[go: up one dir, main page]

WO2010032446A1 - Device for recognizing open/close operation of open/close member and method for recognizing open/close operation of open/close member - Google Patents

Device for recognizing open/close operation of open/close member and method for recognizing open/close operation of open/close member Download PDF

Info

Publication number
WO2010032446A1
WO2010032446A1 PCT/JP2009/004628 JP2009004628W WO2010032446A1 WO 2010032446 A1 WO2010032446 A1 WO 2010032446A1 JP 2009004628 W JP2009004628 W JP 2009004628W WO 2010032446 A1 WO2010032446 A1 WO 2010032446A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
frequency
closing member
closing operation
feature calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2009/004628
Other languages
French (fr)
Japanese (ja)
Inventor
田口正城
鳥居順次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRANSVIRTUAL Inc
Original Assignee
TRANSVIRTUAL Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRANSVIRTUAL Inc filed Critical TRANSVIRTUAL Inc
Publication of WO2010032446A1 publication Critical patent/WO2010032446A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • G08B13/1654Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems
    • G08B13/1672Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems using sonic detecting means, e.g. a microphone operating in the audio frequency range
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/02Mechanical actuation
    • G08B13/08Mechanical actuation by opening, e.g. of door, of window, of drawer, of shutter, of curtain, of blind

Definitions

  • the present invention relates to an opening / closing operation recognition device and recognition method for an opening / closing member that is used for security measures and that appropriately detects opening / closing of a door.
  • a typical door open / close recognition device is a device in which a magnetic sensor or the like is installed at an open / close portion of a door or the like, and the magnetic sensor reacts in response to the opening / closing of the door to generate an alarm.
  • the detection device detects the sound of the speaker. Therefore, it is not necessary to install sensors on windows and doors, and the convenience of construction can be improved.
  • Patent Document 1 has a problem in that it is necessary to install a speaker outdoors, and it must be constructed so as to withstand an environment exposed to wind and rain. In addition, there is a problem in that power consumption increases because the speaker must constantly emit sound.
  • the present invention has been made to solve such a problem, and has an object to provide a door opening / closing recognition device that eliminates complicated wiring and can detect only opening / closing of a door with high accuracy. To do.
  • the present invention solves the above problems by the following means.
  • the present invention for solving the above-mentioned problems is a sensor microphone for detecting sound pressure, an amplifier circuit for amplifying a signal detected by the sensor microphone, a filter circuit for selecting a signal amplified through the amplifier circuit, Based on an A / D converter that digitally converts an analog signal that has passed through a filter circuit, a signal discriminator that discriminates the opening / closing operation of an opening / closing member from the digital signal of the A / D converter, and an output of the signal discriminator And an opening / closing operation recognition device for an opening / closing member.
  • the signal discriminator of the open / close operation recognizing device that solves the above problem is converted into a frequency conversion unit that converts the digital signal of the A / D converter into a frequency component to obtain a frequency resolving variable.
  • a feature calculation unit that calculates a feature amount using a frequency decomposition variable; and an event determination unit that recognizes and determines a sound event from the value or a combination of values based on an output of the feature calculation unit. It is characterized by that.
  • the open / close motion recognition device that solves the above-described problem is the conditional branching program in which the discrimination knowledge of the feature calculation unit has a tree structure, and the feature amount according to the tree structure using the frequency decomposition variable Is calculated.
  • the discriminating knowledge of the feature calculation unit of the open / close motion recognition device that solves the above-described problems is derived from an inductive learning program in the above invention.
  • the discrimination knowledge of the feature calculation unit of the open / close motion recognition device that solves the above-mentioned problems is derived from genetic programming in the above invention.
  • the discrimination knowledge of the feature calculation unit of the open / close motion recognition device that solves the above-mentioned problems is characterized in that, in the above-mentioned invention, includes the moving average of the frequency resolution variable.
  • the open / close motion recognition apparatus that solves the above-described problems uses the moving average of the frequency-resolved variables as background knowledge for generating discrimination knowledge of the feature calculation unit in the above invention.
  • the open / close motion recognition device that solves the above problem uses a moving average that uses the frequency resolution variable in a narrow band in the low frequency region as the background knowledge, and a frequency region that is higher than the low frequency region. Is characterized in that a moving average using the frequency resolution variable in a wide band is used.
  • the present invention for solving the above-described problems includes a sensing step of sensing sound pressure with a sensor microphone, an amplification step of amplifying a signal detected with the sensor microphone with an amplifier circuit, and a signal amplified through the amplifier circuit.
  • a selecting step for selecting by a circuit a converting step for digitally converting an analog signal having passed through the filter circuit by an A / D converter, and whether or not the opening / closing member is opened / closed using the digital signal of the A / D converter.
  • An opening / closing operation recognition method for an opening / closing member comprising: a determining step for determining; and an output step for controlling an external output based on a result of the determination.
  • the switching operation recognition method that solves the above problem is converted in the determination step by a frequency conversion unit step that converts the digital signal of the A / D converter into a frequency component to obtain a frequency decomposition variable.
  • the discriminating knowledge of the feature calculation step of the open / close operation recognition method that solves the above problem is the conditional branching program having a tree structure in the above invention, and using the frequency decomposition variable, the feature quantity according to the tree structure Is calculated.
  • the discrimination knowledge of the feature calculation step of the open / close operation recognition method that solves the above-mentioned problems is derived from an inductive learning program in the above invention.
  • the discrimination knowledge of the feature calculation step of the open / close operation recognition method that solves the above problem is derived from genetic programming in the above invention.
  • the discrimination knowledge of the feature calculation step of the open / close operation recognition method that solves the above-mentioned problem is characterized in that, in the above-mentioned invention, includes the moving average of the frequency resolution variable.
  • the method for recognizing an opening / closing operation that solves the above-described problem is characterized in that, in the above-described invention, the moving average of the frequency-resolved variable is used as background knowledge for generating discrimination knowledge of the feature calculation step.
  • the open / close operation recognition method for solving the above-mentioned problem uses a moving average using the frequency resolution variable of a narrow band in the low frequency region as the background knowledge, and a frequency region higher than the low frequency region. Is characterized in that a moving average using the frequency resolution variable in a wide band is used.
  • the present invention it is possible to detect only the opening / closing of the door appropriately by installing the door opening / closing recognition device indoors without installing any related equipment at the door or outdoors.
  • recognition device for an opening / closing member according to an embodiment of the present invention will be described in detail with reference to the drawings.
  • the recognition device 1 selects a sensor microphone 10 that senses sound pressure, an amplifier circuit 20 that amplifies a signal detected by the sensor microphone 10, and a signal that is amplified through the amplifier circuit 20. Based on the output of the signal discriminator 100, the A / D converter 40 that digitally converts the analog signal that has passed through the filter circuit 30, the signal discriminator 100 that discriminates whether or not the door is open / closed from the digital signal, And an output control unit 50 for controlling the external output.
  • the recognition device 1 is installed at a specific indoor location.
  • the signal discriminator 100 is a so-called MPU, and as shown in FIG. 2, a central processing unit (CPU) 150 that executes information processing by executing a program, and a RAM 152 that can temporarily hold information.
  • CPU central processing unit
  • a ROM 154 that stores various programs
  • an information storage device 156 that temporarily stores digitized sound pressure signals
  • an interface 158 that inputs and outputs digital signals.
  • the CPU 150 executes a program stored in the ROM 154, thereby exhibiting a function to be described later.
  • the functional configuration of the signal discriminator 100 includes a frequency converter 110 that converts a digital signal from a time component to a frequency component, and a feature calculator that calculates a plurality of feature amounts from the converted frequency component. 120 and an event determination unit 130 for recognizing and determining a sound event from these values or combinations of values based on the output of the feature calculation unit 120.
  • the frequency converter 110 converts the signal digitized through the A / D converter 40 into a frequency component. This frequency-resolved signal is input to the discrimination knowledge in the feature calculation unit 120 and calculates a door opening / closing possibility value.
  • the conversion method to the frequency component can be selected arbitrarily, but representative methods are discrete Fourier transform (DFT), discrete cosine transform (DCT), Hadamard transform, Weblet transform, and the like.
  • the event determination unit 130 determines whether the possibility value of the feature calculation unit 120 exceeds a predetermined threshold value, and identifies the event. Based on the event identification result of the event determination unit 130, the output control unit 50 outputs an alarm signal.
  • the discrimination knowledge in the feature calculation unit 120 is a conditional branch program having a tree structure. Specifically, the tree structure is conditional branching using if then else, continuous processing of progN that executes each tree, calculation of add (addition), sub (subtraction), mul (multiplication), div (division), and constants It is configured with.
  • the feature calculation unit 120 uses the signal sequence data (frequency decomposition variable) decomposed into frequency components, performs an operation along the tree structure as discriminating knowledge, and outputs the result as numerical data.
  • the output result is an arbitrary value from 0 to 15, and a larger value means that the probability of door opening / closing is higher.
  • inductive learning techniques and rules of thumb are used in combination to derive discriminant knowledge.
  • a genetic programming method is used, and thereby discriminating knowledge is synthesized.
  • the rule of thumb is used as background knowledge for genetic programming.
  • a function that creates a feature value that is found when the door is opened and closed is defined, and this is used as a part of discrimination knowledge.
  • Using heuristics as background knowledge makes it possible to improve the convergence of genetic programming.
  • the sound pressure signal of the door is often non-linear and cannot be separated with a simple threshold. Therefore, the signal to be recognized is converted into several variables (feature vectors) called feature quantities, and a certain threshold is applied to the feature space created by the feature vector to perform space separation.
  • information of frequency components decomposed for each level is used as the feature amount.
  • this frequency component information also has a time-series component that is an information arrangement order.
  • the present inventors have grasped in advance a frequency component of a level that is strongly involved in the opening and closing of the door in the space and a frequency component of a level that has a relatively small influence. Therefore, such experience knowledge is incorporated into the elements of the genetic program as background knowledge to improve the convergence of learning.
  • the background knowledge is a mathematical expression of knowledge based on the experience side (human sensuously). Therefore, in the present embodiment, the mathematical formula as the background knowledge is incorporated in the discrimination knowledge and used for calculating the feature amount.
  • discrimination using discrimination knowledge is performed by mapping a feature vector using a frequency decomposition variable onto a feature space and then performing space separation. However, if there is no background knowledge, the dimension of the feature vector will increase, and there will be a large number of straight lines to perform spatial separation (drawing). A quantity (trial and error amount, calculation amount) is required.
  • a basic formula for performing space separation is provided in advance by introducing a mathematical formula as background knowledge. As a result, it is possible to easily generate discrimination knowledge even when the learning amount is small.
  • frequencies of 50 Hz or higher are excluded in the filter circuit 30 in advance, and 16 frequency resolution variables (freq (0 ) To freq (15)) are extracted.
  • the present inventors have empirically found that the opening and closing of doors involves relatively low frequency components (for example, freq (0) to freq (3)).
  • the main frequency of opening and closing the door is less than 50 Hz, which excludes frequencies above 50 Hz, and over 50 Hz, such as telephones, alarm clocks, TV / radio, falling objects, horns, sirens, etc. This is because stationary life sounds are included.
  • ave is a moving average obtained by linearly combining frequency components, and is an element of a feature vector.
  • w, k, m, and n are parameter constants.
  • DFT discrete Fourier transform
  • DCT discrete cosine transform
  • Weblet transform etc.
  • the frequency decomposition variable freq (i) excludes the time element in the amplitude signal ad.
  • the frequency resolution variable freq (i) itself has fluctuations (fluctuations) in the order of information arrangement within the range of the band level i. That is, when the information arrangement order element q included in freq (i) is taken into consideration, the frequency resolution variable is freq (i, q), which changes depending on the order element q.
  • the frequency resolution variable freq (i, q) is a feature vector element
  • the dimension becomes i * q
  • the number of dimensions increases, and the derivation of discrimination knowledge becomes complicated. Therefore, in the present embodiment, the frequency resolution variable freq (i, q) is moving averaged based on the order element q, and the one-dimensionalized ave (z) is used as a feature vector.
  • the one-dimensionalized ave (z) is used as a feature vector.
  • Equation 1 The reason why the moving average is used in Equation 1 is based on the experience that there is little change depending on the temporal characteristics associated with the opening and closing of the door, specifically, the information arrangement order element q. As already mentioned, if the information array sequence element q (temporal feature) is used as it is as a feature vector without introducing moving average, complex discriminating knowledge is obtained for many spectra arranged in time series. End up. This makes it difficult to mount on a microcomputer.
  • the door since the door is opened and closed by humans, it cannot be considered that the sound pressure generated by the door undergoes a violent time change. In particular, it is considered that the intruder slowly opens the door, and the temporal change of the sound pressure is less meaningful as a feature vector. Therefore, by adopting a moving average, the number of dimensions is drastically reduced and the amount of calculation is reduced.
  • Equation 2 group is defined and introduced.
  • Use supervised learning data to generate discriminative knowledge recursively based on background knowledge.
  • a recording device called a data logger is installed in a condominium or a detached room, and sound information about many door opening / closing patterns is recorded.
  • sound information such as a windy day and a thunderstorm is collected.
  • wind sounds, construction sounds, car passing sounds, air conditioner operations, wind noises, and the like have relatively low frequencies, so it is difficult to determine whether the door is open or closed with a simple sound pressure. Therefore, in this embodiment, learning is performed using genetic programming based on various door opening / closing pattern sound information and the rejection sound information, and the discrimination knowledge is synthesized.
  • the discriminating knowledge to be synthesized is incorporated in the feature calculation unit 120.
  • step 200 sound pressure information is first sensed by the sensor microphone 10, and in step 202, this information is amplified by the amplifier circuit 20. Further, in step 204, the amplified information is input to the filter circuit 30 in order to obtain only the frequency band to be discriminated (in this embodiment, less than 50 Hz). Note that the role of the filter circuit 30 also has the meaning of suppressing aliasing noise when digitally converted thereafter.
  • the signal that has passed through the filter circuit 30 is input to the A / D converter 40 and digitally converted in step 206, and then input to the information storage device 156 of the signal discriminator 100 in step 208.
  • the information storage device 156 is a FIFO (First in first ⁇ ⁇ out) type memory.
  • the FIFO type memory means a memory structure in which a first input signal is first extracted.
  • digital signals for a certain period of time are accumulated.
  • the time-series discrete signals stored in the FIFO memory are extracted in units of 2 n units in step 210, input to the frequency conversion unit 110, and converted into frequency components.
  • the frequency-converted signal is stored again in the FIFO memory of the information storage device 156 for a predetermined time together with time-series data.
  • a frequency-converted signal sequence for a predetermined time is taken out from the information storage device 156 and input to the feature calculation unit 120.
  • the feature calculation unit 120 inputs this signal sequence to the discrimination knowledge, and numerically converts the possibility of opening and closing the door.
  • the event determination unit 130 determines whether the event is opening / closing of the door based on a threshold value.
  • a predetermined alarm is issued based on the result of the event determination unit 120.
  • the signal discriminator 100 can detect the sound pressure of only the door with high accuracy. Therefore, it is possible to detect the opening / closing of the door only by placing the recognition device 1 in the space without installing a sensor or the like outside the door or the door.
  • the present inventors have clarified that the opening / closing sound of the door includes an extremely low frequency that cannot be heard by human ears. Therefore, in the signal discriminator 100, the frequency conversion unit 110 performs frequency decomposition, and the feature calculation unit 120 calculates the feature amount using the frequency decomposition variable. In this way, it is possible to properly detect only the opening and closing of the door while actively removing the frequency decomposition variable of the low frequency level related to the opening and closing of the door and removing the noise component unrelated to the opening and closing of the door. I have to. In particular, since the discrimination knowledge of the feature calculation unit 120 is a conditional branch program having a tree structure, it is possible to calculate feature quantities easily and at high speed.
  • the discrimination knowledge of the feature calculation unit 120 is derived by an operation using an inductive learning program, particularly genetic programming. Accordingly, by learning in advance a large number of pattern sounds for actual door opening and closing, it becomes possible to acquire highly accurate discrimination knowledge, and it is possible to increase the detection accuracy of door opening and closing. In addition, by learning in advance a large number of pattern sounds to be rejected such as wind and cars, it is possible to appropriately exclude noise with high occurrence frequency by the conditional branching program having a tree structure.
  • the discrimination knowledge of the feature calculation unit 120 includes a feature vector based on a moving average using a frequency decomposition variable.
  • this feature vector is appropriately incorporated into the discrimination knowledge by defining it in the feature calculation unit as background knowledge in advance. That is, the discrimination knowledge of the feature calculation unit 120 is generated using the moving average of the frequency resolution variable.
  • the mathematical formula introduced as background knowledge uses a moving average using a frequency resolution variable of a narrow band (for example, freq (0), freq (1), freq (2), etc.) in a low frequency region.
  • a moving average using a wide-band frequency resolution variable for example, the sum of freq (4 to 7), the sum of freq (8 to 15), etc.
  • the recognition apparatus 1 exemplifies discrete Fourier transform (DFT), discrete cosine transform (DCT), Hadamard transform, Weblet transform, and the like as a frequency transforming method.
  • DFT discrete Fourier transform
  • DCT discrete cosine transform
  • Weblet transform Weblet transform
  • the present invention is not limited to this, and other methods can be used.
  • the feature calculation unit 120 in the recognition apparatus 1 shows a case where a moving average of frequency decomposition variables is used in background knowledge and discriminating knowledge, but the present invention is not limited to this, and smoothing by other methods is possible. Is also possible.
  • the present invention can be used for opening / closing detection of opening / closing members such as doors, doors, and lids.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

A sensor microphone (10) senses a sound pressure.  An amplifier circuit (20) amplifies the sensed signal.  A filter circuit (30) filters the signal amplified through the amplifier circuit (20).  Further, an A/D converter (40) converts an analog signal obtained after passing through the filter circuit (30) to a digital signal, by use of which a signal discriminator (100) determines the presence or absence of an open/close operation of an open/close member.  The determined result is outputted through an output controller (50) to the outside.  This makes it possible to accurately detect the open/close of a door or the like without installing a special sensor at the door or the like.

Description

開閉部材の開閉動作認識装置、開閉部材の開閉動作認識方法Opening / closing member recognition device for opening / closing member, and opening / closing operation recognition method for opening / closing member

 本発明は、セキュリティー対策目的等で用いられ、ドアの開閉を適切に検出する開閉部材の開閉動作認識装置及び認識方法に関する。 The present invention relates to an opening / closing operation recognition device and recognition method for an opening / closing member that is used for security measures and that appropriately detects opening / closing of a door.

 従来、家やビル等の居住空間において、セキュリティー目的の為に、ドアや窓の開閉を検出するドア開閉認識装置が開発されている。代表的なドア開閉認識装置は、ドア等の開閉部分に、磁気センサ-等を設置し、ドアの開閉に連動して磁気センサーが反応して、アラームを発するものである。 Conventionally, a door open / close recognition device that detects the opening / closing of doors and windows has been developed for security purposes in living spaces such as houses and buildings. A typical door open / close recognition device is a device in which a magnetic sensor or the like is installed at an open / close portion of a door or the like, and the magnetic sensor reacts in response to the opening / closing of the door to generate an alarm.

 このドア開閉検出装置では、検出対象となる全てのドアに磁気センサーを設置しなければならない。そこで、特開2005-44028号公報に示されているように、音波を発するスピーカを屋外に配置しておき、屋内には、マイクを利用してスピーカの音を検出する検出装置を設置する構成のドア開閉認識装置が提案されている。 In this door open / close detection device, magnetic sensors must be installed on all doors to be detected. Accordingly, as disclosed in Japanese Patent Application Laid-Open No. 2005-44028, a speaker that emits a sound wave is arranged outdoors, and a detection device that detects the sound of the speaker using a microphone is installed indoors. A door open / close recognition device has been proposed.

 この方法によれば、ドアや窓が適切に閉まっている場合、屋外のスピーカの音がドアに遮断されて検出装置が検出できない。一方、ドア等が開かれると、スピーカの音を検出装置が検出する。従って、窓やドアにセンサーを設置する必要がなくなり、施工の利便性を高めることが可能となる。 According to this method, when the door or window is properly closed, the sound of the outdoor speaker is blocked by the door and the detection device cannot detect. On the other hand, when the door or the like is opened, the detection device detects the sound of the speaker. Therefore, it is not necessary to install sensors on windows and doors, and the convenience of construction can be improved.

 しかしながら、上記特許文献1の技術では、屋外にスピーカを設置する必要があり、風雨等にさらされる環境に耐えうるように施工しなければならないという問題があった。また、定常的にスピーカが音を発しなければならないため、消費電力が増大するという問題があった。 However, the technique disclosed in Patent Document 1 has a problem in that it is necessary to install a speaker outdoors, and it must be constructed so as to withstand an environment exposed to wind and rain. In addition, there is a problem in that power consumption increases because the speaker must constantly emit sound.

 また、侵入者等が屋外のスピーカの存在に気づいて、事前にスピーカの電気系統を遮断してしまうと、ドアの開閉が検出できなくなるという問題があった。 Also, if an intruder notices the presence of an outdoor speaker and shuts off the electrical system of the speaker in advance, there is a problem that the opening / closing of the door cannot be detected.

 本発明は、このような問題点を解決するためになされたものであって、複雑な配線を廃し、且つドアの開閉のみを高精度で検出可能なドア開閉認識装置を提供することを目的とする。 The present invention has been made to solve such a problem, and has an object to provide a door opening / closing recognition device that eliminates complicated wiring and can detect only opening / closing of a door with high accuracy. To do.

 本発明は、以下の手段によって、上記課題を解決したものである。 The present invention solves the above problems by the following means.

 上記課題を解決する本発明は、音圧を感知するセンサマイクと、前記センサマイクで検知された信号を増幅するアンプ回路と、前記アンプ回路を経て増幅された信号を選別するフィルタ回路と、前記フィルタ回路を経たアナログ信号をデジタル変換するA/D変換器と、前記A/D変換器のデジタル信号から開閉部材の開閉動作の有無を判別する信号判別器と、前記信号判別器の出力に基づいて外部出力を制御する出力制御部と、を備えることを特徴とする開閉部材の開閉動作認識装置である。 The present invention for solving the above-mentioned problems is a sensor microphone for detecting sound pressure, an amplifier circuit for amplifying a signal detected by the sensor microphone, a filter circuit for selecting a signal amplified through the amplifier circuit, Based on an A / D converter that digitally converts an analog signal that has passed through a filter circuit, a signal discriminator that discriminates the opening / closing operation of an opening / closing member from the digital signal of the A / D converter, and an output of the signal discriminator And an opening / closing operation recognition device for an opening / closing member.

 上記課題を解決する開閉動作認識装置の前記信号判別器は、上記発明において、前記A/D変換器の前記デジタル信号を周波数成分に変換して周波数分解変数を得る周波数変換部と、変換された周波数分解変数を利用して特徴量を演算する特徴演算部と、前記特徴演算部の出力に基づいて、それらの値又は値の組み合わせから音の事象を認識・判断する事象判断部と、を備えることを特徴とする。 In the above invention, the signal discriminator of the open / close operation recognizing device that solves the above problem is converted into a frequency conversion unit that converts the digital signal of the A / D converter into a frequency component to obtain a frequency resolving variable. A feature calculation unit that calculates a feature amount using a frequency decomposition variable; and an event determination unit that recognizes and determines a sound event from the value or a combination of values based on an output of the feature calculation unit. It is characterized by that.

 上記課題を解決する開閉動作認識装置は、上記発明において、前記特徴演算部の判別知識は木構造をなした条件分岐プログラムであり、前記周波数分解変数を利用して、前記木構造に従って前記特徴量を演算することを特徴とする。 In the above-described invention, the open / close motion recognition device that solves the above-described problem is the conditional branching program in which the discrimination knowledge of the feature calculation unit has a tree structure, and the feature amount according to the tree structure using the frequency decomposition variable Is calculated.

 上記課題を解決する開閉動作認識装置の前記特徴演算部の判別知識は、上記発明において、帰納的学習プログラムによって導出されるものであることを特徴とする。 The discriminating knowledge of the feature calculation unit of the open / close motion recognition device that solves the above-described problems is derived from an inductive learning program in the above invention.

 上記課題を解決する開閉動作認識装置の前記特徴演算部の判別知識は、上記発明において、遺伝的プログラミングによって導出されるものであることを特徴とする。 The discrimination knowledge of the feature calculation unit of the open / close motion recognition device that solves the above-mentioned problems is derived from genetic programming in the above invention.

 上記課題を解決する開閉動作認識装置の前記特徴演算部の判別知識は、上記発明において、前記周波数分解変数の移動平均を含むものであることを特徴とする。 The discrimination knowledge of the feature calculation unit of the open / close motion recognition device that solves the above-mentioned problems is characterized in that, in the above-mentioned invention, includes the moving average of the frequency resolution variable.

 上記課題を解決する開閉動作認識装置は、上記発明において、前記特徴演算部の判別知識を生成するための背景知識として、前記周波数分解変数の移動平均を用いることを特徴とする。 The open / close motion recognition apparatus that solves the above-described problems uses the moving average of the frequency-resolved variables as background knowledge for generating discrimination knowledge of the feature calculation unit in the above invention.

 上記課題を解決する開閉動作認識装置は、上記発明において、前記背景知識として、低い周波領域においては、狭い帯域の前記周波数分解変数を利用した移動平均を用い、前記低い周波領域よりも高い周波数領域においては、広い帯域の前記周波数分解変数を利用した移動平均を用いる、ことを特徴とする。 In the above invention, the open / close motion recognition device that solves the above problem uses a moving average that uses the frequency resolution variable in a narrow band in the low frequency region as the background knowledge, and a frequency region that is higher than the low frequency region. Is characterized in that a moving average using the frequency resolution variable in a wide band is used.

 上記課題を解決する本発明は、音圧をセンサマイクで感知する感知ステップと、前記センサマイクで検知された信号をアンプ回路で増幅する増幅ステップと、前記アンプ回路を経て増幅された信号をフィルタ回路で選別する選別ステップと、前記フィルタ回路を経たアナログ信号をA/D変換器でデジタル変換する変換ステップと、前記A/D変換器のデジタル信号を利用して開閉部材の開閉動作の有無を判別する判別ステップと、前記判別の結果に基づいて外部出力を制御する出力ステップと、を備えることを特徴とする開閉部材の開閉動作認識方法である。 The present invention for solving the above-described problems includes a sensing step of sensing sound pressure with a sensor microphone, an amplification step of amplifying a signal detected with the sensor microphone with an amplifier circuit, and a signal amplified through the amplifier circuit. A selecting step for selecting by a circuit, a converting step for digitally converting an analog signal having passed through the filter circuit by an A / D converter, and whether or not the opening / closing member is opened / closed using the digital signal of the A / D converter. An opening / closing operation recognition method for an opening / closing member, comprising: a determining step for determining; and an output step for controlling an external output based on a result of the determination.

 上記課題を解決する開閉動作認識方法は、上記発明において、前記判別ステップでは、前記A/D変換器の前記デジタル信号を周波数成分に変換して周波数分解変数を得る周波数変換部ステップと、変換された周波数分解変数を利用して特徴量を演算する特徴演算ステップと、前記特徴演算ステップの出力に基づいて、それらの値又は値の組み合わせから音の事象を認識・判断する事象判断ステップと、を備えることを特徴とする。 In the above invention, the switching operation recognition method that solves the above problem is converted in the determination step by a frequency conversion unit step that converts the digital signal of the A / D converter into a frequency component to obtain a frequency decomposition variable. A feature calculation step for calculating a feature amount using the frequency decomposition variable, and an event determination step for recognizing and determining a sound event from those values or combinations of values based on the output of the feature calculation step. It is characterized by providing.

 上記課題を解決する開閉動作認識方法の前記特徴演算ステップの判別知識は、上記発明において、木構造をなした条件分岐プログラムであり、前記周波数分解変数を利用して、前記木構造に従って前記特徴量を演算することを特徴とする。 The discriminating knowledge of the feature calculation step of the open / close operation recognition method that solves the above problem is the conditional branching program having a tree structure in the above invention, and using the frequency decomposition variable, the feature quantity according to the tree structure Is calculated.

 上記課題を解決する開閉動作認識方法の前記特徴演算ステップの判別知識は、上記発明において、帰納的学習プログラムによって導出されるものであることを特徴とする。 The discrimination knowledge of the feature calculation step of the open / close operation recognition method that solves the above-mentioned problems is derived from an inductive learning program in the above invention.

 上記課題を解決する開閉動作認識方法の前記特徴演算ステップの判別知識は、上記発明において、遺伝的プログラミングによって導出されるものであることを特徴とする。 The discrimination knowledge of the feature calculation step of the open / close operation recognition method that solves the above problem is derived from genetic programming in the above invention.

 上記課題を解決する開閉動作認識方法の前記特徴演算ステップの判別知識は、上記発明において、前記周波数分解変数の移動平均を含むものであることを特徴とする。 The discrimination knowledge of the feature calculation step of the open / close operation recognition method that solves the above-mentioned problem is characterized in that, in the above-mentioned invention, includes the moving average of the frequency resolution variable.

 上記課題を解決する開閉動作認識方法は、上記発明において、前記特徴演算ステップの判別知識を生成するための背景知識として、前記周波数分解変数の移動平均を用いることを特徴とする。 The method for recognizing an opening / closing operation that solves the above-described problem is characterized in that, in the above-described invention, the moving average of the frequency-resolved variable is used as background knowledge for generating discrimination knowledge of the feature calculation step.

 上記課題を解決する開閉動作認識方法は、上記発明において、前記背景知識として、低い周波領域においては、狭い帯域の前記周波数分解変数を利用した移動平均を用い、前記低い周波領域よりも高い周波数領域においては、広い帯域の前記周波数分解変数を利用した移動平均を用いることを特徴とする。 In the above invention, the open / close operation recognition method for solving the above-mentioned problem uses a moving average using the frequency resolution variable of a narrow band in the low frequency region as the background knowledge, and a frequency region higher than the low frequency region. Is characterized in that a moving average using the frequency resolution variable in a wide band is used.

 本発明によれば、ドアや屋外に関連設備を設置することなく、屋内にドア開閉認識装置を配置するだけで得、ドアの開閉のみを適切に検出することが可能になる。 According to the present invention, it is possible to detect only the opening / closing of the door appropriately by installing the door opening / closing recognition device indoors without installing any related equipment at the door or outdoors.

本発明の実施形態に係る認識装置の概要構成を示すシステム構成図である。It is a system configuration figure showing the outline composition of the recognition device concerning the embodiment of the present invention. 同じく、上記認識装置における信号判別器の概要構成を示すブロック図である。Similarly, it is a block diagram which shows schematic structure of the signal discriminator in the said recognition apparatus. 同じく、上記認識装置における信号判別器の機能構成を示すブロック図である。Similarly, it is a block diagram which shows the function structure of the signal discriminator in the said recognition apparatus. 同じく、上記認識装置のドア開閉検出の流れを示すフローチャートである。Similarly, it is a flowchart which shows the flow of the door opening / closing detection of the said recognition apparatus.

 以下、本発明の実施の形態に係る開閉部材の開閉動作認識装置(以下、認識装置)について図面を参照しながら詳細に説明する。 Hereinafter, an opening / closing operation recognition device (hereinafter, recognition device) for an opening / closing member according to an embodiment of the present invention will be described in detail with reference to the drawings.

 図1に示されるように、認識装置1は、音圧を感知するセンサマイク10と、センサマイク10で検知された信号を増幅するアンプ回路20と、アンプ回路20を経て増幅された信号を選別するフィルタ回路30と、フィルタ回路30を経たアナログ信号をデジタル変換するA/D変換器40と、このデジタル信号からドア開閉の有無を判別する信号判別器100と、信号判別器100の出力に基づいて外部出力を制御する出力制御部50を備える。なお、この認識装置1は、屋内の特定の場所に設置されるものである。 As shown in FIG. 1, the recognition device 1 selects a sensor microphone 10 that senses sound pressure, an amplifier circuit 20 that amplifies a signal detected by the sensor microphone 10, and a signal that is amplified through the amplifier circuit 20. Based on the output of the signal discriminator 100, the A / D converter 40 that digitally converts the analog signal that has passed through the filter circuit 30, the signal discriminator 100 that discriminates whether or not the door is open / closed from the digital signal, And an output control unit 50 for controlling the external output. The recognition device 1 is installed at a specific indoor location.

 信号判別器100は、いわゆるMPUであり、図2に示されるように、プログラムを実行して情報処理を行う中央演算装置(CPU)150と、情報を一時的に保持することが可能なRAM152と、各種プログラムが記憶されているROM154と、デジタル化された音圧信号を一時的に保管する情報記憶装置156と、デジタル信号が入出力されるインターフェイス158とを備える。この信号判別器100では、ROM154に記憶されているプログラムをCPU150で実行することにより、後述する機能を発揮する。 The signal discriminator 100 is a so-called MPU, and as shown in FIG. 2, a central processing unit (CPU) 150 that executes information processing by executing a program, and a RAM 152 that can temporarily hold information. A ROM 154 that stores various programs, an information storage device 156 that temporarily stores digitized sound pressure signals, and an interface 158 that inputs and outputs digital signals. In the signal discriminator 100, the CPU 150 executes a program stored in the ROM 154, thereby exhibiting a function to be described later.

 信号判別器100の機能構成は、図3に示されるように、デジタル信号を時間成分から周波数成分に変換する周波数変換部110と、変換された周波数成分から複数の特徴量を演算する特徴演算部120と、この特徴演算部120の出力に基づいて、それらの値又は値の組み合わせから音の事象を認識・判断する事象判断部130とを備える。 As shown in FIG. 3, the functional configuration of the signal discriminator 100 includes a frequency converter 110 that converts a digital signal from a time component to a frequency component, and a feature calculator that calculates a plurality of feature amounts from the converted frequency component. 120 and an event determination unit 130 for recognizing and determining a sound event from these values or combinations of values based on the output of the feature calculation unit 120.

 周波数変換部110は、A/D変換器40を経てデジタル化された信号を周波数成分に変換する。この周波数分解された信号は、特徴演算部120における判別知識に入力され、ドア開閉の可能性値を演算する。周波数成分への変換方式は任意のものを選択することができるが、代表的な手法は、離散フーリエ変換(DFT)、離散コサイン変換(DCT)、アダマール変換、ウェブレット変換等である。 The frequency converter 110 converts the signal digitized through the A / D converter 40 into a frequency component. This frequency-resolved signal is input to the discrimination knowledge in the feature calculation unit 120 and calculates a door opening / closing possibility value. The conversion method to the frequency component can be selected arbitrarily, but representative methods are discrete Fourier transform (DFT), discrete cosine transform (DCT), Hadamard transform, Weblet transform, and the like.

 事象判断部130は、特徴演算部120の可能性値が、所定の閾値を超えるか否かを判断して事象を特定する。事象判断部130の事象特定結果に基づいて、出力制御部50は警報信号を出力する。 The event determination unit 130 determines whether the possibility value of the feature calculation unit 120 exceeds a predetermined threshold value, and identifies the event. Based on the event identification result of the event determination unit 130, the output control unit 50 outputs an alarm signal.

 特徴演算部120における判別知識とは、木構造をなした条件分岐プログラムとなる。具体的に木構造は、if then else を用いた条件分岐、各木を実行するprogNの連続処理、add(加算)、sub(減算)、mul(乗算)、div(除算)の計算、及び定数を備えて構成される。特徴演算部120は、周波数成分に分解された信号列データ(周波数分解変数)を利用して、判別知識である木構造に沿って演算を行い、その結果を数値データとして出力する。出力結果は0~15までの任意数値であり、大きな値ほどドア開閉の確率が高いことを意味する。 The discrimination knowledge in the feature calculation unit 120 is a conditional branch program having a tree structure. Specifically, the tree structure is conditional branching using if then else, continuous processing of progN that executes each tree, calculation of add (addition), sub (subtraction), mul (multiplication), div (division), and constants It is configured with. The feature calculation unit 120 uses the signal sequence data (frequency decomposition variable) decomposed into frequency components, performs an operation along the tree structure as discriminating knowledge, and outputs the result as numerical data. The output result is an arbitrary value from 0 to 15, and a larger value means that the probability of door opening / closing is higher.

 なお、判別知識の導出には、帰納的な学習手法と経験則を併用する。帰納的な学習手法として、本実施形態では、遺伝的プログラミング手法を利用し、これにより判別知識を合成する。また経験則は、遺伝的プログラミングの背景知識として利用する。ドアの開閉に見られる特徴量を作り出す関数を定義し、これを判別知識の部品とする。経験則を背景知識とすることで、遺伝的プログラミングの収束性を改善することが可能になる。 Note that inductive learning techniques and rules of thumb are used in combination to derive discriminant knowledge. As an inductive learning method, in this embodiment, a genetic programming method is used, and thereby discriminating knowledge is synthesized. The rule of thumb is used as background knowledge for genetic programming. A function that creates a feature value that is found when the door is opened and closed is defined, and this is used as a part of discrimination knowledge. Using heuristics as background knowledge makes it possible to improve the convergence of genetic programming.

 ところで、ドアの音圧の信号は非線形の場合が多く、簡単な閾値で分離することができない。そこで、認識したい信号を、特徴量と呼ばれるいくつかの変数(特徴ベクトル)に変換し、特徴ベクトルが作る特徴空間に対して、ある種の閾値を当てはめて空間分離する。 By the way, the sound pressure signal of the door is often non-linear and cannot be separated with a simple threshold. Therefore, the signal to be recognized is converted into several variables (feature vectors) called feature quantities, and a certain threshold is applied to the feature space created by the feature vector to perform space separation.

 本実施形態では、その特徴量として、レベル毎に分解された周波数成分の情報を利用する。なお、この周波数成分情報は、情報の配列順序である時系列成分も併せ持っている。本発明者らは、自らの研究に基づく経験として、その空間の中でドアの開閉に強く関与しているレベルの周波数成分と、比較的影響の少ないレベルの周波数成分を予め把握している。従って、そのような経験知識を、背景知識として遺伝的プログラムの要素に取り入れて、学習の収束性を向上させる。 In this embodiment, information of frequency components decomposed for each level is used as the feature amount. Note that this frequency component information also has a time-series component that is an information arrangement order. As an experience based on their own research, the present inventors have grasped in advance a frequency component of a level that is strongly involved in the opening and closing of the door in the space and a frequency component of a level that has a relatively small influence. Therefore, such experience knowledge is incorporated into the elements of the genetic program as background knowledge to improve the convergence of learning.

 背景知識とは、経験側に基づく(人が感覚的に持っている)知識を、数式に表現したものである。従って、本実施形態では、この背景知識となる数式は、判別知識の中に組み込まれて特徴量の算出に利用される。なお、判別知識を用いた判別は、周波数分解変数を用いた特徴ベクトルを、特徴空間に写像してから、空間分離を行うことによる。しかし、背景知識が仮に無いとすれば、特徴ベクトルの次元が増大し、その空間分離(線引き)を行うための直線が多数になり、それをアルゴリズムで自動的に決定するには、多量の学習量(試行錯誤量、計算量)が必要になる。 The background knowledge is a mathematical expression of knowledge based on the experience side (human sensuously). Therefore, in the present embodiment, the mathematical formula as the background knowledge is incorporated in the discrimination knowledge and used for calculating the feature amount. Note that discrimination using discrimination knowledge is performed by mapping a feature vector using a frequency decomposition variable onto a feature space and then performing space separation. However, if there is no background knowledge, the dimension of the feature vector will increase, and there will be a large number of straight lines to perform spatial separation (drawing). A quantity (trial and error amount, calculation amount) is required.

 そこで、本実施形態では、背景知識となる数式を導入することで、空間分離を行うための基本式を予め提供する。これにより、学習量が少なくても簡単に判別知識を生成することが可能となる。 Therefore, in this embodiment, a basic formula for performing space separation is provided in advance by introducing a mathematical formula as background knowledge. As a result, it is possible to easily generate discrimination knowledge even when the learning amount is small.

 具体的に、本実施形態ではフィルタ回路30において50Hz以上の周波数は予め排除され、50Hz未満の帯域となる音波を利用して、16レベルに周波数分解された16個の周波数分解変数(freq(0)~freq(15))が抽出される。ドアの開閉は、その中でも比較的低い周波数成分(例えば、freq(0)~freq(3))が関与することを、本発明者等は経験的に見いだしている。なお、50Hz以上の周波数を排除したのは、ドアの開閉の主な波形は50Hz未満であり、また、50Hz以上には、電話、目覚まし時計、テレビ・ラジオ、物の落下、クラクション・サイレン等の定常的な生活音が含まれるからである。更に本発明者等は、ある周波数が時間変化する関数を定義した時に、その周波数成分の低い部分、とりわけ人間の聴覚では聞き取ることが出来ない帯域に、ドア開閉事象の特徴があることも経験的に見いだしている。以上の気付きを元に、下記「数式1」を定義して、このパラメータの数値を含めて背景知識として付与している。

Figure JPOXMLDOC01-appb-M000001
Specifically, in the present embodiment, frequencies of 50 Hz or higher are excluded in the filter circuit 30 in advance, and 16 frequency resolution variables (freq (0 ) To freq (15)) are extracted. The present inventors have empirically found that the opening and closing of doors involves relatively low frequency components (for example, freq (0) to freq (3)). The main frequency of opening and closing the door is less than 50 Hz, which excludes frequencies above 50 Hz, and over 50 Hz, such as telephones, alarm clocks, TV / radio, falling objects, horns, sirens, etc. This is because stationary life sounds are included. Furthermore, when the present inventors define a function in which a certain frequency changes with time, it is also empirical that a characteristic of a door opening / closing event is present in a low frequency component, particularly in a band that cannot be heard by human hearing. Have found. Based on the above awareness, the following “Formula 1” is defined and given as background knowledge including the value of this parameter.
Figure JPOXMLDOC01-appb-M000001

 なお、aveは周波数成分を線形結合した移動平均であり、特徴ベクトルの要素となる。w,k,m,nはパラメータ定数である。また、freq(i)は、振幅信号を周波数変換したときのi番目(帯域レベル)の成分を意味している。つまり、A/D変換器40された所定期間の振幅信号ad(=音圧信号ad)を入力として、離散フーリエ変換(DFT)、離散コサイン変換(DCT)、アダマール変換、ウェブレット変換等を行って周波数変換し、そのi番目(帯域レベル)成分が周波数分解変数freq(i)となる。なお、この周波数分解変数freq(i)は、振幅信号adにおける時間要素は除外されている。しかし、周波数分解変数freq(i)自体は、その帯域レベルiの範囲内で情報配列順に変動(ゆらぎ)を有している。つまり、freq(i)が有する情報配列順序要素qを配慮すると、周波数分解変数はfreq(i,q)となり、これは順序要素qに依存して変化する。なお、本実施形態では、iが小さい程、低周波レベル、iが大きいほど高周波レベル側であることを意味している。 Note that ave is a moving average obtained by linearly combining frequency components, and is an element of a feature vector. w, k, m, and n are parameter constants. Freq (i) means the i-th (band level) component when the amplitude signal is frequency-converted. That is, the amplitude signal ad (= sound pressure signal ad) of the A / D converter 40 for a predetermined period is input, and discrete Fourier transform (DFT), discrete cosine transform (DCT), Hadamard transform, Weblet transform, etc. are performed. The frequency is converted, and the i-th (band level) component becomes the frequency resolution variable freq (i). The frequency decomposition variable freq (i) excludes the time element in the amplitude signal ad. However, the frequency resolution variable freq (i) itself has fluctuations (fluctuations) in the order of information arrangement within the range of the band level i. That is, when the information arrangement order element q included in freq (i) is taken into consideration, the frequency resolution variable is freq (i, q), which changes depending on the order element q. In the present embodiment, the smaller i, the lower the frequency level, and the larger i, the higher the frequency side.

 周波数分解変数freq(i,q)を特徴ベクトル要素とした場合、その次元はi*qとなってしまい、次元数が増大して、判別知識の導出が複雑化する。そこで本実施形態では、周波数分解変数freq(i,q)を順序要素qに基づいて移動平均化し、1次元化したave(z)を特徴ベクトルとする。この結果、特徴空間の次元数を低く抑えつつ、線形の判定式の組み合わせ量が少なくなるような写像を実現できる。なお、この数式1は、パラメータセットz(w,m,n,k)を一つ決めることに新たな数式が1つ決定する。このパラメータセットzを何セット用意するかによって、次元数も決定される。 When the frequency resolution variable freq (i, q) is a feature vector element, the dimension becomes i * q, the number of dimensions increases, and the derivation of discrimination knowledge becomes complicated. Therefore, in the present embodiment, the frequency resolution variable freq (i, q) is moving averaged based on the order element q, and the one-dimensionalized ave (z) is used as a feature vector. As a result, it is possible to realize a mapping that reduces the amount of combination of linear judgment expressions while keeping the number of dimensions of the feature space low. In Equation 1, one new equation is determined to determine one parameter set z (w, m, n, k). The number of dimensions is also determined by how many parameter sets z are prepared.

 なお、数式1で移動平均を用いている理由は、ドアの開閉に伴う時間的な特徴、具体的には情報配列順序要素qに依存する変化量が少ないという経験に基づく。既に述べたように、移動平均を導入せずに、情報配列順序要素q(経時的特徴)をそのまま特徴ベクトルに用いてしまうと、時系列に並んだ多くのスペクトラムに対して、複雑な判別知識となってしまう。これでは、マイコンへの実装が困難となる。 The reason why the moving average is used in Equation 1 is based on the experience that there is little change depending on the temporal characteristics associated with the opening and closing of the door, specifically, the information arrangement order element q. As already mentioned, if the information array sequence element q (temporal feature) is used as it is as a feature vector without introducing moving average, complex discriminating knowledge is obtained for many spectra arranged in time series. End up. This makes it difficult to mount on a microcomputer.

 とりわけ、ドアは人間が開閉するものであることから、ドアが発する音圧に、激しい時間変化が生じているとは考えられない。特に、侵入者はドアをゆっくり開けるのが特徴であると考え、音圧の時間変化は特徴ベクトルとして積極的に用いる意義は小さい。そこで、移動平均を採用することで、次元数を飛躍的に低減させて計算量を低減させることを実現している。 Especially, since the door is opened and closed by humans, it cannot be considered that the sound pressure generated by the door undergoes a violent time change. In particular, it is considered that the intruder slowly opens the door, and the temporal change of the sound pressure is less meaningful as a feature vector. Therefore, by adopting a moving average, the number of dimensions is drastically reduced and the amount of calculation is reduced.

 具体的に本実施形態では、上記数式1を利用した背景知識として、z=0~4までの5種類のパラメータセットを設定して、下記の数式2の群を定義・導入した。

Figure JPOXMLDOC01-appb-M000002
Specifically, in the present embodiment, as background knowledge using Equation 1 above, five types of parameter sets from z = 0 to 4 are set, and the following Equation 2 group is defined and introduced.
Figure JPOXMLDOC01-appb-M000002

 16レベルに周波数分解された16個の周波数分解変数(freq(0)~freq(15))が存在する場合、本発明者等は、ドアの開閉は、比較的低い周波数成分(例えば、freq(0)~freq(3))に関与することを経験的に見いだしている。従って、低い周波数成分に関しては、freq(i)を単独で用いて又は2~3の総和成分を用いて移動平均を算出し、特徴ベクトルを設定してる(数式2のA~C参照)。一方、高い周波数成分に関しては、freq(i)の複数の総和成分、望ましくは3以上、更に好ましくは4以上の総和成分を用いて、移動平均を算出している(数式2のD、E参照)。この結果、次元を減らしながらも、周波数成分の低い部分については事象の特徴を詳細に抽出して判別することが可能となる。 When there are 16 frequency resolution variables (freq (0) to freq (15)) frequency-resolved to 16 levels, the present inventors have found that opening and closing of doors has a relatively low frequency component (for example, freq ( 0) ~ freq (3)) have been found empirically. Therefore, for low frequency components, a moving vector is calculated using freq (i) alone or using a total sum component of 2 to 3, and a feature vector is set (see A to C in Equation 2). On the other hand, for high frequency components, a moving average is calculated using a plurality of sum components of freq (i), desirably 3 or more, more preferably 4 or more (see D and E in Equation 2). ). As a result, while reducing the dimension, it is possible to extract and distinguish the characteristics of the event in detail for the low frequency component portion.

 背景知識をもとに、帰納的に判別知識を生成するには、教師ありの学習データを用いる。この学習データを事前に揃える為に、マンションや一戸建て部屋にデータロガ-と呼ばれる記録装置を設置し、多くのドアの開閉パターンに関する音情報を記録する。一方で、棄却すべきデータも記録する必要があり、例えば、風の強い日、雷の鳴る日などの音情報を収集する。特に、風の音や、工事音、車の通過音、エアコンの動作や風切り音等は、比較的低周波であることから、単なる音圧の大きさではドアの開閉と判別することが困難となる。そこで、本実施形態では、様々なドアの開閉パターン音情報と、上記棄却音情報を元に遺伝的プログラミングを利用して学習を行い、判別知識を合成する。合成される判別知識は、特徴演算部120に組み込まれる。 教師 Use supervised learning data to generate discriminative knowledge recursively based on background knowledge. In order to prepare this learning data in advance, a recording device called a data logger is installed in a condominium or a detached room, and sound information about many door opening / closing patterns is recorded. On the other hand, it is also necessary to record data to be rejected. For example, sound information such as a windy day and a thunderstorm is collected. In particular, wind sounds, construction sounds, car passing sounds, air conditioner operations, wind noises, and the like have relatively low frequencies, so it is difficult to determine whether the door is open or closed with a simple sound pressure. Therefore, in this embodiment, learning is performed using genetic programming based on various door opening / closing pattern sound information and the rejection sound information, and the discrimination knowledge is synthesized. The discriminating knowledge to be synthesized is incorporated in the feature calculation unit 120.

 次に、認識装置1におけるドア開閉の判別手順について説明する。 Next, the door opening / closing determination procedure in the recognition device 1 will be described.

 ステップ200において、まず、センサマイク10で音圧情報を感知し、ステップ202において、この情報がアンプ回路20で増幅される。更にステップ204において、判別したい周波数帯域(本実施形態では50Hz未満)のみを得る為に、増幅された情報がフィルタ回路30に入力される。なお、フィルタ回路30の役割は、その後にデジタル変換されたときのエリアシングノイズを抑制する意味も併せ持っている。 In step 200, sound pressure information is first sensed by the sensor microphone 10, and in step 202, this information is amplified by the amplifier circuit 20. Further, in step 204, the amplified information is input to the filter circuit 30 in order to obtain only the frequency band to be discriminated (in this embodiment, less than 50 Hz). Note that the role of the filter circuit 30 also has the meaning of suppressing aliasing noise when digitally converted thereafter.

 フィルタ回路30を経た信号は、ステップ206において、A/D変換器40に入力されてデジタル変換されてから、ステップ208において、信号判別器100の情報記憶装置156に入力される。この情報記憶装置156は、本実施形態ではFIFO(First in first out)型メモリである。FIFO型メモリとは、最初に入力された信号が最初に取り出されるメモリ構造であることを意味している。この情報記憶装置156では、一定時間分のデジタル信号が蓄積されるようになっている。 The signal that has passed through the filter circuit 30 is input to the A / D converter 40 and digitally converted in step 206, and then input to the information storage device 156 of the signal discriminator 100 in step 208. In this embodiment, the information storage device 156 is a FIFO (First in first で は out) type memory. The FIFO type memory means a memory structure in which a first input signal is first extracted. In this information storage device 156, digital signals for a certain period of time are accumulated.

 FIFO型メモリに蓄積された時系列の離散信号は、ステップ210にて、2のn乗個を単位として取り出されて、周波数変換部110に入力され、周波数成分に変換される。周波数変換された信号は、ステップ212において、時系列データと共に一定時間分を再び情報記憶装置156のFIFO型メモリに蓄積する。 The time-series discrete signals stored in the FIFO memory are extracted in units of 2 n units in step 210, input to the frequency conversion unit 110, and converted into frequency components. In step 212, the frequency-converted signal is stored again in the FIFO memory of the information storage device 156 for a predetermined time together with time-series data.

 その後、ステップ214において、周波数変換された一定時間分の信号列が情報記憶装置156から取り出され、特徴演算部120に入力される。具体的に特徴演算部120では、この信号列を判別知識に入力して、ドア開閉の可能性を数値変換する。ステップ216では、特徴演算部120の出力値に基づいて、事象判断部130が、その事象がドアの開閉であるかを閾値に基づいて決定する。ステップ218において、事象判断部120の結果に基づいて所定の警報を発する。 Thereafter, in step 214, a frequency-converted signal sequence for a predetermined time is taken out from the information storage device 156 and input to the feature calculation unit 120. Specifically, the feature calculation unit 120 inputs this signal sequence to the discrimination knowledge, and numerically converts the possibility of opening and closing the door. In step 216, based on the output value of the feature calculation unit 120, the event determination unit 130 determines whether the event is opening / closing of the door based on a threshold value. In step 218, a predetermined alarm is issued based on the result of the event determination unit 120.

 以上、本実施形態の認識装置1によれば、信号判別器100によって、ドアのみの音圧を高精度で検出することが可能となる。従って、ドアや屋外にセンサー等を設置することなく、その空間内に本認識装置1を配置するだけで、ドアの開閉を検出可能となる。 As described above, according to the recognition apparatus 1 of the present embodiment, the signal discriminator 100 can detect the sound pressure of only the door with high accuracy. Therefore, it is possible to detect the opening / closing of the door only by placing the recognition device 1 in the space without installing a sensor or the like outside the door or the door.

 また、ドアの開閉音は、人間の耳に聞こえない程度の極低周波を含んでいることを、本発明者らは明らかにしている。そこで、この信号判別器100では、周波数変換部110によって周波数分解を行い、その周波数分解変数を用いて特徴演算部120が特徴量を演算している。このようにすることで、ドアの開閉に関連する低周波レベルの周波数分解変数を積極的に利用して、ドアの開閉に無関係のノイズ成分を除去しながら、ドアの開閉のみを適切に検出可能にしている。特に、特徴演算部120の判別知識は、木構造をなした条件分岐プログラムとなっているので、簡易且つ高速に特徴量を算出することが可能となる。 Further, the present inventors have clarified that the opening / closing sound of the door includes an extremely low frequency that cannot be heard by human ears. Therefore, in the signal discriminator 100, the frequency conversion unit 110 performs frequency decomposition, and the feature calculation unit 120 calculates the feature amount using the frequency decomposition variable. In this way, it is possible to properly detect only the opening and closing of the door while actively removing the frequency decomposition variable of the low frequency level related to the opening and closing of the door and removing the noise component unrelated to the opening and closing of the door. I have to. In particular, since the discrimination knowledge of the feature calculation unit 120 is a conditional branch program having a tree structure, it is possible to calculate feature quantities easily and at high speed.

 更に、本実施形態では、特徴演算部120の判別知識は、帰納的学習プログラム、とりわけ遺伝的プログラミングを利用した演算によって導出されている。従って、実際のドア開閉の多数のパターン音を事前に学習させることで、高精度の判別知識を獲得することが可能となり、ドア開閉の検出精度を高めることが可能となる。また、風や車等の棄却対象となる多数のパターン音も予め学習させることで、木構造の条件分岐プログラムにより、発生頻度の高い雑音を適切に除外することが可能となる。 Furthermore, in this embodiment, the discrimination knowledge of the feature calculation unit 120 is derived by an operation using an inductive learning program, particularly genetic programming. Accordingly, by learning in advance a large number of pattern sounds for actual door opening and closing, it becomes possible to acquire highly accurate discrimination knowledge, and it is possible to increase the detection accuracy of door opening and closing. In addition, by learning in advance a large number of pattern sounds to be rejected such as wind and cars, it is possible to appropriately exclude noise with high occurrence frequency by the conditional branching program having a tree structure.

 又更に、本実施形態では、特徴演算部120の判別知識は、周波数分解変数を用いた移動平均による特徴ベクトルを含むようにしている。この結果、周波数分解変数に含まれているドア開閉とは無関係の周波数のゆらぎを、フィルタリングする効果が得られ、且つ、特徴ベクトルの次元数を大幅に低減させることが可能となる。 Furthermore, in this embodiment, the discrimination knowledge of the feature calculation unit 120 includes a feature vector based on a moving average using a frequency decomposition variable. As a result, it is possible to obtain an effect of filtering the fluctuation of the frequency, which is included in the frequency decomposition variable, which is not related to the opening / closing of the door, and it is possible to greatly reduce the number of dimensions of the feature vector.

 なお、この特徴ベクトルは、事前に、背景知識として特徴演算部に定義しておくことで、適切に判別知識に取り込まれる。つまり、特徴演算部120の判別知識は、周波数分解変数の移動平均を用いて生成している。 It should be noted that this feature vector is appropriately incorporated into the discrimination knowledge by defining it in the feature calculation unit as background knowledge in advance. That is, the discrimination knowledge of the feature calculation unit 120 is generated using the moving average of the frequency resolution variable.

 なお、この背景知識として導入される数式は、低い周波領域においては、狭い帯域の周波数分解変数(例えば、freq(0),freq(1),freq(2)など)を利用した移動平均を用いているが、低い周波領域よりも高い周波数領域においては、広い帯域の周波数分解変数(例えば、freq(4~7)の総和,freq(8~15)の総和など)を利用した移動平均を用いる。これにより、ドア開閉の特徴が現れやすい低い周波帯域では精細な分析が可能となる。 Note that the mathematical formula introduced as background knowledge uses a moving average using a frequency resolution variable of a narrow band (for example, freq (0), freq (1), freq (2), etc.) in a low frequency region. However, in a frequency range higher than the low frequency range, a moving average using a wide-band frequency resolution variable (for example, the sum of freq (4 to 7), the sum of freq (8 to 15), etc.) is used. . As a result, it is possible to perform a fine analysis in a low frequency band in which the door opening / closing characteristics tend to appear.

 なお、本実施形態にける認識装置1は、周波数変換する手法として、離散フーリエ変換(DFT)、離散コサイン変換(DCT)、アダマール変換、ウェブレット変換等を例示しているが、本発明はこれに限定されず、他の方法を用いることも可能である。 Note that the recognition apparatus 1 according to the present embodiment exemplifies discrete Fourier transform (DFT), discrete cosine transform (DCT), Hadamard transform, Weblet transform, and the like as a frequency transforming method. However, the present invention is not limited to this, and other methods can be used.

 更に本認識装置1における特徴演算部120では、背景知識や判別知識において周波数分解変数の移動平均を用いる場合を示しているが、本発明はこれに限定されず、他の方法によって平滑化することも可能である。 Further, the feature calculation unit 120 in the recognition apparatus 1 shows a case where a moving average of frequency decomposition variables is used in background knowledge and discriminating knowledge, but the present invention is not limited to this, and smoothing by other methods is possible. Is also possible.

 本発明は、ドアや扉、蓋等の開閉部材の開閉検出に用いることが可能である。 The present invention can be used for opening / closing detection of opening / closing members such as doors, doors, and lids.

Claims (16)

 音圧を感知するセンサマイクと、
 前記センサマイクで検知された信号を増幅するアンプ回路と、
 前記アンプ回路を経て増幅された信号を選別するフィルタ回路と、
 前記フィルタ回路を経たアナログ信号をデジタル変換するA/D変換器と、
 前記A/D変換器のデジタル信号から開閉部材の開閉動作の有無を判別する信号判別器と、
 前記信号判別器の出力に基づいて外部出力を制御する出力制御部と、
 を備えることを特徴とする開閉部材の開閉動作認識装置。
A sensor microphone that senses sound pressure;
An amplifier circuit for amplifying a signal detected by the sensor microphone;
A filter circuit for selecting a signal amplified through the amplifier circuit;
An A / D converter for digitally converting the analog signal passed through the filter circuit;
A signal discriminator for discriminating the presence / absence of an opening / closing operation of the opening / closing member from the digital signal of the A / D converter;
An output control unit for controlling an external output based on the output of the signal discriminator;
An opening / closing operation recognition device for an opening / closing member.
 前記信号判別器は、
 前記A/D変換器の前記デジタル信号を周波数成分に変換して周波数分解変数を得る周波数変換部と、
 変換された周波数分解変数を利用して特徴量を演算する特徴演算部と、
 前記特徴演算部の出力に基づいて、それらの値又は値の組み合わせから音の事象を認識・判断する事象判断部と、
 を備えることを特徴とする請求の範囲1に記載の開閉部材の開閉動作認識装置。
The signal discriminator is
A frequency converter that converts the digital signal of the A / D converter into a frequency component to obtain a frequency decomposition variable;
A feature calculation unit for calculating a feature amount using the converted frequency decomposition variable;
An event determination unit for recognizing and determining a sound event from those values or combinations of values based on the output of the feature calculation unit;
The opening / closing operation recognition device for an opening / closing member according to claim 1, comprising:
 前記特徴演算部の判別知識は木構造をなした条件分岐プログラムであり、前記周波数分解変数を利用して、前記木構造に従って前記特徴量を演算することを特徴とする請求の範囲2に記載の開閉部材の開閉動作認識装置。 The discrimination knowledge of the feature calculation unit is a conditional branch program having a tree structure, and the feature quantity is calculated according to the tree structure using the frequency decomposition variable. Opening / closing operation recognition device for opening / closing member.  前記特徴演算部の判別知識は、帰納的学習プログラムによって導出されるものであることを特徴とする請求の範囲2又は3に記載の開閉部材の開閉動作認識装置。 4. The opening / closing operation recognition device for an opening / closing member according to claim 2, wherein the discrimination knowledge of the feature calculation unit is derived by an inductive learning program.  前記特徴演算部の判別知識は、遺伝的プログラミングによって導出されるものであることを特徴とする請求の範囲2、3又は4に記載の開閉部材の開閉動作認識装置。 The open / close motion recognition device for an open / close member according to claim 2, 3 or 4, wherein the discrimination knowledge of the feature calculation unit is derived by genetic programming.  前記特徴演算部の判別知識は、前記周波数分解変数の移動平均を含むものであることを特徴とする請求の範囲2乃至5のいずれかに記載の開閉部材の開閉動作認識装置。 6. The opening / closing operation recognition device for an opening / closing member according to any one of claims 2 to 5, wherein the discrimination knowledge of the feature calculation unit includes a moving average of the frequency resolution variable.  前記特徴演算部の判別知識を生成するための背景知識として、前記周波数分解変数の移動平均を用いることを特徴とする請求の範囲2乃至6のいずれかに記載の開閉部材の開閉動作認識装置。 The opening / closing operation recognition device for an opening / closing member according to any one of claims 2 to 6, wherein a moving average of the frequency decomposition variable is used as background knowledge for generating discrimination knowledge of the feature calculation unit.  前記背景知識として、
 低い周波領域においては、狭い帯域の前記周波数分解変数を利用した移動平均を用い、
 前記低い周波領域よりも高い周波数領域においては、広い帯域の前記周波数分解変数を利用した移動平均を用いる、
 ことを特徴とする請求の範囲7に記載の開閉部材の開閉動作認識装置。
As the background knowledge,
In the low frequency region, using a moving average using the frequency resolution variable in a narrow band,
In a frequency region higher than the low frequency region, a moving average using the frequency resolution variable in a wide band is used.
The opening / closing operation recognition device for an opening / closing member according to claim 7.
 音圧をセンサマイクで感知する感知ステップと、
 前記センサマイクで検知された信号をアンプ回路で増幅する増幅ステップと、
 前記アンプ回路を経て増幅された信号をフィルタ回路で選別する選別ステップと、
 前記フィルタ回路を経たアナログ信号をA/D変換器でデジタル変換する変換ステップと、
 前記A/D変換器のデジタル信号を利用して開閉部材の開閉動作の有無を判別する判別ステップと、
 前記判別の結果に基づいて外部出力を制御する出力ステップと、
 を備えることを特徴とする開閉部材の開閉動作認識方法。
A sensing step of sensing sound pressure with a sensor microphone;
An amplification step of amplifying a signal detected by the sensor microphone with an amplifier circuit;
A selection step of selecting a signal amplified through the amplifier circuit with a filter circuit;
A conversion step of digitally converting the analog signal that has passed through the filter circuit with an A / D converter;
A determination step of determining presence / absence of an opening / closing operation of the opening / closing member using a digital signal of the A / D converter;
An output step for controlling an external output based on the result of the determination;
A method for recognizing the opening / closing operation of the opening / closing member.
 前記判別ステップでは、
 前記A/D変換器の前記デジタル信号を周波数成分に変換して周波数分解変数を得る周波数変換部ステップと、
 変換された周波数分解変数を利用して特徴量を演算する特徴演算ステップと、
 前記特徴演算ステップの出力に基づいて、それらの値又は値の組み合わせから音の事象を認識・判断する事象判断ステップと、
 を備えることを特徴とする請求の範囲9に記載の開閉部材の開閉動作認識方法。
In the determination step,
A frequency converter step of converting the digital signal of the A / D converter into a frequency component to obtain a frequency resolving variable;
A feature calculation step of calculating a feature amount using the transformed frequency decomposition variable;
An event determination step for recognizing and determining a sound event from the value or combination of values based on the output of the feature calculation step;
The method for recognizing an opening / closing operation of an opening / closing member according to claim 9.
 前記特徴演算ステップの判別知識は、木構造をなした条件分岐プログラムであり、前記周波数分解変数を利用して、前記木構造に従って前記特徴量を演算することを特徴とする請求の範囲10に記載の開閉部材の開閉動作認識方法。 The discrimination knowledge of the feature calculation step is a conditional branch program having a tree structure, and the feature quantity is calculated according to the tree structure using the frequency decomposition variable. Of recognizing opening / closing operation of the opening / closing member  前記特徴演算ステップの判別知識は、帰納的学習プログラムによって導出されるものであることを特徴とする請求の範囲10又は11に記載の開閉部材の開閉動作認識装置。 12. The opening / closing operation recognition device for an opening / closing member according to claim 10 or 11, wherein the discrimination knowledge of the feature calculation step is derived by an inductive learning program.  前記特徴演算ステップの判別知識は、遺伝的プログラミングによって導出されるものであることを特徴とする請求の範囲10、11又は12に記載の開閉部材の開閉動作認識方法。 The method for recognizing an opening / closing operation of an opening / closing member according to claim 10, 11 or 12, wherein the discrimination knowledge of the feature calculation step is derived by genetic programming.  前記特徴演算ステップの判別知識は、前記周波数分解変数の移動平均を含むものであることを特徴とする請求の範囲10乃至13のいずれかに記載の開閉部材の開閉動作認識方法。 The method for recognizing an opening / closing operation of an opening / closing member according to any one of claims 10 to 13, wherein the discrimination knowledge of the feature calculation step includes a moving average of the frequency resolution variable.  前記特徴演算ステップの判別知識を生成するための背景知識として、前記周波数分解変数の移動平均を用いることを特徴とする請求の範囲10乃至14のいずれかに記載の開閉部材の開閉動作認識方法。 The method for recognizing an opening / closing operation of an opening / closing member according to any one of claims 10 to 14, wherein a moving average of the frequency decomposition variable is used as background knowledge for generating discrimination knowledge of the feature calculation step.  前記背景知識として、
 低い周波領域においては、狭い帯域の前記周波数分解変数を利用した移動平均を用い、
 前記低い周波領域よりも高い周波数領域においては、広い帯域の前記周波数分解変数を利用した移動平均を用いる
 ことを特徴とする請求の範囲15に記載の開閉部材の開閉動作認識方法。
As the background knowledge,
In the low frequency region, using a moving average using the frequency resolution variable in a narrow band,
The method for recognizing an opening / closing operation of an opening / closing member according to claim 15, wherein a moving average using the frequency resolution variable in a wide band is used in a frequency region higher than the low frequency region.
PCT/JP2009/004628 2008-09-18 2009-09-16 Device for recognizing open/close operation of open/close member and method for recognizing open/close operation of open/close member Ceased WO2010032446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-238846 2008-09-18
JP2008238846A JP2010071773A (en) 2008-09-18 2008-09-18 Apparatus and method for recognizing opening/closing motion of opening/closing member

Publications (1)

Publication Number Publication Date
WO2010032446A1 true WO2010032446A1 (en) 2010-03-25

Family

ID=42039294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004628 Ceased WO2010032446A1 (en) 2008-09-18 2009-09-16 Device for recognizing open/close operation of open/close member and method for recognizing open/close operation of open/close member

Country Status (2)

Country Link
JP (1) JP2010071773A (en)
WO (1) WO2010032446A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579273A (en) * 2019-09-02 2019-12-17 中国第一汽车股份有限公司 design method for door closing sound of automobile

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626372B2 (en) * 2011-02-09 2014-11-19 日本電気株式会社 Event detection system
JP2014055783A (en) * 2012-09-11 2014-03-27 Nippon Telegr & Teleph Corp <Ntt> Movement sound detection device and operation method thereof
KR101899244B1 (en) * 2016-05-02 2018-09-17 김태준 Method of operating secure system
JP6840022B2 (en) * 2017-04-21 2021-03-10 大成建設株式会社 Sash impact sound measurement system and sash impact sound measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060359A1 (en) * 1998-05-15 1999-11-25 Omron Corporation Pressure sensor and door opening/closure monitoring system
JP2004227115A (en) * 2003-01-21 2004-08-12 Omron Corp Information processing device and method
JP2006323755A (en) * 2005-05-20 2006-11-30 Medical Electronic Science Inst Co Ltd Suspicious person intrusion monitoring system
JP2008203121A (en) * 2007-02-21 2008-09-04 Sony Corp Detection apparatus, method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060359A1 (en) * 1998-05-15 1999-11-25 Omron Corporation Pressure sensor and door opening/closure monitoring system
JP2004227115A (en) * 2003-01-21 2004-08-12 Omron Corp Information processing device and method
JP2006323755A (en) * 2005-05-20 2006-11-30 Medical Electronic Science Inst Co Ltd Suspicious person intrusion monitoring system
JP2008203121A (en) * 2007-02-21 2008-09-04 Sony Corp Detection apparatus, method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579273A (en) * 2019-09-02 2019-12-17 中国第一汽车股份有限公司 design method for door closing sound of automobile

Also Published As

Publication number Publication date
JP2010071773A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
EP2457504B1 (en) Sleep apnea syndrome examination device and program
US9959886B2 (en) Spectral comb voice activity detection
JP5387459B2 (en) Noise estimation device, noise reduction system, noise estimation method, and program
US20170181098A1 (en) Sensor node, sensor network system, and monitoring method
WO2010032446A1 (en) Device for recognizing open/close operation of open/close member and method for recognizing open/close operation of open/close member
US11631394B2 (en) System and method for determining occupancy
Zhang et al. A novel wheeze detection method for wearable monitoring systems
CN119723856B (en) Temperature acquisition monitoring alarm method for palm fire control
US20180188104A1 (en) Signal detection device, signal detection method, and recording medium
Hollosi et al. Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments
US20100217435A1 (en) Audio signal processing system and autonomous robot having such system
CN119474734A (en) A transformer state monitoring method, system and medium based on voiceprint perception
CN1868235A (en) Method for processing the signals from two or more microphones in a listening device and listening device with plural microphones
JP6299172B2 (en) Information processing apparatus, information processing method, and program
CN113447287A (en) Abnormality detection device and method
Hollosi et al. Voice activity detection driven acoustic event classification for monitoring in smart homes
JP2013202101A (en) Apneic state decision device, apneic state decision method, and apneic state decision program
CN105352541A (en) Transformer operation auxiliary monitoring system and method based on disaster prevention and reduction system of power grid
US11996115B2 (en) Sound processing method
Nilsson et al. Human whistle detection and frequency estimation
EP2864969A1 (en) Method of classifying glass break sounds in an audio signal
KR101026080B1 (en) Cable abnormality detection system
JP2000266570A (en) Signal processor for discriminating steady state and unsteady state
CN119446186A (en) Multi-channel audio acquisition and intelligent fusion coal mill fault voiceprint recognition system and method
JP5439221B2 (en) Voice detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814291

Country of ref document: EP

Kind code of ref document: A1