[go: up one dir, main page]

WO2011055413A1 - Open market system - Google Patents

Open market system Download PDF

Info

Publication number
WO2011055413A1
WO2011055413A1 PCT/JP2009/005939 JP2009005939W WO2011055413A1 WO 2011055413 A1 WO2011055413 A1 WO 2011055413A1 JP 2009005939 W JP2009005939 W JP 2009005939W WO 2011055413 A1 WO2011055413 A1 WO 2011055413A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
securities
price
server
forecast data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2009/005939
Other languages
French (fr)
Japanese (ja)
Inventor
戸川力勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PCT/JP2009/005939 priority Critical patent/WO2011055413A1/en
Publication of WO2011055413A1 publication Critical patent/WO2011055413A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/06Asset management; Financial planning or analysis

Definitions

  • the present invention relates to an open market system, an open market system server, and an open market system control method, and more particularly to an open market system for buying and selling securities price forecast data, an open market system server, and an open market system control method.
  • day trading which is a daily trading of securities such as stocks and bonds by individual investors
  • day trading investment behavior is performed to obtain profit margins by repeatedly buying and selling in a short period of time such as a day time unit.
  • immediate trading is important in day trading.
  • stock day trading individual investors buy and sell stock certificates in real time using programs and websites provided by securities companies. Yes.
  • Prior Art 1 As a system for such a conventional day trader, there is a system in which stock price information is sequentially displayed, and the day trader itself buys and sells stocks from the displayed stock price information.
  • RSS RDF Site Summary, Real Simple Synchronization, Rich Site Summary
  • Prior Art 1 uses RSS (RDF Site Summary, Real Simple Synchronization, Rich Site Summary) to automatically update and view necessary stock price information via the Internet, enabling users to view a large amount of stock price data.
  • RSS RDF Site Summary, Real Simple Synchronization, Rich Site Summary
  • This invention is made in view of such a situation, and makes it a subject to eliminate the above-mentioned subject.
  • the public market system of the present invention is a public market system comprising a server, a seller terminal connected to the server, and a buyer terminal.
  • the server collates and analyzes the prediction results of past securities price prediction data.
  • a performance analysis unit for creating actual data, a form unit for outputting a form for inputting the expected price of securities to be exhibited from the seller terminal, the analyzed actual data, and the marketed securities A securities price listing unit that outputs price forecast data to the buyer terminal, and a settlement unit that performs settlement related to the listed securities price forecast data, and the seller terminal is standardized using the form
  • the marketed securities price forecast data is inputted from the seller terminal and exhibited.
  • the open market system of the present invention is characterized in that, as the analysis, the performance analysis unit calculates statistics and ranking and creates performance data.
  • the open market system according to the present invention is characterized in that the securities price listing section searches the actual data in accordance with an instruction from the buyer terminal.
  • the server of the open market system of the present invention further includes a result acquisition unit that acquires the result of the listed securities price forecast data, and the performance analysis unit includes the listed securities price forecast data, the result The data is collated and the result data is updated.
  • the server of the open market system according to the present invention inputs a result analysis unit that collates and analyzes results of past securities price prediction data and creates results data, and securities price prediction data exhibited from a seller terminal.
  • the public market system control method of the present invention is a public market system provided with a server, a seller terminal connected to the server, and a buyer terminal, and compares the security price forecast data with the result of the security price forecast data. Analyze to create actual data, output a form to enter the expected price of securities to be listed, enter the expected price of securities priced using the form, and submit for analysis The data of the actual performance that has been performed and the securities price prediction data that has been exhibited are output.
  • a server 10 In the open market system X according to the embodiment of the present invention, a server 10, buyer terminals 21-1 to 21-n, seller terminals 23-1 to 23-n, and an administrator terminal 25 are connected to a wireless telephone network. Or a network 5 such as the Internet or an intranet.
  • the network 5 is a wireless communication line such as a mobile phone network, a PHS network, WiMAX, a wireless LAN, a wired telephone line, a LAN, a power line LAN, a cLink, and a dedicated line.
  • an IP network or other star-shaped or ring-shaped network can be used as the form of the network 5.
  • the server 10 is a server that uses a PC / AT compatible machine, a dedicated machine, a blade server, or the like and is connected to the network 5 to provide various services related to the securities price market.
  • the buyer terminals 21-1 to 21-n, the seller terminals 23-1 to 23-n, and the manager terminal 25 are web browsers capable of browsing HTML (Hyper Text Markup Language) and the like.
  • the buyer terminals 21-1 to 21-n are terminals used by buyers (buyer users) of securities price prediction data.
  • the seller terminals 23-1 to 23-n are terminals used by sellers (seller users) of securities price prediction data.
  • the administrator terminal 25 is a terminal used by the administrator of the server 10.
  • the server 10 mainly includes a network input / output unit 110, an open market server 120, a database server 130, and a DNS / mail server 140.
  • the network input / output unit 110 is a router, a load balancer (load balancer), or the like.
  • the network input / output unit 110 receives IP packets from the network 5 and transmits them to each unit, and collectively transmits the IP packets from each unit to the network 5.
  • the network input / output unit 110 also supports packet filters, firewalls, syslogs, and the like.
  • the public market server 120 is a server that provides a public market service accessed by buyers and sellers.
  • a control unit such as a CPU includes a form unit 121, a performance analysis unit 122, a securities price listing unit 124, and a result acquisition unit 125.
  • Various programs and classes such as the web server unit 126 and the settlement unit 127 are executed using hardware resources. These various programs, classes, etc. are services (daemons), CGIs (Common Gateway Interface), servlets, ASPs (Active Server Pages), PHP, various scripts, and other web applications, as a group of programs that perform specific operations. Can be provided.
  • the form part 121 is a part such as CGI, servlet, XML data or the like related to a data form for inputting securities price forecast data.
  • the form unit 121 creates a data form for the seller to input standardized securities price forecast data described later. Further, when the form unit 121 receives data input using the data form from the seller terminals 23-1 to 23-n, the form unit 121 stores the data in the user database 131.
  • the performance analysis unit 122 refers to a performance database 132, a securities price database 133, and the like, which will be described later, and calculates and creates performance data such as a prediction result that becomes a “result” such as a price increase during the target period from the seller's prediction. It is a part to do.
  • the performance analysis unit 122 calculates a correlation coefficient based on data such as confidence level D106 (FIG. 4) in the securities price forecast data (to be described later) and the performance, and various statistical methods and artificial intelligence methods. Used to calculate the trend of seller data. Further, it is possible to create forecast data “likely to be correct” by performing maximum likelihood estimation by combining seller rankings and securities price data.
  • the securities price listing unit 124 is a part having a function of outputting data that can be displayed on a browser or the like in accordance with an instruction from a terminal, such as CGI, servlet, ASP, PHP.
  • the securities price listing unit 124 can transmit the securities price forecast data transmitted by the seller and the data related to the results aggregated / analyzed / calculated / evaluated by the performance analysis unit 122 through a web server unit 126 such as HTML or XML. To correct data.
  • the securities price listing unit 124 can set various conditions and perform a search from the user database 131 when the buyer searches the securities price forecast data for purchase.
  • the securities price listing section 124 has functions such as SNS (Social Network Service), BBS (Bulletin Board System), and chat in addition to the function of displaying comments and the like. It is also possible to make an inquiry. Thereby, the transaction which does not go through an open market can be suppressed.
  • the securities price listing unit 124 also has a natural language processing function such as creating a text of an email to be transmitted.
  • the result acquisition unit 125 uses HTML or XML, text data, binary data, or the like by using a timer or the like from a server (not shown) on which the price of securities such as a server selling stock price data is disclosed. This is a part for acquiring securities price data provided by data.
  • various data relating to the price of securities such as VWAP (Volume Weighted Average Price), moving average data, trend, initial price, closing price, etc. can be used.
  • the result acquisition unit 125 can also convert the data into a format suitable for the securities price database 133 using a parser.
  • the web server unit 126 is a service (daemon) of a WWW (World Wide Web) server, and can use various modules such as IIS (Internet Information Server), Apache, and the like. In addition, the web server unit 126 can access the execution output of each program from each terminal by a WWW web browser by using an access control by an account using an interface such as a common gateway interface (CGI), a servlet, and PHP. To.
  • the web server unit 126 is for building a WWW website including HTML, CHTML (compact / HTML) data, image data such as JPG, GIF, FLASH, and AVI, audio data, and other data. Data can also be read from each database or storage medium and transmitted.
  • the settlement unit 127 is a part that performs credit settlement, settlement at an Internet bank, and settlement in the Internet currency using SSL (Secure Socket Layer). At this time, processing such as e-mail transmission and web page creation can be performed according to conditions such as a time limit set by the buyer or seller.
  • SSL Secure Socket Layer
  • the database server 130 is a part configured using a control unit such as a CPU, an SQL server, various storages, and hardware resources such as a program, and includes a user database 131, a performance database 132, a securities price database 133, and ID creation. A part like the part 135 is provided.
  • the user database 131 stores seller / buyer user IDs (identifications), passwords, payment credit card information, securities price forecast data, purchase / sales history, search history, comments, description / viewing history of SNS, BBS, etc.
  • a database for storing other data such as addresses and telephone numbers.
  • the performance database 132 is a database for storing securities price forecast data, performance, etc. exhibited by the seller.
  • the securities price database 133 is a database that stores securities price data in a format such as time series data.
  • the securities price database 133 includes various economic indicators in addition to values such as VWAP (Volume Weighted Average Price), moving average data, trends, initial prices, and closing prices, such as the above-described securities price data. It also memorizes the attributes used for securities price forecast data such as index of securities price such as stock price index of each country and economic events.
  • the ID creation unit 135 is a part that issues a password, key data, and the like related to an ID in order to allow each user of a seller and a buyer to access each database.
  • the ID creation unit 135 also inputs data on the user database 131 of each seller and buyer in the user database 131 according to signals from the buyer terminals 21-1 to 21-n and seller terminals 23-1 to 23-n. You can also
  • the DNS / mail server 140 is a general DNS (domain name server) or an SMTP (Simple Mail Transfer Protocol) server for delivering electronic mail to users.
  • DNS Simple Mail Transfer Protocol
  • Windows (registered trademark) DNS can be used, and as a service (daemon, program) for SMTP, a known SMTP program, for example, Mail Server manufactured by ArGoSoft or the like can be used.
  • this DNS / mail server 140 can also send the user ID and password of the account to the user who has entered the registration form on the official site.
  • the public market is a public market for securities price forecast data that can clearly analyze, compare, and disclose the past performance of sellers as data.
  • buyers can select securities price forecast data with reference to performance data and purchase at the same price.
  • this open market is a market service where sellers and buyers are free to participate. More specifically, the seller (seller user) accesses the server 10 using the seller terminals 23-1 to 23-n and submits securities price forecast data for sale.
  • the seller for submitting the forecast data is not necessarily a human, but may be a computer that executes a program such as a so-called “stock robot”.
  • the server 10 provides past forecast results, forecast data prices, and the like as a public market for the securities price forecast data. Then, the buyer (buyer user) purchases forecast data from the securities price market using the buyer terminals 21-1 to 21-n.
  • the server 10 exchanges money related to the buying and selling of forecast data and updates the results. After that, the purchase price of the forecast data is collected from the buyer, the commission is subtracted, and the sales money is given to the seller.
  • the securities price forecast data is transmitted to the server 10 by the seller terminals 23-1 to 23-n, and the form section 121 of the server 10 stores it in the result database 132.
  • the securities type D101 is an attribute for specifying the type of securities targeted for the forecast data.
  • stock certificates are composed of data such as predetermined numbers and characters such as 0 for FX and 1 for FX.
  • the investment type D102 is an attribute indicating the type of price data of the securities to be predicted. Specifically, as a forecast target brand predicted by a seller, a brand stock of a predetermined stock, an arbitrary brand, or a plurality of brands can be set as a forecast target. In addition, a portfolio like a collection of stocks can be targeted. Moreover, in addition to index indicators used for trust investment, it is also possible to make a target such as price data of a special technique such as a contract price of credit selling. In addition, only combinations of brands whose prices “rise” and “decrease” can be used as prediction targets in correspondence with formats such as by industry or brand.
  • the securities price D103 is an attribute indicating an expected securities price corresponding to the investment type D102.
  • a “securities price” that is a value indicating how much the predetermined brand of the securities increases / decreases is stored.
  • This securities price stores a value such as an expected price for price increase / decrease and a rate of increase / decrease in the price of the security.
  • an expected brand and its securities price are stored.
  • the amount D104 is an attribute of the amount when selling securities price forecast data. This amount is not simple money, and for example, a virtual currency unit such as “point” or “credit” or an amount of what percentage of the winning amount can be used. In addition, an index such as “number of hits” indicating the result of a virtual simulation can be used as a monetary unit. In addition, when the buyer pays, information such as prepaid or postpaid can be stored. In the case of post-payment, it is possible to determine a value such as purchasing securities from a server (not shown) of a securities company via the server 10 and paying what percentage of the margin at the time of purchase.
  • the forecast method D105 is an attribute that stores a factor that is regarded as most important when the seller makes a securities price forecast.
  • a statistical method, an artificial intelligence method, a heuristic method using data, and other methods can be categorized and stored in about 10 types.
  • artificial intelligence can store subcategories such as “kernel machine”, “neural network”, and “decision tree”.
  • the confidence level D106 is an attribute for storing the confidence level with respect to the prediction as a self-evaluation. Specifically, the evaluation of about 3 to 5 levels of A, B, C, etc. self-reported by the seller is stored.
  • Comment D107 is a column for freely entering and storing a message to the buyer regarding the forecast.
  • the form part 121 of the server 10 notifies the administrator terminal 25 via the DNS / mail server 140, and the ID Warn users.
  • Step S101 the performance analysis unit 122 of the server 10 performs past performance aggregation processing. Specifically, first, the performance analysis unit 122 refers to the performance database 132 and the securities price database 133. Then, the result analysis unit 122 calculates the expected score, the operation rate, the collected amount, the sales amount from the result data acquired by the result acquisition unit 125 and the securities price prediction data previously sold by the seller of the prediction data with the same ID. Calculate “actual results”. In this process, the previous “actual result” is calculated. Specifically, the performance analysis unit 122 calculates an expected score that is the difference between the price fluctuation forecast result within the forecast target period of the securities and the actual price movement.
  • the forecast target period it is possible to specify a predetermined period such as daily (daily unit), weekly (one week unit), or monthly (monthly unit).
  • a predetermined period such as daily (daily unit), weekly (one week unit), or monthly (monthly unit).
  • daily (daily unit) a weekly period that allows easy comparison of expected periods
  • the performance analysis unit 122 calculates various values used in later statistical processing.
  • the evaluation of the predicted score among the “actual results” will be described in detail.
  • the performance analysis unit 122 purchases securities according to the seller's forecast data according to a predetermined purchase amount, and subtracts predetermined fees, taxes, etc. when the securities are sold at the time of the stock price fluctuation forecast period. Calculate the recovery amount.
  • the “operation rate” as a value of how much money the seller with the same ID can collect.
  • various indices of the price of securities for example, the deviation of the average price of the market price such as the Nikkei average from the seller's expectation to the up and down of the overall price, a test of statistical significance, etc. This can be added to the operation rate.
  • the “operation rate” can be calculated as a cumulative operation rate based on the amount collected in the past predetermined period.
  • a value such as a multiple of the expected period can be used. For example, when the prediction target period is weekly, values such as the past 2 to 3 weeks, the past 1 month (4 weeks), and the past 3 months (12 weeks) can be used as the predetermined period.
  • the performance analysis unit 122 can calculate the operation rate and the standard deviation of the value related thereto, and calculate the certainty of the seller's operation in a format such as “deviation value at the operation rate”. .
  • the performance analysis unit 122 can also calculate the number of sales and the sales amount when the seller sells the securities price prediction data. These values related to “actual results” can be calculated and analyzed by taking an average over a plurality of stock price fluctuation forecast periods or a predetermined period such as 1 to 3 months.
  • the performance analysis unit 122 stores the calculated and analyzed “result” in the performance database 132 as performance data.
  • Step S102 the performance analysis unit 122 performs statistics / ranking creation processing.
  • the performance analysis unit 122 calculates and evaluates the ranking from the totals of “actual results” of sellers of each ID.
  • the result analysis unit 122 can analyze the type and attribute of the securities and the “result” using each condition relating to each value such as the stock price fluctuation forecast period and the type of price data. Further, based on the “actual record” of the seller of each ID, the statistical significance of the securities price forecast can be calculated and evaluated. Further, the performance analysis unit 122: (1) Not only publishing past rankings but also rankings that can be recommended in terms of data.
  • a correlation coefficient between the “confidence level”, “expected score”, and “operation rate” for each seller is calculated.
  • the correlation coefficient is used to predict the “expected score” and “operation rate” in the next period.
  • the performance analysis unit 122 can use, for example, a statistical method such as Bayesian estimation based on each securities price forecast data, and can obtain securities price forecast data with high likelihood and certainty. . This data can be provided to buyers for a fee and distributed to each seller at a predetermined rate. Further, by calculating the statistical significance between the securities price forecast and the specific forecast data, it is possible to point out the fact that operations by speculative sources are being performed.
  • the performance analysis unit 122 also stores rankings and various statistical values in the performance database 132 as performance data.
  • the calculation method of “operation rate” can be disclosed on the website, and the evaluation of each rank, “operation rate”, deviation value in “operation rate”, etc. should be clearly analyzed, compared and released. Can do.
  • the securities price listing unit 124 uses the web server unit 126 to perform a result disclosure process. Specifically, the securities price listing unit 124 browses HTML, XML, or the like displayed on the web server unit 126 on the results data such as the results, rankings, and the results obtained by the performance analysis unit 122. Is created and stored in the results database 132. When the buyer user browses the browsing data with a web browser, the web server unit 126 transmits each calculation result, ranking HTML, XML, and the like.
  • the securities price listing unit 124 can search the actual data by an instruction from the web browser of the buyer terminal 21-1.
  • the buyer has the securities type in the input field 610, the investment type in the input field 620, the money amount in the input field 630, and the input field 640 in the web browser screen of the buyer terminal 21-1.
  • the input field 650 a search period that is a target of the predicted data to be searched is input, and the search can be performed using any of these attributes.
  • the securities type it is possible to select the securities to be the target of the forecast data and the forecast correspondence period. That is, the user of the buyer terminal 21-1, which is a day trader, can cope with forecast data when buying and selling various patterns such as daily, weekly, and monthly.
  • the investment type it is possible to select the type of price data of the securities to be expected by the buyer. With respect to the amount of money, it is possible to obtain securities price forecasts according to the buyer's budget and purchase method. That is, it is possible to select the price of the securities price prediction data and information such as whether to pay at a fixed amount / percentage of the acquisition amount, whether to pay in advance or postpay. Furthermore, if the buyer wishes to continue the purchase automatically, it is also possible to automatically purchase forecast data of the same securities type and investment type of the same seller.
  • the forecasting method can be selected if there is a method that the buyer particularly trusts among the forecasting methods D105 of the securities price forecasting data.
  • the seller's expected score of the securities price forecast is searched from the past results after the forecast period has ended.
  • a search period for the actual data such as only the previous week, the past month, three months, and one year. By filtering with each of these attributes, it is possible to obtain a search result suitable for the corresponding securities type and investment type.
  • the securities price listing unit 124 converts actual data into browsing data based on the seller ID that matches the search condition, and transmits the data to the web server unit 126.
  • the converted result data can be displayed on the web browser of the buyer terminal 21-1. Rankings can also be displayed, and the actual data is ranked according to the ranking of the average result of the expected score, the operation rate result, the deviation value at the operation rate, the sales amount result, etc., and converted into data for viewing. It can also be displayed after conversion.
  • the browser display screen example of FIG. 6 by selecting a seller ID link 700 or the like, it is possible to browse in detail the securities price forecasts exhibited by the seller. Further, when the seller of the ID has exhibited the securities price forecast data described later, the purchase data purchase screen is displayed by clicking a link 710 or the like. Thereby, the buyer can purchase the securities price prediction data via the server 10.
  • Step S104 the form unit 121 performs form distribution processing. Specifically, after the analysis result disclosure process, the seller is further provided with a new security price forecast. At this time, the seller is authenticated by the ID and password. Here, in the case of a user who desires a new seller, an ID creation unit 135 is used to create a seller ID, and the user database 131 is accessed to input each information.
  • the form unit 121 transmits a web form of a predetermined format for inputting the securities price forecast data according to the access from the web browser of the seller terminal 23-1 (timing T101).
  • the user who desires the seller inputs the securities price forecast data using the web form.
  • the example which inputs this securities price forecast data specifically using the web form which is an input form is demonstrated.
  • a user name and a password are input to the web form displayed on the browser using the input field 500.
  • the seller then enters the input column 510 into the securities type D101, the input column 520 into the investment type D102, the input column 530 into the securities price D103, the input column 540 into the amount D104, and the input column 550 into the forecast method D105.
  • the input field 560 inputs data corresponding to the confidence level D106, and the input field 570 inputs data corresponding to the comment D107. Thereafter, when it is detected that the seller clicks the transmission button 580 with a pointing device such as a mouse, the seller terminal 23-1 transmits the input data to the server 10 as securities price prediction data (timing T102).
  • the form unit 121 Upon receiving the securities price forecast data via the network input / output unit 110, the form unit 121 stores it in the results database 132 in association with the seller's ID. This form distribution and securities price forecast data transmission can be repeated because there are usually multiple forecasts created by the seller.
  • the data is displayed separately as data having different start dates and end dates (final dates) of the forecast period, for example, next week data and next week data. be able to. Furthermore, it is also possible to list separately the data of, for example, weekly and monthly data with different ranges of the target period.
  • the input items of each attribute can be input using selection fields such as a slide bar, radio box, check box, etc., numerical values, or symbols so as not to leave ambiguity.
  • the attributes can be made consistent with each other so as to be transmitted from the program by WPUT or the like.
  • the securities price listing section 124 performs securities price forecast market listing processing. Specifically, the securities price listing unit 124 indicates the portion of the securities price forecast data according to each seller ID that may be disclosed, for example, information other than the seller ID, the securities price D103, etc.
  • the ranking information is combined into HTML, XML, etc., and stored in the performance database 132 as exhibition data.
  • the web server unit 126 transmits the exhibition data. Further, the exhibition data can be searched in the same manner as the above-mentioned record data. The buyer searches the exhibition data using the web browser of the buyer terminal 21-1, and compares and examines the results of analysis and ranking of the results data to determine purchase.
  • the settlement unit 127 presents the contract conditions and makes a “purchase reservation” (timing T103).
  • the securities price listing unit 124 provides the forecast data listed on a server of a securities company (not shown).
  • Step S106 the settlement unit 127 performs a sales process.
  • the settlement unit 127 that has received the purchase reservation signal makes a purchase reservation with another server in cooperation with an off-site ticketing site or the like.
  • This purchase reservation is preferably configured to be canceled only via the server 10.
  • the ID creation unit 135 can create and store an ID, a password, and the like, make a purchase reservation via the ID, a password, and the like and store them in the user database 131.
  • the ID and password at this time are stored in a storage unit that the user of the user database 131 cannot access, and the buyer can know only that the purchase has been made.
  • the settlement unit 127 can also settle the price by referring to the user database 131 using SSL or the like. Thereafter, the settlement unit 127 uses the web server unit 126 or the DNS / mail server 140 to convert the purchased “securities price forecast” forecast data (securities price forecast data) into a viewable state for the buyer. Etc. (Timing T104)
  • Step S107 the result acquisition unit 125 performs a result acquisition / collation process.
  • the result acquisition unit 125 acquires price data of each security and the like related to the displayed security price prediction data from another server or the like connected to the network 5 by fetching or the like. This acquisition can be performed by setting the timing with a timer. Further, the administrator of the server 10 can directly input price data using the administrator terminal 25. Then, the result acquisition unit 125 compares the acquired result data with the displayed securities price prediction data, and calculates a preliminary price difference. The result acquisition unit 125 stores the collated data in the result database 132.
  • Step S108 the performance analysis unit 122 performs performance totaling / analysis processing.
  • This performance aggregation / analysis process is a process of calculating, analyzing, and evaluating the seller's performance again after the results are known.
  • the performance analysis unit 122 performs the same processing as the past performance tabulation processing in step S101 and the statistics / ranking creation processing in step S102, with the above-described collated data added.
  • the performance of the seller of each ID is updated and stored in the performance database 132.
  • Step S109 the securities price listing unit 124 uses the web server unit 126 to perform the latest results disclosure process.
  • This latest result release process performs the same process as the result release process in step S103. That is, when the buyer user browses the securities price listing unit 124, the web server unit 126 is used to transmit each calculation result, ranking HTML, XML, or the like. In addition to this, if multiple sellers sell securities price forecast data for the same investment type or brand of securities, create a ranking or daily ranking to create a “breaking news”. Or can be transmitted by the DNS / mail server 140. In addition, as the latest results, it is possible to make public disclosure suitable for comparing securities, such as the superiority or inferiority of the portfolio of sellers, ranking on the price increase / decrease surface of overall securities.
  • Step S110 the settlement unit 127 performs price collection / sales payment processing. Specifically, in the case of postpay, the settlement unit 127 first collects the purchase price from the buyer (timing T105). The settlement unit 127 performs settlement with reference to the user database 131 using SSL or the like in the case of prepaid collection. Thereafter, the settlement unit 127 deducts the fee and remits (pays) the sales to the seller (timing T106). Further, in the case of advance payment, the purchase price that was first settled and collected is subtracted from the fee of the administrator of the server 10 and sent as sales after the result is disclosed.
  • the settlement unit 127 can remit the money by deducting the fee. Thereby, since the buyer can pay the fee after confirming the sales, the purchase can be made with confidence.
  • Prior Art 1 was able to quickly browse stock price increases and decreases for day traders.
  • the open market system allows a seller to provide securities price forecast data using a form.
  • the reliability of the forecast data can be clarified by collating the securities price forecast data with the price of the securities such as the last day after the forecast period and creating a forecast score.
  • the price forecast of securities such as stock prices has been publicly disclosed as “target price” by the forecast of securities companies and analysts.
  • target price was just a “rough target” at that time, and it was unclear what time it would be realized.
  • the target price may be updated due to changes in economic conditions or new information. Therefore, it is difficult to verify whether the target price has been realized or not, and it has not been actually verified. Because of this situation, there is a problem that the target price is not very useful for investors who repeat buying and selling in a short period of time, such as day traders. That is, conventionally, expected price data required by an investor who repeats buying and selling in a short period of time has not been provided.
  • the open market system can quantitatively verify the expected price data of securities and the expected results.
  • price forecast data such as fluctuations in stock prices that are useful and necessary for day traders as “products” and can be sold and sold as open markets. Can be the target of.
  • expected price data for investors who repeat buying and selling in a short period of time.
  • the forecast data of the past has been unclear and has high barriers to entering as a seller because the types of securities, types of investments, transaction forms, and prices vary depending on the seller. Furthermore, in order to enter into the provision of securities forecast data as a seller, it is necessary to gain some credit. However, since an objective evaluation method has not been established, it has been difficult for individuals to calculate operation results and the like, like a securities company. For this reason, it was difficult for individuals to obtain trust in the predicted data. On the other hand, the open market system according to the embodiment of the present invention can be used simply by the seller inputting the securities price using a form and listing it.
  • an expected score is calculated by the server 10 as an actual result after the prediction target period has elapsed, an objective operation rate and the like are also calculated, and is specifically and objectively evaluated by ranking and actual results.
  • an objective operation rate and the like are also calculated, and is specifically and objectively evaluated by ranking and actual results.
  • a stock price a portfolio or the like that is a combination of several brands can also be evaluated as securities price forecast data.
  • the seller who has predicted the “correct” securities price is objectively evaluated and can surely earn income.
  • the seller can be motivated to make a better prediction.
  • the open market system can objectively present the evaluation of the forecast data, it is possible to remove a psychological barrier to buyer purchase. Furthermore, the transparency can be further enhanced by unifying the transaction form such as prepaid and postpaid.
  • the provider of the server 10 can be appointed as an investment trust manager with an actual securities company by mediating the ranking and the like. It can also be used for financial products and investment trusts by signing secondary usage contracts.
  • This investment type creation unit is created by combining multiple sellers with high expected scores and management rates, and calculating portfolios, etc. as investment types in a permutation and combination based on the expected values of each recovery rate, etc. can do.
  • the present invention is industrially applicable to provide an expected market price market for securities by providing a public market system that can objectively evaluate securities price forecast data.
  • Network 10 Servers 21-1 to 21-n Buyer terminal 23-1 to 23-n Seller terminal 25 Administrator terminal 110
  • Network input / output unit 120 Open market server 121
  • Performance analysis unit 124 Securities price listing unit 125
  • Result Acquisition unit 126 Web server unit 127
  • Settlement unit 130 Database server 131
  • Performance database 133 Securities database 135
  • ID creation unit 140 DNS / mail servers 500, 510, 520, 530, 540, 550, 560, 570, 610, 620 , 630, 640, 650

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Technology Law (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

Provided is an open market system capable of objectively evaluating securities price forecast data. The open market system comprising a server, seller terminals connected to the server, and buyer terminals connected to the server is prepared. The server is provided with a performance analysis section for matching and analyzing the results of the securities price forecast data so as to create performance data. In addition, the server is provided with a form section for outputting a form for inputting securities price forecast data exhibited from the seller terminals. The seller terminals input stylized securities price forecast data using the form. The server outputs the analyzed performance data and the exhibited securities price forecast data from a securities price exhibiting section. In addition, the server is provided with a settlement section for making settlement associated with the exhibited securities price forecast data.

Description

[規則37.2に基づきISAが決定した発明の名称] 公開市場システム[Name of invention determined by ISA based on Rule 37.2] Public market system

 本発明は、公開市場システム、公開市場システムのサーバ、公開市場システムの制御方法に係り、特に有価証券価格予想データを売買する公開市場システム、公開市場システムのサーバ、公開市場システムの制御方法に関する。 The present invention relates to an open market system, an open market system server, and an open market system control method, and more particularly to an open market system for buying and selling securities price forecast data, an open market system server, and an open market system control method.

 近年、我が国においても、金融規制緩和等により、個人投資家による株式や債券等の有価証券の日計り取引であるデイトレードが一般化しつつある。
 デイトレードにおいては、日時間単位のような短期間で売買を繰り返して利鞘を得る投資行動を行う。すなわち、デイトレードにおいては、即時的な取引が重要であり、例えば、株のデイトレードにおいては、各証券会社の提供するプログラムやウェブサイトを用いて個人投資家がリアルタイムに株券の売買を行っている。
In recent years, day trading, which is a daily trading of securities such as stocks and bonds by individual investors, is becoming common in Japan due to the relaxation of financial regulations.
In day trading, investment behavior is performed to obtain profit margins by repeatedly buying and selling in a short period of time such as a day time unit. In other words, immediate trading is important in day trading. For example, in stock day trading, individual investors buy and sell stock certificates in real time using programs and websites provided by securities companies. Yes.

 このような、従来のデイトレーダー向けのシステムとしては、株価情報を逐次表示して、その表示された株価情報からデイトレーダー自身が株の売買を行うようなシステムが存在した。たとえば、特許文献1を参照すると、デイトレーダー向けに、秒単位で株の売買をし、操作が簡便で、適切な株価のデータを提供するシステムが記載されている(以下、従来技術1とする。)。
 従来技術1には、RSS(RDF Site Summary、Really Simple Syndication, Rich Site Summary)により、インターネット経由で株価情報を必要な株価情報を自動で更新し、閲覧可能とし、大量の株価情報のデータをユーザーが直接手入力することなく常に全ての株価情報を自動で最新の情報に置き換えられる、デイトレーダー向け株式投資支援プログラムが記載されている。
As a system for such a conventional day trader, there is a system in which stock price information is sequentially displayed, and the day trader itself buys and sells stocks from the displayed stock price information. For example, referring to Patent Document 1, there is described a system for buying and selling stocks in units of seconds for day traders, which is easy to operate and provides appropriate stock price data (hereinafter referred to as Prior Art 1). .)
Prior art 1 uses RSS (RDF Site Summary, Real Simple Synchronization, Rich Site Summary) to automatically update and view necessary stock price information via the Internet, enabling users to view a large amount of stock price data. Describes a stock investment support program for day traders that can automatically replace all stock price information automatically with the latest information without direct manual input.

特開2007-157096号公報JP 2007-157096 A

 ここで、従来、株価等の有価証券の価格の予想は、証券会社やアナリストの予測として、目標価格のような形式で公開されていた。
 すなわち、有価証券の目標価格は、あくまでその時点、その状況における「おおまかな目標」として提供されていた。
 しかしながら、従来技術1の株式投資支援プログラムは、株価情報がリアルタイムに更新されるだけであるという問題があった。すなわち、従来技術1によっては、デイトレーダーが従来の有価証券の目標価格をそのまま売買に用いることができないという問題があった。
 また、従来の有価証券の目標価格は、状況の変化や、新しい情報の入手によって目標価格は随時更新されることがあった。よって、目標価格が実現されたのか、されなかったのか検証が困難であった。
Here, conventionally, forecasts of prices of securities such as stock prices have been disclosed in the form of target prices as forecasts of securities companies and analysts.
That is, the target price of securities was provided as a “rough target” at that time.
However, the stock investment support program of Prior Art 1 has a problem that the stock price information is only updated in real time. That is, depending on the prior art 1, there is a problem that the day trader cannot use the target price of the conventional securities as it is for trading.
In addition, the target price of conventional securities may be updated from time to time due to changes in circumstances or the acquisition of new information. Therefore, it was difficult to verify whether the target price was realized or not.

 本発明は、このような状況に鑑みてなされたものであり、上述の課題を解消することを課題とする。 This invention is made in view of such a situation, and makes it a subject to eliminate the above-mentioned subject.

 本発明の公開市場システムは、サーバと、該サーバに接続する売り手端末と、買い手端末とを備える公開市場システムにおいて、前記サーバは、過去の有価証券価格予想データの予想結果を照合し分析して実績のデータを作成する実績分析部と、前記売り手端末から出品される有価証券価格予想データを入力するためのフォームを出力するフォーム部と、分析された実績のデータと、出品された前記有価証券価格予想データとを前記買い手端末に出力する有価証券価格出品部と、出品された前記有価証券価格予想データに係る決済を行う決済部とを備え、前記売り手端末は、前記フォームを用いて定型化された有価証券価格予想データが前記売り手端末から入力され出品されることを特徴とする。
 本発明の公開市場システムは、前記実績分析部は、前記分析として、統計やランキングを計算して実績のデータを作成することを特徴とする。
 本発明の公開市場システムは、前記有価証券価格出品部は、前記買い手端末からの指示により、前記実績のデータの検索を行うことを特徴とする。
 本発明の公開市場システムのサーバは、出品された前記有価証券価格予想データの結果を取得する結果取得部を更に備え、前記実績分析部は、出品された前記有価証券価格予想データと、結果のデータとを照合し、前記実績のデータを更新することを特徴とする。
 本発明の公開市場システムのサーバは、過去の有価証券価格予想データの結果を照合し分析して実績のデータを作成する実績分析部と、売り手端末から出品される有価証券価格予想データを入力するためのフォームを出力するフォーム部と、分析された実績のデータと、出品された前記有価証券価格予想データとを出力する有価証券価格出品部と、出品された前記有価証券価格予想データに係る決済を行う決済部とを備えることを特徴とする。
 本発明の公開市場システムの制御方法は、サーバと、該サーバに接続する売り手端末と、買い手端末と備える公開市場システムにおいて、有価証券価格予想データと、該有価証券価格予想データの結果を照合し分析して実績のデータを作成し、出品される有価証券価格予想データを入力するためのフォームを出力し、前記フォームを用いて定型化された有価証券価格予想データを入力して出品し、分析された実績のデータと、出品された前記有価証券価格予想データとを出力することを特徴とする。
The public market system of the present invention is a public market system comprising a server, a seller terminal connected to the server, and a buyer terminal. The server collates and analyzes the prediction results of past securities price prediction data. A performance analysis unit for creating actual data, a form unit for outputting a form for inputting the expected price of securities to be exhibited from the seller terminal, the analyzed actual data, and the marketed securities A securities price listing unit that outputs price forecast data to the buyer terminal, and a settlement unit that performs settlement related to the listed securities price forecast data, and the seller terminal is standardized using the form The marketed securities price forecast data is inputted from the seller terminal and exhibited.
The open market system of the present invention is characterized in that, as the analysis, the performance analysis unit calculates statistics and ranking and creates performance data.
The open market system according to the present invention is characterized in that the securities price listing section searches the actual data in accordance with an instruction from the buyer terminal.
The server of the open market system of the present invention further includes a result acquisition unit that acquires the result of the listed securities price forecast data, and the performance analysis unit includes the listed securities price forecast data, the result The data is collated and the result data is updated.
The server of the open market system according to the present invention inputs a result analysis unit that collates and analyzes results of past securities price prediction data and creates results data, and securities price prediction data exhibited from a seller terminal. A form part for outputting the form for the analysis, a security price listing part for outputting the analyzed data of the actual results and the expected price of the offered securities, and a settlement relating to the expected price of the offered securities And a settlement unit for performing the above.
The public market system control method of the present invention is a public market system provided with a server, a seller terminal connected to the server, and a buyer terminal, and compares the security price forecast data with the result of the security price forecast data. Analyze to create actual data, output a form to enter the expected price of securities to be listed, enter the expected price of securities priced using the form, and submit for analysis The data of the actual performance that has been performed and the securities price prediction data that has been exhibited are output.

 本発明によれば、売り手が出品した有価証券価格予想データを集計して公開することで、過去の予想の実績を客観的に比較することができ、より確率の高い予想を用いて効率的にデイトレードを行うことができる。 According to the present invention, it is possible to objectively compare past forecast results by collecting and publishing securities price forecast data exhibited by sellers, and efficiently using forecasts with higher probability. Day trading can be done.

本発明の実施の形態に係る公開市場システムXのシステム構成の概念図である。It is a conceptual diagram of the system configuration | structure of the open market system X which concerns on embodiment of this invention. 本発明の実施の形態に係るサーバ10の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the server 10 which concerns on embodiment of this invention. 本発明の実施の形態に係る公開市場処理のフローチャートである。It is a flowchart of the open market process which concerns on embodiment of this invention. 本発明の実施の形態に係る有価証券価格予想データの概念図である。It is a conceptual diagram of securities price forecast data according to an embodiment of the present invention. 本発明の実施の形態に係る買い手端末21-1のブラウザに表示する実績/有価証券価格予想検索の画面例である。It is an example of a screen of the results / securities price prediction search displayed on the browser of the buyer terminal 21-1 according to the embodiment of the present invention. 本発明の実施の形態に係る買い手端末21-1のブラウザに表示する実績/有価証券価格予想検索結果の画面例である。It is an example of the screen of the results / securities price prediction search result displayed on the browser of the buyer terminal 21-1 according to the embodiment of the present invention. 本発明の実施の形態に係る売り手端末23-1のブラウザに表示するウェブフォームの画面例である。It is a screen example of a web form displayed on the browser of the seller terminal 23-1 according to the embodiment of the present invention.

<実施の形態>
〔公開市場システムXの構成〕
 まず、図1を参照して、本発明の実施の形態に係る公開市場システムXの構成について説明する。本実施の形態の公開市場システムXにおいては、有価証券の価格に関する予想データ(有価証券価格予想データ)について公開市場として売買する構成の例について説明する。すなわち、本実施形態では、予想データの売り手は、直接株式等の有価証券の売買を行うわけではなく、銘柄の値上がり/値下がりについての情報を予想として提供し、この予想データを売買する。
<Embodiment>
[Configuration of Open Market System X]
First, with reference to FIG. 1, the structure of the open market system X which concerns on embodiment of this invention is demonstrated. In the open market system X of the present embodiment, an example of a configuration in which forecast data related to the price of securities (securities price forecast data) is bought and sold as an open market will be described. In other words, in the present embodiment, the seller of forecast data does not directly buy and sell securities such as stocks, but provides information on the price increase / decrease of the brand as a forecast, and buys and sells this forecast data.

 本発明の実施の形態に係る公開市場システムXは、サーバ10と、買い手端末21-1~21-nと、売り手端末23-1~23-nと、管理者端末25とが、無線電話網やインターネットやイントラネット等であるネットワーク5を介して接続されている。
 具体的には、ネットワーク5は、携帯電話網、PHS網、WiMAX、無線LAN、有線電話回線、LAN、電灯線LAN、cLink、専用の回線等の無線通信回線である。また、ネットワーク5の形態としては、IPネットワークやその他のスター状やリング状のネットワーク等を用いることができる。
 サーバ10は、PC/AT互換機、専用機、ブレードサーバ等を用いた、ネットワーク5で接続して有価証券価格市場に関する各種サービスを提供するサーバである。
 買い手端末21-1~21-nと、売り手端末23-1~23-nと、管理者端末25とは、HTML(ハイパー・テキスト・マークアップ・ランゲージ)等を閲覧することができるウェブブラウザを備えたPC/AT互換機、PDA(Personal Data Assistant)、モバイル端末、スマートフォン、携帯電話等である。
 買い手端末21-1~21-nは、有価証券価格予想データの買い手(買い手ユーザ)の使用する端末である。
 売り手端末23-1~23-nは、有価証券価格予想データの売り手(売り手ユーザ)の使用する端末である。
 管理者端末25は、サーバ10の管理者が用いる端末である。
In the open market system X according to the embodiment of the present invention, a server 10, buyer terminals 21-1 to 21-n, seller terminals 23-1 to 23-n, and an administrator terminal 25 are connected to a wireless telephone network. Or a network 5 such as the Internet or an intranet.
Specifically, the network 5 is a wireless communication line such as a mobile phone network, a PHS network, WiMAX, a wireless LAN, a wired telephone line, a LAN, a power line LAN, a cLink, and a dedicated line. Further, as the form of the network 5, an IP network or other star-shaped or ring-shaped network can be used.
The server 10 is a server that uses a PC / AT compatible machine, a dedicated machine, a blade server, or the like and is connected to the network 5 to provide various services related to the securities price market.
The buyer terminals 21-1 to 21-n, the seller terminals 23-1 to 23-n, and the manager terminal 25 are web browsers capable of browsing HTML (Hyper Text Markup Language) and the like. PC / AT compatible machine, PDA (Personal Data Assistant), mobile terminal, smart phone, mobile phone, and the like.
The buyer terminals 21-1 to 21-n are terminals used by buyers (buyer users) of securities price prediction data.
The seller terminals 23-1 to 23-n are terminals used by sellers (seller users) of securities price prediction data.
The administrator terminal 25 is a terminal used by the administrator of the server 10.

〔サーバ10の制御構成〕
 次に、図2を参照して、有価証券価格市場を提供するサーバ10の制御構成について詳しく説明する。サーバ10は、ネットワーク入出力部110、公開市場サーバ120、データベースサーバ130、DNS/メールサーバ140を主に含んで構成される。
[Control Configuration of Server 10]
Next, the control configuration of the server 10 that provides the securities price market will be described in detail with reference to FIG. The server 10 mainly includes a network input / output unit 110, an open market server 120, a database server 130, and a DNS / mail server 140.

 ネットワーク入出力部110は、ルータやロードバランサ(負荷分散装置)等である。ネットワーク入出力部110は、ネットワーク5からIPパケットを受信して各部に送信し、各部からのIPパケットをまとめてネットワーク5へと送信する。
 また、ネットワーク入出力部110は、パケットフィルタ、ファイアウォール、syslog等にも対応する。
The network input / output unit 110 is a router, a load balancer (load balancer), or the like. The network input / output unit 110 receives IP packets from the network 5 and transmits them to each unit, and collectively transmits the IP packets from each unit to the network 5.
The network input / output unit 110 also supports packet filters, firewalls, syslogs, and the like.

 公開市場サーバ120は、買い手と売り手がアクセスする公開市場のサービスを提供するサーバであり、CPU等の制御部が、フォーム部121、実績分析部122、有価証券価格出品部124、結果取得部125、ウェブサーバ部126、決算部127のような各種プログラムやクラス等をハードウェア資源を用いて実行する。これらの各種プログラムやクラス等は、サービス(デーモン)やCGI(Common Gateway Interface)、サーブレット、ASP(Active Server Pages)、PHP、各種スクリプト、その他のウェブアプリケーションと、具体的な演算を行うプログラム群として提供することができる。
 フォーム部121は、有価証券価格予想データを入力するためのデータフォームに係るCGIやサーブレットやXMLデータ等の部位である。フォーム部121は、後述する定型化された有価証券価格予想データを売り手が入力するためのデータフォームを作成する。また、フォーム部121は、売り手端末23-1~23-nから、データフォームを用いて入力されたデータを受信すると、ユーザデータベース131に記憶する。
 実績分析部122は、後述する実績データベース132や有価証券価格データベース133等を参照して、売り手の予想から対象期間中に値上がり等の「実績」となる予想結果等の実績のデータを計算し作成する部位である。また、実績分析部122は、後述する有価証券価格予想データ中の自信度D106(図4)のようなデータ等と実績による相関係数を計算したり、各種統計的手法、人工知能的手法を用いて、売り手データの傾向等を計算するための部位である。また、売り手のランキングや、有価証券価格データを総合して最尤推定等を行い「尤も正しそう」な予想データを作成することもできる。
 有価証券価格出品部124は、CGIやサーブレットやASPやPHP等、端末の指示に応じてブラウザ等で表示可能なデータの出力を行う機能を備える部位である。有価証券価格出品部124は、売り手が送信した有価証券価格予想データや、実績分析部122が集計・分析・計算・評価した実績に関するデータを、HTMLやXML等のウェブサーバ部126にて送信可能なデータに変換する。また、有価証券価格出品部124は、買い手が有価証券価格予想データから購入したいものを検索する際に、各種条件設定を行い、ユーザデータベース131から検索を行うこともできる。また、有価証券価格出品部124は、コメント等を表示する機能に加えて、SNS(ソーシャル・ネットワーク・サービス)、BBS(Bulletin Board System)、チャット等の機能を備えており、買い手が売り手に直接問い合わせることも可能である。これにより、公開市場を介さない取引を抑制することができる。また、有価証券価格出品部124は、送信するメールの文面を作成する等の自然言語処理機能も備えている。
 結果取得部125は、例えば株価データを販売しているサーバ等である有価証券の価格が公開されたサーバ(図示せず)から、タイマーによるフェッチ等を用いて、HTMLやXMLやテキストデータやバイナリデータ等で提供される有価証券価格データを取得する部位である。この有価証券価格データには、VWAP(Volume Weighted Avarage Price、出来高加重平均価格)、移動平均データ、トレンド、初値、終値等の有価証券の価格に関連する各種データを用いることができる。また、結果取得部125は、パーサを用いて有価証券価格データベース133に合う形式に変換することもできる。
 ウェブサーバ部126は、WWW(ワールド・ワイド・ウェブ)サーバのサービス(デーモン)であり、IIS(インターネット・インフォメーション・サーバ)や、Apache等と各種モジュールを用いることができる。また、ウェブサーバ部126は、CGI(コモン・ゲートウェイ・インターフェイス)、サーブレット、PHP等のインターフェイスを用いて、アカウントによるアクセス制御により、各プログラムの実行出力を各端末からWWWのウェブブラウザにてアクセス可能にする。また、ウェブサーバ部126は、HTMLやCHTML(コンパクト・HTML)のデータ等と、JPGやGIFやFLASHやAVI等の画像データと、音声データやその他のデータとを備えたWWWウェブサイト構築用のデータについても、各データベースや記憶媒体から読み出して送信することができる。
 決済部127は、SSL(Secure Socket Layer)を用いて、クレジット決済やインターネット銀行での決済やインターネット通貨での決済を行う部位である。この際に、買い手や売り手が設定した期限等の条件により、メール送信やウェブぺージ作成等の処理を行うこともできる。
The public market server 120 is a server that provides a public market service accessed by buyers and sellers. A control unit such as a CPU includes a form unit 121, a performance analysis unit 122, a securities price listing unit 124, and a result acquisition unit 125. Various programs and classes such as the web server unit 126 and the settlement unit 127 are executed using hardware resources. These various programs, classes, etc. are services (daemons), CGIs (Common Gateway Interface), servlets, ASPs (Active Server Pages), PHP, various scripts, and other web applications, as a group of programs that perform specific operations. Can be provided.
The form part 121 is a part such as CGI, servlet, XML data or the like related to a data form for inputting securities price forecast data. The form unit 121 creates a data form for the seller to input standardized securities price forecast data described later. Further, when the form unit 121 receives data input using the data form from the seller terminals 23-1 to 23-n, the form unit 121 stores the data in the user database 131.
The performance analysis unit 122 refers to a performance database 132, a securities price database 133, and the like, which will be described later, and calculates and creates performance data such as a prediction result that becomes a “result” such as a price increase during the target period from the seller's prediction. It is a part to do. Further, the performance analysis unit 122 calculates a correlation coefficient based on data such as confidence level D106 (FIG. 4) in the securities price forecast data (to be described later) and the performance, and various statistical methods and artificial intelligence methods. Used to calculate the trend of seller data. Further, it is possible to create forecast data “likely to be correct” by performing maximum likelihood estimation by combining seller rankings and securities price data.
The securities price listing unit 124 is a part having a function of outputting data that can be displayed on a browser or the like in accordance with an instruction from a terminal, such as CGI, servlet, ASP, PHP. The securities price listing unit 124 can transmit the securities price forecast data transmitted by the seller and the data related to the results aggregated / analyzed / calculated / evaluated by the performance analysis unit 122 through a web server unit 126 such as HTML or XML. To correct data. In addition, the securities price listing unit 124 can set various conditions and perform a search from the user database 131 when the buyer searches the securities price forecast data for purchase. The securities price listing section 124 has functions such as SNS (Social Network Service), BBS (Bulletin Board System), and chat in addition to the function of displaying comments and the like. It is also possible to make an inquiry. Thereby, the transaction which does not go through an open market can be suppressed. The securities price listing unit 124 also has a natural language processing function such as creating a text of an email to be transmitted.
The result acquisition unit 125 uses HTML or XML, text data, binary data, or the like by using a timer or the like from a server (not shown) on which the price of securities such as a server selling stock price data is disclosed. This is a part for acquiring securities price data provided by data. For this securities price data, various data relating to the price of securities such as VWAP (Volume Weighted Average Price), moving average data, trend, initial price, closing price, etc. can be used. In addition, the result acquisition unit 125 can also convert the data into a format suitable for the securities price database 133 using a parser.
The web server unit 126 is a service (daemon) of a WWW (World Wide Web) server, and can use various modules such as IIS (Internet Information Server), Apache, and the like. In addition, the web server unit 126 can access the execution output of each program from each terminal by a WWW web browser by using an access control by an account using an interface such as a common gateway interface (CGI), a servlet, and PHP. To. The web server unit 126 is for building a WWW website including HTML, CHTML (compact / HTML) data, image data such as JPG, GIF, FLASH, and AVI, audio data, and other data. Data can also be read from each database or storage medium and transmitted.
The settlement unit 127 is a part that performs credit settlement, settlement at an Internet bank, and settlement in the Internet currency using SSL (Secure Socket Layer). At this time, processing such as e-mail transmission and web page creation can be performed according to conditions such as a time limit set by the buyer or seller.

 データベースサーバ130は、CPU等の制御部とSQLサーバと各種ストレージとプログラム等のハードウェア資源を用いて構成されている部位であり、ユーザデータベース131、実績データベース132、有価証券価格データベース133、ID作成部135のような部位を備えている。
 ユーザデータベース131は、売り手、買い手のユーザのID(Identification)、パスワード、決済用のクレジットカード情報、有価証券価格予想データ、購入/販売履歴、検索履歴、コメントやSNSやBBS等の記載/閲覧履歴、住所や電話番号等その他のデータを記憶するデータベースである。
 実績データベース132は、売り手が出品した有価証券価格予想データや実績等を記憶するデータベースである。
 有価証券価格データベース133は、有価証券価格データを時系列データ等の形式にて記憶するデータベースである。有価証券価格データベース133は、上述の有価証券価格データのようにVWAP(Volume Weighted Avarage Price、出来高加重平均価格)、移動平均データ、トレンド、初値、終値のような値に加えて、各種経済指標、各国の株価指数のような有価証券価格の指数、経済的なイベント等の有価証券価格予想データに用いられる属性についても記憶している。
 ID作成部135は、売り手、買い手の各ユーザについて、各データベースにアクセスさせるため、IDに係るパスワードや鍵データ等を発行する部位である。また、ID作成部135は、ユーザデータベース131の各売り手、買い手のユーザデータベース131上のデータを、買い手端末21-1~21-nや売り手端末23-1~23-nからの信号に従って入力することもできる。
The database server 130 is a part configured using a control unit such as a CPU, an SQL server, various storages, and hardware resources such as a program, and includes a user database 131, a performance database 132, a securities price database 133, and ID creation. A part like the part 135 is provided.
The user database 131 stores seller / buyer user IDs (identifications), passwords, payment credit card information, securities price forecast data, purchase / sales history, search history, comments, description / viewing history of SNS, BBS, etc. A database for storing other data such as addresses and telephone numbers.
The performance database 132 is a database for storing securities price forecast data, performance, etc. exhibited by the seller.
The securities price database 133 is a database that stores securities price data in a format such as time series data. The securities price database 133 includes various economic indicators in addition to values such as VWAP (Volume Weighted Average Price), moving average data, trends, initial prices, and closing prices, such as the above-described securities price data. It also memorizes the attributes used for securities price forecast data such as index of securities price such as stock price index of each country and economic events.
The ID creation unit 135 is a part that issues a password, key data, and the like related to an ID in order to allow each user of a seller and a buyer to access each database. The ID creation unit 135 also inputs data on the user database 131 of each seller and buyer in the user database 131 according to signals from the buyer terminals 21-1 to 21-n and seller terminals 23-1 to 23-n. You can also

 DNS/メールサーバ140は、一般的なDNS(ドメイン・ネームサーバ)や、ユーザに電子メールを配信するためのSMTP(Simple Mail Transfer Protocol)サーバである。DNSとしては、Windows(登録商標)DNSを使用し、SMTP用のサービス(デーモン、プログラム)としては、公知のSMTPプログラム、例えば、ArGoSoft社製のMail Server等を用いることができる。
 このDNS/メールサーバ140は、DNSとして用いる他に、公式サイトの登録フォームに入力したユーザにアカウントのユーザIDとパスワード等を送信することもできる。
The DNS / mail server 140 is a general DNS (domain name server) or an SMTP (Simple Mail Transfer Protocol) server for delivering electronic mail to users. As the DNS, Windows (registered trademark) DNS can be used, and as a service (daemon, program) for SMTP, a known SMTP program, for example, Mail Server manufactured by ArGoSoft or the like can be used.
In addition to being used as a DNS, this DNS / mail server 140 can also send the user ID and password of the account to the user who has entered the registration form on the official site.

〔公開市場システムXの公開市場処理〕
 次に公開市場システムXにおける、公開市場処理の流れの概略を説明する。
 本発明の実施の形態に係る公開市場は、上述したように、売り手の過去の実績をデータとして明確に分析、比較、公開することができる有価証券価格予想データの公開市場である。この公開市場においては、買い手が実績データを参考にして有価証券価格予想データを選択し、同一価格で購入する事ができる。すなわち、この公開市場は、売り手も買い手も参加が自由な市場のサービスである。
 より具体的には、売り手(売り手ユーザ)は、売り手端末23-1~23-nを用いて、サーバ10にアクセスし、販売するための有価証券価格予想データを提出する。この予想データを提出するための売り手は、必ずしもヒトである必要はなく、いわゆる「株ロボ」等のプログラムを実行するコンピュータ等でもよい。
 サーバ10は、この有価証券価格予想データに対して、過去の予想の実績と予想データの値段等を有価証券価格予想データの公開市場として提供する。
 そして、買い手(買い手ユーザ)が、買い手端末21-1~21-nを用いて、この有価証券価格市場から予想データを購入する。
 所定の予想対象期間が経過して、有価証券の価格の結果が判明すると、サーバ10は、予想データの売買に関する金銭の授受や、実績の更新を行う。
 その後、買い手から予想データの購入代金を回収し、手数料分を差し引いて、売り手に売上金を渡す。
[Public Market Processing of Open Market System X]
Next, an outline of the flow of open market processing in the open market system X will be described.
As described above, the public market according to the embodiment of the present invention is a public market for securities price forecast data that can clearly analyze, compare, and disclose the past performance of sellers as data. In this open market, buyers can select securities price forecast data with reference to performance data and purchase at the same price. In other words, this open market is a market service where sellers and buyers are free to participate.
More specifically, the seller (seller user) accesses the server 10 using the seller terminals 23-1 to 23-n and submits securities price forecast data for sale. The seller for submitting the forecast data is not necessarily a human, but may be a computer that executes a program such as a so-called “stock robot”.
The server 10 provides past forecast results, forecast data prices, and the like as a public market for the securities price forecast data.
Then, the buyer (buyer user) purchases forecast data from the securities price market using the buyer terminals 21-1 to 21-n.
When a predetermined forecast target period has passed and the price result of the securities is known, the server 10 exchanges money related to the buying and selling of forecast data and updates the results.
After that, the purchase price of the forecast data is collected from the buyer, the commission is subtracted, and the sales money is given to the seller.

〔有価証券価格予想データのデータ構造〕
 ここで、図4を参照して、売り手が提供する有価証券価格予想データに係る各属性の例について説明する。この有価証券価格予想データは、売り手端末23-1~23-nがサーバ10に送信して、サーバ10のフォーム部121が実績データベース132に記憶する。
[Data structure of securities price forecast data]
Here, with reference to FIG. 4, an example of each attribute related to the securities price forecast data provided by the seller will be described. The securities price forecast data is transmitted to the server 10 by the seller terminals 23-1 to 23-n, and the form section 121 of the server 10 stores it in the result database 132.

 証券種類D101は、予想データの対象となる有価証券の種類を特定するための属性である。たとえば、株券は0、FXなら1といったように所定の数字や文字等のデータにより構成する。また、後述する、予想データの予想対象期間についても記憶可能である。 The securities type D101 is an attribute for specifying the type of securities targeted for the forecast data. For example, stock certificates are composed of data such as predetermined numbers and characters such as 0 for FX and 1 for FX. In addition, it is possible to store a forecast target period of forecast data, which will be described later.

 投資種類D102は、予想対象とする有価証券の価格データの種類を示す属性である。具体的には、売り手が予想する予想対象銘柄として、所定の株の銘柄や、任意の銘柄、複数の銘柄について予想対象とすることができる。
 さらに、各銘柄を集めたポートフォリオのようなものも予想対象にできる。また、信託投資に用いるインデックス指標等に加え、信用売りの契約価格等の特別な手法の価格データのようなものも予想対象とすることができる。
 加えて、価格が「値上がり」「値下がり」する銘柄の組み合わせのみを、業種別や銘柄別に示すといった形式にも対応して予想対象とすることができる。
The investment type D102 is an attribute indicating the type of price data of the securities to be predicted. Specifically, as a forecast target brand predicted by a seller, a brand stock of a predetermined stock, an arbitrary brand, or a plurality of brands can be set as a forecast target.
In addition, a portfolio like a collection of stocks can be targeted. Moreover, in addition to index indicators used for trust investment, it is also possible to make a target such as price data of a special technique such as a contract price of credit selling.
In addition, only combinations of brands whose prices “rise” and “decrease” can be used as prediction targets in correspondence with formats such as by industry or brand.

 有価証券価格D103は、投資種類D102に対応した予想有価証券価格を示す属性である。この属性としては、有価証券の所定の銘柄がどの程度値上がり/値下がりするのかといった値である「有価証券価格」を記憶する。
 この有価証券価格は、値上がり/値下がりの予想価格、該有価証券の価格の上昇率/下降率のような値を記憶する。また、売り手が値上がり/値下がりする銘柄の組み合わせを選択している場合には、期待する銘柄とその有価証券価格を記憶する。
The securities price D103 is an attribute indicating an expected securities price corresponding to the investment type D102. As this attribute, a “securities price” that is a value indicating how much the predetermined brand of the securities increases / decreases is stored.
This securities price stores a value such as an expected price for price increase / decrease and a rate of increase / decrease in the price of the security. In addition, when the seller selects a combination of brands whose price increases / decreases, an expected brand and its securities price are stored.

 金額D104は、有価証券価格予想データを販売する際の金額の属性である。この金額は単純な金銭ではなく、例えば「ポイント」「クレジット」のような仮想通貨単位や、当選金額の何%といった金額を用いることもできる。
 また、仮想的なシミュレーションの結果を示す「当たり回数」のような指標を金額的な単位として用いることもできる。
 また、買い手が支払う際に、前払いか後払いかといった情報も記憶できる。後払いの場合には、サーバ10を介して証券会社のサーバ(図示せず)から有価証券を購入し、購入時の利鞘の何パーセントを支払うといった値を定めることができる。なお、後払いの場合、同じIDの売り手がランダムな有価証券価格予想データを多数用意する事態を避けるために、保証金や手数料をサーバ10の管理者に先払いするようなシステムも用意できる。さらに、先払いの場合にも、最初に料金を預けておいて、予想が当たった場合のみ売り手に送金するような情報を記憶することもできる。
 また、金額D104においては、予想プログラム等により自動的に予想データを作成して出品する等の場合、「自動継続」が可能である旨のフラグ等を設定することができる。これにより、同じIDの売り手が証券種類D101、投資種類D102、有価証券価格D103の予想データを送信した場合に「継続」と判断して、継続して予想データを購入するユーザに該データを送信し販売することができる。
The amount D104 is an attribute of the amount when selling securities price forecast data. This amount is not simple money, and for example, a virtual currency unit such as “point” or “credit” or an amount of what percentage of the winning amount can be used.
In addition, an index such as “number of hits” indicating the result of a virtual simulation can be used as a monetary unit.
In addition, when the buyer pays, information such as prepaid or postpaid can be stored. In the case of post-payment, it is possible to determine a value such as purchasing securities from a server (not shown) of a securities company via the server 10 and paying what percentage of the margin at the time of purchase. In the case of postpay, it is possible to prepare a system in which a deposit or a commission is paid in advance to the administrator of the server 10 in order to avoid a situation where a seller with the same ID prepares a lot of random securities price prediction data. Further, in the case of advance payment, it is also possible to store information such as depositing a fee first and remitting money to the seller only when an expectation is made.
In addition, in the amount of money D104, a flag or the like indicating that “automatic continuation” is possible can be set in a case where forecast data is automatically created by a forecast program or the like for listing. As a result, when the seller with the same ID transmits the forecast data of the securities type D101, the investment type D102, and the securities price D103, it is determined as “continue” and the data is continuously sent to the user who purchases the forecast data. Can be sold.

 予想手法D105は、売り手が有価証券価格予想を行った際に最も重要視したファクターを記憶する属性である。この予想手法としては、統計的手法、人工知能的手法、データを用いたヒューリスティックな手法、その他の手法等を10種類程度にカテゴライズして記憶することができる。また、各手法について、例えば人工知能であれば「カーネルマシン」「ニューラルネット」「決定木」等のサブカテゴリーを記憶可能である。 The forecast method D105 is an attribute that stores a factor that is regarded as most important when the seller makes a securities price forecast. As this prediction method, a statistical method, an artificial intelligence method, a heuristic method using data, and other methods can be categorized and stored in about 10 types. For each method, for example, artificial intelligence can store subcategories such as “kernel machine”, “neural network”, and “decision tree”.

 自信度D106は、予想に対しての自信度を自己評価として記憶する属性である。具体的には売り手が自己申告したA、B、C等の3~5段階程度の評価を記憶する。 The confidence level D106 is an attribute for storing the confidence level with respect to the prediction as a self-evaluation. Specifically, the evaluation of about 3 to 5 levels of A, B, C, etc. self-reported by the seller is stored.

 コメントD107は、予想に関して、買い手に対するメッセージを自由に記入して記憶する欄である。このコメント中に、サーバ10を介しない連絡先やスパム等が記載されていた場合には、サーバ10のフォーム部121は、DNS/メールサーバ140を介して管理者端末25に通知し、そのIDのユーザに警告する。 Comment D107 is a column for freely entering and storing a message to the buyer regarding the forecast. In this comment, when a contact or spam not via the server 10 is described, the form part 121 of the server 10 notifies the administrator terminal 25 via the DNS / mail server 140, and the ID Warn users.

 以下で、このような有価証券価格予想データを公開市場で売買する処理について、図3のフローチャート/タイミングチャートを参照し、サーバ10の処理を基に詳しく説明する。
 また、以下では、売り手端末23-1と、買い手端末21-1とを代表例としてサーバ10との間の一連の処理の流れの例について説明を行う。
Hereinafter, processing for buying and selling such securities price forecast data in the open market will be described in detail based on the processing of the server 10 with reference to the flowchart / timing chart of FIG.
In the following, an example of a series of processing flows with the server 10 will be described with the seller terminal 23-1 and the buyer terminal 21-1 as representative examples.

(ステップS101)
 まず、サーバ10の実績分析部122は、過去実績集計処理を行う。
 具体的には、まず、実績分析部122は、実績データベース132と有価証券価格データベース133とを参照する。そして、実績分析部122は、結果取得部125が取得した結果データと、同じIDの予想データの売り手が以前に販売した有価証券価格予想データとから、予想スコア、運用率、回収額、販売額等の「実績」を計算する。この処理においては、以前の「実績」を計算する。
 具体的には、実績分析部122は、有価証券の予想対象期間内の価格変動の予想結果と現実の値動きとの差異である予想スコアを計算する。この予想対象期間としては、日次(1日単位)、週次(1週間単位)、月次(1月単位)等の所定の期間を指定することが可能である。本実施の形態においては、デイトレーダー向けに、予想期間の比較がしやすい週次の期間での計算について主に説明するがこれに限られない。また、予想スコアの具体的な計算方法については後述する。さらに、実績分析部122は、後の統計処理にて用いる各種の値についても計算する。
 以下、この「実績」のうち、予想スコアの評価について詳しく説明する。
(Step S101)
First, the performance analysis unit 122 of the server 10 performs past performance aggregation processing.
Specifically, first, the performance analysis unit 122 refers to the performance database 132 and the securities price database 133. Then, the result analysis unit 122 calculates the expected score, the operation rate, the collected amount, the sales amount from the result data acquired by the result acquisition unit 125 and the securities price prediction data previously sold by the seller of the prediction data with the same ID. Calculate “actual results”. In this process, the previous “actual result” is calculated.
Specifically, the performance analysis unit 122 calculates an expected score that is the difference between the price fluctuation forecast result within the forecast target period of the securities and the actual price movement. As the forecast target period, it is possible to specify a predetermined period such as daily (daily unit), weekly (one week unit), or monthly (monthly unit). In the present embodiment, for the day trader, calculation in a weekly period that allows easy comparison of expected periods will be mainly described, but the present invention is not limited to this. A specific method for calculating the predicted score will be described later. Further, the performance analysis unit 122 calculates various values used in later statistical processing.
Hereinafter, the evaluation of the predicted score among the “actual results” will be described in detail.

〔予想スコアの評価〕
 有価証券は、上場廃止等の特殊な条件を除き、金額が値下がりするか値上がりするかといった値を備えることができる。
 本発明の発明者が鋭意検討したところ、デイトレーダー向けの有価証券価格の予想データの評価としては、予想対象期間内の達成率等を用いた「予想スコア」を基に評価することが好適であることを見いだした。
 本実施形態においては、予想対象期間内に、有価証券価格データの予想価格を達成すればその予想価格の値、達成できなければ予想対象期間最終日の終値の値を「予想スコア」として評価する。また、逆に値下がり予想の場合は正負を逆として「予想スコア」として評価することができる。これにより、比較的短い期間での売買を行うデイトレーダー向けに、有価証券の価格予想データを適切に評価可能なものとして、公開市場での売買を行うことが可能とすることができる。
 より具体的には:

 (値上がりを予想した場合)
 予想スコア = (予想対象期間中に予想価格を達成?(yes)予想価格:(No)予想対象期間最終日の価格)

 (値下がりを予想した場合)
 予想スコア = 100% + {100% - (予想対象期間中に予想価格を達成?(yes)予想価格:(No)予想対象期間最終日の価格)}
[Evaluation of expected score]
Securities can have values such as whether the price will drop or rise, except for special conditions such as delisting.
As a result of intensive studies by the inventors of the present invention, it is preferable to evaluate the forecast data of securities prices for day traders based on an “expected score” using the achievement rate within the forecast period. I found something.
In the present embodiment, if the expected price of the securities price data is achieved within the forecast target period, the value of the forecast price is evaluated as the “predicted score”. . Conversely, in the case of a price drop expectation, it can be evaluated as an “expected score” with positive and negative reversed. As a result, for a day trader who buys and sells in a relatively short period of time, the price forecast data of the securities can be appropriately evaluated and can be bought and sold in the open market.
More specifically:

(If you expect price increases)
Expected score = (Achieved the expected price during the forecast period? (Yes) Expected price: (No) Price at the end of the forecast period)

(If you expect a drop in price)
Expected score = 100% + {100%-(Achieved expected price during forecast period? (Yes) Expected price: (No) Price at the end of forecast period)}

 この予想スコアを求める具体的な例としては:

 (当該銘柄が予想価格として120%の値上がりと予想した場合)
 ・予想対象期間内に当該銘柄が130%まで値上がりし、予想対象期間最終日に110%となった場合 …… 予想価格を達成したため、予想スコアは120%(予想価格)とする。
 ・予想対象期間内に当該銘柄が115%まで値上がりし予想対象期間最終日に110%となった場合 …… 予想価格まで値上がりを達成できなかったため、予想スコアは110%(予想対象期間最終日の価格)とする。
 ・予想対象期間内に当該銘柄が115%まで値上がりし予想対象期間最終日に90%となった場合 …… 予想価格まで値上がりを達成できなかったため、予想スコアは90%(予想対象期間最終日の価格)とする。

 (当該銘柄が予想価格として80%の値下がりと予想した場合)
 ・予想対象期間内に当該銘柄が70%まで値下がりし、予想対象期間最終日に90%となった場合 …… 予想価格を達成したため、100%+(100%-80%(予想価格))と計算し、予想スコアは120%とする。
 ・予想対象期間内に当該銘柄が85%まで値下がりし、予想対象期間最終日に90%となった場合 …… 予想価格まで値下がりを達成できなかったため、100%+(100%-90%(予想対象期間最終日の価格))と計算し、予想スコアは110%とする。
 ・予想対象期間内に当該銘柄が85%まで値下がりし、予想対象期間最終日に110%となった場合 …… 予想価格まで値下がりを達成できなかったため、100%+(100%-110%(予想対象期間最終日の価格))と計算し、予想スコアは90%とする。

 この予想スコアの評価するためには、予想価格との絶対値や値上がり/値下がりの割合を求める等にて絶対値から相対値として評価を行うことができる。
 また、値上がり/値下がりする銘柄の予測を行った場合には、予想対象期間内に、所定の割合、例えば120%/80%等に値上がりしたか/値下がりしたかについて、同様に予想スコアとして計算することができる。
 さらに、売り手が複数の銘柄を用いて予測を行っている場合には、その予想の平均値についての予想スコアを求めることもできる。
Specific examples of obtaining this expected score are:

(If the stock is expected to rise 120% as the expected price)
・ If the stock price rises to 130% within the forecast period and reaches 110% on the last day of the forecast period, the forecast price has been achieved, so the forecast score is 120% (expected price).
・ If the stock price rises to 115% within the forecast period and reaches 110% on the last day of the forecast period ...... Because the price could not be raised to the forecast price, the forecast score is 110% (the last day of the forecast period) Price).
・ If the stock price rises to 115% within the forecast period and reaches 90% on the last day of the forecast period ...... Because the price could not be raised to the forecast price, the forecast score is 90% (the last day of the forecast period) Price).

(If the stock is expected to fall by 80% as the expected price)
・ If the stock price drops to 70% within the forecast period and reaches 90% on the last day of the forecast period ... Because the forecast price was achieved, 100% + (100% -80% (expected price)) Calculate and assume an expected score of 120%.
・ If the stock price drops to 85% within the forecast period and reaches 90% on the last day of the forecast period ... Because the price could not be reduced to the expected price, 100% + (100% -90% (forecast The price on the last day of the target period)) is calculated and the expected score is 110%.
・ If the stock price drops to 85% within the forecast period and reaches 110% on the last day of the forecast period ... Because the price could not be lowered to the forecast price, 100% + (100% -110% (forecast The price on the last day of the target period)) is calculated and the expected score is 90%.

In order to evaluate this predicted score, it is possible to evaluate the relative value from the absolute value by, for example, obtaining an absolute value with respect to the predicted price or a ratio of price increase / decrease.
In addition, when forecasts for price increases / decreases are performed, whether the price has increased / decreased to a predetermined ratio, for example, 120% / 80%, etc. within the prediction target period is similarly calculated as an expected score. be able to.
Furthermore, when the seller makes predictions using a plurality of brands, an expected score for the average value of the predictions can be obtained.

 また、実績分析部122は、所定の購入額によって売り手の予想データに従った有価証券を購入し、株価変動予想対象期間の時点で有価証券を売却した場合の所定の手数料や税金等を引いた回収額を計算する。
 これにより、その同じIDの売り手がどの程度の金額を回収できるかの値としての「運用率」を計算可能である。この際に、有価証券の価格の各種インデックス、例えば日経平均等の市場の株価の平均値の全体的価格の上下に対する売り手の予想との乖離や、統計的な有意性の検定等を行って、これを運用率に加えることもできる。
 また、この「運用率」は、過去の所定の期間の回収した金額による累積の運用率として、所定の期間の運用率を計算することが可能である。この所定の期間としては、予想対象期間の複数倍のような値を用いることができる。たとえば、予想対象期間が週次であった場合には、所定の期間として、過去2~3週、過去1ヶ月(4週)、過去3か月(12週)といった値を用いることができる。
 加えて、実績分析部122は、運用率やこれに係る値の標準偏差等を求めて、その売り手の運用の確実性について「運用率での偏差値」のような形式で計算することができる。
In addition, the performance analysis unit 122 purchases securities according to the seller's forecast data according to a predetermined purchase amount, and subtracts predetermined fees, taxes, etc. when the securities are sold at the time of the stock price fluctuation forecast period. Calculate the recovery amount.
Thereby, it is possible to calculate the “operation rate” as a value of how much money the seller with the same ID can collect. At this time, various indices of the price of securities, for example, the deviation of the average price of the market price such as the Nikkei average from the seller's expectation to the up and down of the overall price, a test of statistical significance, etc. This can be added to the operation rate.
Further, the “operation rate” can be calculated as a cumulative operation rate based on the amount collected in the past predetermined period. As this predetermined period, a value such as a multiple of the expected period can be used. For example, when the prediction target period is weekly, values such as the past 2 to 3 weeks, the past 1 month (4 weeks), and the past 3 months (12 weeks) can be used as the predetermined period.
In addition, the performance analysis unit 122 can calculate the operation rate and the standard deviation of the value related thereto, and calculate the certainty of the seller's operation in a format such as “deviation value at the operation rate”. .

 また、実績分析部122は、売り手が有価証券価格予想データを販売した際の、販売人数や販売額についても計算することができる。
 これらの「実績」に係る値は、複数の株価変動予想対象期間、又は1~3ヶ月単位といった所定期間での平均をとって計算、分析することが可能である。
 実績分析部122は、計算、分析した「実績」を、実績のデータとして実績データベース132に記憶する。
The performance analysis unit 122 can also calculate the number of sales and the sales amount when the seller sells the securities price prediction data.
These values related to “actual results” can be calculated and analyzed by taking an average over a plurality of stock price fluctuation forecast periods or a predetermined period such as 1 to 3 months.
The performance analysis unit 122 stores the calculated and analyzed “result” in the performance database 132 as performance data.

(ステップS102)
 次に、実績分析部122は、統計/ランキング作成処理を行う。
 実績分析部122は、このランキングとして、各IDの売り手の「実績」を集計したものから計算し評価する。この際に、実績分析部122は、有価証券の種類や属性、「実績」において、株価変動予想対象期間や価格データの種類等の各値に係る各条件を用いて分析することができる。また、各IDの売り手の「実績」を基に、その有価証券価格予想の統計的な有意性についても計算し評価することができる。
 さらに、実績分析部122は:
 (1)単なる過去の順位付けの公開だけでなく、データ的に推薦できるものも順位付けして公開する。
 ここでは、各売り手の実績を分析する事により、売り手毎の「自信度」と「予想スコア」、「運用率」の相関係数を算出する。また、その相関係数を使い、次の期間での「予想スコア」、「運用率」の予測をする。それと有価証券属性を絞った「予想スコア」、「運用率」を合成する事により、推薦順位を作り、ランキングのデータを作成することができる。
 (2)売り手個々のデータだけを見るだけでなく、「投資種類」、「金額」、「予想手法」別に集計して、どの予想手法が一番効率的か、という問題も明らかにしてランキングのデータを作成する。
(Step S102)
Next, the performance analysis unit 122 performs statistics / ranking creation processing.
The performance analysis unit 122 calculates and evaluates the ranking from the totals of “actual results” of sellers of each ID. At this time, the result analysis unit 122 can analyze the type and attribute of the securities and the “result” using each condition relating to each value such as the stock price fluctuation forecast period and the type of price data. Further, based on the “actual record” of the seller of each ID, the statistical significance of the securities price forecast can be calculated and evaluated.
Further, the performance analysis unit 122:
(1) Not only publishing past rankings but also rankings that can be recommended in terms of data.
Here, by analyzing the performance of each seller, a correlation coefficient between the “confidence level”, “expected score”, and “operation rate” for each seller is calculated. The correlation coefficient is used to predict the “expected score” and “operation rate” in the next period. By combining the “expected score” and “operation rate” with the securities attributes narrowed down, it is possible to create a recommendation ranking and create ranking data.
(2) Not only looking at individual seller data, but also counting by “investment type”, “amount”, and “forecast method” to clarify the problem of which forecast method is most efficient and ranking Create data.

 これに加えて、実績分析部122は、各有価証券価格予想データを基に、ベイズ推定等の統計手法を用い、例えば、尤度が高い、尤も確からしい有価証券価格予想データを取得可能である。このデータは、買い手に有料で提供して、各売り手に所定の比率で分配することができる。
 さらに、有価証券価格予想と具体的な予想データとの統計的有意性を計算することで、投機筋による操作等が行われている場合に、それを指摘することもできる。
 実績分析部122は、ランキングや各種統計の値も、実績のデータとして実績データベース132に記憶する。
 なお、「運用率」の計算方法はウェブサイトにて公開することができ、それぞれの順位、「運用率」、「運用率」での偏差値等の評価を明確に分析、比較、公開することができる。
In addition to this, the performance analysis unit 122 can use, for example, a statistical method such as Bayesian estimation based on each securities price forecast data, and can obtain securities price forecast data with high likelihood and certainty. . This data can be provided to buyers for a fee and distributed to each seller at a predetermined rate.
Further, by calculating the statistical significance between the securities price forecast and the specific forecast data, it is possible to point out the fact that operations by speculative sources are being performed.
The performance analysis unit 122 also stores rankings and various statistical values in the performance database 132 as performance data.
The calculation method of “operation rate” can be disclosed on the website, and the evaluation of each rank, “operation rate”, deviation value in “operation rate”, etc. should be clearly analyzed, compared and released. Can do.

(ステップS103)
 次に、有価証券価格出品部124は、ウェブサーバ部126を用いて、実績公開処理を行う。
 具体的には、有価証券価格出品部124は、実績分析部122が集計、計算、分析、評価した結果やランキングのような実績のデータについて、ウェブサーバ部126で表示するHTMLやXML等の閲覧用のデータを作成して、実績データベース132に保存する。
 ウェブサーバ部126は、買い手ユーザがこの閲覧データをウェブブラウザで閲覧した場合に、各計算結果やランキングのHTMLやXML等を送信する。
(Step S103)
Next, the securities price listing unit 124 uses the web server unit 126 to perform a result disclosure process.
Specifically, the securities price listing unit 124 browses HTML, XML, or the like displayed on the web server unit 126 on the results data such as the results, rankings, and the results obtained by the performance analysis unit 122. Is created and stored in the results database 132.
When the buyer user browses the browsing data with a web browser, the web server unit 126 transmits each calculation result, ranking HTML, XML, and the like.

 さらに買い手端末21-1のウェブブラウザからの指示により、有価証券価格出品部124は、実績のデータを検索することが可能である。
 図5を参照すると、買い手は、買い手端末21-1のウェブブラウザの画面の入力欄610には証券種類を、入力欄620には投資種類を、入力欄630には金額帯を、入力欄640には予想手法を、入力欄650には検索する予想データの対象となる検索期間を入力し、これらのいずれかの属性等により、検索を行うことが可能である。
 具体的には、証券種類は、予想データの対象となる有価証券や予想対応期間を選択することができる。すなわち、デイトレーダーである買い手端末21-1のユーザが、日次、週次、月次等さまざまなパタンの売買を行う際の予想データに対応することができる。
 投資種類は、買い手が求める予想対象とする有価証券の価格データの種類が選択可能である。
 金額帯は、買い手の予算や購入方法に応じた有価証券価格予想を得る事が可能である。すなわち、有価証券価格予想データの値段と、定額で支払うのか/取得金額の割合で支払うのか、前払いか後払いかといった情報を選択できる。さらに、買い手が購入を自動継続することを希望すれば、同じ売り手の同一の証券種類と投資種類の予想データを自動継続にて購入することも可能である。
 予想手法は、有価証券価格予想データの予想手法D105のうち、買い手が特に信頼を寄せる手法があれば選択することが可能である。
 検索期間は、この検索期間においては、予想対象期間の終了した過去の実績から有価証券価格予想の売り手の予想スコア等を検索する。この際に、前週のみ、過去1ヶ月、3ヶ月、1年間等、実績のデータの検索期間を選択可能である。
 このような各属性にてフィルタリングする事で、該当する証券種類、投資種類に合った検索結果を得ることができる。
Further, the securities price listing unit 124 can search the actual data by an instruction from the web browser of the buyer terminal 21-1.
Referring to FIG. 5, the buyer has the securities type in the input field 610, the investment type in the input field 620, the money amount in the input field 630, and the input field 640 in the web browser screen of the buyer terminal 21-1. In the input field 650, a search period that is a target of the predicted data to be searched is input, and the search can be performed using any of these attributes.
Specifically, as the securities type, it is possible to select the securities to be the target of the forecast data and the forecast correspondence period. That is, the user of the buyer terminal 21-1, which is a day trader, can cope with forecast data when buying and selling various patterns such as daily, weekly, and monthly.
As the investment type, it is possible to select the type of price data of the securities to be expected by the buyer.
With respect to the amount of money, it is possible to obtain securities price forecasts according to the buyer's budget and purchase method. That is, it is possible to select the price of the securities price prediction data and information such as whether to pay at a fixed amount / percentage of the acquisition amount, whether to pay in advance or postpay. Furthermore, if the buyer wishes to continue the purchase automatically, it is also possible to automatically purchase forecast data of the same securities type and investment type of the same seller.
The forecasting method can be selected if there is a method that the buyer particularly trusts among the forecasting methods D105 of the securities price forecasting data.
In the search period, the seller's expected score of the securities price forecast is searched from the past results after the forecast period has ended. At this time, it is possible to select a search period for the actual data, such as only the previous week, the past month, three months, and one year.
By filtering with each of these attributes, it is possible to obtain a search result suitable for the corresponding securities type and investment type.

 図6を参照すると、有価証券価格出品部124は、検索条件に合った売り手のIDを基に、実績のデータを閲覧用のデータに変換してウェブサーバ部126により送信する。この変換された実績のデータは、買い手端末21-1のウェブブラウザにて表示可能である。
 また、ランキングを表示することも可能であり、さらに実績のデータを予想スコアの平均実績、運用率実績、運用率での偏差値、販売額実績等のランキングにより順位付けして閲覧用のデータに変換後に表示することもできる。
 さらに、図6のブラウザの表示画面例では、売り手のIDのリンク700等を選択することで、その売り手の出品した有価証券価格予想を詳細に閲覧することもできる。
 また、そのIDの売り手が、後述する有価証券価格予想データの出品を行っていた場合には、リンク710をクリックする等して出品データの購入画面を表示する。これにより、買い手は、当該有価証券価格予想データをサーバ10経由で購入することができる。
Referring to FIG. 6, the securities price listing unit 124 converts actual data into browsing data based on the seller ID that matches the search condition, and transmits the data to the web server unit 126. The converted result data can be displayed on the web browser of the buyer terminal 21-1.
Rankings can also be displayed, and the actual data is ranked according to the ranking of the average result of the expected score, the operation rate result, the deviation value at the operation rate, the sales amount result, etc., and converted into data for viewing. It can also be displayed after conversion.
Furthermore, in the browser display screen example of FIG. 6, by selecting a seller ID link 700 or the like, it is possible to browse in detail the securities price forecasts exhibited by the seller.
Further, when the seller of the ID has exhibited the securities price forecast data described later, the purchase data purchase screen is displayed by clicking a link 710 or the like. Thereby, the buyer can purchase the securities price prediction data via the server 10.

(ステップS104)
 次に、フォーム部121は、フォーム配布処理を行う。
 具体的には、分析結果公開処理後に、さらに売り手に新しい有価証券価格の予想を提供してもらう。この際、IDとパスワードによる売り手の認証を行う。ここで、新しい売り手を希望するユーザの場合には、ID作成部135を用いて売り手のIDを作成し、ユーザデータベース131にアクセスして各情報を入力させる。
 認証が完了すると、フォーム部121は、有価証券価格予想データを入力するための所定のフォーマットのウェブフォームを、売り手端末23-1のウェブブラウザからのアクセスに従って送信する(タイミングT101)。
(Step S104)
Next, the form unit 121 performs form distribution processing.
Specifically, after the analysis result disclosure process, the seller is further provided with a new security price forecast. At this time, the seller is authenticated by the ID and password. Here, in the case of a user who desires a new seller, an ID creation unit 135 is used to create a seller ID, and the user database 131 is accessed to input each information.
When the authentication is completed, the form unit 121 transmits a web form of a predetermined format for inputting the securities price forecast data according to the access from the web browser of the seller terminal 23-1 (timing T101).

 売り手端末23-1のブラウザが、ウェブフォームを受信して表示すると、売り手を希望するユーザは、このウェブフォームを用いて有価証券価格予想データを入力する。
 ここで、図7を参照して、具体的に、入力フォームであるウェブフォームを用いてこの有価証券価格予想データを入力する例について説明する。
 図7の画面例では、ブラウザに表示されるウェブフォームに、まず入力欄500を用いてユーザ名やパスワードを入力する。
 その上で、売り手は、入力欄510は証券種類D101に、入力欄520は投資種類D102に、入力欄530は有価証券価格D103に、入力欄540は金額D104に、入力欄550は予想手法D105に、入力欄560は自信度D106に、入力欄570はコメントD107に、それぞれ対応するデータを入力する。
 その後、売り手がマウス等のポインティングデバイスで送信ボタン580をクリックしたことを検知すると、売り手端末23-1は、入力されたデータを有価証券価格予想データとしてサーバ10に送信する(タイミングT102)。
 フォーム部121は、ネットワーク入出力部110を介して、有価証券価格予想データを受信すると、当該売り手のIDと関連づけて、実績データベース132に記憶する。
 このフォーム配布と有価証券価格予想データの送信は、売り手が作成した予想は通常は複数あるため、繰り返して行うことができる。
 さらに、有価証券価格D103に「自動継続」を設定している場合には、予想対象期間の開始日終了日(最終日)が異なるデータ、例えば来週のデータと再来週のデータ等として別々に出品することができる。さらに、予想対象期間の範囲が異なる、例えば週次と月次のデータを別々に出品することも可能である。
 なお、各属性の入力項目については、曖昧さが残らないようにコメントD107以外はスライドバーやラジオボックスやチェックボックス等の選択欄、数値、又は記号にて入力することができる。さらに、プログラムからWPUT等により送信するように、データ的に矛盾のない属性とすることができる。
When the browser of the seller terminal 23-1 receives and displays the web form, the user who desires the seller inputs the securities price forecast data using the web form.
Here, with reference to FIG. 7, the example which inputs this securities price forecast data specifically using the web form which is an input form is demonstrated.
In the screen example of FIG. 7, first, a user name and a password are input to the web form displayed on the browser using the input field 500.
The seller then enters the input column 510 into the securities type D101, the input column 520 into the investment type D102, the input column 530 into the securities price D103, the input column 540 into the amount D104, and the input column 550 into the forecast method D105. The input field 560 inputs data corresponding to the confidence level D106, and the input field 570 inputs data corresponding to the comment D107.
Thereafter, when it is detected that the seller clicks the transmission button 580 with a pointing device such as a mouse, the seller terminal 23-1 transmits the input data to the server 10 as securities price prediction data (timing T102).
Upon receiving the securities price forecast data via the network input / output unit 110, the form unit 121 stores it in the results database 132 in association with the seller's ID.
This form distribution and securities price forecast data transmission can be repeated because there are usually multiple forecasts created by the seller.
Further, when “automatic continuation” is set for the securities price D103, the data is displayed separately as data having different start dates and end dates (final dates) of the forecast period, for example, next week data and next week data. be able to. Furthermore, it is also possible to list separately the data of, for example, weekly and monthly data with different ranges of the target period.
Note that the input items of each attribute can be input using selection fields such as a slide bar, radio box, check box, etc., numerical values, or symbols so as not to leave ambiguity. Furthermore, the attributes can be made consistent with each other so as to be transmitted from the program by WPUT or the like.

(ステップS105)
 次に、有価証券価格出品部124は、有価証券価格予想市場出品処理を行う。
 具体的には、有価証券価格出品部124は、各売り手のIDに従った有価証券価格予想データのうち、公開してよい部分、例えば売り手のID、有価証券価格D103以外の情報等を、上述のランキングの情報を合わせてHTMLやXML等にして、出品データとして実績データベース132に記憶する。
 これらの出品データを買い手端末21-1がアクセスすると、ウェブサーバ部126により送信する。
 また、この出品データは、上述の実績のデータと同様の検索を行うこともできる。
 買い手は、買い手端末21-1のウェブブラウザを用いて出品データを検索、実績のデータの分析結果やランク付けを見て比較、検討し購入を決定する。
 これを受信した決済部127は、契約条件の提示を行い、「購入予約」を行う(タイミングT103)。
(Step S105)
Next, the securities price listing section 124 performs securities price forecast market listing processing.
Specifically, the securities price listing unit 124 indicates the portion of the securities price forecast data according to each seller ID that may be disclosed, for example, information other than the seller ID, the securities price D103, etc. The ranking information is combined into HTML, XML, etc., and stored in the performance database 132 as exhibition data.
When the buyer terminal 21-1 accesses the exhibition data, the web server unit 126 transmits the exhibition data.
Further, the exhibition data can be searched in the same manner as the above-mentioned record data.
The buyer searches the exhibition data using the web browser of the buyer terminal 21-1, and compares and examines the results of analysis and ranking of the results data to determine purchase.
Upon receiving this, the settlement unit 127 presents the contract conditions and makes a “purchase reservation” (timing T103).

 なお、出品データの購入単位としては、出品された「売り手」の予想データを一括して購入することが好適である。すなわち、所定銘柄のみの予想データは購入できないように構成することができる。これにより、実績の評価を行いやすくするという効果が得られる。
 しかしながら、特定の株式を保有している「買い手」にとっては、その銘柄についての予測情報を得たいという需要があるため、銘柄毎の横断的一括購入をすることも可能である。この場合は、売り手の出品データ内の契約条件を別途設定したり、売り手の提示した金額の所定の割合にて売却するといった構成が可能である。
 また、本実施形態においては、1対1の売買関係について記載しているが、2次利用契約を結ぶ事によって金融商品、投資信託に利用する事も可能である。この場合は、有価証券価格出品部124が、図示しない証券会社のサーバ等に出品された予想データを提供する。
In addition, as a purchase unit of the exhibition data, it is preferable to purchase forecast data of “sellers” that have been exhibited in a lump. That is, it is possible to configure so that forecast data of only a predetermined brand cannot be purchased. Thereby, the effect of facilitating performance evaluation is obtained.
However, since there is a demand for “buyers” holding specific stocks to obtain prediction information about the stock, it is possible to make a batch purchase across the stocks. In this case, it is possible to configure such that the contract conditions in the seller's exhibition data are set separately or sold at a predetermined ratio of the amount presented by the seller.
Further, in the present embodiment, a one-to-one trading relationship is described, but it is also possible to use it for financial products and investment trusts by concluding a secondary usage contract. In this case, the securities price listing unit 124 provides the forecast data listed on a server of a securities company (not shown).

(ステップS106)
 次に、決済部127は、販売処理を行う。
 購入予約の信号を受信した決済部127は、後払いの場合は、場外発券サイト等と連携して、他のサーバとの間で購入予約を行う。この購入予約は、サーバ10を介してのみキャンセルできるように構成することが好適である。たとえば、ID作成部135により、IDやパスワード等を作成して記憶しておき、これを介して購入予約を行い、ユーザデータベース131に記憶することができる。この際のIDやパスワードは、ユーザデータベース131のユーザがアクセスできない記憶部に記憶しておき、買い手は購入したことのみ知ることができる。
 また、決済部127は、先払いの場合は、SSL等を用いて、ユーザデータベース131を参照し、代金の決済を行うこともできる。
 その後、決済部127は、ウェブサーバ部126又はDNS/メールサーバ140により、買い手に対して、購入した「有価証券価格予想」の予想データ(有価証券価格予想データ)を閲覧可能な状態に変換する等して提供する(タイミングT104)
(Step S106)
Next, the settlement unit 127 performs a sales process.
In the case of postpay, the settlement unit 127 that has received the purchase reservation signal makes a purchase reservation with another server in cooperation with an off-site ticketing site or the like. This purchase reservation is preferably configured to be canceled only via the server 10. For example, the ID creation unit 135 can create and store an ID, a password, and the like, make a purchase reservation via the ID, a password, and the like and store them in the user database 131. The ID and password at this time are stored in a storage unit that the user of the user database 131 cannot access, and the buyer can know only that the purchase has been made.
Further, in the case of prepaid, the settlement unit 127 can also settle the price by referring to the user database 131 using SSL or the like.
Thereafter, the settlement unit 127 uses the web server unit 126 or the DNS / mail server 140 to convert the purchased “securities price forecast” forecast data (securities price forecast data) into a viewable state for the buyer. Etc. (Timing T104)

(ステップS107)
 次に、結果取得部125は、結果取得/照合処理を行う。
 この処理では、まず、結果取得部125は、出品された有価証券価格予想データに係る各有価証券等の価格データをネットワーク5に接続された他のサーバ等からフェッチ等で取得する。この取得は、タイマーにより、タイミングを設定して行うことができる。また、サーバ10の管理者が、管理者端末25を用いて、直接、価格データを入力することもできる。
 そして、結果取得部125は、取得した結果のデータと、出品された有価証券価格予想データの比較を行い、予備的な価格の差異を計算する。
 結果取得部125は、照合したデータを、実績データベース132に記憶する。
(Step S107)
Next, the result acquisition unit 125 performs a result acquisition / collation process.
In this process, first, the result acquisition unit 125 acquires price data of each security and the like related to the displayed security price prediction data from another server or the like connected to the network 5 by fetching or the like. This acquisition can be performed by setting the timing with a timer. Further, the administrator of the server 10 can directly input price data using the administrator terminal 25.
Then, the result acquisition unit 125 compares the acquired result data with the displayed securities price prediction data, and calculates a preliminary price difference.
The result acquisition unit 125 stores the collated data in the result database 132.

(ステップS108)
 次に、実績分析部122は、実績集計/分析処理を行う。
 この実績集計/分析処理は、結果が判明した後、売り手の実績を再び計算、分析、評価する処理である。
 具体的には、実績分析部122は、ステップS101の過去実績集計処理と、ステップS102の統計/ランキング作成処理と同様の処理を、上述の照合したデータを加えて行う。
 これにより、各IDの売り手の実績を更新し、実績データベース132に記憶する。
(Step S108)
Next, the performance analysis unit 122 performs performance totaling / analysis processing.
This performance aggregation / analysis process is a process of calculating, analyzing, and evaluating the seller's performance again after the results are known.
Specifically, the performance analysis unit 122 performs the same processing as the past performance tabulation processing in step S101 and the statistics / ranking creation processing in step S102, with the above-described collated data added.
As a result, the performance of the seller of each ID is updated and stored in the performance database 132.

(ステップS109)
 次に、有価証券価格出品部124は、ウェブサーバ部126を用いて、最新実績公開処理を行う。
 この最新実績公開処理は、ステップS103の実績公開処理と同様の処理を行う。すなわち、有価証券価格出品部124は、買い手ユーザが閲覧した場合に、ウェブサーバ部126を用いて、各計算結果やランキングのHTMLやXML等を送信する。
 これに加えて、有価証券の同一の投資種類や銘柄等に複数の売り手が有価証券価格予想データを出品していた場合には、それぞれのランキングや日毎のランキングといったものを作成して「速報」として出力したり、DNS/メールサーバ140にて送信したりすることもできる。
 また、この最新実績としては、売り手のポートフォリオの優劣や、全体的な有価証券の価格の値上がり/値下がり曲面でのランキングといった、有価証券の比較に適した公開を行うことができる。
(Step S109)
Next, the securities price listing unit 124 uses the web server unit 126 to perform the latest results disclosure process.
This latest result release process performs the same process as the result release process in step S103. That is, when the buyer user browses the securities price listing unit 124, the web server unit 126 is used to transmit each calculation result, ranking HTML, XML, or the like.
In addition to this, if multiple sellers sell securities price forecast data for the same investment type or brand of securities, create a ranking or daily ranking to create a “breaking news”. Or can be transmitted by the DNS / mail server 140.
In addition, as the latest results, it is possible to make public disclosure suitable for comparing securities, such as the superiority or inferiority of the portfolio of sellers, ranking on the price increase / decrease surface of overall securities.

(ステップS110)
 次に、決済部127は、代金回収/売り上げ支払処理を行う。
 具体的には、後払いの場合は、決済部127は、まず、買い手から購入代金を回収する(タイミングT105)。
 決済部127は、代金の回収は、先払いの場合と同様に、SSL等を用いて、ユーザデータベース131を参照して決済を行う。
 その後、決済部127は、手数料分を差し引いて、売り手に売上金を送金(支払い)する(タイミングT106)。
 また、先払いの場合は、最初に決済して回収しておいた購入代金を、サーバ10の管理者の手数料分を差し引いて、結果公開後に売上金として送付する。これにより、先に単にランダムな有価証券価格予想データを出品することを繰り返して料金を受けとるといった売り手の行動を防ぐことができ、売り手に責任感を持たせることができる。
 また、決済部127は、先払いで結果公開後に送付するように設定した場合も、手数料分を差し引いて、送金することができる。これにより、買い手は、売り上げを確定してから料金を支払うことができるため、安心して購入することができる。
(Step S110)
Next, the settlement unit 127 performs price collection / sales payment processing.
Specifically, in the case of postpay, the settlement unit 127 first collects the purchase price from the buyer (timing T105).
The settlement unit 127 performs settlement with reference to the user database 131 using SSL or the like in the case of prepaid collection.
Thereafter, the settlement unit 127 deducts the fee and remits (pays) the sales to the seller (timing T106).
Further, in the case of advance payment, the purchase price that was first settled and collected is subtracted from the fee of the administrator of the server 10 and sent as sales after the result is disclosed. As a result, it is possible to prevent the seller's action to receive a fee by simply listing random securities price forecast data first, and to give the seller a sense of responsibility.
Further, even when the settlement unit 127 is set to send in advance payment after the result is disclosed, the settlement unit 127 can remit the money by deducting the fee. Thereby, since the buyer can pay the fee after confirming the sales, the purchase can be made with confidence.

 以上のように構成することで、以下のような効果を得ることができる。
 まず、従来技術1は、デイトレーダー向けに株価の上げ下げを素早く閲覧することはできた。しかしながら、従来提供される有価証券の価格の予想を当てはめて、実際に予想が当たったのかどうかの実績の比較をすることは難しいという問題があった。
 これに対して、本発明の実施の形態に係る公開市場システムは、売り手にフォームを用いて有価証券価格予想データを提供させる。これにより、有価証券価格予想データを、最終日等の有価証券の予想対象期間の経過後の価格と照合し、予想スコアを作成することで、予想データの信頼性を明らかにすることができる。また、所定の期間経過後の予想データの運用成績を「運用率」として分かりやすく提示することができる。これらを集計して実績としてランキング等を用いて公開することができる。
 これにより、予想データの透明性、利便性を高めることができる。よって、買い手は、売り手の実績の分析、比較、検討することが容易になる。また、本発明の実施の形態に係る公開市場システムは、取引形態や価格を明示することで透明性や利便性を高めることもできる。
 これらにより、より的確な予想データを用いて、効率的にデイトレードを行うことができる。
With the configuration described above, the following effects can be obtained.
First, Prior Art 1 was able to quickly browse stock price increases and decreases for day traders. However, there has been a problem that it is difficult to compare the actual results of whether or not the predictions were actually made by applying the prediction of the price of the securities provided in the past.
In contrast, the open market system according to the embodiment of the present invention allows a seller to provide securities price forecast data using a form. Thereby, the reliability of the forecast data can be clarified by collating the securities price forecast data with the price of the securities such as the last day after the forecast period and creating a forecast score. In addition, it is possible to present the operation result of the expected data after a predetermined period of time as an “operation rate” in an easy-to-understand manner. These can be aggregated and published as a result using a ranking or the like.
Thereby, the transparency and convenience of prediction data can be improved. Therefore, it becomes easy for the buyer to analyze, compare and examine the performance of the seller. Moreover, the open market system which concerns on embodiment of this invention can also improve transparency and convenience by specifying a transaction form and a price.
Thus, day trading can be performed efficiently using more accurate prediction data.

 つまり、従来、株価のような有価証券の価格予想は、証券会社やアナリストの予測で「目標価格」等として公開されていた。しかし目標価格はあくまでその時点、その状況における「おおまかな目標」であって、それが実現するのが何時なのかが不明確であった。
 また経済等の状況の変化や新しい情報等により、該目標価格は更新されることがあった。よって、目標価格が実現されたのか、されなかったのかを検証することは困難であり、実際に検証が行われてこなかった。
 このような状況のため、デイトレーダーのような短期間で売買を繰り返す投資家にとって、目標価格は余り役に立たないという問題があった。すなわち、従来、短期間で売買を繰り返す投資家が必要とする予想価格データは提供されていなかった。
 本発明の実施の形態に係る公開市場システムは、上述のように定量的に有価証券の予想価格データと、予想結果を検証することができる。
 この検証した実績をデータとして明確に分析、比較、公開する事により、デイトレーダーにとって有用で必要とされる株価の変動等の価格予想データを「商品」として成立させることができ、公開市場として売買の対象とすることができる。
 これにより、短期間で売買を繰り返す投資家向けの予想価格データを提供することができる。
In other words, the price forecast of securities such as stock prices has been publicly disclosed as “target price” by the forecast of securities companies and analysts. However, the target price was just a “rough target” at that time, and it was unclear what time it would be realized.
In addition, the target price may be updated due to changes in economic conditions or new information. Therefore, it is difficult to verify whether the target price has been realized or not, and it has not been actually verified.
Because of this situation, there is a problem that the target price is not very useful for investors who repeat buying and selling in a short period of time, such as day traders. That is, conventionally, expected price data required by an investor who repeats buying and selling in a short period of time has not been provided.
As described above, the open market system according to the embodiment of the present invention can quantitatively verify the expected price data of securities and the expected results.
By clearly analyzing, comparing, and disclosing the verified results as data, it is possible to establish price forecast data such as fluctuations in stock prices that are useful and necessary for day traders as “products” and can be sold and sold as open markets. Can be the target of.
As a result, it is possible to provide expected price data for investors who repeat buying and selling in a short period of time.

 また、従来の予想データは、証券の種類や投資の種類、取引形態、価格が売り手によってさまざまなため、新たに売り手として参入するには不透明で障壁が高かった。
 さらに、売り手として有価証券の予想データの提供に参入するためには、それなりの信用を得る必要がある。ところが、客観的な評価の手法が確立されていないため、証券会社のように運用実績等を個人で計算することが難しかった。このため、個人が予想データにて、信用を得ることが難しかった。
 これに対して、本発明の実施の形態に係る公開市場システムは、売り手がフォームにより有価証券価格を入力して出品するだけで利用することができる。出品された予想データは、予想対象期間経過後に実績として予想スコアがサーバ10により計算され、客観的な運用率等も計算され、ランキングや実績により具体的、客観的に評価される。たとえば、株価の場合には、いくつかの銘柄の組み合わせであるポートフォリオ等についても、有価証券価格予想データのとして評価可能である。
 これにより、「正しい」有価証券価格の予想をした売り手は、客観的に評価され、確実に収入を得ることができる。よって、売り手により良い予測をしようという意欲を与えることができる。また、有価証券の予想価格データの公開市場に誰もが簡単に参入できるようになるという効果が得られる。したがって、有価証券予想価格データの公開市場が活性化し、買い手がより精度の高い有価証券価格の予想データを得ることが期待できる。
In addition, the forecast data of the past has been unclear and has high barriers to entering as a seller because the types of securities, types of investments, transaction forms, and prices vary depending on the seller.
Furthermore, in order to enter into the provision of securities forecast data as a seller, it is necessary to gain some credit. However, since an objective evaluation method has not been established, it has been difficult for individuals to calculate operation results and the like, like a securities company. For this reason, it was difficult for individuals to obtain trust in the predicted data.
On the other hand, the open market system according to the embodiment of the present invention can be used simply by the seller inputting the securities price using a form and listing it. As for the expected data that has been exhibited, an expected score is calculated by the server 10 as an actual result after the prediction target period has elapsed, an objective operation rate and the like are also calculated, and is specifically and objectively evaluated by ranking and actual results. For example, in the case of a stock price, a portfolio or the like that is a combination of several brands can also be evaluated as securities price forecast data.
As a result, the seller who has predicted the “correct” securities price is objectively evaluated and can surely earn income. Thus, the seller can be motivated to make a better prediction. In addition, there is an effect that anyone can easily enter the public market of expected price data of securities. Therefore, it is expected that the public market of expected securities price data is activated, and buyers can obtain forecast data for securities prices with higher accuracy.

 また、本発明の実施の形態に係る公開市場システムは、予想データの評価を客観的に提示することができるため、買い手の購入に対する心理的な障壁を取り除くことができる。さらに、前払い後払いといった取引形態を一元化することで、さらに透明性を高めることができる。
 加えて、優秀な予想データ提供をした売り手について、サーバ10の提供者がランキング等を仲介をすることで、実際の証券会社との間で投資信託のマネージャとして任用するといったことも可能である。また、2次利用契約を結ぶ事によって金融商品、投資信託に利用する事も可能である。
In addition, since the open market system according to the embodiment of the present invention can objectively present the evaluation of the forecast data, it is possible to remove a psychological barrier to buyer purchase. Furthermore, the transparency can be further enhanced by unifying the transaction form such as prepaid and postpaid.
In addition, for the seller who provided excellent forecast data, the provider of the server 10 can be appointed as an investment trust manager with an actual securities company by mediating the ranking and the like. It can also be used for financial products and investment trusts by signing secondary usage contracts.

 また、従来、予想データ販売のためには、インターネットサイトや店舗の立ち上げ、許認可、広告宣伝、売上げ金回収方法の確立等、多くの初期コストと手間、時間を必要とした。このため、初期コストがかかるという問題があった。
 これに対して、サーバ10により有価証券予想価格データの公開市場を提供するため、売り手は初期コストと手間、時間をほとんど必要としなくなる。
Conventionally, in order to sell forecast data, many initial costs, labor, and time have been required, such as establishment of an Internet site and a store, permission and approval, advertisement, and establishment of a method for collecting sales. For this reason, there existed a problem that initial cost started.
On the other hand, since the server 10 provides a public market for expected securities price data, the seller needs little initial cost, labor, and time.

 なお、従来、複雑系の事象に対して、金銭的・社会的な利益に関する何らかの数値的な結果を予測する「予想データ」そのものに商品的な価値があるような業務において、予想データの信頼性と価値の評価は難しい問題であった。
 このような事象としては、公営競技の勝敗予測等がある。さらに、外部要因、市況、各人の思惑等の集合知として「市場」により価格が決定される入札等の価格の予測、選挙の勝敗予測、映像/ゲーム/プログラム等のコンテンツの販売量、公営競技の勝敗「勝ち目」の予測等がある。
 本発明の実施の形態に係る公開市場システムは、具体的に評価可能な事象を仮想的な「有価証券」としてデータ化することが可能である。この上で、価格予想データとして売り手に出品させることで、これらにも応用可能である。たとえば、選挙の場合には、選挙区での勝敗予想を有価証券価格予想データとして売買可能である。
In the past, the reliability of forecast data in operations where the forecast data itself, which predicts some numerical result related to monetary and social benefits for complex events, has commercial value. And value evaluation was a difficult problem.
Such events include public game win / loss predictions. Furthermore, as a collective knowledge of external factors, market conditions, speculation of each person, etc., the price of bids, etc. whose prices are determined by the “market”, the prediction of winning / losing elections, the sales volume of content such as videos / games / programs, public There are predictions of winning and losing “winning eyes” of the competition.
The open market system according to the embodiment of the present invention can convert events that can be specifically evaluated as virtual “securities” into data. On top of this, it is also possible to apply to these by allowing sellers to list as price forecast data. For example, in the case of an election, it is possible to buy and sell the winning or losing prediction in the constituency as securities price prediction data.

 なお、本発明の実施の形態に係る公開市場システムを有価証券に適用する場合、投資種類作成部(投資種類作成手段)を備えていてもよい。
 この投資種類作成部は、複数の予想スコアや運用率のよい売り手の出品を合わせて、投資種類としてポートフォリオ等を、順列、組み合わせ的にそれぞれの回収率等の期待値を基に計算して作成することができる。
In addition, when applying the open market system which concerns on embodiment of this invention to securities, you may provide the investment kind preparation part (investment kind preparation means).
This investment type creation unit is created by combining multiple sellers with high expected scores and management rates, and calculating portfolios, etc. as investment types in a permutation and combination based on the expected values of each recovery rate, etc. can do.

 なお、上記実施の形態の構成及び動作は例であって、本発明の趣旨を逸脱しない範囲で適宜変更して実行することができることは言うまでもない。 It should be noted that the configuration and operation of the above-described embodiment are examples, and it is needless to say that the configuration and operation can be appropriately changed and executed without departing from the gist of the present invention.

 本発明は、有価証券価格予想データを客観的に評価可能な公開市場システムを提供することで、有価証券の予想有価証券価格市場を実現するため、産業上利用可能である。 The present invention is industrially applicable to provide an expected market price market for securities by providing a public market system that can objectively evaluate securities price forecast data.

5 ネットワーク
10 サーバ
21-1~21-n 買い手端末
23-1~23-n 売り手端末
25 管理者端末
110 ネットワーク入出力部
120 公開市場サーバ
121 フォーム部
122 実績分析部
124 有価証券価格出品部
125 結果取得部
126 ウェブサーバ部
127 決済部
130 データベースサーバ
131 ユーザデータベース
132 実績データベース
133 有価証券データベース
135 ID作成部
140 DNS/メールサーバ
500、510、520、530、540、550、560、570、610、620、630、640、650 入力欄
580、670 送信ボタン
700、710 リンク
680 クリアボタン
X 公開市場システム
5 Network 10 Servers 21-1 to 21-n Buyer terminal 23-1 to 23-n Seller terminal 25 Administrator terminal 110 Network input / output unit 120 Open market server 121 Form unit 122 Performance analysis unit 124 Securities price listing unit 125 Result Acquisition unit 126 Web server unit 127 Settlement unit 130 Database server 131 User database 132 Performance database 133 Securities database 135 ID creation unit 140 DNS / mail servers 500, 510, 520, 530, 540, 550, 560, 570, 610, 620 , 630, 640, 650 Input field 580, 670 Send button 700, 710 Link 680 Clear button X Open market system

Claims (6)

 サーバと、該サーバに接続する売り手端末と、買い手端末とを備える公開市場システムにおいて、
 前記サーバは、
  過去の有価証券価格予想データの予想結果を照合し分析して実績のデータを作成する実績分析部と、
  前記売り手端末から出品される有価証券価格予想データを入力するためのフォームを出力するフォーム部と、
  分析された実績のデータと、出品された前記有価証券価格予想データとを前記買い手端末に出力する有価証券価格出品部と、
  出品された前記有価証券価格予想データに係る決済を行う決済部とを備え、
 前記売り手端末は、
  前記フォームを用いて定型化された有価証券価格予想データが前記売り手端末から入力され出品される
 ことを特徴とする公開市場システム。
In an open market system comprising a server, a seller terminal connected to the server, and a buyer terminal,
The server
A performance analysis unit that collates and analyzes past security price forecast data to create actual data;
A form part for outputting a form for inputting securities price forecast data to be exhibited from the seller terminal;
A securities price listing section that outputs the analyzed performance data and the listed securities price forecast data to the buyer terminal;
A settlement unit that performs settlement relating to the securities price forecast data that has been exhibited,
The seller terminal is
The open market system, wherein the security price forecast data standardized using the form is inputted from the seller terminal and exhibited.
 前記実績分析部は、前記分析として、統計やランキングを計算して実績のデータを作成する
 ことを特徴とする請求項1に記載の公開市場システム。
The open market system according to claim 1, wherein as the analysis, the performance analysis unit creates statistics data by calculating statistics and rankings.
 前記有価証券価格出品部は、前記買い手端末からの指示により、前記実績のデータの検索を行う
 ことを特徴とする請求項1又は2に記載の公開市場システム。
The open market system according to claim 1 or 2, wherein the securities price listing section searches the actual data according to an instruction from the buyer terminal.
 前記サーバは、
  出品された前記有価証券価格予想データの結果を取得する結果取得部を更に備え、
  前記実績分析部は、出品された前記有価証券価格予想データと、結果のデータとを照合し、前記実績のデータを更新する
 ことを特徴とする請求項1乃至3のいずれか1項に記載の公開市場システム。
The server
And further comprising a result obtaining unit for obtaining a result of the securities price forecast data exhibited,
The said performance analysis part collates the said securities price forecast data exhibited with the data of a result, and updates the said data of a performance. The one of the Claims 1 thru | or 3 characterized by the above-mentioned. Open market system.
  過去の有価証券価格予想データの結果を照合し分析して実績のデータを作成する実績分析部と、
  売り手端末から出品される有価証券価格予想データを入力するためのフォームを出力するフォーム部と、
  分析された実績のデータと、出品された前記有価証券価格予想データとを出力する有価証券価格出品部と、
  出品された前記有価証券価格予想データに係る決済を行う決済部とを備える
 ことを特徴とする公開市場システムのサーバ。
A performance analysis unit that collates and analyzes past security price forecast data results to create actual data;
A form part that outputs a form for inputting securities price forecast data to be exhibited from the seller terminal,
A securities price listing section that outputs data of the analyzed results and the price forecast data of the listed securities;
A server of a public market system, comprising: a settlement unit configured to perform settlement related to the securities price prediction data exhibited.
 サーバと、該サーバに接続する売り手端末と、買い手端末と備える公開市場システムにおいて、
 有価証券価格予想データと、該有価証券価格予想データの結果を照合し分析して実績のデータを作成し、
 出品される有価証券価格予想データを入力するためのフォームを出力し、
 前記フォームを用いて定型化された有価証券価格予想データを入力して出品し、
 分析された実績のデータと、出品された前記有価証券価格予想データとを出力する
 ことを特徴とする公開市場システムの制御方法。
In an open market system comprising a server, a seller terminal connected to the server, and a buyer terminal,
Compare and analyze the securities price forecast data and the results of the securities price forecast data to create actual data,
Output a form for entering the expected price of securities to be listed
Enter the securities price forecast data standardized using the form and submit it,
A method for controlling an open market system, characterized in that the analyzed performance data and the listed securities price forecast data are output.
PCT/JP2009/005939 2009-11-09 2009-11-09 Open market system Ceased WO2011055413A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005939 WO2011055413A1 (en) 2009-11-09 2009-11-09 Open market system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005939 WO2011055413A1 (en) 2009-11-09 2009-11-09 Open market system

Publications (1)

Publication Number Publication Date
WO2011055413A1 true WO2011055413A1 (en) 2011-05-12

Family

ID=43969658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005939 Ceased WO2011055413A1 (en) 2009-11-09 2009-11-09 Open market system

Country Status (1)

Country Link
WO (1) WO2011055413A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073102A (en) * 2015-10-08 2017-04-13 ソンフン キム Real-time forecast-based financial transaction system using virtual currency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002985A2 (en) * 1999-07-02 2001-01-11 Iexchange.Com, Inc. Method and apparatus for evaluating financial information providers
WO2002063429A2 (en) * 2001-02-05 2002-08-15 Starmine Corporation Security analyst estimates performance viewing system and method
JP2003531444A (en) * 2000-04-17 2003-10-21 マーケットクラシー・インコーポレイテッド Internet-based system for investment portfolio management recognition, measurement and ranking, and operation of fund supermarkets, including best investor managed funds
JP2009515237A (en) * 2005-09-30 2009-04-09 キャプラン,クレイグ,エー. Message boards and forums based on contributors' reputation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002985A2 (en) * 1999-07-02 2001-01-11 Iexchange.Com, Inc. Method and apparatus for evaluating financial information providers
JP2003531444A (en) * 2000-04-17 2003-10-21 マーケットクラシー・インコーポレイテッド Internet-based system for investment portfolio management recognition, measurement and ranking, and operation of fund supermarkets, including best investor managed funds
WO2002063429A2 (en) * 2001-02-05 2002-08-15 Starmine Corporation Security analyst estimates performance viewing system and method
JP2009515237A (en) * 2005-09-30 2009-04-09 キャプラン,クレイグ,エー. Message boards and forums based on contributors' reputation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073102A (en) * 2015-10-08 2017-04-13 ソンフン キム Real-time forecast-based financial transaction system using virtual currency

Similar Documents

Publication Publication Date Title
US8478683B2 (en) Fuel offering and purchase management system
US8484124B2 (en) Fuel offering and purchase management system
JP5905544B2 (en) Online evaluation system and method
US8788390B2 (en) Estimating values of assets
US20130030890A1 (en) System for collaborative transactions
JP2004500617A (en) System and method for evaluating patents
JP2002366741A (en) Asset management support system, asset management support server device, and asset management support method
JP5394853B2 (en) Open market system, server of open market system, and control method of open market system
KR20120013565A (en) Securities Information Provision System and Method based on Revenue Forecasting
JP2010231268A (en) Investment system
WO2011055413A1 (en) Open market system
KR20090120115A (en) Customized stock investment service provision system and method
JP2004145425A (en) Transaction supporting method and program
Zhang et al. The effectiveness of the escrow model: an experimental framework for dynamic online environments
JP2004178226A (en) Trade mediation system
KR20240177251A (en) Service method for simulation of real estate auction
WO2008124789A2 (en) Fuel offering and purchase management system
KR20010000729A (en) Method and system for network-based real time auction of stock information
KR20020076844A (en) Method for employing cyber invest game by a real stock invest communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP