesciences Corp. | Quinazoline derivatives as tam family kinase inhibitors |
| US9771333B2 (en) | 2013-11-20 | 2017-09-26 | Signalchem Lifesciences Corp. | Quinazoline derivatives as TAM family kinase inhibitors |
| AU2014353006B2 (en) * | 2013-11-20 | 2019-04-04 | Signalchem Life Sciences Corp. | Quinazoline derivatives as TAM family kinase inhibitors |
| CN105916506B (en) * | 2013-11-20 | 2020-01-07 | 圣诺康生命科学公司 | Quinazoline derivatives as TAM family kinase inhibitors |
| US9873614B2 (en) | 2013-12-26 | 2018-01-23 | Exxonmobil Research And Engineering Company | Synthesis of ZSM-48 crystals |
| AU2018341454B2 (en) * | 2017-09-26 | 2023-09-28 | The Regents Of The University Of California | Compositions and methods for treating cancer |
| WO2021053495A1 (en) | 2019-09-16 | 2021-03-25 | Novartis Ag | Bifunctional degraders and their methods of use |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2010315361A1 (en) | 2012-05-24 |
| US20120220588A1 (en) | 2012-08-30 |
| EP2501233B1 (en) | 2014-09-24 |
| EA021439B1 (en) | 2015-06-30 |
| EA201290243A1 (en) | 2012-12-28 |
| JP5836963B2 (en) | 2015-12-24 |
| CN102711474B (en) | 2014-09-10 |
| CN102711474A (en) | 2012-10-03 |
| BR112012010524A2 (en) | 2017-12-12 |
| JP2013510155A (en) | 2013-03-21 |
| ES2523465T3 (en) | 2014-11-26 |
| EP2501233A4 (en) | 2013-06-19 |
| IL219504A (en) | 2016-09-29 |
| KR20120112441A (en) | 2012-10-11 |
| MX2012005155A (en) | 2012-08-31 |
| CA2779989A1 (en) | 2011-05-12 |
| IL219504A0 (en) | 2012-06-28 |
| US8859571B2 (en) | 2014-10-14 |
| EP2501233A1 (en) | 2012-09-26 |
| AU2010315361B2 (en) | 2014-06-12 |
| KR101736521B1 (en) | 2017-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7041070B2 (en) | Amine-substituted aryl or heteroaryl compounds as EHMT1 and EHMT2 inhibitors | |
| JP4276376B2 (en) | Heterocyclic compounds and antitumor agents containing the same as active ingredients | |
| KR101501299B1 (en) | Novel pyrimidine compound having dibenzylamine structure, and medicine comprising the compound | |
| EP2523559A1 (en) | Compounds and methods | |
| CN103987700B (en) | 4-quinazoline amine derivant and application thereof | |
| ES2579830T3 (en) | Diaminopyrimidine derivatives and procedures for their preparation | |
| KR20190114910A (en) | Novel Sulfonamide Derivative as mutant Epidermal Growth Factor Receptor Inhibitor | |
| RU2692479C2 (en) | (5,6-dihydro)pyrimido[4,5-e]indolysines | |
| JP6951406B2 (en) | Flabagulin derivative | |
| AU2022217353B2 (en) | Pyridopyrimidinone derivative, preparation method therefor, and use thereof | |
| JPWO2007114323A1 (en) | Aminopyrrolidine compounds | |
| US8859571B2 (en) | Quinazoline compounds | |
| WO2011056739A1 (en) | Compounds and methods | |
| WO2014022728A1 (en) | Substituted 5 - (quinazolin - 2 - yl) pyrimidin- 2 -amine derivatives useful as pi3k/mtor inhibitors for the treatment of cancer | |
| WO2014055938A1 (en) | Novel compounds, their preparation and their uses | |
| WO2015066697A1 (en) | Fused morpholinopyrimidines and methods of use thereof | |
| CN103130775A (en) | Indolinone derivatives serving as tyrosine kinase inhibitors | |
| WO2011088031A1 (en) | Compounds and methods | |
| ES2593057B1 (en) | Selective modulators of GPR55 receptor activity: chromenopyrazole derivatives | |
| US20120157482A1 (en) | Compounds and methods | |
| CN113880814B (en) | Pyrimidine amine compound and application thereof | |
| KR101665301B1 (en) | N-cyanomethylamides as inhibitors of janus kinase | |
| WO2019141096A1 (en) | Substituted urea compound and preparation method and use thereof | |
| TW202246261A (en) | Compounds as anticancer agents |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201080060451.4 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10828947 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010315361 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13505324 Country of ref document: US Ref document number: 3811/DELNP/2012 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012537925 Country of ref document: JP Ref document number: MX/A/2012/005155 Country of ref document: MX |
|
| ENP | Entry into the national phase |
Ref document number: 2779989 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010828947 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2010315361 Country of ref document: AU Date of ref document: 20101101 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 201290243 Country of ref document: EA |
|
| ENP | Entry into the national phase |
Ref document number: 20127014231 Country of ref document: KR Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012010524 Country of ref document: BR |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112012010524 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112012010524 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120503 |