[go: up one dir, main page]

WO2010111836A1 - Appareil de détermination de la pression sanguine - Google Patents

Appareil de détermination de la pression sanguine Download PDF

Info

Publication number
WO2010111836A1
WO2010111836A1 PCT/CN2009/071141 CN2009071141W WO2010111836A1 WO 2010111836 A1 WO2010111836 A1 WO 2010111836A1 CN 2009071141 W CN2009071141 W CN 2009071141W WO 2010111836 A1 WO2010111836 A1 WO 2010111836A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
blood
calculating device
pressure value
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2009/071141
Other languages
English (en)
Inventor
Lap Wai Leung
Kwan Wai To
Chi Tin Luk
Chang Hwa Chung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong Applied Science and Technology Research Institute ASTRI
Original Assignee
Hong Kong Applied Science and Technology Research Institute ASTRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong Applied Science and Technology Research Institute ASTRI filed Critical Hong Kong Applied Science and Technology Research Institute ASTRI
Priority to CN200980000030XA priority Critical patent/CN101677771B/zh
Priority to PCT/CN2009/071141 priority patent/WO2010111836A1/fr
Publication of WO2010111836A1 publication Critical patent/WO2010111836A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network

Definitions

  • the invention generally relates to an apparatus for determining the arterial blood pressure of human, and in particular to an apparatus that automatically calibrates a blood pressure calculating device.
  • Blood pressure is a fundamental indicator of a person's health.
  • High blood pressure can be caused by such factors as genetics, obesity, lack of exercise, overuse of salt, and aging. Prolonged hypertension increases the risk of developing heart and kidney disease, hardening of the arteries, eye damage and stroke. Both high and low blood pressure can also be indicators of heart disease. It is therefore advantageous for people to be able to simply and accurately measure their own blood pressure at home, work or on holiday, for example.
  • Blood pressure is expressed as systolic pressure over their diastolic pressure, for example 140/90.
  • the most common way of measuring blood pressure is using a sphygmomanometer.
  • a manual sphygmomanometer an inflatable cuff is wrapped around the upper arm of a person and inflated until the level of mercury in a connected barometer reaches a predetermined threshold at which blood flow in the brachial artery stops.
  • a stethoscope is need for the detection of the Korotkoff sounds.
  • the head of the stethoscope is placed over the brachial artery and air is slowly released from the cuff.
  • the Korotkoff sounds are detected while the cuff is being slowly deflated.
  • the five Korotkoff sounds are a tapping sound, a soft swishing sound, a crisp sound a blowing sound and silence.
  • the cuff pressures at which a tapping sound and silence are detected represent the systolic and diastolic blood pressures of the subject respectively.
  • a major problem with a cuff based blood pressure measuring device is that it is bulky and it takes some skill to use. Although automated cuff blood pressure measuring devices are available they remain bulky and noisy due to the pump for inflating the cuff. They are therefore not suitable for discrete, frequent or continuous measurement of blood pressure.
  • Blood pressure can also be estimated from pulse transit time.
  • Arterial blood pressure is found to be inversely proportional to the velocity of a pulse wave in blood caused by a heart beat. This theory has been disclosed in some papers: Messrs J. C. Bramwell and A. V. Hill, "The Velocity of the Pulse Wave in Man", Proceedings of the Royal Society, London, pp. 298-306, 1922; and B. Gribbin, A. Steptoe, and P. Sleight, "Pulse Wave Velocity as a Measure of Blood Pressure Change", Psychophysiology, Vol. 13, No. 1, pp. 86-90, 1976, which are incorporated herein as reference. Pulse transit time can be calculated by measuring heart beat and blood flow perimeters using discrete electronic sensors and so is much more suitable for discrete, frequent or continuous determination of blood pressure.
  • pulse transit time blood pressure estimating devices require frequent calibration in which blood pressure is simultaneously measured via a conventional cuff based blood pressure measuring device and by a pulse transit time method to establish an up-to-date relationship between pulse transit time and systolic and diastolic pressure.
  • an apparatus for determining the blood pressure of a patient which allows the patient to first measure his blood pressure using a blood pressure measuring device and then at a later time estimate his current blood pressure using a blood pressure calculating device that includes a mathematical model for estimating blood pressure based on a current change in blood volume induced by a heart beat and the previously measured blood pressure.
  • the apparatus includes a transmitter device that detects the presence of the blood pressure calculating device connected to or in proximity of the blood pressure measuring device and transmits the previously measured blood pressure value to the blood pressure calculating device.
  • the blood pressure measuring device includes a conventional inflatable cuff that restricts blood flow for the measurement of systolic and/or diastolic blood pressure. It does use a mathematical model or calculation that includes a change in arterial blood induced by heart beat and the measured blood pressure value. Only the measured blood pressure value is transmitted between the blood pressure measuring device and blood pressure calculating device. This allows for the use of a low bandwidth low costs transmitter and other communication link components without compromising data transfer speed.
  • the blood-pressure calculating device is a standalone portable device. It uses a plethysmograph that measures a change in arterial blood volume induced by a heart beat. A processor calculates a second blood pressure of the patient using a mathematical model that includes the change in arterial blood volume induced by heart beat and the measured blood pressure value.
  • Figure 1 is a schematic illustration of apparatus according to the invention for determining blood pressure of a person.
  • the control unit 11 contains a pump for inflating the cuff 10 when wrapped around a person's arm and various sensors for determining systolic and diastolic blood pressure of the person in automatic fashion using known means.
  • the control unit 11 also includes a storage medium for storing the measure blood pressure values and a communication device for communicating with a portable blood pressure calculating device 13a, 13b.
  • the communication means is a transmitter connected to an output port which can receive a plug from a cable 12 connected to the portable blood pressure calculating device 13 in order to transfer blood pressure values to the portable device 13. If the control unit 11 is mains power based then the output port and cable 12 can also be used to charge the portable device 13.
  • the communication means may be a transmitter and wireless radio for wireless communication between the control unit 11 and portable blood pressure calculating device 13. The wireless transmission range need only be relatively small, for example only within a few meters, so that a relatively inexpensive radio may be used.
  • the only data transfer from the control unit 11 to the portable blood pressure calculating means 13 is the measured blood pressure value, for example systolic and/or diastolic blood pressure values, obtained and stored by the blood pressure measuring device 20.
  • the portable blood pressure calculating device 13 is one that calculates blood pressure using a method such a pulse transmit time (PTT).
  • PTT pulse transmit time
  • the portable blood pressure calculating device 13 itself may be of any convenient form such as a small handheld device 13a of the size and shape a palm computer or PDA, or may be a wearable device such as a wristwatch 13b.
  • the portable blood pressure calculating device 13 includes sensors as known in the art for determining perimeters, such as electrocardiogram (ECG) and photoplethysmogram (PPG) signals, needed to calculate pulse transit time of a person.
  • ECG electrocardiogram
  • PPG photoplethysmogram
  • the portable device 13 must be recalibrated on a regular basis.
  • recalibration occurs automatically whenever the portable device 13 is brought within communication range of the control unit 11 from the blood pressure measuring device.
  • the control unit 11 automatically detects the presence of the portable device 13 and transmits the most recently stored blood pressure values of the person to the portable device 13.
  • the patient may, for example check, their blood pressure every morning with the blood pressure measuring device in which new blood pressure values are stored in the control unit 11.
  • the new blood pressure values are then transmitted to the portable device 13 which the patient can carry with them throughout the day for periodic or continuous monitoring of blood pressure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

L'invention porte sur un appareil de détermination de la pression sanguine d'une personne, comprenant : un dispositif de mesure de pression sanguine mesurant une valeur de pression sanguine d'une personne à une première période dans le temps, un dispositif de mémorisation mémorisant la valeur de pression sanguine mesurée, un dispositif émetteur détectant automatiquement la présence d'un dispositif de calcul de pression sanguine et transmet la valeur de pression sanguine mesurée mémorisée au dispositif de calcul de pression sanguine à une seconde période dans le temps, et un dispositif de calcul de pression sanguine comprenant un modèle mathématique destiné à estimer la pression sanguine sur la base d'une modification réelle dans le sang induite par un battement cardiaque et la pression sanguine précédemment mesurée.
PCT/CN2009/071141 2009-04-02 2009-04-02 Appareil de détermination de la pression sanguine Ceased WO2010111836A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980000030XA CN101677771B (zh) 2009-04-02 2009-04-02 用来确定血压的设备
PCT/CN2009/071141 WO2010111836A1 (fr) 2009-04-02 2009-04-02 Appareil de détermination de la pression sanguine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071141 WO2010111836A1 (fr) 2009-04-02 2009-04-02 Appareil de détermination de la pression sanguine

Publications (1)

Publication Number Publication Date
WO2010111836A1 true WO2010111836A1 (fr) 2010-10-07

Family

ID=42029865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071141 Ceased WO2010111836A1 (fr) 2009-04-02 2009-04-02 Appareil de détermination de la pression sanguine

Country Status (2)

Country Link
CN (1) CN101677771B (fr)
WO (1) WO2010111836A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103315726A (zh) * 2013-06-25 2013-09-25 陈晓鹏 便携式血压测量设备和血压测量方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101884528A (zh) * 2010-06-13 2010-11-17 天津九安医疗电子股份有限公司 一种血压测量装置
CN105125195A (zh) * 2015-06-24 2015-12-09 惠州Tcl移动通信有限公司 一种使血压传感器贴紧手腕的方法及智能穿戴设备
CN105725998B (zh) * 2015-11-05 2018-08-17 香港应用科技研究院有限公司 使用心理状态验证进行血压测量的系统
EP3522778B1 (fr) * 2016-10-10 2022-03-30 Koninklijke Philips N.V. Appareil et procédé pour déterminer un paramètre d'étalonnage pour un dispositif de mesure de pression sanguine
CN107092810A (zh) * 2017-06-28 2017-08-25 深圳市苏仁智能科技有限公司 基于压电传感带的人体体征数据采集终端及数据处理装置
CN107811625A (zh) * 2017-12-25 2018-03-20 佛山市恒南微科技有限公司 一种便于携带的动物血压检测装置
CN109875538A (zh) * 2019-03-27 2019-06-14 深圳明成创新医疗科技发展有限公司 一种血压计用袖带滚筒式卷覆装置
JP7265741B2 (ja) * 2019-06-03 2023-04-27 ベルン・テクノロジー(アイピー)カンパニー・リミテッド ウェアラブルデバイス
US11402326B2 (en) 2020-09-25 2022-08-02 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods for multi-wavelength scattering based smoke detection using multi-dimensional metric monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390108A (zh) * 1999-11-16 2003-01-08 微生命知识产权股份有限公司 血压监视器校准设备
US20050261593A1 (en) * 2004-05-20 2005-11-24 Zhang Yuan T Methods for measuring blood pressure with automatic compensations
CN101032395A (zh) * 2006-03-08 2007-09-12 香港中文大学 基于光电容积描记信号周期域特征参量的血压测量方法
CN101229058A (zh) * 2007-01-26 2008-07-30 香港中文大学 脉搏波传输时间法测量动脉血压的初始校准装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390108A (zh) * 1999-11-16 2003-01-08 微生命知识产权股份有限公司 血压监视器校准设备
US20050261593A1 (en) * 2004-05-20 2005-11-24 Zhang Yuan T Methods for measuring blood pressure with automatic compensations
CN101032395A (zh) * 2006-03-08 2007-09-12 香港中文大学 基于光电容积描记信号周期域特征参量的血压测量方法
CN101229058A (zh) * 2007-01-26 2008-07-30 香港中文大学 脉搏波传输时间法测量动脉血压的初始校准装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103315726A (zh) * 2013-06-25 2013-09-25 陈晓鹏 便携式血压测量设备和血压测量方法
CN103315726B (zh) * 2013-06-25 2016-05-25 陈晓鹏 便携式血压测量设备和血压测量方法

Also Published As

Publication number Publication date
CN101677771A (zh) 2010-03-24
CN101677771B (zh) 2011-08-10

Similar Documents

Publication Publication Date Title
WO2010111836A1 (fr) Appareil de détermination de la pression sanguine
US20100249617A1 (en) Apparatus for determining blood pressure
FI103760B (fi) Menetelmä ja järjestely verenpaineen mittauksessa
KR101068116B1 (ko) 비침습적 연속 혈압 및 동맥 탄성도 측정을 위한 요골 맥파센싱 장치 및 방법
CN101327121B (zh) 一种生理参数测量装置
US20010012916A1 (en) Blood pressure measuring device
CN107865647B (zh) 血压检测装置以及血压检测装置的校正方法
CN101125079B (zh) 一种使用spo2体积描记图信号测定nibp目标充气压力的系统
US8747328B2 (en) Continuous blood pressure monitoring
US10531797B2 (en) Wearable blood pressure monitoring system
US20090118628A1 (en) System for measuring blood pressure featuring a blood pressure cuff comprising size information
JP2002253519A5 (fr)
US20140142445A1 (en) Vital sign monitor for cufflessly measuring blood pressure using a pulse transit time corrected for vascular index
US6582374B2 (en) Automatic blood-pressure measuring apparatus
US20080033310A1 (en) Method and apparatus for arterial blood pressure measurement and individualized rectifying technology using this method
CN101229058A (zh) 脉搏波传输时间法测量动脉血压的初始校准装置
CN104173036A (zh) 一种脉搏波采集装置、无创血压连续逐拍测量系统及方法
CN112890790B (zh) 一种穿戴式无创血压动态跟踪监测方法
US11185237B2 (en) Calibration methods for blood pressure devices
CN100502768C (zh) 基于高频光容积描记信号的人体生理参数监测装置
US20100106016A1 (en) Non-Invasive Blood Pressure Monitoring Device and Method
JP2006289088A (ja) 脈拍検出装置および方法
CN107106055A (zh) 一种血压测量方法及装置
US6808497B2 (en) Blood-pressure measuring apparatus and inferior-and-superior-limb blood-pressure-index measuring apparatus
CN100346741C (zh) 基于心音信号的血压测量装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000030.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842493

Country of ref document: EP

Kind code of ref document: A1