WO2009134858A1 - Système de laçage automatique - Google Patents
Système de laçage automatique Download PDFInfo
- Publication number
- WO2009134858A1 WO2009134858A1 PCT/US2009/042072 US2009042072W WO2009134858A1 WO 2009134858 A1 WO2009134858 A1 WO 2009134858A1 US 2009042072 W US2009042072 W US 2009042072W WO 2009134858 A1 WO2009134858 A1 WO 2009134858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strap
- ankle
- automatic
- lacing system
- moving mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C11/00—Other fastenings specially adapted for shoes
- A43C11/14—Clamp fastenings, e.g. strap fastenings; Clamp-buckle fastenings; Fastenings with toggle levers
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C11/00—Other fastenings specially adapted for shoes
- A43C11/008—Combined fastenings, e.g. to accelerate undoing or fastening
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B11/00—Footwear with arrangements to facilitate putting-on or removing, e.g. with straps
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B3/00—Footwear characterised by the shape or the use
- A43B3/34—Footwear characterised by the shape or the use with electrical or electronic arrangements
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C1/00—Shoe lacing fastenings
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C11/00—Other fastenings specially adapted for shoes
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C11/00—Other fastenings specially adapted for shoes
- A43C11/16—Fastenings secured by wire, bolts, or the like
- A43C11/165—Fastenings secured by wire, bolts, or the like characterised by a spool, reel or pulley for winding up cables, laces or straps by rotation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T24/00—Buckles, buttons, clasps, etc.
- Y10T24/21—Strap tighteners
- Y10T24/2183—Ski, boot, and shoe fasteners
Definitions
- the present invention relates generally to footwear, and in particular the present invention relates to an automatic lacing system for an article of footwear.
- Liu U.S. patent number 6,691 ,433
- the tightening mechanism of Liu includes a first fastener mounted on the upper, and a second fastener connected to the closure member and capable of removable engagement with the first fastener so as to retain releasably the closure member at a tightened state.
- Liu teaches a drive unit mounted in the heel portion of the sole.
- the drive unit includes a housing, a spool rotatably mounted in the housing, a pair of pull strings and a motor unit. Each string has a first end connected to the spool and a second end corresponding to a string hole in the second fastener.
- the motor unit is coupled to the spool. Liu teaches that the motor unit is operable so as to drive rotation of the spool in the housing to wind the pull strings on the spool for pulling the second fastener towards the first fastener. Liu also teaches a guide tube unit that the pull strings can extend through.
- the invention discloses an article of footwear including an automatic lacing system.
- the invention provides an automatic lacing system for an article of footwear, comprising: a sole including a cavity; a motor disposed in the cavity; the motor including a driveshaft; the driveshaft including at least one gear; at least one belt engaged with the at least one gear at an intermediate portion of the belt; a yoke member connected to the at least one belt at an attachment portion of the at least one belt; a plurality of straps attached to the yoke member, the plurality of straps being configured to adjust an upper of the article of footwear; and where the straps can be automatically moved between a closed position and a loosened position by activating the motor.
- the yoke member is a rod.
- the yoke member allows the plurality of straps to move substantially in unison.
- the yoke member is disposed adjacent to a lower hole set of a rigid hollow plate when the straps are in the closed position.
- the yoke member is disposed away from the lower hole set of the rigid hollow plate when the straps are in the closed position.
- the driveshaft includes two gears.
- the driveshaft includes two belts that are configured to engage the two gears.
- the invention provides an automatic lacing system for an article of footwear, comprising: a strap moving mechanism; at least one strap attached to the strap moving mechanism, the at least one strap being configured to adjust an upper of the article of footwear; a rigid hollow plate associated with a sidewall portion of an upper; the rigid hollow plate configured to receive an intermediate portion of the at least one strap; and where the intermediate portion is contracted within the rigid hollow plate when the at least one strap is closed and wherein the intermediate portion is extended outside of the rigid hollow plate when the at least one strap is open.
- the rigid hollow plate includes at least one strap receiving channel disposed within the rigid hollow plate.
- the at least one strap receiving channel is configured to receive a portion of the at least one strap.
- the strap receiving channel is configured to guide the portion of the at least one strap between a lower hole and an upper hole in the rigid hollow plate.
- the rigid hollow plate includes a central hollow cavity.
- the rigid hollow plate is disposed against an inner surface of the sidewall portion.
- the rigid hollow plate is disposed against an outer surface of the sidewall portion.
- the rigid hollow plate is disposed between an outer lining of the sidewall portion and an inner lining of the sidewall portion.
- the strap moving mechanism further comprises: a motor including a driveshaft; the driveshaft including a gear; a belt configured to engage the gear; and where the belt is configured to supply power to the at least one strap.
- the invention provides an automatic lacing system for an article of footwear, comprising: a first strap and a second strap configured to adjust an upper of an article of footwear, the first strap being disposed adjacent to the second strap; a strap moving mechanism connected to the first strap and the second strap, the strap moving mechanism being configured to automatically move the first strap and the second strap; and where the first strap and the second strap are configured to move substantially in unison when the strap moving mechanism is operated to automatically adjust the upper.
- the spacing between adjacent portions of the first strap and the second strap is substantially constant.
- first strap and the second strap are attached to a yoke member that is configured to apply a force to the first strap and the second strap.
- first strap and the second strap are disposed beneath a lacing gap of the upper.
- first strap and the second strap oriented along a lateral direction of the upper.
- the invention provides an automatic lacing system for an article of footwear, comprising: a strap moving mechanism; a strap including a first end portion attached to the strap moving mechanism and a second end portion attached to a sidewall portion of an upper of the article of footwear; and where the strap moving mechanism is configured to move the first end portion from a first position to a second position and thereby loosen the upper.
- the strap moving mechanism is in communication with a sensor.
- the senor is a weight sensor.
- the strap moving mechanism is configured to move the strap according to information received from the sensor.
- the strap moving mechanism is in communication with a user controlled device.
- the strap moving mechanism is configured to move the strap according to information received from the user controlled device.
- the invention provides an automatic ankle cinching system for an article of footwear, comprising: an upper including an ankle portion; a housing disposed on a rear portion of the ankle portion; an ankle strap associated with a front portion of the ankle portion; an strap moving mechanism disposed within the housing; the strap including a first end portion attached to the strap moving mechanism and a second end portion fixedly attached to the housing; and where the strap moving mechanism is configured to automatically move the strap between an open position and a closed position and thereby adjust the ankle portion.
- the strap moving mechanism includes a coil spring.
- the coil spring provides tension to the first end portion.
- the coil spring applies tension to the first end portion in a direction to automatically close the ankle strap.
- the automatic ankle cinching system includes a locking mechanism that is configured to lock the ankle strap in an open position.
- the locking mechanism is configured to receive information related to a weight sensor.
- the locking mechanism is configured to release the ankle strap according to the information related to the weight sensor and thereby allow the ankle strap to move to a closed position and tighten around an ankle.
- An automatic ankle cinching system for an article of footwear comprising: an upper including an ankle portion; a housing disposed on a rear portion of the ankle portion; an ankle strap associated with a front portion of the ankle portion; the strap including a first end portion attached to the strap moving mechanism and a second end portion fixedly attached to the housing; the strap moving mechanism including a coil spring that is configured to wind within the housing, the coil spring being configured to wind around a shaft; where the shaft is oriented in a direction running from a top portion of the upper to a lower portion of the upper.
- the first end portion of the ankle strap is attached to the coil spring.
- the ankle strap is associated with a locking mechanism configured to restrict the movement of the ankle strap.
- the housing includes a channel that is configured to receive the first end portion of the strap.
- the housing includes a cavity configured to receive the coil spring.
- the invention provides a method of adjusting an automatic lacing system of an article of footwear, comprising the steps of: receiving information from a user controlled device; and automatically opening an upper of the article of footwear using the automatic lacing system according to information received from the user controlled device.
- the user controlled device is a button.
- the user controlled device is a switch.
- the step of receiving information from a user controlled device is followed by a step of receiving information from at least one sensor.
- the automatic lacing system is controlled to close the upper according to information received from the at least one sensor.
- the automatic lacing system is controlled to close the upper according to information received from the user controlled device.
- FIG. 1 is an isometric view of a preferred embodiment of an article of footwear in an open position
- FIG. 2 is an isometric view of a preferred embodiment of an article of footwear with a foot inserted
- FIG. 3 is an isometric view of a preferred embodiment of an article of footwear in a closed position
- FIG. 4 is an enlarged view of a preferred embodiment of an automatic ankle cinching system in an open position
- FIG. 5 is an enlarged view of a preferred embodiment of an automatic ankle cinching system closing around an ankle
- FIG. 6 is an enlarged view of a preferred embodiment of an automatic ankle cinching system in a closed position
- FIG. 7 is an enlarged view of a preferred embodiment of an automatic lacing system in an open position
- FIG. 8 is an enlarged view of a preferred embodiment of an automatic lacing system closing around a foot
- FIG. 9 is an enlarged view of a preferred embodiment of an automatic lacing system in a closed position
- FIG. 10 is an isometric view of a preferred embodiment of an article of footwear automatically opening
- FIG. 11 is an isometric view of a preferred embodiment of an article of footwear in an open position;
- FIG. 12 is a side cross sectional view of a preferred embodiment of an article of footwear including an automatic lacing system;
- FIG. 13 is an exploded isometric view of a preferred embodiment of an automatic lacing system
- FIG. 14 is a cross sectional view of a preferred embodiment of a rigid hollow plate
- FIG. 15 is a cross sectional view of an alternative embodiment of a rigid hollow plate
- FIG. 16 is a schematic view of a preferred embodiment of optional inputs to a strap moving mechanism
- FIG. 17 is an isometric view of a preferred embodiment of an automatic lacing system in an open position
- FIG. 18 is an isometric view of a preferred embodiment of an automatic lacing system tightening
- FIG. 19 is an isometric view of a preferred embodiment of an automatic lacing system in a closed position
- FIG. 20 is an isometric view of a preferred embodiment of an automatic lacing system loosening
- FIG. 21 is an isometric view of a preferred embodiment of an automatic lacing system loosening
- FIG. 22 is an exploded isometric view of a preferred embodiment of an automatic ankle cinching system
- FIG. 23 is an isometric view of a preferred embodiment of an automatic ankle cinching system
- FIG. 24 is a top down view of a preferred embodiment of an automatic ankle cinching system in an open position
- FIG. 25 is a top down view of a preferred embodiment of an automatic ankle cinching system in a closed position
- FIG. 26 is a top down view of a preferred embodiment of an automatic ankle cinching system in an open position. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
- FIG. 1 is a preferred embodiment of article of footwear 100, also referred to simply as article 100, in the form of an athletic shoe.
- article 100 in the form of an athletic shoe.
- the following detailed description discusses a preferred embodiment, however, it should be kept in mind that the present invention could also take the form of any other kind of footwear, including, for example, skates, boots, ski boots, snowboarding boots, cycling shoes, formal shoes, slippers or any other kind of footwear.
- Article 100 preferably includes upper 102.
- Upper 102 includes entry hole 105 that allows foot 106 to enter upper 102.
- upper 102 also includes an interior cavity that is configured to receive foot 106.
- entry hole 105 preferably provides access to the interior cavity.
- upper 102 may be associated with sole 104.
- upper 102 is attached to sole 104.
- upper 102 is connected to sole 104 by stitching or an adhesive.
- upper 102 could be integrally formed with sole 104.
- sole 104 comprises a midsole.
- sole 104 could also include an insole that is configured to contact a foot.
- sole 104 could include an outsole that is configured to contact a ground surface.
- sole 104 may comprise a midsole as well as an outsole and an insole.
- sole 104 may be provided with provisions for increasing traction depending on the intended application of article of footwear 100.
- sole 104 may include a variety of tread patterns.
- sole 104 may include one or more cleats.
- sole 104 could include both a tread pattern as well as a plurality of cleats. It should be understood that these provisions are optional.
- sole 104 could have a generally smooth lower ground contacting surface.
- Upper 102 may have any design. In some embodiments, upper 102 may have the appearance of a low top sneaker. In other embodiments, upper 102 may have the appearance of a high top sneaker. In this preferred embodiment, upper 102 may include a high ankle portion 132. In particular, upper 102 may include first extended portion 181 and second extended portion 182. In this embodiment, first extended portion 181 and second extended portion 182 have generally triangular shapes. In other embodiments, first extended portion 181 and second extended portion 182 could have another shape. Examples of other shapes include, but are not limited to, rounded shapes, rectangular shapes, polygonal shapes, regular shapes as well as irregular shapes. Using this configuration for ankle portion 132 may help provide upper 102 with additional support for an ankle.
- Article 100 may include provisions for tightening upper 102 around foot 106.
- article 100 may be associated with laces, straps and/or fasteners for tightening upper 102 once foot 106 has been inserted into upper 102.
- article 100 may include laces, straps and/or fasteners that can be manually adjusted by a user.
- article 100 may include provisions for automatically adjusting laces, straps and/or other fasteners associated with upper 102. By using automatically adjusting laces, straps and/or other fasteners, upper 102 may be tightened around a foot with a minimal amount of effort from a user.
- upper 102 may include individual tightening systems associated with different portions of upper 102.
- upper 102 may include automatic lacing system 122 that is associated with arch portion 130 of upper 102.
- upper 102 may include automatic ankle cinching system 124 that is associated with ankle portion 132 of upper 102.
- automatic lacing system 122 and automatic ankle cinching system 124 may be configured to automatically tighten and/or loosen upper 102 around foot 106 and ankle 108.
- Automatic lacing system 122 preferably includes a plurality of straps.
- the term strap as used throughout this detailed description and in the claims refers to any device that can be used for tightening a portion of an article of footwear to a foot.
- a strap could have any shape.
- a strap could have a rectangular or ribbon-like shape.
- the term strap is not intended to be restricted to tightening devices with ribbon-like shapes.
- a strap could have a lace-like shape.
- automatic lacing system 122 could be associated with other types of fasteners. Examples of other fasteners that could be used with automatic lacing system 122 include, but are not limited to laces, cords and strings.
- a strap could be made of any material. Examples of materials that could be used include, but are not limited to, leather, natural fabric, synthetic fabric, metal, rubber, as well as other materials. In some embodiments, a strap could be any type of woven strap as well. In particular, a strap could be woven from any material known in the art for producing woven straps.
- automatic lacing system 122 can include any number of straps. In some embodiments, only a single strap may be provided. In other embodiments, multiple straps may be provided. In this embodiment, lacing system 122 includes four straps, including first strap 111 , second strap 112, third strap 113 and fourth strap 114. For clarity, first strap 111 , second strap 112, third strap 113 and fourth strap 114 may be referred to collectively as strap set 115.
- strap set 115 is disposed beneath lacing gap 107 of upper 102.
- strap set 115 may be configured to adjust the size of lacing gap 107. As the size of lacing gap 107 is adjusted, the sidewall portions of upper 102 may move closer together or further apart. With this arrangement, as strap set 115 is adjusted, upper 102 can be opened and/or closed around the arch of foot 106.
- strap set 115 may be arranged in any direction on upper 102.
- strap set 115 could extend in a generally longitudinal direction.
- strap set 115 may be arranged in a lateral direction with respect to upper 102.
- the term "lateral direction" as used in this detailed description and in the claims refers to a direction extending from a medial side of upper 102 to a lateral side of upper 102. In other words, the lateral direction preferably extends along the width of upper 102.
- strap set 115 may include any type of spacing between adjacent straps. In some embodiments, the spacing between adjacent straps could vary. In other embodiments, one or more straps may cross over, or intersect with, one another. In a preferred embodiment, the straps of strap set 115 may be substantially evenly spaced. In particular, the width between adjacent portions of two straps remains substantially constant. In other words, the straps may be approximately parallel at adjacent portions.
- automatic lacing system 122 is configured to tighten and/or loosen upper 102 at arch portion 130 in the current embodiment, in other embodiments, automatic lacing system 122 could be associated with another portion of upper 102.
- automatic lacing system 122 could be configured to tighten upper 102 at a side portion of upper 102.
- automatic lacing system 122 could be associated with a toe portion of upper 102.
- automatic lacing system 122 could be associated with a heel portion of upper 102.
- Automatic ankle cinching system 124 preferably includes at least one ankle strap.
- automatic ankle cinching system 124 may include multiple ankle straps.
- automatic ankle cinching system 124 includes ankle strap 150.
- Ankle strap 150 could be any type of strap, including any type of strap previously discussed with respect to the straps of automatic lacing system 122.
- ankle strap 150 could be a similar type of strap to the straps of strap set 115.
- ankle strap 150 could be a different type of strap from the straps of strap set 115.
- automatic ankle cinching system 124 also includes provisions for receiving a portion of ankle strap 150.
- automatic ankle cinching system 124 includes housing 160 that is configured to receive a portion of ankle strap 150.
- Housing 160 could be located anywhere on ankle portion 132 of upper 102. In some cases, housing 160 could be disposed on a side of ankle portion 132. In other cases, housing 160 could be disposed on at the front of ankle portion 132. In this preferred embodiment, housing 160 may be disposed on rear portion 161 of ankle portion 132.
- FIGS. 1-3 illustrate a preferred embodiment of the operation of automatic lacing system 122 and automatic ankle cinching system 124 of article 100.
- article 100 may be configured to receive foot 106.
- automatic lacing system 122 and automatic ankle cinching system 124 may be each configured in an open position. In this open position, entry hole 105 may be wide open. Additionally, in this open position, lacing gap 107 may also be wide open.
- this open position of automatic lacing system 122 and automatic ankle cinching system 124 may be associated with an open, or loosened, position of upper 102.
- automatic lacing system 122 and automatic ankle cinching system 124 have been activated.
- arch portion 130 of upper 102 is preferably tightened around foot 106 (see FIG. 1 ).
- ankle portion 132 of upper 102 is preferably tightened around ankle 108 (see FIG. 1 ).
- FIGS. 4-9 further illustrate the fastening of automatic lacing system 122 and automatic ankle cinching system 124.
- automatic ankle cinching system 124 is initially configured in an open position. In this open position, ankle strap 150 is generally loose.
- first ankle side wall portion 404 is separated from second ankle side wall portion 406 by a distance D1 that is much wider than the width of ankle 108. This arrangement preferably allows for easy insertion and/or removal of foot 106.
- ankle strap 150 is partially contracted within housing 160. At this point, ankle strap 150 has partially constricted the movement of ankle 108 within upper 102. Furthermore, first ankle sidewall portion 404 is separated from second ankle side wall portion 406 by a distance D2 that is smaller than distance D1. In other words, first ankle sidewall portion 404 and second ankle sidewall portion 406 are slightly contracted against ankle 108 to partially restrict any movement of ankle 108.
- automatic ankle cinching system 124 is in a closed position.
- ankle strap 150 has been fully tightened around ankle 108.
- ankle strap 150 is configured to prevent ankle 108 from moving laterally, as well as into or out of upper 102.
- First ankle sidewall portion 404 may be separated from second ankle sidewall portion 406 by a distance D3 that is substantially smaller than distance D2.
- distance D3 is small enough to substantially restrict the motion of ankle 108.
- ankle portion 132 of upper 102 may be tightened around ankle 108 to provide support to ankle 108 and to substantially contract the size of entry hole 105 to prevent removal of the foot.
- automatic ankle cinching system 124 could be provided with a logo or other type of indicia.
- ankle strap 150 could be provided with a logo or other indicia.
- another portion of automatic ankle cinching system 124 could include a logo or indicia.
- ankle strap 150 includes logo 410. As seen in FIGS. 4 through 6, as ankle strap 150 moves to tighten around ankle 108, logo 410 may move with ankle strap 150. With this preferred arrangement, when ankle strap 150 is disposed in a fully closed, or tightened, position, logo 410 may be oriented towards a front portion of the article of footwear.
- automatic lacing system 122 is initially configured in an unfastened, or open, position. In this open position, strap set 115 is generally loose. In particular, first sidewall periphery 802 and second sidewall periphery 804 of lacing gap 107 may be spaced widely apart. At this point, lacing gap 107 has an average width W1. Preferably, average width W1 is wide enough to provide for easy insertion and/or removal of a foot.
- lacing gap 107 may be different along the length of arch portion 130.
- lacing gap 107 may be generally widest at first portion 720 that is adjacent to entry hole 105 of upper 102.
- lacing gap 107 may be narrowest at second portion 722 that is adjacent to toe portion 724 of upper 102. Therefore, the term "average width” as used throughout this detailed description and in the claims should be understood to mean an average of the width of lacing gap 107 over different portions and does not necessarily refer to the width of lacing gap 107 at a particular portion.
- lacing gap 107 may contract.
- strap set 115 may provide tension between first sidewall periphery 802 and second sidewall periphery 804 in order to partially close lacing gap 107.
- lacing gap 107 has an average width W2 that is substantially smaller than average width W1.
- width W2 is small enough to partially restrict the movement of the foot within upper 102.
- automatic lacing system 122 has been fully closed around the foot.
- strap set 115 is configured to prevent substantial movement of the foot within upper 102.
- lacing gap 107 has contracted to an average width W3 that is substantially smaller than average width W2.
- upper 102 may be fully tightened around the foot and may provide increased support to the foot.
- upper 102 may be automatically loosened. In other embodiments, upper 102 may be loosened manually. In still other embodiments, a first portion of upper 102 may be automatically loosened and a second portion of upper 102 may be manually loosened.
- automatic lacing system 122 may be configured to be automatically loosened.
- automatic ankle cinching system 124 may be manually loosened.
- article 100 may include provisions for automatically opening automatic lacing system 122, once a user is ready to remove article of footwear 100.
- automatic lacing system 122 may automatically loosen following a signal received from a user.
- the user could press a button that causes automatic lacing system 122 to move to an open position, so that upper 102 is loosened around a foot.
- automatic lacing system 122 may automatically move to an open position without user input.
- FIG. 10 illustrates an exemplary embodiment of automatic lacing system 122 and automatic ankle cinching system 124 moving to an open position.
- user 1002 may depress button 1004 to indicate that upper 102 should be loosened.
- button 1004 may be used to open automatic lacing system 122 and automatic ankle cinching system 124.
- automatic lacing system 122 has been controlled to loosen strap set 115 at arch portion 130.
- automatic ankle cinching system 124 may also be configured to automatically loosen ankle strap 150 at ankle portion 132.
- ankle strap 150 may be manually loosened by a wearer. For example, in some cases, a wearer may pull on ankle strap 150 to adjust ankle strap to an open, or loosened, position. With this arrangement, upper 102 may be loosened around a foot and an ankle to allow a user to easily remove article of footwear 100.
- FIG. 11 illustrates an exemplary embodiment of article 100 in a fully loosened, or open, position.
- automatic lacing system 122 is in a fully open position that provides for a widened lacing gap 107.
- automatic ankle cinching system 124 is in a fully open position that provides for a widened entry hole 105. With upper 102 fully loosened, foot 106 and ankle 108 can be completely removed from upper 102.
- automatic lacing system 122 and automatic ankle cinching system 124 are configured to open and close approximately simultaneously. However, it should be understood that in other embodiments, automatic lacing system 122 and automatic ankle cinching system 124 could be operated independently. For example, in one alternative embodiment, automatic lacing system 122 could be opened and/or closed prior to the opening and/or closing of automatic ankle cinching system 124.
- FIGS. 12-26 are intended to illustrate in detail the individual components and operation of both automatic lacing system 122 and automatic ankle cinching system 124. It should be understood that the following detailed description discusses a preferred embodiment for automatic lacing system 122 and automatic ankle cinching system 124. In other embodiments, some provisions or components of these systems could be optional. Furthermore, in other embodiments, additional provisions or components could be provided to these systems.
- FIGS. 12 and 13 illustrate an assembled isometric view and an exploded isometric view, respectively, of automatic lacing system 122. For purposes of clarity, a portion of upper 102 has been cut away in FIG. 12.
- automatic lacing system 122 preferably includes strap set 115.
- automatic lacing system 122 also includes provisions for moving strap set 115.
- automatic lacing system 122 preferably includes strap moving mechanism 1202.
- the term "strap moving mechanism" as used throughout this detailed description and in the claims refers to any mechanism capable of providing motion to one or more straps without requiring work to be performed by the user.
- strap moving mechanism 1202 includes provisions for powering automatic lacing system 122.
- any type of power source can be utilized.
- Various types of power sources include, but are not limited to, electrical power sources, mechanical power sources, chemical power sources, as well as other types of power sources.
- strap moving mechanism 1202 includes motor 1230.
- Motor 1230 could be any type of motor, including, but not limited to, an electric motor, an electrostatic motor, a pneumatic motor, a hydraulic motor, a fuel powered motor or any other type of motor.
- motor 1230 is an electric motor that transforms electrical energy into mechanical energy.
- motor 1230 may be associated with an electrical power source of some kind. In some cases, motor 1230 could be associated with an external battery. In still other cases, motor 1230 could include an internal battery. In this preferred embodiment, motor 1230 may be configured to receive power from internal battery 1299.
- Battery 1299 could be any type of battery. In some embodiments, battery 1299 could be a disposable battery. Examples of different types of disposable batteries include, but are not limited to, zinc-carbon, zinc-chloride, alkaline, silver-oxide, lithium disulfide, lithium-thionyl chloride, mercury, zinc-air, thermal, water-activated, nickel oxyhydroxide, and paper batteries. In a preferred embodiment, battery 1299 could be a rechargeable battery of some kind. Examples of rechargeable batteries include, but are not limited to nickel-cadmium, nickel-metal hydride and rechargeable alkaline batteries.
- battery 1299 could be disposed in any portion of article 100. In some embodiments, battery 1299 could be associated with an ankle cuff of article 100. In other embodiments, battery 1299 could be disposed in another portion of upper 102. In a preferred embodiment, battery 1299 may be disposed in a portion of sole 104. This arrangement preferably helps to protect battery 1299 from the elements and direct contact with a foot of the wearer.
- battery 1299 may vary. In some embodiments, battery 1299 could have a length in the range of 10 mm to 50 mm. Furthermore, battery 1299 could have a width in the range of 10 mm to 50 mm. In a preferred embodiment, battery 1299 has a width of about 30 mm. Furthermore, battery 1299 preferably has a length of about 40 mm.
- article 100 may include provisions for recharging battery.
- an inductive charger may be used.
- a USB-based charger may be used.
- other types of charging provisions can be used.
- sole 104 includes charging port 1297.
- charging port 1297 may be a mini-USB type charging port.
- charging port 1297 may be electrically connected with battery 1299 via an electrical circuit of some kind.
- charging port 1297 can be coupled to a battery charger of some kind. With this arrangement, power can be transferred to battery 1299 from an external power source in order to recharge battery 1299.
- Motor 1230 may be connected to driveshaft 1232.
- motor 1230 is preferably configured to provide torque to driveshaft 1232 to rotate driveshaft 1232.
- driveshaft 1232 may include one or more gears for transferring power to strap set 115.
- driveshaft 1232 may include first gear 1240 and second gear 1242.
- strap moving mechanism 1202 may include one or more belts for transferring power to strap set 115.
- strap moving mechanism 1202 may include first belt 1250 and second belt 1252.
- first belt 1250 and second belt 1252 are configured to engage with first gear 1240 and second gear 1242, respectively.
- first belt 1250 and second belt 1252 are serpentine belts that move laterally with respect to sole 104 as first gear 1240 and second gear 1242 are rotated.
- first belt 1250 and second belt 1252 may be attached to a yoke member that is associated with strap set 115.
- first attachment portion 1260 of first belt 1250 may be attached directly to yoke member 1270.
- second attachment portion 1262 of second belt 1252 may be attached directly to yoke member 1270.
- each strap of strap set 115 is also directly attached to yoke member 1270.
- first end portion 1281 of first strap 111 is attached to yoke member 1270.
- second strap 112 third strap
- first strap 111 , second strap 112, third strap 113 and fourth strap 114 are preferably attached to yoke member 1270 at similar end portions.
- This arrangement provides for a yoking configuration of first strap 111 , second strap 112, third strap 113 and fourth strap 114.
- first end portion 1290 of strap set 115 may move substantially in unison at first end portion 1290 of strap set 115. This preferably allows the tightening and loosening of upper 102 to be applied evenly over arch portion 130 of upper 102.
- yoke member 1270 could be any type of yoke.
- yoke member 1270 could be a curved yoke.
- yoke member 1270 could be a bow yoke.
- yoke member 1270 may be substantially straight.
- yoke member 1270 has an approximately cylindrical bar or rod shape. With this arrangement, multiple straps may be connected along the entirety of the length of yoke member 1270 in a generally parallel manner.
- article 100 includes provisions for receiving one or more components of strap moving mechanism 1202.
- one or more components of strap moving mechanism 1202 may be disposed within upper 102.
- one or more components of strap moving mechanism 1202 may be disposed within sole 104.
- sole 104 may include an interior cavity that is configured to receive multiple components of strap moving mechanism 1202.
- sole 104 preferably includes interior cavity 1285.
- interior cavity 1285 may have any shape. Examples of different shapes include, but are not limited to, circular shapes, oval shapes, square shapes, rectangular shapes, polygonal shapes, regular shapes, irregular shapes as well as other kinds of shapes.
- interior cavity 1285 has a generally rectangular shape.
- Interior cavity 1285 is preferably configured to receive motor 1230. Additionally, interior cavity 1285 may be configured to receive driveshaft 1232, including first gear 1240 and second gear 1242. In particular, interior cavity 1285 may provide room for rotation of driveshaft 1232, first gear 1240 and second gear 1242.
- interior cavity 1285 may be disposed internally within sole 104. In other words, interior cavity 1285 may be disposed below an upper surface of sole 104. In other embodiments, interior cavity 1285 may be open at the upper surface of sole 104. In other words, interior cavity 1285 may be in fluid communication with an interior portion of upper 102.
- interior cavity 1285 includes upper opening 1287 that is disposed on upper surface 1289 of sole 104.
- interior cavity 1285 is a recessed portion of upper surface 1289.
- upper surface 1289 of sole 104 may be covered by an insole to separate interior cavity 1285 from foot receiving cavity 1291 of upper 102. With this arrangement, a foot may be prevented from contacting, and potentially interfering with, one or more components of strap moving mechanism 1202 that may be disposed within interior cavity 1285.
- automatic lacing system 122 also includes provisions for guiding strap set 115 within upper 102.
- automatic lacing system 122 may include rigid hollow plate 1300.
- rigid hollow plate 1300 may be associated with first sidewall portion 1302 of upper 102.
- rigid hollow plate 1300 may be disposed against an inner surface of first sidewall portion 1302.
- rigid hollow plate 1300 may be disposed against an outer surface of first sidewall portion 1302.
- rigid hollow plate 1300 may be integral with first sidewall portion 1302.
- rigid hollow plate 1300 may be disposed between an inner lining and an outer lining of upper 102 to provide rigid support at first sidewall portion 1302.
- rigid hollow plate 1300 may include holes for receiving straps into, and releasing straps from, a hollow cavity of rigid hollow plate 1300.
- rigid hollow plate 1300 includes first lower hole 1311 , second lower hole 1312, third lower hole 1313 and fourth lower hole 1314, referred to collectively as lower hole set 1315.
- rigid hollow plate 1300 may include first upper hole 1321 , second upper hole 1322, third upper hole 1323 and fourth upper hole 1324, referred to collectively as upper hole set 1325.
- second end portion 1330 of first strap 111 may be inserted into rigid hollow plate 1300 at first lower hole 1311 and may exit from rigid hollow plate 1300 at first upper hole 1321.
- second portions of second strap 112, third strap 113 and fourth strap 114 may be similarly inserted into second lower hole 1312, third lower hole 1313 and fourth lower hole 1314, respectively.
- second end portions of second strap 112, third strap 113 and fourth strap 114 may exit from rigid hollow plate 1300 at second upper hole 1322, third upper hole 1323 and fourth upper hole 1324, respectively.
- rigid hollow plate 1300 may serve as a guide for strap set 115.
- rigid hollow plate 1300 helps reduce friction between the straps of strap set 115 and upper 102 that might otherwise inhibit motion of the straps.
- rigid hollow plate 1300 could have any shape. In some embodiments, rigid hollow plate 1300 may be generally flat. In other embodiments, rigid hollow plate 1300 could be curved. In a preferred embodiment, rigid hollow plate 1300 could have a curved shape that substantially matches the contours of first sidewall portion 1302. Furthermore, rigid hollow plate 1300 preferably extends from sole 104 to the top of first sidewall portion 1302. With this arrangement, rigid hollow plate 1300 may help guide strap set 115 through the interior of upper 102.
- rigid hollow plate 1300 could have any thickness. In some embodiments, rigid hollow plate 1300 could have a thickness much greater than the lining of upper 102. In other embodiments, rigid hollow plate 1300 could have a thickness that is substantially less than the lining of upper 102. In this preferred embodiment, rigid hollow plate 1300 has a thickness that is substantially similar to the thickness of the lining of upper 102. With this arrangement, rigid hollow plate 1300 preferably does not substantially interfere with the motion and flexibility of upper 102 at first sidewall portion 1302.
- a rigid hollow plate may be made of any substantially rigid material.
- a rigid hollow plate is made of a material that is substantially more rigid than the upper. Examples of various materials that could be used to make a rigid hollow plate include, but are not limited to, plastic, rigid rubber, metal and wood, as well as other materials.
- rigid hollow plate 1300 is made of a substantially rigid plastic.
- FIG. 14 is a cross sectional view of a preferred embodiment of the interior of rigid hollow plate 1300.
- rigid hollow plate 1300 may include individual channels for receiving each strap of strap set 115.
- rigid hollow plate 1300 includes first strap receiving channel 1341 , second strap receiving channel 1342, third strap receiving channel 1343 and fourth strap receiving channel 1344 that are configured to receive first strap 111 , second strap 112, third strap 113 and fourth strap 114, respectively.
- the strap receiving channels could be much larger than the straps of strap set 115.
- first strap receiving channel 1341 , second strap receiving channel 1342, third strap receiving channel 1343 and fourth strap receiving channel 1344 are substantially similar to the dimensions of the straps of strap set 115.
- first strap receiving channel 1341 , second strap receiving channel 1342, third strap receiving channel 1343 and fourth strap receiving channel 1344 may be configured as guides that allow for a smooth sliding movement of each strap through rigid hollow plate 1300 without allowing for unwanted bending, twisting or other modes of motion that may inhibit this smooth sliding movement. For example, if the strap receiving channels are too large, the strap may bunch or fold within the strap receiving channel rather than slide through the strap receiving channel smoothly.
- rigid hollow plate 1300 could have channels of any shape.
- first strap receiving channel 1341 , second strap receiving channel 1342, third strap receiving channel 1343 and fourth strap receiving channel 1344 have a slightly curved shape since rigid hollow plate 1300 has an approximately curved shape.
- the channels of a rigid hollow plate could also be approximately straight.
- FIG. 15 illustrates an alternative embodiment of rigid hollow plate 1300.
- rigid hollow plate 1300 includes central hollow cavity 1502 for receiving each of the straps within strap set 115.
- central hollow cavity 1502 has a thickness that is substantially equal to the thicknesses of each of the straps in strap set 115. This arrangement preferably allows movement of each strap in strap set 115 through central hollow cavity 1502 without allowing for folding, bunching or twisting of each strap in strap set 115.
- the current embodiment includes a rigid hollow plate to help guide the straps of an automatic lacing system, in other embodiments, different provisions could be provided. Generally, any provision for reducing friction between a set of straps and a sidewall portion could be used.
- the lining of an upper could be rigid enough to substantially reduce friction between a set of straps and a sidewall portion.
- the lining of an upper could include channels that are configured to receive a set of straps and help guide the straps.
- the lining of an upper could be coated to present a substantially low friction surface to a set of straps.
- a low friction fabric could be used to make the lining of an upper.
- one or more flexible tubes could be configured to receive a set of straps from within the upper and help guide the set of straps through the upper.
- automatic lacing system 122 may include one or more provisions for controlling strap moving mechanism 1202.
- automatic lacing system 122 could be associated with one or more control systems, sensors, user operated devices or other provisions. It should be understood that each of the following provisions are intended to be exemplary and in some embodiments some provisions could be optional.
- automatic lacing system 122 preferably includes provisions for activating a strap moving mechanism to open or close a set of straps.
- strap moving mechanism 1202 may be provided with a control system of some kind.
- control system refers to any type of device for determining an operating state of a strap moving mechanism.
- a control system could be a central processing unit (CPU) of some kind.
- CPU central processing unit
- a control system could be a simple circuit of some kind for receiving electrical inputs and providing an electrical output according to the inputs.
- automatic lacing system 122 preferably includes control system 1650 that is connected to strap moving mechanism 1202 via first connection 1611.
- control system 1650 may be disposed in any portion of article 100. In some embodiments, control system 1650 could be disposed in a portion of upper 102. In a preferred embodiment, control system 1650 could be disposed in sole 104. Referring to FIG. 17, control system 1650 may be associated with sole 104. In particular, control system 1650 may be disposed within a heel portion of sole 104.
- control system 1650 may have any size. In some embodiments, control system 1650 may have a length in the range between 10 mm and 50 mm. Likewise, control system 1650 may have a length in the range between 10 mm and 50 mm. In a preferred embodiment, control system 1650 may have a length of about 40 mm. Also, control system 1650 may have a width of about 30 mm. In still another embodiment, control system 1650 could have a length of about 25 mm. Also, control system 1650 could have a width of about 25 mm.
- automatic lacing system 122 may include one or more sensors that can be used to determine when automatic lacing system 122 should tighten or loosen upper 102. Examples of different types of sensors that may be used include, but are not limited to, weight sensors, light sensors, audio sensors, heat sensors, as well as other types of sensors.
- automatic lacing system 122 may be provided with weight sensor 1606.
- weight sensor 1606 may be connected directly to strap moving mechanism 1202.
- weight sensor 1606 may be connected to control system 1650 via second connection 1612. With this arrangement, control system 1650 may receive signals from weight sensor 1606 to determine if strap moving mechanism 1202 should be activated.
- weight sensor 1606 could be located in any portion of article 100. In some embodiments, weight sensor 1606 could be located in a portion of sole 104. In a preferred embodiment, weight sensor 1606 could be located in an insole or sock liner of article 100. In still other embodiments, weight sensor 1606 could be located in other portions of article 100.
- article 100 may include sock liner 1799 in some embodiments.
- sock liner 1799 could be any type of insole or liner.
- sock liner 1799 could be a removable liner.
- sock liner 1799 could be permanently attached to sole 104.
- weight sensor 1606 may be disposed in heel portion 1797 of sock liner 1799.
- control system 1650 may send a signal to activate strap moving mechanism 1202 in order to tighten upper 102 by moving strap set 115.
- control system 1650 can be configured to automatically activate strap moving mechanism 1202 following a signal from weight sensor 1606. In other embodiments, however, control system 1650 can be configured with a time delay upon receiving a signal from weight sensor 1606. With this arrangement, strap moving mechanism 1202 may not be activated until some time has passed in order to allow a user to completely insert his or her foot.
- a sensor may be used to provide information related to the tightness of a strap set.
- the sensor can be applied to a portion of the strap set to determine if the strap set is tightened properly.
- the sensor can be applied at the motor. By measuring the torque or force needed by the motor to continue moving the straps of the strap set, the proper degree of tightness can be determined.
- strap moving mechanism 1202 may be provided with a user controlled device of some kind.
- the term "user controlled device” refers to any device that is configured to receive input directly from a user.
- control system 1650 is preferably connected to user control device 1608 via third connection 1613.
- control system 1650 may then activate strap moving mechanism 1202.
- An example of a user controlled device includes a button that can be pushed to activate strap moving mechanism 1202, as illustrated in FIG. 10.
- any type of user controlled device could be used, including, but not limited to, levers, switches, dials, consoles or other user controlled devices.
- first connection 1611 , second connection 1612 and third connection 1613 may be any type of connection that is configured to transfer information and/or energy.
- wired connections may be used.
- wireless connections may be used.
- FIGS. 17 through 21 illustrate a preferred embodiment of the operation of automatic lacing system 122.
- upper 102 and sole 104 are indicated here in phantom.
- automatic lacing system 122 is in an open or loosened condition.
- first strap 111 preferably includes first end portion 1281 that is attached to yoke member 1270 near first sidewall portion 1302.
- first strap 111 includes second end portion 1330 that is attached to second sidewall portion 1702 of upper 102.
- first strap 111 may include intermediate portion 1711 that is disposed between first end portion 1281 and second end portion 1330.
- each strap of strap set 115 preferably includes a first portion attached to yoke member 1270 and a second portion attached to second sidewall portion 1702. Additionally, each strap set 115 preferably includes an intermediate portion that is disposed between the first end portion and the second end portion of each strap.
- yoke member 1270 is preferably disposed adjacent to lower hole set 1315.
- strap set 115 is maximally extended from upper hole set 1325.
- intermediate portion 1711 may be disposed outside of rigid hollow plate 1300. In this open position, further extension, or loosening, of strap set 115 cannot be achieved because yoke member 1270 prevents further extension of strap set 115 from upper hole set 1325.
- motor 1230 may receive a signal from control system 1650 disposed within sole 104 (see FIG. 17).
- motor 1230 could receive a signal from control system 1650 that weight sensor 1606 has been activated.
- motor 1230 is activated and begins to rotate dhveshaft 1232 in a counterclockwise direction with respect to longitudinal axis 1804.
- first gear 1240 and second gear 1242 also rotate in the counterclockwise direction.
- first gear 1240 and second gear 1242 are engaged with first belt 1250 and second belt 1252, respectively.
- first gear 1240 and second gear 1242 preferably include teeth that mesh with teeth on first belt 1250 and second belt 1252. With this arrangement, as first gear 1240 and second gear 1242 rotate counterclockwise, first belt 1250 and second belt 1252 are moved laterally, with respect to sole 104, towards second sidewall portion 1702.
- first belt 1250 and second belt 1252 are fastened to yoke member 1270, this lateral movement places tension on yoke member 1270 and pulls yoke member 1270 away from lower hole set 1315 of rigid hollow plate 1300 by a distance D5. Furthermore, as yoke member 1270 is pulled away from lower hole set 1315, strap set 115 is pulled down through rigid hollow plate 1300. This motion preferably tightens strap set 115 and pulls second sidewall portion 1702 towards first sidewall portion 1302 of upper 102.
- automatic lacing system 122 is in a fully closed, or tightened, position. In this closed position, yoke member 1270 has extended further away from lower hole set 1315 by a distance D6 that is substantially larger than distance D5. Furthermore, strap set 115 has been pulled taut over lacing gap 107 of upper 102. Preferably, in this closed position, upper 102 is fully tightened around a foot.
- automatic lacing system 122 may be returned to an open position when a user is ready to remove article 100. In this embodiment, as previously discussed, a user may depress a button to open automatic lacing system 122 (see FIG. 10). Preferably, once the button is depressed, a signal is received at motor 1230 to open automatic lacing system 122.
- motor 1230 may be operated in a reverse direction.
- motor 1230 may be configured to rotate in a clockwise direction with respect to longitudinal axis 1804.
- the clockwise rotation of motor 1230 causes dhveshaft 1232, first gear 1240 and second gear 1242 to rotate in a clockwise direction as well.
- the clockwise rotation of first gear 1240 and second gear 1242 further moves first belt 1250 and second belt 1252, respectively, in a lateral direction towards first sidewall portion 1302.
- yoke member 1270 is pushed closer to lower hole set 1315 of rigid hollow plate 1300.
- strap set 115 is pushed through rigid hollow plate 1300 so that strap set 115 extends further out of upper hole set 1325. This motion generally loosens strap set 115 and allows for some increase in the spacing between first sidewall portion 1302 and second sidewall portion 1702.
- the distance between yoke member 1270 and lower hole set 1315 decreases as automatic lacing system 122 is opened.
- yoke member 1270 and lower hole set 1315 are separated by a distance D7.
- yoke member 1270 and lower hole set 1315 are separated by a distance D8 that is substantially smaller than distance D7.
- automatic lacing system 122 may be disposed in a fully opened position, as seen in FIG. 17. At this point, a foot may be removed from upper 102.
- FIGS. 22 and 23 illustrate an exploded isometric view and an assembled view, respectively, of automatic ankle cinching system 124.
- automatic ankle cinching system 124 includes ankle strap 150.
- Ankle strap cinching system 124 also preferably includes housing 160 that is configured to receive a portion of ankle strap 150.
- housing 160 may include hollow channel 2206.
- housing 160 may include slot 2202 that provides an opening for hollow channel 2206 on an outer surface of housing 160.
- hollow channel 2206 and slot 2202 may be configured to receive first end portion 2203 of ankle strap 150. With this arrangement, first end portion 2203 of ankle strap 150 may be configured to slide within slot 2202 and hollow channel 2206.
- automatic ankle cinching system 124 also includes provisions for moving ankle strap 150.
- automatic ankle cinching system 124 preferably includes strap moving mechanism 2222.
- strap moving mechanism refers to any mechanism capable of providing motion to the straps.
- strap moving mechanism 2222 includes coil spring 2204.
- ankle strap 150 may be associated with coil spring 2204 at first end portion 2203.
- coil spring 2204 is also connected to shaft 2232. With this arrangement, as coil spring 2204 unwinds around shaft 2232, a tension may be applied to first end portion 2203.
- housing 160 includes provisions for receiving the components of strap moving mechanism 2222.
- housing 160 may include housing cavity 2250.
- housing cavity 2250 is shaped to receive coil spring 2204 as well as shaft 2232.
- strap moving mechanism 2222 comprises coil spring 2204 and shaft 2232 in the current embodiment, in other embodiments strap moving mechanism 2222 could comprise additional components as well.
- shaft 2232 could be associated with a motor that is configured to rotate shaft 2232 to provide additional tension to ankle strap 150.
- shaft 2232 could be associated with other gears, belts or provisions for supplying power to, and moving, ankle strap 150.
- strap moving mechanism 2222 may be associated with provisions for locking ankle strap 150 into an open, or extended, position.
- strap moving mechanism 2222 includes locking mechanism 2299.
- locking mechanism 2299 is shown schematically in the Figures.
- locking mechanism 2299 may be associated with any portion of automatic ankle cinching system 124.
- locking mechanism may be associated with housing 160.
- locking mechanism 2299 may be configured to interact with portions of ankle strap 150.
- locking mechanism 2299 may be configured to restrict the motion of ankle strap 150 in some situations.
- locking mechanism 2299 engages a portion ankle strap 150 and prevents ankle strap 150 from sliding back into housing 160 under the tension of coil spring 2204.
- locking mechanism 2299 may include any provisions for engaging a portion of ankle strap 150.
- locking mechanism 2299 may engage a mechanical tab or similar provision on ankle strap 150 that prevents retraction of ankle strap 150.
- locking mechanism 2299 may include provisions for clamping or pinching first end portion 2203 when ankle strap 150 is fully extended.
- automatic ankle cinching system 124 includes provisions for releasing locking mechanism 2299.
- locking mechanism 2299 may be released manually. For example, in some cases, a portion of locking mechanism 2299 could be depressed to release ankle strap 150.
- locking mechanism 2299 may be an electrically controlled mechanism.
- locking mechanism 2299 may be configured to release ankle strap 150 using an electrical signal of some kind.
- locking mechanism 2299 is in communication with one or more sensors and/or control systems.
- locking mechanism 2299 is in communication with control system 1650. Using this arrangement, control system 1650 may send a signal to disengage locking mechanism 2299 from ankle strap 150 when weight sensor 1606 has been activated. As locking mechanism 2299 releases, ankle strap 150 may be pulled tightly around an ankle under the tension of coil spring 2204.
- second end portion 2207 of ankle strap 150 may be associated with any portion of ankle portion 132 of upper 102.
- second end portion 2207 may be attached to housing 160.
- second end portion 2207 could be attached directly to ankle portion 132 of upper 102.
- second end portion 2207 is fixedly attached to housing 160 at slot 2240. With this arrangement, second end portion 2207 may remain fixed in place while first end portion 2204 of ankle strap 150 may move to provide cinching around ankle portion 132.
- coil spring 2204 is preferably configured to wind around shaft 2232.
- shaft 2232 may be oriented in any direction. In some embodiments, shaft 2232 could be oriented in a generally horizontal direction. In a preferred embodiment, shaft 2232 may be oriented in a generally vertical direction. In other words, shaft 2232 may be oriented in a direction that is generally perpendicular with an upper surface of a sole of the article. With this arrangement, the orientation of ankle strap 150 can be maintained along the length of ankle strap 150 to prevent twisting.
- automatic ankle cinching system 124 may be operated simultaneously with automatic lacing system 122.
- automatic ankle cinching system 124 may be in communication with automatic lacing system 122.
- strap moving mechanism 2222 of automatic ankle cinching system 124 may be configured to close when strap moving mechanism 1202 of automatic lacing system 122 is closed.
- automatic ankle cinching system 124 could be operated independently of automatic lacing system 122.
- strap moving mechanism 2222 of automatic ankle cinching system 124 could be associated with any of the optional inputs discussed with respect to strap moving mechanism 1202 of automatic lacing system 122.
- strap moving mechanism 2222 could be associated with one or more sensors.
- strap moving mechanism 2222 could be used with one or more user controlled devices.
- FIGS. 24 through 26 illustrate a preferred embodiment of the operation of automatic ankle cinching system 124.
- automatic ankle cinching system 124 is shown in isolation in these Figures.
- automatic ankle cinching system 124 is disposed in an open position. In this open position, a foot may be easily inserted into entry hole 105. At this point, entry hole 105 may have an average width W5.
- automatic ankle cinching system 124 may receive a signal from a sensor that automatic ankle cinching system 124 should be closed.
- locking mechanism 2299 may receive a signal to release ankle strap 150.
- coil spring 2204 provides tension to ankle strap 150.
- ankle strap 150 may be pulled further into housing 160 and intermediate portion 2209 of ankle strap 150 may be pulled taut against an ankle.
- entry hole 105 preferably has an average width W6 that is substantially smaller than average width W5.
- automatic ankle cinching system 124 may be manually opened by a user.
- a user can pull outwards on ankle strap 150 by pulling directly on intermediate portion 2209.
- a user can pull on a lever or tab to open ankle strap 150.
- ankle strap 150 may extend further out of housing 160 and intermediate portion 2209 of ankle strap 150 may be loosened around an ankle.
- locking mechanism 2299 may be configured to lock ankle strap 150 in place.
- entry hole 105 preferably has an average width W5 that is substantially larger than average width W6. With this arrangement, a foot may be removed from entry hole 105.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Abstract
L’invention concerne un article chaussant muni d’un système de laçage automatique. Le système de laçage automatique comporte un ensemble de brides pouvant être automatiquement ouvertes et fermées pour faire ainsi passer la tige d’une position desserrée à une position serrée. L’article comporte de plus un système de sanglage automatique de la cheville conçu pour ajuster automatiquement la partie cheville de la tige.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009801158096A CN102014682B (zh) | 2008-05-02 | 2009-04-29 | 自动系带系统 |
| JP2011507603A JP5323177B2 (ja) | 2008-05-02 | 2009-04-29 | 自動靴紐結びシステム |
| EP09739660.0A EP2278896B1 (fr) | 2008-05-02 | 2009-04-29 | Système de laçage automatique |
| EP18150821.9A EP3387933B1 (fr) | 2008-05-02 | 2009-04-29 | Système de laçage automatique |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/114,022 | 2008-05-02 | ||
| US12/114,022 US8046937B2 (en) | 2008-05-02 | 2008-05-02 | Automatic lacing system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2009134858A1 true WO2009134858A1 (fr) | 2009-11-05 |
Family
ID=41255392
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/042072 Ceased WO2009134858A1 (fr) | 2008-05-02 | 2009-04-29 | Système de laçage automatique |
Country Status (5)
| Country | Link |
|---|---|
| US (11) | US8046937B2 (fr) |
| EP (3) | EP2796064B1 (fr) |
| JP (1) | JP5323177B2 (fr) |
| CN (3) | CN102715706B (fr) |
| WO (1) | WO2009134858A1 (fr) |
Cited By (71)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014036374A1 (fr) * | 2012-08-31 | 2014-03-06 | Nike International Ltd. | Système de tension motorisé à capteurs |
| WO2015074070A1 (fr) * | 2013-11-18 | 2015-05-21 | Boa Technology Inc. | Procédés et dispositifs permettant une fermeture automatique de prothèses et d'orthèses |
| US9326566B2 (en) | 2014-04-15 | 2016-05-03 | Nike, Inc. | Footwear having coverable motorized adjustment system |
| US9375053B2 (en) | 2012-03-15 | 2016-06-28 | Boa Technology, Inc. | Tightening mechanisms and applications including the same |
| US9408437B2 (en) | 2010-04-30 | 2016-08-09 | Boa Technology, Inc. | Reel based lacing system |
| US9439477B2 (en) | 2013-01-28 | 2016-09-13 | Boa Technology Inc. | Lace fixation assembly and system |
| US9516923B2 (en) | 2012-11-02 | 2016-12-13 | Boa Technology Inc. | Coupling members for closure devices and systems |
| US9532626B2 (en) | 2013-04-01 | 2017-01-03 | Boa Technology, Inc. | Methods and devices for retrofitting footwear to include a reel based closure system |
| US9532893B2 (en) | 2012-08-31 | 2017-01-03 | Nike, Inc. | Motorized tensioning system |
| RU2607779C2 (ru) * | 2011-08-18 | 2017-01-10 | Палидиум, Инк. | Автоматически затягиваемый ботинок (варианты) |
| EP2353418B1 (fr) * | 2010-02-04 | 2017-03-01 | Salomon S.A.S. | Chaussure à tige améliorée |
| US9610185B2 (en) | 2013-03-05 | 2017-04-04 | Boa Technology Inc. | Systems, methods, and devices for automatic closure of medical devices |
| US9629418B2 (en) | 2014-04-15 | 2017-04-25 | Nike, Inc. | Footwear having motorized adjustment system and elastic upper |
| US9629417B2 (en) | 2013-07-02 | 2017-04-25 | Boa Technology Inc. | Tension limiting mechanisms for closure devices and methods therefor |
| US9681705B2 (en) | 2013-09-13 | 2017-06-20 | Boa Technology Inc. | Failure compensating lace tension devices and methods |
| US9700101B2 (en) | 2013-09-05 | 2017-07-11 | Boa Technology Inc. | Guides and components for closure systems and methods therefor |
| US9706814B2 (en) | 2013-07-10 | 2017-07-18 | Boa Technology Inc. | Closure devices including incremental release mechanisms and methods therefor |
| WO2017136836A1 (fr) * | 2016-02-05 | 2017-08-10 | Factor 10 LLC | Appareils et systèmes de fermeture de chaussure |
| US9737115B2 (en) | 2012-11-06 | 2017-08-22 | Boa Technology Inc. | Devices and methods for adjusting the fit of footwear |
| EP3182254A3 (fr) * | 2015-12-18 | 2017-08-30 | Immersion Corporation | Article vestimentaire comprenant un actionneur effectuant des opérations haptiques et non-haptiques |
| WO2017157862A1 (fr) * | 2016-03-16 | 2017-09-21 | Otto Bock Healthcare Gmbh | Dispositif orthopédique |
| US9770070B2 (en) | 2013-06-05 | 2017-09-26 | Boa Technology Inc. | Integrated closure device components and methods |
| US9854873B2 (en) | 2010-01-21 | 2018-01-02 | Boa Technology Inc. | Guides for lacing systems |
| US9907359B2 (en) | 2008-05-02 | 2018-03-06 | Nike, Inc. | Lacing system with guide elements |
| US9943139B2 (en) | 2008-05-02 | 2018-04-17 | Nike, Inc. | Automatic lacing system |
| WO2017160642A3 (fr) * | 2016-03-15 | 2018-08-23 | Nike Innovate C.V. | Système de tension de chaussure comprenant un ensemble de guidage |
| US10070695B2 (en) | 2010-04-30 | 2018-09-11 | Boa Technology Inc. | Tightening mechanisms and applications including the same |
| US10076160B2 (en) | 2013-06-05 | 2018-09-18 | Boa Technology Inc. | Integrated closure device components and methods |
| US10092065B2 (en) | 2014-04-15 | 2018-10-09 | Nike, Inc. | Footwear having motorized adjustment system and removable midsole |
| USD835976S1 (en) | 2014-01-16 | 2018-12-18 | Boa Technology Inc. | Coupling member |
| USD835898S1 (en) | 2015-01-16 | 2018-12-18 | Boa Technology Inc. | Footwear lace tightening reel stabilizer |
| US10251451B2 (en) | 2013-03-05 | 2019-04-09 | Boa Technology Inc. | Closure devices including incremental release mechanisms and methods therefor |
| US10413019B2 (en) | 2011-10-13 | 2019-09-17 | Boa Technology Inc | Reel-based lacing system |
| US10477911B2 (en) | 2008-05-02 | 2019-11-19 | Nike, Inc. | Article of footwear and charging system |
| EP3429400A4 (fr) * | 2016-03-15 | 2019-11-20 | NIKE Innovate C.V. | Appareil de laçage pour plateforme de chaussure automatisée |
| US10492568B2 (en) | 2014-08-28 | 2019-12-03 | Boa Technology Inc. | Devices and methods for tensioning apparel and other items |
| US10499709B2 (en) | 2016-08-02 | 2019-12-10 | Boa Technology Inc. | Tension member guides of a lacing system |
| EP3429387A4 (fr) * | 2016-03-15 | 2020-01-01 | NIKE Innovate C.V. | Article chaussant doté d'une fonction de laçage motorisé et de contrôle de geste |
| USD872981S1 (en) | 2018-09-25 | 2020-01-21 | Factor 10 LLC | Footwear with strap closure |
| US10543630B2 (en) | 2017-02-27 | 2020-01-28 | Boa Technology Inc. | Reel based closure system employing a friction based tension mechanism |
| US10568381B2 (en) | 2012-02-22 | 2020-02-25 | Nike, Inc. | Motorized shoe with gesture control |
| US10575591B2 (en) | 2014-10-07 | 2020-03-03 | Boa Technology Inc. | Devices, methods, and systems for remote control of a motorized closure system |
| US10702409B2 (en) | 2013-02-05 | 2020-07-07 | Boa Technology Inc. | Closure devices for medical devices and methods |
| USD889805S1 (en) | 2019-01-30 | 2020-07-14 | Puma SE | Shoe |
| US10772384B2 (en) | 2017-07-18 | 2020-09-15 | Boa Technology Inc. | System and methods for minimizing dynamic lace movement |
| US10791798B2 (en) | 2015-10-15 | 2020-10-06 | Boa Technology Inc. | Lacing configurations for footwear |
| USD899053S1 (en) | 2019-01-30 | 2020-10-20 | Puma SE | Shoe |
| US10842230B2 (en) | 2016-12-09 | 2020-11-24 | Boa Technology Inc. | Reel based closure system |
| US10849390B2 (en) | 2003-06-12 | 2020-12-01 | Boa Technology Inc. | Reel based closure system |
| USD906657S1 (en) | 2019-01-30 | 2021-01-05 | Puma SE | Shoe tensioning device |
| US11033079B2 (en) | 2015-10-07 | 2021-06-15 | Puma SE | Article of footwear having an automatic lacing system |
| US11103030B2 (en) | 2015-10-07 | 2021-08-31 | Puma SE | Article of footwear having an automatic lacing system |
| US11185130B2 (en) | 2015-10-07 | 2021-11-30 | Puma SE | Article of footwear having an automatic lacing system |
| US11206891B2 (en) | 2008-05-02 | 2021-12-28 | Nike, Inc. | Article of footwear and a method of assembly of the article of footwear |
| US11317678B2 (en) | 2015-12-02 | 2022-05-03 | Puma SE | Shoe with lacing mechanism |
| US11357279B2 (en) | 2017-05-09 | 2022-06-14 | Boa Technology Inc. | Closure components for a helmet layer and methods for installing same |
| US11439192B2 (en) | 2016-11-22 | 2022-09-13 | Puma SE | Method for putting on or taking off a piece of clothing or for closing, putting on, opening, or taking off a piece of luggage |
| US11484089B2 (en) | 2019-10-21 | 2022-11-01 | Puma SE | Article of footwear having an automatic lacing system with integrated sound damping |
| US11492228B2 (en) | 2019-05-01 | 2022-11-08 | Boa Technology Inc. | Reel based closure system |
| EP4098142A1 (fr) * | 2016-03-15 | 2022-12-07 | Nike Innovate C.V. | Détection capacitive de la présence du pied pour article chaussant |
| US11684111B2 (en) | 2012-02-22 | 2023-06-27 | Nike, Inc. | Motorized shoe with gesture control |
| EP4212052A1 (fr) * | 2013-09-20 | 2023-07-19 | NIKE Innovate C.V. | Chaussure ayant un système de réglage motorisé |
| US11723436B2 (en) | 2008-05-02 | 2023-08-15 | Nike, Inc. | Article of footwear and charging system |
| US11766095B2 (en) | 2016-03-15 | 2023-09-26 | Nike, Inc. | Foot presence signal processing using velocity |
| US11779083B2 (en) | 2008-11-21 | 2023-10-10 | Boa Technology, Inc. | Reel based lacing system |
| US11805854B2 (en) | 2016-11-22 | 2023-11-07 | Puma SE | Method for fastening a shoe, in particular, a sports shoe, and shoe, in particular sports shoe |
| US12171306B2 (en) | 2021-11-16 | 2024-12-24 | Puma SE | Article of footwear having an automatic lacing system |
| US12222223B2 (en) | 2016-03-15 | 2025-02-11 | Nike, Inc. | Active footwear sensor calibration |
| US12256803B2 (en) | 2019-02-01 | 2025-03-25 | Boa Technology Inc. | Reel based closure devices for tightening a ski boot |
| US12396520B2 (en) | 2017-07-18 | 2025-08-26 | Boa Technology Inc. | Configurations for footwear employing reel based closure systems |
| US12501971B2 (en) | 2020-07-30 | 2025-12-23 | Nike, Inc. | Sensing device for footwear |
Families Citing this family (129)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8056269B2 (en) | 2008-05-02 | 2011-11-15 | Nike, Inc. | Article of footwear with lighting system |
| US9572395B2 (en) * | 2009-06-23 | 2017-02-21 | Mark Costin Roser | Human locomotion assisting shoe and clothing |
| US9565899B2 (en) * | 2010-11-10 | 2017-02-14 | Fit Squared Shoes, Llc | Single pull and double pull fit adjustment system for shoes |
| US9364046B2 (en) * | 2010-11-10 | 2016-06-14 | Fit Squared Shoes, Llc | Single pull and double pull fit adjustment systems for shoes |
| US8784350B2 (en) * | 2010-12-09 | 2014-07-22 | Donald M. Cohen | Auto-accommodating therapeutic brace |
| EP2672854B1 (fr) | 2011-02-07 | 2019-09-04 | New Balance Athletics, Inc. | Systèmes et méthodes de surveillance de performances athlétiques |
| US10363453B2 (en) | 2011-02-07 | 2019-07-30 | New Balance Athletics, Inc. | Systems and methods for monitoring athletic and physiological performance |
| US8935860B2 (en) | 2011-10-28 | 2015-01-20 | George Torres | Self-tightening shoe |
| US9241539B1 (en) * | 2012-06-29 | 2016-01-26 | Jeffrey Keswin | Shoelace tightening method and apparatus |
| US20230301402A9 (en) * | 2012-08-31 | 2023-09-28 | Nike, Inc. | Motorized tensioning device with compact spool system |
| KR101426154B1 (ko) * | 2012-11-07 | 2014-08-01 | 성호동 | 신발 |
| US9578926B2 (en) | 2012-12-17 | 2017-02-28 | Vibralabs Incorporated | Device for automatically tightening and loosening laces |
| US9204690B1 (en) | 2012-12-17 | 2015-12-08 | Jepthah Alt | Device for automatically tightening and loosening shoe laces |
| US9185948B2 (en) | 2013-01-28 | 2015-11-17 | Jezekiel Ben-Arie | Buckle-lace: lace fastening device |
| KR101943248B1 (ko) | 2013-03-15 | 2019-01-28 | 애플 인크. | 자기 손목밴드 |
| CN103263117A (zh) * | 2013-04-22 | 2013-08-28 | 梁柏祥 | 一种用于调整鞋带松紧的控制系统及鞋带装置 |
| US9254018B2 (en) * | 2013-05-14 | 2016-02-09 | Derrick Bliss | Shoe with automatic closure mechanism |
| US9474330B2 (en) * | 2013-06-10 | 2016-10-25 | Nike, Inc. | Article with adjustable rearward covering portion |
| US9867417B2 (en) * | 2013-07-11 | 2018-01-16 | Nike, Inc. | Article with tensioning system including tension balancing member |
| US9609918B2 (en) | 2013-07-11 | 2017-04-04 | Nike, Inc. | Article with closed instep portion having variable volume |
| US9872539B2 (en) | 2013-07-11 | 2018-01-23 | Nike, Inc. | Article with tensioning system including driven tensioning members |
| US9491983B2 (en) * | 2013-08-19 | 2016-11-15 | Nike, Inc. | Article of footwear with adjustable sole |
| US10645990B2 (en) | 2013-08-19 | 2020-05-12 | Nike, Inc. | Article of footwear with adjustable sole |
| US9872537B2 (en) * | 2014-04-08 | 2018-01-23 | Nike, Inc. | Components for articles of footwear including lightweight, selectively supported textile components |
| US9861162B2 (en) | 2014-04-08 | 2018-01-09 | Nike, Inc. | Components for articles of footwear including lightweight, selectively supported textile components |
| US9380834B2 (en) * | 2014-04-22 | 2016-07-05 | Nike, Inc. | Article of footwear with dynamic support |
| US20170049190A1 (en) * | 2014-04-25 | 2017-02-23 | Mighty Styley Sl | Shoe |
| US10492974B2 (en) | 2014-06-23 | 2019-12-03 | Tactile Systems Technology, Inc. | Compression garment system with tightening apparatus |
| DE102014109127A1 (de) * | 2014-06-30 | 2015-12-31 | Wolfgang Böhm | Skischuh |
| US9907361B2 (en) | 2014-07-29 | 2018-03-06 | Nike, Inc. | Article of footwear with channels in sole structure |
| CA2956846C (fr) | 2014-07-31 | 2019-05-28 | Powerlace Technologies Inc. | Systeme de fermeture |
| KR20160054903A (ko) * | 2014-11-07 | 2016-05-17 | 엘지전자 주식회사 | 와치 타입 이동 단말기 |
| US10082872B2 (en) * | 2014-12-30 | 2018-09-25 | Immersion Corporation | Deformable haptic wearables with variable physical properties |
| US9781984B2 (en) | 2015-03-08 | 2017-10-10 | Apple Inc. | Dynamic fit adjustment for wearable electronic devices |
| US9848674B2 (en) * | 2015-04-14 | 2017-12-26 | Nike, Inc. | Article of footwear with weight-activated cinching apparatus |
| US9609904B2 (en) | 2015-04-23 | 2017-04-04 | Adidas Ag | Shoes for ball sports |
| US10743620B2 (en) | 2015-05-28 | 2020-08-18 | Nike, Inc. | Automated tensioning system for an article of footwear |
| US10070681B2 (en) | 2015-05-28 | 2018-09-11 | Nike, Inc. | Control device for an article of footwear |
| US10231505B2 (en) * | 2015-05-28 | 2019-03-19 | Nike, Inc. | Article of footwear and a charging system for an article of footwear |
| US10010129B2 (en) * | 2015-05-28 | 2018-07-03 | Nike, Inc. | Lockout feature for a control device |
| CN112515292B (zh) | 2015-05-29 | 2022-10-25 | 耐克创新有限合伙公司 | 包含具有分离线轴系统的机动张紧装置的鞋类物品 |
| EP3302155B1 (fr) * | 2015-05-29 | 2023-06-07 | Nike Innovate C.V. | Dispositif de tensionnement motorisé comprenant un système de bobine compact |
| CN105077835B (zh) * | 2015-07-07 | 2017-04-05 | 小米科技有限责任公司 | 穿戴用品及其温度调节方法、装置 |
| US10463120B2 (en) | 2015-09-30 | 2019-11-05 | Apple Inc. | Wearable band having incremental adjustment mechanisms |
| EP3359104B1 (fr) | 2015-10-05 | 2023-04-26 | Tactile Systems Technology, Inc. | Système de thérapie par compression statique et dynamique |
| CA3000992C (fr) | 2015-10-05 | 2024-01-02 | Tactile Systems Technology, Inc. | Vetement de compression reglable |
| US9808050B2 (en) | 2015-11-08 | 2017-11-07 | Jezekiel Ben-Arie | Lace ratchet fastening device |
| US10390590B2 (en) | 2015-11-08 | 2019-08-27 | Jezekiel Ben-Arie | Lace ratcheting device II |
| CN108495568A (zh) * | 2015-11-24 | 2018-09-04 | 耐克创新有限合伙公司 | 具有引导元件的系带系统 |
| CA3256316A1 (fr) | 2016-01-21 | 2025-11-29 | Tactile Sys Tech Inc | Système de vêtement de compression |
| US10595584B2 (en) * | 2016-01-28 | 2020-03-24 | Christopher Anthony Silva | Adjustable article system |
| US10602801B2 (en) | 2016-01-28 | 2020-03-31 | Compuglobalhypermeganet Llc | Adjustable article system |
| US11109636B2 (en) | 2016-02-24 | 2021-09-07 | Vida Shoes International Inc. | Customizable shoe |
| US9609921B1 (en) | 2016-03-04 | 2017-04-04 | Feinstein Patents, Llc | Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting magnetic clasp |
| US11026481B2 (en) | 2016-03-15 | 2021-06-08 | Nike, Inc. | Foot presence signal processing using velocity |
| US10244822B2 (en) | 2016-03-15 | 2019-04-02 | Nike, Inc. | Lace routing pattern of a lacing system for an article of footwear |
| US9961963B2 (en) * | 2016-03-15 | 2018-05-08 | Nike, Inc. | Lacing engine for automated footwear platform |
| US10660406B2 (en) | 2016-03-15 | 2020-05-26 | Nike, Inc. | Tensioning system and reel member for footwear |
| US10238180B2 (en) * | 2016-03-15 | 2019-03-26 | Nike, Inc. | Position sensing assembly for a tensioning system |
| KR102676552B1 (ko) * | 2016-03-15 | 2024-06-18 | 나이키 이노베이트 씨.브이. | 신발류용 모터 작동형 인장 시스템을 위한 변속 장치 |
| US9861164B2 (en) * | 2016-03-15 | 2018-01-09 | Nike, Inc. | Tensioning system and reel member for an article of footwear |
| US10390589B2 (en) * | 2016-03-15 | 2019-08-27 | Nike, Inc. | Drive mechanism for automated footwear platform |
| KR102497971B1 (ko) | 2016-03-15 | 2023-02-08 | 나이키 이노베이트 씨.브이. | 자동화된 신발류 플랫폼을 위한 모터 제어 |
| US11272762B2 (en) * | 2016-03-15 | 2022-03-15 | Nike, Inc. | Assembly process for automated footwear platform |
| US11202484B2 (en) | 2016-03-15 | 2021-12-21 | Nike, Inc. | Standoff unit for a control device in an article of footwear |
| WO2018170148A2 (fr) * | 2016-03-15 | 2018-09-20 | Walker Steven H | Traitement de signal de présence de pied utilisant la vitesse |
| JP7026632B2 (ja) * | 2016-03-15 | 2022-02-28 | ナイキ イノベイト シーブイ | 自動化されたフットウェア・プラットフォームのための原点復帰機構 |
| KR20170110802A (ko) * | 2016-03-24 | 2017-10-12 | 엘지이노텍 주식회사 | 무선 전력 수신기 및 그의 동작 방법 |
| RO132185A2 (ro) * | 2016-04-26 | 2017-10-30 | Sorin Raia | Dispozitiv automat pentru fixarea încălţămintei şi păstrarea igienei incintelor |
| US10602807B2 (en) | 2016-07-12 | 2020-03-31 | Jezekiel Ben-Arie | Belt ratcheting device |
| US10786045B2 (en) | 2016-07-12 | 2020-09-29 | Jezekiel Ben-Arie | Lace ratcheting device—metal jacket |
| US11026472B2 (en) | 2016-07-22 | 2021-06-08 | Nike, Inc. | Dynamic lacing system |
| US10149514B2 (en) | 2016-08-31 | 2018-12-11 | Fit Squared Shoes, Llc | Single pull squared-cord shoe closure system |
| USD831220S1 (en) | 2016-08-31 | 2018-10-16 | Tactile Systems Technology, Inc. | Head garment |
| US20190208863A1 (en) * | 2016-08-31 | 2019-07-11 | Fit Squared Shoes, Llc | Double Pull Squared-Cord Shoe Closure System |
| USD877459S1 (en) | 2016-08-31 | 2020-03-10 | Tactile Systems Technology, Inc. | Torso garment |
| US9730494B1 (en) | 2016-09-23 | 2017-08-15 | Feinstein Patents, Llc | Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting shoe/sneaker/footwear |
| JP6728494B2 (ja) | 2016-10-26 | 2020-07-22 | ナイキ イノベイト シーブイ | 自動履物プラットフォーム用のひも締めアーキテクチャ |
| US11083248B2 (en) | 2016-10-26 | 2021-08-10 | Nike, Inc. | Automated footwear platform having upper elastic tensioner |
| US11071353B2 (en) | 2016-10-26 | 2021-07-27 | Nike, Inc. | Automated footwear platform having lace cable tensioner |
| EP4212057B1 (fr) | 2016-10-26 | 2025-08-13 | Nike Innovate C.V. | Guides de lacet déformables pour plateforme de chaussure automatisée |
| CN109843108B (zh) * | 2016-10-26 | 2021-10-08 | 耐克创新有限合伙公司 | 用于鞋类物品的鞋面部件 |
| US20180116334A1 (en) | 2016-10-27 | 2018-05-03 | Nike, Inc. | Footwear with mechanical foot-insertion assist |
| WO2018093838A1 (fr) * | 2016-11-15 | 2018-05-24 | Rosalind Franklin University Of Medicine And Science | Dispositif de semelle intérieure à délestage intelligent |
| CN106579635A (zh) * | 2016-12-16 | 2017-04-26 | 弓汉羽 | 全自动漫步鞋及其操作方法 |
| USD839484S1 (en) | 2017-02-28 | 2019-01-29 | Tactile Systems Technology, Inc. | Head Garment |
| USD834208S1 (en) | 2017-03-10 | 2018-11-20 | Tactile Systems Technology, Inc. | Chest and arm garment |
| KR102805177B1 (ko) * | 2017-03-14 | 2025-05-08 | 나이키 이노베이트 씨.브이. | 신발류 물품 및 조임 디바이스의 설치 방법 |
| US10849388B2 (en) | 2017-04-27 | 2020-12-01 | Cincinnati Automation & Mechatronics, LLC | Automatic retention apparatus |
| US10455900B2 (en) | 2017-05-18 | 2019-10-29 | Feinstein Patents, Llc | Bi-stable strap with a snap spring hinge |
| WO2018222805A2 (fr) | 2017-05-31 | 2018-12-06 | Nike, Inc. | Systèmes, dispositifs et techniques de laçage automatique de chaussures |
| EP3629884A1 (fr) | 2017-05-31 | 2020-04-08 | Nike Innovate C.V. | Chaise de sport avec intégration de jeu |
| USD849254S1 (en) | 2017-09-28 | 2019-05-21 | Tactile Systems Technology, Inc. | Combination trunk and leg garment |
| USD870297S1 (en) | 2017-09-28 | 2019-12-17 | Tactile Systems Technology, Inc. | Trunk garment |
| USD848625S1 (en) | 2017-09-28 | 2019-05-14 | Tactile Systems Technology, Inc. | Leg garment |
| EP3697251B1 (fr) | 2017-10-20 | 2022-08-03 | Nike Innovate C.V. | Architecture de laçage de plate-forme de chaussure automatisée |
| CN114145546A (zh) | 2017-10-20 | 2022-03-08 | 耐克创新有限合伙公司 | 用于自动鞋类平台的支撑结构 |
| CA3084471A1 (fr) | 2017-11-06 | 2019-05-09 | Tactile Systems Technology, Inc. | Systemes de vetements de compression |
| US11209904B2 (en) * | 2017-12-29 | 2021-12-28 | Bhaptics Inc. | Tactile stimulation providing device |
| RU2670322C1 (ru) * | 2018-02-07 | 2018-10-22 | Вячеслав Сергеевич Перфильев | Обувь с системой самоподтягивающихся шнурков |
| US11039946B2 (en) * | 2018-03-12 | 2021-06-22 | Thomas Terrell | Non-surgical method and apparatus for treating carpal tunnel syndrome |
| US11009712B2 (en) | 2018-05-03 | 2021-05-18 | Htc Corporation | Head-mounted display device |
| US10334906B1 (en) | 2018-05-31 | 2019-07-02 | Nike, Inc. | Intelligent electronic footwear and control logic for automated infrastructure-based pedestrian tracking |
| CN112203546B (zh) * | 2018-05-31 | 2022-06-07 | 耐克创新有限合伙公司 | 具有扩大的鞋喉开口和选择性的通风性的鞋类物品 |
| WO2019238231A1 (fr) * | 2018-06-14 | 2019-12-19 | Puma SE | Chaussure, en particulier chaussure de sport |
| CN115316748A (zh) * | 2018-07-06 | 2022-11-11 | 耐克创新有限合伙公司 | 用于鞋类物品和服装物品的闭合机构 |
| US11375774B2 (en) | 2018-08-09 | 2022-07-05 | Nike, Inc. | Knitted component having a knitted anchor portion |
| US10525325B1 (en) * | 2018-08-23 | 2020-01-07 | Ethan W. Koppel | Automatic snowboard binding |
| CN116369621A (zh) | 2018-08-31 | 2023-07-04 | 耐克创新有限合伙公司 | 具有带凹口的线轴的自动系带鞋类马达 |
| EP3843577B1 (fr) * | 2018-08-31 | 2023-08-09 | NIKE Innovate C.V. | Moteur d'article chaussant à laçage automatique ayant un codeur à tambour rotatif |
| CN112930127B (zh) * | 2018-08-31 | 2024-09-10 | 耐克创新有限合伙公司 | 具有细长线轴的自动系带鞋类 |
| US11684110B2 (en) * | 2018-08-31 | 2023-06-27 | Nike, Inc. | Autolacing footwear |
| KR102520056B1 (ko) * | 2018-08-31 | 2023-04-10 | 나이키 이노베이트 씨.브이. | 회전식 드럼 인코더를 구비한 오토레이싱 신발류 모터 |
| RO133932A2 (ro) | 2018-09-05 | 2020-03-30 | Sorin Raia | Sistem pentru încălţarea/descălţarea automată a unui articol de încălţăminte |
| CN115844105A (zh) | 2018-09-06 | 2023-03-28 | 耐克创新有限合伙公司 | 具有反馈机构的动态系带系统 |
| KR102763231B1 (ko) * | 2018-11-30 | 2025-02-04 | 나이키 이노베이트 씨.브이. | 슬라이딩 고정 장치를 구비한 오토레이싱 신발류 |
| EP3886630B1 (fr) * | 2018-11-30 | 2023-09-13 | NIKE Innovate C.V. | Moteur d'article chaussant de laçage automatique ayant un codeur à tambour rotatif |
| CN109730390A (zh) * | 2018-11-30 | 2019-05-10 | 宁波鱼观生态环境科技有限公司 | 一种防脱落拖鞋 |
| EP3937717A4 (fr) * | 2019-03-14 | 2022-11-23 | NIKE Innovate C.V. | Interface tactile pour systèmes de chaussure actifs |
| KR102260501B1 (ko) * | 2019-04-11 | 2021-06-04 | 정재혁 | 자동 조임 신발 |
| US11241067B2 (en) | 2020-02-17 | 2022-02-08 | Jezekiel Ben-Arie | Hidden blade belt ratcheting device IV |
| US11234489B2 (en) | 2020-02-17 | 2022-02-01 | Jezekiel Ben-Arie | Spring lace ratcheting device |
| US11617420B2 (en) * | 2020-05-22 | 2023-04-04 | Nike, Inc. | Strap system for article of footwear |
| US11517077B2 (en) | 2020-12-25 | 2022-12-06 | Jezekiel Ben-Arie | Belt ratcheting device with hidden blade II |
| US12121366B2 (en) * | 2021-02-12 | 2024-10-22 | The Board Of Trustees Of The University Of Alabama | Sensorized shoelace-tensioning system and method |
| US20240341412A1 (en) * | 2023-04-13 | 2024-10-17 | Bret Arthur Wozniak | Automatic shoelace tying system |
| CN220442052U (zh) | 2023-07-29 | 2024-02-06 | 江西思创通智能科技有限公司 | 一种新型的系带系统 |
| US12016432B1 (en) * | 2023-09-13 | 2024-06-25 | David Steer | Article of footwear |
| US20250120476A1 (en) * | 2023-10-12 | 2025-04-17 | Keen, Inc. | Adaptive footwear closure |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4426796A (en) * | 1980-01-04 | 1984-01-24 | Spademan Richard George | Sport shoe with a dynamic fitting system |
| US4433456A (en) * | 1981-01-28 | 1984-02-28 | Nordica S.P.A. | Closure device particularly for ski boots |
| US6691433B2 (en) | 2002-02-08 | 2004-02-17 | Kun-Chung Liu | Automated tightening shoe |
| US20050198867A1 (en) | 2004-03-12 | 2005-09-15 | Frederick Labbe | Self tying shoe |
| US20060156517A1 (en) * | 1997-08-22 | 2006-07-20 | Hammerslag Gary R | Reel based closure system |
| US7255468B2 (en) * | 2004-05-20 | 2007-08-14 | Jonathan Capriola | Illuminated shoes and illuminated fashion accessories |
| US20080086911A1 (en) | 2006-10-15 | 2008-04-17 | Frederick Labbe | Weight-activated tying shoe |
Family Cites Families (272)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1184396A (en) | 1914-05-20 | 1916-05-23 | John E Trimble | Electrically-illuminated shoe. |
| US3008038A (en) | 1959-07-29 | 1961-11-07 | Milton L Dickens | Shoe with electric bulb providing illumination |
| US3070907A (en) | 1962-04-11 | 1963-01-01 | Rocco Joseph | Illuminated dancing shoe |
| US3496505A (en) | 1967-07-06 | 1970-02-17 | Arthur Johannsen | Transformer bobbins with means for mounting terminals thereon |
| US3668791A (en) * | 1969-07-08 | 1972-06-13 | Otto Salzman | Fastener for ski boots and the like footwear |
| US3893247A (en) | 1974-07-31 | 1975-07-08 | Iii Alfred Dana | Illuminated soles and heels |
| US3946505A (en) | 1974-07-31 | 1976-03-30 | Dana Alfred Iii | Shoe with detachable illuminated heel |
| US4020572A (en) | 1976-02-17 | 1977-05-03 | Chiaramonte Jr Gasper | Illuminated footwear |
| US4112601A (en) | 1977-03-23 | 1978-09-12 | Chiaramonte Jr Gasper | Dynamically illuminated footwear |
| US4130951A (en) | 1977-09-09 | 1978-12-26 | Aaron Powell | Illuminated dancing shoes |
| US4169324A (en) | 1978-01-31 | 1979-10-02 | Gibbs Don W | Sock and shoe and sock and shoe fastening means |
| US4494324A (en) | 1978-03-15 | 1985-01-22 | Spademan Richard George | Dynamic internal fitting system with a movable foot bed for a sport shoe |
| US4158922B1 (en) | 1978-03-27 | 1995-03-14 | Gear L A Inc | Flashing discoshoes |
| US4253253A (en) | 1979-05-29 | 1981-03-03 | Mccormick Arnold J | Ornamental shoe heel device |
| US4466204A (en) | 1981-05-27 | 1984-08-21 | Chyuan Jong Wu | Electronic pace and distance counting shoe |
| FR2540359B1 (fr) | 1983-02-09 | 1987-07-10 | Salomon Sa | Chaussure de ski alpin a fermeture automatique |
| EP0121026A1 (fr) | 1983-03-30 | 1984-10-10 | Dana III, Alfred | Chaussure de sécurité à semelle molle |
| US4924605A (en) | 1985-05-22 | 1990-05-15 | Spademan Richard George | Shoe dynamic fitting and shock absorbtion system |
| US5311678A (en) | 1984-01-30 | 1994-05-17 | Spademan Richard George | Shoe shock absorption system |
| CH653532A5 (de) | 1984-03-30 | 1986-01-15 | Raichle Sportschuh Ag | Sportschuh, insbesondere skischuh. |
| IT1180988B (it) * | 1984-06-01 | 1987-09-23 | Caber Italia | Dispositivo di serraggio e regolazione particolarmente per scarponi da sci |
| IT1181038B (it) | 1984-11-27 | 1987-09-23 | Caber Italia | Calzatura da sci con dispositivi di pressione e di bloccaggio del piede |
| JPS6270802U (fr) | 1985-10-24 | 1987-05-06 | ||
| IT1186356B (it) | 1985-11-04 | 1987-11-26 | Nordica Spa | Scarpone da sci con dispositivo di chiusura e con dispositivo di bloccaggio del piede ad azionamento elettrico |
| IT1186221B (it) | 1985-12-02 | 1987-11-18 | Nordica Spa | Scarpone da sci con gruppo di azionamento dei dispositivi di chiusura e di regolazione |
| IT1189862B (it) * | 1986-05-26 | 1988-02-10 | Nordica Spa | Dispositivo di chiusura per scarponi da sci con bloccaggio e sbloccaggio rapido |
| CH674124A5 (fr) | 1987-12-22 | 1990-05-15 | Raichle Sportschuh Ag | |
| DE3802035A1 (de) * | 1988-01-25 | 1989-08-10 | Reichenecker Hans Storopack | Daempfungs- oder polsterkoerper zum einsatz in schuhen |
| CA1253832A (fr) | 1988-03-07 | 1989-05-09 | Nicholas A. Rodgers | Articles chaussants |
| US4999936A (en) | 1988-04-24 | 1991-03-19 | Calamia Thomas J | Illuminated sign |
| US4895110A (en) | 1988-06-22 | 1990-01-23 | Advance Designs And Concepts | Illuminated pet collar |
| FR2643794A1 (fr) | 1988-11-10 | 1990-09-07 | Darfeuille Jean | Chaussons ou chaussures possedant un dispositif specifique d'eclairage de nuit |
| US5060402A (en) | 1989-02-17 | 1991-10-29 | Rosen Henri E | Adjustable girth shoe construction |
| US5500635A (en) | 1990-02-20 | 1996-03-19 | Mott; Jonathan C. | Products incorporating piezoelectric material |
| EP0443363A1 (fr) * | 1990-02-21 | 1991-08-28 | Raichle Sportschuh AG | Chaussure de sport, en particulier chaussure de ski |
| JP3028568B2 (ja) | 1990-08-20 | 2000-04-04 | カシオ計算機株式会社 | 気体タンク付靴 |
| US5033212A (en) | 1990-10-09 | 1991-07-23 | Evanyk Walter R | System for increasing the visibility of an object |
| US5311677A (en) | 1991-08-02 | 1994-05-17 | Interco Incorporated | Shoe having impact absorption means |
| IL99575A0 (en) | 1991-09-26 | 1992-08-18 | Yossef Shkalim | Lighted shoe |
| US5157813A (en) | 1991-10-31 | 1992-10-27 | William Carroll | Shoelace tensioning device |
| EP0579775B1 (fr) | 1991-12-11 | 1995-08-23 | L.A.Gear, Inc. | Chassure de sport comprenant un module emboitable |
| US5188447A (en) | 1992-01-21 | 1993-02-23 | Marpole International Inc. | Illuminating system |
| DE9200982U1 (de) * | 1992-01-28 | 1993-05-27 | PUMA AG Rudolf Dassler Sport, 8522 Herzogenaurach | Schuh mit einem Zentralverschluß |
| US5205055A (en) * | 1992-02-03 | 1993-04-27 | Harrell Aaron D | Pneumatic shoe lacing apparatus |
| US5245516A (en) | 1992-04-03 | 1993-09-14 | Haas Joan O De | Portable illumination device |
| US5704706A (en) | 1992-06-26 | 1998-01-06 | L.A. Gear, Inc. | Plug-in light module |
| US5839210A (en) * | 1992-07-20 | 1998-11-24 | Bernier; Rejeanne M. | Shoe tightening apparatus |
| US5791068A (en) | 1992-07-20 | 1998-08-11 | Bernier; Rejeanne M. | Self-tightening shoe |
| CN1050985C (zh) | 1993-01-16 | 2000-04-05 | 黄英俊 | 发光鞋靴的制造方法 |
| US5303485A (en) | 1993-02-05 | 1994-04-19 | L.A. Gear, Inc. | Footwear with flashing lights |
| US5329432A (en) | 1993-03-29 | 1994-07-12 | Bland Todd A | Luminaire-provided footwear |
| US5373651A (en) | 1993-05-03 | 1994-12-20 | Wood; Thomas L. | Smart shoes |
| US5396718A (en) | 1993-08-09 | 1995-03-14 | Schuler; Lawrence J. | Adjustable internal energy return system for shoes |
| US5303131A (en) | 1993-08-23 | 1994-04-12 | Andy Wu | Shoe warning light device |
| CN2173521Y (zh) * | 1993-09-29 | 1994-08-10 | 何丽娟 | 鞋具的中央式扣带装置 |
| US5894686A (en) | 1993-11-04 | 1999-04-20 | Lumitex, Inc. | Light distribution/information display systems |
| US5570945A (en) | 1993-11-22 | 1996-11-05 | Chien; Tseng-Lu | Soft light-strip |
| US5644858A (en) | 1993-12-02 | 1997-07-08 | L.A. Gear, Inc. | Inertially responsive footwear lights |
| US5396720A (en) | 1993-12-07 | 1995-03-14 | Hwang; Wen I. | Fixing structure for lightening circuit of 2-stage switch on lightening shoe |
| US5381615A (en) | 1993-12-29 | 1995-01-17 | Angel-Etts Of California, Inc. | Footwear incorporating a multiple-switch lighting circuit |
| US5469342A (en) | 1994-01-25 | 1995-11-21 | Chien; Tseng L. | Light-strip apparatus |
| US5408764A (en) | 1994-02-01 | 1995-04-25 | East Asia Services Ltd. | Motion activated illuminating footwear and light module therefor |
| US5483759A (en) | 1994-02-01 | 1996-01-16 | Genesco Inc. | Footwear or other products |
| NZ282547A (en) | 1994-02-28 | 1998-02-26 | Adam H Oreck | Shoe with tubes on the tongue and redirection devices on the perimeter of the sole for guiding laces in a criss cross fashion |
| US5461188A (en) | 1994-03-07 | 1995-10-24 | Drago; Marcello S. | Synthesized music, sound and light system |
| US5457900A (en) | 1994-03-31 | 1995-10-17 | Roy; Avery J. | Footwear display device |
| US5860727A (en) | 1994-04-12 | 1999-01-19 | Chien; Tseng-Lu | Shoe with an electro-luminescent lighting element |
| US5479325A (en) | 1994-04-12 | 1995-12-26 | Chien; Tseng-Lu | Headgear with an EL light strip |
| US5611621A (en) | 1994-04-12 | 1997-03-18 | Chien; Tseng-Lu | Shoe with an EL light strip |
| US5865523A (en) | 1994-04-12 | 1999-02-02 | Chien; Tseng-Lu | Shoe with an EL light strip |
| US5406724A (en) | 1994-08-15 | 1995-04-18 | Lin; Wen-Tsung | Simplified illuminating means for safety illuminated shoe |
| US5794366A (en) | 1994-09-15 | 1998-08-18 | Chien; Tseng-Lu | Multiple segment electro-luminescent lighting arrangement |
| US5572817A (en) | 1994-09-15 | 1996-11-12 | Chien; Tseng L. | Multi-color electro-luminescent light strip and method of making same |
| US5499459A (en) * | 1994-10-06 | 1996-03-19 | H. H. Brown Shoe Company, Inc. | Footwear with replaceable, watertight bootie |
| US5490338A (en) | 1994-10-31 | 1996-02-13 | Hwang; Wen I. | Fixing structure for lightening circuit on lightening shoe |
| US5592759A (en) | 1995-01-26 | 1997-01-14 | Co-Jo Sports, Inc. | Vibrating footwear |
| US5746499A (en) | 1995-04-28 | 1998-05-05 | L.A. Gear, Inc. | Footwear with pulsed lights |
| JP3033166U (ja) | 1995-06-06 | 1997-01-21 | 伊藤精機発條株式会社 | 分解、組み立てのできる靴収納通箱 |
| JP2793980B2 (ja) | 1995-07-12 | 1998-09-03 | 株式会社シマノ | スノーボード用ブーツ |
| US5651197A (en) | 1995-07-24 | 1997-07-29 | James; Laurence H. | Article of footwear |
| US5599088A (en) | 1995-08-21 | 1997-02-04 | Chien; Tseng L. | Flashing footwear light module |
| US5791021A (en) | 1995-12-01 | 1998-08-11 | James; Laurence H. | Cable fastener |
| US5647104A (en) | 1995-12-01 | 1997-07-15 | Laurence H. James | Cable fastener |
| US5765300A (en) | 1995-12-28 | 1998-06-16 | Kianka; Michael | Shoe activated sound synthesizer device |
| US5649755A (en) | 1996-02-20 | 1997-07-22 | Rapisarda; Carmen C. | Elongated, decorative, flexible, light-transmitting assembly |
| US5879069A (en) | 1996-03-05 | 1999-03-09 | Chien; Tseng Lu | EL light strip device for footwear |
| US5722757A (en) | 1996-03-11 | 1998-03-03 | Chien; Thang Lu | Distributed illumination arrangement for a soft object |
| US5813148A (en) | 1996-04-08 | 1998-09-29 | Guerra; Rafael J. | Footwear with optical fiber illuminating display areas and control module |
| FR2749739B1 (fr) | 1996-06-17 | 1998-07-31 | Salomon Sa | Chaussure de sport |
| US5771611A (en) | 1996-06-20 | 1998-06-30 | Shuang-Bang Industrial Corporation | Transparent, lighted sole construction |
| US5866987A (en) | 1996-06-24 | 1999-02-02 | East Asia Services Ltd. | Motion activated illluminating footwear and light module therefor with fading and means for deactivating in bright light |
| US5806960A (en) | 1996-11-08 | 1998-09-15 | Chien; Tseng Lu | Universal safety light with EL element |
| US6012822A (en) | 1996-11-26 | 2000-01-11 | Robinson; William J. | Motion activated apparel flasher |
| JPH10225305A (ja) | 1997-02-12 | 1998-08-25 | Sekaicho Rubber Co Ltd | 発光靴 |
| US5812063A (en) | 1997-04-01 | 1998-09-22 | Weng; Ming-Bi | Lighting circuit assembly for shoes |
| US5955957A (en) | 1997-06-17 | 1999-09-21 | Calabrese; Stephen | Footwear with electroluminescent wire |
| US5909088A (en) | 1997-06-27 | 1999-06-01 | East Asia Services Ltd. | Motion activated illuminating footwear and light module therefor with sequential oscillating lights |
| CN1068510C (zh) | 1997-07-08 | 2001-07-18 | 周龙交 | 鞋带自动穿系暨脱解复动的鞋子 |
| US7107706B1 (en) | 1997-08-14 | 2006-09-19 | Promdx Technology, Inc. | Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control |
| US6289558B1 (en) | 1997-08-22 | 2001-09-18 | Boa Technology, Inc. | Footwear lacing system |
| US7591050B2 (en) * | 1997-08-22 | 2009-09-22 | Boa Technology, Inc. | Footwear lacing system |
| US20020095750A1 (en) | 1997-08-22 | 2002-07-25 | Hammerslag Gary R. | Footwear lacing system |
| US5934599A (en) * | 1997-08-22 | 1999-08-10 | Hammerslag; Gary R. | Footwear lacing system |
| US5969479A (en) | 1997-11-04 | 1999-10-19 | Cheerine Development (Hong Kong) Ltd. | Light flashing system |
| US5894201A (en) | 1997-11-04 | 1999-04-13 | Cheerine Development (Hong Kong) Ltd | Light flashing system |
| US5930921A (en) | 1998-02-18 | 1999-08-03 | Brown Group, Inc. | Illuminated shoe |
| US6032387A (en) * | 1998-03-26 | 2000-03-07 | Johnson; Gregory G. | Automated tightening and loosening shoe |
| US7096559B2 (en) * | 1998-03-26 | 2006-08-29 | Johnson Gregory G | Automated tightening shoe and method |
| US6896128B1 (en) * | 1998-03-26 | 2005-05-24 | Gregory G. Johnson | Automated tightening shoe |
| US6467194B1 (en) | 1998-03-26 | 2002-10-22 | Gregory G. Johnson | Automated tightening shoe |
| JP2000014410A (ja) | 1998-06-30 | 2000-01-18 | Ryuko Shu | 自動紐締め及び紐解き機能を具えた靴 |
| JP2000014402A (ja) | 1998-07-02 | 2000-01-18 | Matsushita Electric Ind Co Ltd | 靴 |
| DE19830334A1 (de) | 1998-07-07 | 2000-01-13 | Ingrid Schabsky | Schuh |
| US5936538A (en) | 1998-09-28 | 1999-08-10 | Meschkow; Sasha H. | Shoelace warning system |
| US6035556A (en) | 1999-04-01 | 2000-03-14 | Ballinger; Shannon K. | Shoe closure mechanism |
| US6112437A (en) | 1999-04-07 | 2000-09-05 | Lovitt; Bert | Article with animated display |
| CN2438353Y (zh) * | 2000-07-28 | 2001-07-11 | 周龙交 | 变比传控式鞋带自动系解互动的鞋子 |
| US6320169B1 (en) | 1999-09-07 | 2001-11-20 | Thermal Solutions, Inc. | Method and apparatus for magnetic induction heating using radio frequency identification of object to be heated |
| US6280045B1 (en) | 2000-01-06 | 2001-08-28 | E. S. Originals, Inc. | Lighted footwear module with random time delay |
| US6837590B2 (en) | 2000-09-27 | 2005-01-04 | Jezign, Llc | Illuminated cap and shoe set |
| JP2002119498A (ja) | 2000-10-17 | 2002-04-23 | Suzuki Sogyo Co Ltd | 健康管理機能付運動具 |
| US6378230B1 (en) | 2000-11-06 | 2002-04-30 | Visual3D Ltd. | Lace-less shoe |
| US6598322B2 (en) * | 2001-01-12 | 2003-07-29 | Cymer, Inc. | Shoe with quick tightening upper |
| US6457261B1 (en) | 2001-01-22 | 2002-10-01 | Ll International Shoe Company, Inc. | Shock absorbing midsole for an athletic shoe |
| JP2002238611A (ja) | 2001-02-15 | 2002-08-27 | Seiko Epson Corp | 着脱装置付履物 |
| DE10133489B4 (de) | 2001-07-10 | 2005-11-03 | Egon Voswinkel | Vorrichtung zur Betätigung einer Schnürzugeinrichtung eines Schuhs |
| WO2003020064A1 (fr) | 2001-08-01 | 2003-03-13 | Innovision Research & Technology Plc | Article d'habillement |
| US6925734B1 (en) | 2001-09-18 | 2005-08-09 | Reebok International Ltd. | Shoe with an arch support |
| US20030066207A1 (en) | 2001-10-09 | 2003-04-10 | David Gaither | Internally laced shoe |
| US20030070324A1 (en) | 2001-10-17 | 2003-04-17 | Nelson Webb T. | System and method for producing an electronic display on moving footwear |
| US6619812B2 (en) | 2002-01-18 | 2003-09-16 | Carmen Rapisarda | Illuminated shoe or clothing with force responsive pulse rate |
| CN2521934Y (zh) * | 2002-01-18 | 2002-11-27 | 晋江市欣兴五金塑胶有限公司 | 自动伸缩皮带扣 |
| CN2534836Y (zh) | 2002-03-11 | 2003-02-12 | 马再男 | 用电磁耦合连接电源的电热服装、鞋 |
| CN2540805Y (zh) * | 2002-04-28 | 2003-03-26 | 刘坤钟 | 可电动系紧的鞋子 |
| US20050018450A1 (en) | 2002-06-14 | 2005-01-27 | Tseng-Lu Chien | Fiber optic light kits for footwear |
| US7364315B2 (en) | 2002-06-14 | 2008-04-29 | Tseng-Lu Chien | Tubular electro-luminescent panel(s) light device |
| US20040046502A1 (en) | 2002-06-14 | 2004-03-11 | Tseng-Lu Chien | Environment proof treatment for electro-luminescent (EL) element(s) |
| US6789913B2 (en) | 2002-06-18 | 2004-09-14 | Meng Pi Wei | Multifunctional shoe flashing device |
| JP3092657U (ja) | 2002-09-09 | 2003-03-20 | 株式会社フジ・ノベルテック | 履物の殺菌・脱臭装置 |
| US6788200B1 (en) | 2002-10-21 | 2004-09-07 | Mitchell W Jamel | Footwear with GPS |
| ES1053061Y (es) | 2002-10-28 | 2003-06-16 | Francis Raluy | Calzado con cierre automatico. |
| DE10254933B4 (de) | 2002-11-25 | 2006-07-27 | Adidas International Marketing B.V. | Schuh |
| US20040103563A1 (en) | 2002-11-29 | 2004-06-03 | Linge Julie E. | Illuminated footwear |
| US6843578B1 (en) | 2002-12-17 | 2005-01-18 | James Cheung | Electro-luminescent footwear or clothing system |
| US7329019B2 (en) | 2002-12-17 | 2008-02-12 | James Cheung | Clothing or footwear illumination system having electro-luminescent and LED light sources |
| ITFI20030007A1 (it) | 2003-01-10 | 2004-07-11 | C & C Design S R L | Calzatura con illuminazione |
| US20060007670A1 (en) | 2004-07-06 | 2006-01-12 | Tseng-Lu Chien | Head light kits for footwear |
| US20060007668A1 (en) | 2004-07-06 | 2006-01-12 | Tseng-Lu Chien | LED button light kits for footwear |
| JP3682967B2 (ja) * | 2003-01-20 | 2005-08-17 | 劉 坤 鐘 | 装着の容易な靴 |
| US6953919B2 (en) | 2003-01-30 | 2005-10-11 | Thermal Solutions, Inc. | RFID-controlled smart range and method of cooking and heating |
| US6764193B1 (en) | 2003-02-04 | 2004-07-20 | Meng Pi Wei | Full-color shoe light device |
| JP3746043B2 (ja) | 2003-02-07 | 2006-02-15 | 株式会社シマノ | ブーツライナー |
| US7225565B2 (en) | 2003-03-10 | 2007-06-05 | Adidas International Marketing B.V. | Intelligent footwear systems |
| US7631382B2 (en) | 2003-03-10 | 2009-12-15 | Adidas International Marketing B.V. | Intelligent footwear systems |
| US7188439B2 (en) | 2003-03-10 | 2007-03-13 | Adidas International Marketing B.V. | Intelligent footwear systems |
| US20040181972A1 (en) * | 2003-03-19 | 2004-09-23 | Julius Csorba | Mechanism of tying of shoes circumferentially embracing the foot within the shoe |
| JP2005029168A (ja) | 2003-07-07 | 2005-02-03 | Fukuoka Marumoto Kk | 靴収納ケース |
| US7281341B2 (en) * | 2003-12-10 | 2007-10-16 | The Burton Corporation | Lace system for footwear |
| US7254910B2 (en) | 2004-01-08 | 2007-08-14 | Bbc International, Ltd. | Footwear with externally activated switch |
| US7147337B1 (en) | 2004-02-06 | 2006-12-12 | Carmen Rapisarda | Module for lighted garments, shoes or accessories |
| US20050183294A1 (en) | 2004-02-19 | 2005-08-25 | Bbc International, Ltd. | Shoe with light and sound activated manually and automatically |
| TWI406690B (zh) | 2004-02-26 | 2013-09-01 | Semiconductor Energy Lab | 運動器具,娛樂工具,和訓練工具 |
| US7310895B2 (en) | 2004-03-01 | 2007-12-25 | Acushnet Company | Shoe with sensors, controller and active-response elements and method for use thereof |
| US7269915B2 (en) | 2004-04-23 | 2007-09-18 | Drew Flechsig | Shoe with built in micro-fan |
| US20050284001A1 (en) | 2004-06-24 | 2005-12-29 | Justin Hoffman | Footwear closure system |
| CN2715463Y (zh) | 2004-06-24 | 2005-08-03 | 魏梦笔 | 多色变化的鞋灯装置 |
| US20070209234A1 (en) | 2004-07-20 | 2007-09-13 | Lung-Chiao Chou | Automatic tying and loosing shoes |
| CN101193568B (zh) * | 2004-10-29 | 2011-11-30 | 博技术有限公司 | 基于卷轴的闭合系统及使用该系统的鞋类物品 |
| US7114822B2 (en) | 2004-11-12 | 2006-10-03 | Bbc International, Ltd. | Article of footwear with remote sound activating unit |
| US7178929B2 (en) | 2004-11-12 | 2007-02-20 | Bbc International, Ltd. | Light and sound producing system |
| US20060101674A1 (en) | 2004-11-18 | 2006-05-18 | Nike International Ltd. | Article of footwear with powered elements and shaped power source |
| US7370438B2 (en) | 2004-12-01 | 2008-05-13 | The Timberland Company | Removable or reversible lining for footwear |
| US7254516B2 (en) | 2004-12-17 | 2007-08-07 | Nike, Inc. | Multi-sensor monitoring of athletic performance |
| US20060156588A1 (en) | 2005-01-19 | 2006-07-20 | Ferrell Patti J | Footwear |
| US7210253B2 (en) | 2005-02-08 | 2007-05-01 | Tsung I Yu | Massage shoes capable of increasing circulation of blood |
| US7181870B2 (en) | 2005-03-03 | 2007-02-27 | Bbc International, Ltd. | Footwear with black light LED |
| US20060198121A1 (en) | 2005-03-07 | 2006-09-07 | David Thorpe | Shoe with animated electro-luminescent display |
| CN2810253Y (zh) | 2005-03-11 | 2006-08-30 | 陈强战 | 电磁感应式电热鞋 |
| DE102005014709C5 (de) | 2005-03-31 | 2011-03-24 | Adidas International Marketing B.V. | Schuh |
| US20060221596A1 (en) | 2005-04-01 | 2006-10-05 | Shu-Chen Chang | Emitting light device of shoes |
| JP2006288783A (ja) | 2005-04-12 | 2006-10-26 | Toshiro Ikuta | 歩行先前方照射灯を備えた障害物認知履物 |
| US20060262517A1 (en) | 2005-05-20 | 2006-11-23 | Doerer Daniel M | Shoe with improved light pattern |
| US8028443B2 (en) | 2005-06-27 | 2011-10-04 | Nike, Inc. | Systems for activating and/or authenticating electronic devices for operation with footwear |
| US7347012B2 (en) | 2005-07-15 | 2008-03-25 | The Timberland Company | Shoe with lacing |
| US7631440B2 (en) | 2005-07-15 | 2009-12-15 | The Timberland Company | Shoe with anatomical protection |
| US20070028486A1 (en) | 2005-08-05 | 2007-02-08 | Montanya Phelps & Phelps, Inc. | Footwear with an electroluminescent lamp |
| US7207688B2 (en) | 2005-08-18 | 2007-04-24 | Wong Wai Yuen | Interactive shoe light device |
| US7721468B1 (en) | 2005-08-26 | 2010-05-25 | Gregory G. Johnson | Tightening shoe |
| US20070130803A1 (en) | 2005-12-14 | 2007-06-14 | Bernard Levy | Step over walking aid |
| US7405674B2 (en) | 2005-12-23 | 2008-07-29 | Shen Ko Tseng | Circuit for controlling a plurality of light-emitting devices disposed on an object in a sequence |
| US20070201221A1 (en) | 2006-02-24 | 2007-08-30 | Cherdak Eric B | Lighted shoes |
| CN1810172A (zh) | 2006-03-03 | 2006-08-02 | 重庆大学 | 采用非接触感应电源的电暖鞋 |
| TWM300050U (en) | 2006-03-08 | 2006-11-01 | Hsiao-Chieh Chung | Indoor shoe with illumination effect |
| US20070236915A1 (en) | 2006-04-06 | 2007-10-11 | Deen Chen | Led flickering shoes |
| TWM299404U (en) | 2006-04-17 | 2006-10-11 | Jason Auto Technology Co Ltd | Luminescent embodied panel for charger |
| US7607243B2 (en) | 2006-05-03 | 2009-10-27 | Nike, Inc. | Athletic or other performance sensing systems |
| US7503131B2 (en) * | 2006-05-15 | 2009-03-17 | Adam Ian Nadel | Ski boot tightening system |
| US20070267398A1 (en) | 2006-05-16 | 2007-11-22 | Mccoy Anne | Induction Heating of Footwear and Apparel |
| KR100702613B1 (ko) | 2006-05-30 | 2007-04-03 | 주식회사 아이손 | 콘트롤러를 장착한 인공지능신발과 운동량측정방법 |
| CN2914720Y (zh) | 2006-07-10 | 2007-06-27 | 秦书雄 | 可无触点充电的发光鞋 |
| US7789520B2 (en) | 2006-09-08 | 2010-09-07 | Kristian Konig | Electroluminescent communication system between articles of apparel and the like |
| US8128410B2 (en) | 2006-09-29 | 2012-03-06 | Nike, Inc. | Multi-mode acceleration-based athleticism measurement system |
| CN201015448Y (zh) * | 2007-02-02 | 2008-02-06 | 盟汉塑胶股份有限公司 | 鞋卷线器 |
| CN101641027A (zh) | 2007-02-16 | 2010-02-03 | 热溶体股份有限公司 | 感应加热的衣物 |
| US8032472B2 (en) | 2007-04-04 | 2011-10-04 | Tuen Solutions Limited Liability Company | Intelligent agent for distributed services for mobile devices |
| US7752774B2 (en) | 2007-06-05 | 2010-07-13 | Tim James Ussher | Powered shoe tightening with lace cord guiding system |
| US7676957B2 (en) | 2007-06-14 | 2010-03-16 | Johnson Gregory G | Automated tightening shoe |
| US20090109659A1 (en) | 2007-10-30 | 2009-04-30 | Iht Technology, Inc. | Footwear with integrated power system |
| US20110010964A1 (en) | 2007-11-07 | 2011-01-20 | Linckia Development Llc | Footwear suspension system |
| FR2924577B1 (fr) | 2007-12-07 | 2010-03-12 | Ct Tech Cuir Chaussure Maroqui | Article chaussant a serrage facilite |
| US7794101B2 (en) | 2008-02-01 | 2010-09-14 | Matthias Joseph Galica | Microprocessor enabled article of illuminated footwear with wireless charging |
| US8074379B2 (en) | 2008-02-12 | 2011-12-13 | Acushnet Company | Shoes with shank and heel wrap |
| US11723436B2 (en) | 2008-05-02 | 2023-08-15 | Nike, Inc. | Article of footwear and charging system |
| US10477911B2 (en) | 2008-05-02 | 2019-11-19 | Nike, Inc. | Article of footwear and charging system |
| US11206891B2 (en) | 2008-05-02 | 2021-12-28 | Nike, Inc. | Article of footwear and a method of assembly of the article of footwear |
| US8058837B2 (en) | 2008-05-02 | 2011-11-15 | Nike, Inc. | Charging system for an article of footwear |
| US9907359B2 (en) | 2008-05-02 | 2018-03-06 | Nike, Inc. | Lacing system with guide elements |
| US8056269B2 (en) | 2008-05-02 | 2011-11-15 | Nike, Inc. | Article of footwear with lighting system |
| US8046937B2 (en) | 2008-05-02 | 2011-11-01 | Nike, Inc. | Automatic lacing system |
| US8384551B2 (en) | 2008-05-28 | 2013-02-26 | MedHab, LLC | Sensor device and method for monitoring physical stresses placed on a user |
| DE102008027104A1 (de) | 2008-06-06 | 2009-12-10 | Cairos Technologies Ag | System und Verfahren zur mobilen Bewertung von Schuhdämpfungseigenschaften |
| US10070680B2 (en) | 2008-06-13 | 2018-09-11 | Nike, Inc. | Footwear having sensor system |
| US9297709B2 (en) | 2013-03-15 | 2016-03-29 | Nike, Inc. | System and method for analyzing athletic activity |
| US8077030B2 (en) | 2008-08-08 | 2011-12-13 | Global Trek Xploration Corp. | Tracking system with separated tracking device |
| US20100115799A1 (en) | 2008-11-13 | 2010-05-13 | Brady Welter | Shoe Apparatus |
| US8628453B2 (en) | 2008-12-05 | 2014-01-14 | Nike, Inc. | Athletic performance monitoring systems and methods in a team sports environment |
| US8490299B2 (en) | 2008-12-18 | 2013-07-23 | Nike, Inc. | Article of footwear having an upper incorporating a knitted component |
| EP2398383A4 (fr) | 2009-02-20 | 2013-07-03 | Univ Colorado Regents | Moniteur de poids corporel basé sur une chaussure et calculateur d'allocation de posture, de classification d'activité physique et de dépense d'énergie |
| US20100223816A1 (en) | 2009-03-06 | 2010-09-09 | Dante Barfield | Footwear for displaying visual content |
| FR2945712B1 (fr) | 2009-05-19 | 2011-07-22 | Michel Chauveau | Chaussure tout terrain. |
| WO2011057142A2 (fr) | 2009-11-05 | 2011-05-12 | Columbia Sportswear North America, Inc. | Procédé et appareil de commande de température d'article chaussant |
| EP2525679B1 (fr) | 2010-01-21 | 2020-04-01 | Boa Technology, Inc. | Guides pour systèmes de laçage |
| JP5628711B2 (ja) | 2010-03-16 | 2014-11-19 | 大塩 宏三 | 靴の歩数計測具及び中敷き(インソール) |
| US8463657B1 (en) | 2010-04-01 | 2013-06-11 | Joe Bentvelzen | Self-help system and method for selling footwear |
| US9655405B2 (en) | 2010-04-22 | 2017-05-23 | Kristan Lisa Hamill | Insoles for tracking, data transfer systems and methods involving the insoles, and methods of manufacture |
| US8387282B2 (en) | 2010-04-26 | 2013-03-05 | Nike, Inc. | Cable tightening system for an article of footwear |
| DE112011101525B4 (de) | 2010-04-30 | 2020-07-09 | Boa Technology, Inc. | Aufrollerbasiertes Schnürsystem |
| KR20130103705A (ko) | 2010-07-01 | 2013-09-24 | 보아 테크놀러지, 인크. | 끈 가이드 |
| US8529267B2 (en) | 2010-11-01 | 2013-09-10 | Nike, Inc. | Integrated training system for articles of footwear |
| KR101119904B1 (ko) | 2010-11-02 | 2012-02-29 | 이진욱 | 보행진단용 밑창 시트, 이를 이용한 보행 진단용 신발 시스템 및 보행자세 진단 서비스 시스템 |
| US8784350B2 (en) | 2010-12-09 | 2014-07-22 | Donald M. Cohen | Auto-accommodating therapeutic brace |
| WO2012101731A1 (fr) | 2011-01-26 | 2012-08-02 | パナソニック株式会社 | Module de charge sans contact, et appareil de charge sans contact côté réception et côté émission mettant en œuvre celui-ci |
| TWM408261U (en) | 2011-01-28 | 2011-08-01 | Zheng-Zhong Xu | Light-emitting shoe capable of changing battery |
| US9192816B2 (en) | 2011-02-17 | 2015-11-24 | Nike, Inc. | Footwear having sensor system |
| US8904673B2 (en) | 2011-08-18 | 2014-12-09 | Palidium, Inc. | Automated tightening shoe |
| US20130091731A1 (en) | 2011-10-17 | 2013-04-18 | Joy Sewing King&World Prosperity Co., Ltd. | Shoes with socks which may have additional miniature stylish designs |
| US8935860B2 (en) * | 2011-10-28 | 2015-01-20 | George Torres | Self-tightening shoe |
| US9078490B2 (en) | 2011-11-29 | 2015-07-14 | Nike, Inc. | Ankle and foot support system |
| US20130219754A1 (en) | 2012-02-29 | 2013-08-29 | Indicators, LLC | Shoe |
| US9241539B1 (en) | 2012-06-29 | 2016-01-26 | Jeffrey Keswin | Shoelace tightening method and apparatus |
| EP3491954B1 (fr) * | 2012-08-31 | 2021-01-06 | NIKE Innovate C.V. | Système de tension motorisé |
| EP4331428A3 (fr) | 2012-08-31 | 2024-05-01 | Nike Innovate C.V. | Système de tensionnement motorisé avec capteurs |
| US20140130374A1 (en) | 2012-11-15 | 2014-05-15 | Nike, Inc | Article Of Footwear Incorporating A Knitted Component |
| US9498023B2 (en) | 2012-11-20 | 2016-11-22 | Nike, Inc. | Footwear upper incorporating a knitted component with sock and tongue portions |
| US9578926B2 (en) | 2012-12-17 | 2017-02-28 | Vibralabs Incorporated | Device for automatically tightening and loosening laces |
| US9095186B2 (en) | 2013-01-15 | 2015-08-04 | Nike, Inc. | Article of footwear incorporating braided tensile strands |
| US9132601B2 (en) | 2013-01-15 | 2015-09-15 | Nike, Inc. | Spacer textile material with tensile strands having multiple entry and exit points |
| KR101625275B1 (ko) | 2013-02-22 | 2016-05-27 | 나이키 이노베이트 씨.브이. | 활동 모니터링, 추적 및 동기화 |
| WO2014138297A1 (fr) | 2013-03-05 | 2014-09-12 | Boa Technology Inc. | Systèmes, procédés et dispositifs de fermeture automatique de dispositifs médicaux |
| US9254018B2 (en) * | 2013-05-14 | 2016-02-09 | Derrick Bliss | Shoe with automatic closure mechanism |
| JP6445539B2 (ja) | 2013-05-31 | 2018-12-26 | ナイキ イノベイト シーブイ | 動的サンプリング |
| WO2014201356A1 (fr) | 2013-06-14 | 2014-12-18 | Sole Power, Llc | Système de stockage d'énergie pour dispositifs alimentés par les pieds |
| US9867417B2 (en) | 2013-07-11 | 2018-01-16 | Nike, Inc. | Article with tensioning system including tension balancing member |
| WO2015034770A1 (fr) | 2013-09-04 | 2015-03-12 | Solepower Llc | Semelle interne segmentée pour le support de systèmes intégrés |
| EP3593662B1 (fr) | 2013-09-20 | 2022-12-07 | NIKE Innovate C.V. | Système de réglage motorisé pour chaussure |
| CN105828711B (zh) | 2013-10-14 | 2022-03-11 | 耐克创新有限合伙公司 | 配置为提供目标激励的健身设备 |
| US10092065B2 (en) | 2014-04-15 | 2018-10-09 | Nike, Inc. | Footwear having motorized adjustment system and removable midsole |
| CN117617623A (zh) | 2015-05-28 | 2024-03-01 | 耐克创新有限合伙公司 | 鞋类物品以及组装鞋类物品的方法 |
| US10231505B2 (en) | 2015-05-28 | 2019-03-19 | Nike, Inc. | Article of footwear and a charging system for an article of footwear |
| US10743620B2 (en) | 2015-05-28 | 2020-08-18 | Nike, Inc. | Automated tensioning system for an article of footwear |
| US20170135444A1 (en) | 2015-11-13 | 2017-05-18 | Martin Gerardo Vincent | Automated footwear tightening system |
| CN108495568A (zh) | 2015-11-24 | 2018-09-04 | 耐克创新有限合伙公司 | 具有引导元件的系带系统 |
-
2008
- 2008-05-02 US US12/114,022 patent/US8046937B2/en active Active
-
2009
- 2009-04-29 CN CN201210234324.2A patent/CN102715706B/zh active Active
- 2009-04-29 EP EP14160429.8A patent/EP2796064B1/fr active Active
- 2009-04-29 EP EP18150821.9A patent/EP3387933B1/fr active Active
- 2009-04-29 JP JP2011507603A patent/JP5323177B2/ja active Active
- 2009-04-29 WO PCT/US2009/042072 patent/WO2009134858A1/fr not_active Ceased
- 2009-04-29 CN CN201210233338.2A patent/CN102726888B/zh active Active
- 2009-04-29 CN CN2009801158096A patent/CN102014682B/zh active Active
- 2009-04-29 EP EP09739660.0A patent/EP2278896B1/fr active Active
-
2011
- 2011-09-19 US US13/236,221 patent/US8522456B2/en active Active
-
2013
- 2013-07-31 US US13/955,007 patent/US8769844B2/en active Active
-
2014
- 2014-06-20 US US14/310,586 patent/US9307804B2/en active Active
-
2016
- 2016-03-03 US US15/059,385 patent/US9943139B2/en active Active
-
2018
- 2018-04-16 US US15/953,621 patent/US20180228250A1/en not_active Abandoned
-
2020
- 2020-04-01 US US16/837,810 patent/US11533967B2/en active Active
- 2020-06-24 US US16/910,475 patent/US20200315298A1/en not_active Abandoned
-
2022
- 2022-09-16 US US17/946,489 patent/US20230014734A1/en not_active Abandoned
- 2022-11-23 US US17/993,352 patent/US11882905B2/en active Active
-
2023
- 2023-11-20 US US18/515,085 patent/US20240090625A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4426796A (en) * | 1980-01-04 | 1984-01-24 | Spademan Richard George | Sport shoe with a dynamic fitting system |
| US4433456A (en) * | 1981-01-28 | 1984-02-28 | Nordica S.P.A. | Closure device particularly for ski boots |
| US20060156517A1 (en) * | 1997-08-22 | 2006-07-20 | Hammerslag Gary R | Reel based closure system |
| US6691433B2 (en) | 2002-02-08 | 2004-02-17 | Kun-Chung Liu | Automated tightening shoe |
| US20050198867A1 (en) | 2004-03-12 | 2005-09-15 | Frederick Labbe | Self tying shoe |
| US7255468B2 (en) * | 2004-05-20 | 2007-08-14 | Jonathan Capriola | Illuminated shoes and illuminated fashion accessories |
| US20080086911A1 (en) | 2006-10-15 | 2008-04-17 | Frederick Labbe | Weight-activated tying shoe |
Cited By (141)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10849390B2 (en) | 2003-06-12 | 2020-12-01 | Boa Technology Inc. | Reel based closure system |
| US11882905B2 (en) | 2008-05-02 | 2024-01-30 | Nike, Inc. | Automatic lacing system |
| US11533967B2 (en) | 2008-05-02 | 2022-12-27 | Nike, Inc. | Automatic lacing system |
| US12279675B2 (en) | 2008-05-02 | 2025-04-22 | Nike, Inc. | Article of footwear and charging system |
| US9907359B2 (en) | 2008-05-02 | 2018-03-06 | Nike, Inc. | Lacing system with guide elements |
| US9943139B2 (en) | 2008-05-02 | 2018-04-17 | Nike, Inc. | Automatic lacing system |
| US11723436B2 (en) | 2008-05-02 | 2023-08-15 | Nike, Inc. | Article of footwear and charging system |
| US11172726B2 (en) | 2008-05-02 | 2021-11-16 | Nike, Inc. | Article of footwear and charging system |
| US10477911B2 (en) | 2008-05-02 | 2019-11-19 | Nike, Inc. | Article of footwear and charging system |
| US10918164B2 (en) | 2008-05-02 | 2021-02-16 | Nike, Inc. | Lacing system with guide elements |
| US11206891B2 (en) | 2008-05-02 | 2021-12-28 | Nike, Inc. | Article of footwear and a method of assembly of the article of footwear |
| US11779083B2 (en) | 2008-11-21 | 2023-10-10 | Boa Technology, Inc. | Reel based lacing system |
| US9854873B2 (en) | 2010-01-21 | 2018-01-02 | Boa Technology Inc. | Guides for lacing systems |
| EP2353418B1 (fr) * | 2010-02-04 | 2017-03-01 | Salomon S.A.S. | Chaussure à tige améliorée |
| US10070695B2 (en) | 2010-04-30 | 2018-09-11 | Boa Technology Inc. | Tightening mechanisms and applications including the same |
| US10888139B2 (en) | 2010-04-30 | 2021-01-12 | Boa Technology Inc. | Tightening mechanisms and applications including same |
| US9408437B2 (en) | 2010-04-30 | 2016-08-09 | Boa Technology, Inc. | Reel based lacing system |
| RU2607779C2 (ru) * | 2011-08-18 | 2017-01-10 | Палидиум, Инк. | Автоматически затягиваемый ботинок (варианты) |
| US10413019B2 (en) | 2011-10-13 | 2019-09-17 | Boa Technology Inc | Reel-based lacing system |
| US11684111B2 (en) | 2012-02-22 | 2023-06-27 | Nike, Inc. | Motorized shoe with gesture control |
| US10568381B2 (en) | 2012-02-22 | 2020-02-25 | Nike, Inc. | Motorized shoe with gesture control |
| US11071344B2 (en) | 2012-02-22 | 2021-07-27 | Nike, Inc. | Motorized shoe with gesture control |
| US9375053B2 (en) | 2012-03-15 | 2016-06-28 | Boa Technology, Inc. | Tightening mechanisms and applications including the same |
| US9693605B2 (en) | 2012-08-31 | 2017-07-04 | Nike, Inc. | Footwear having removable motorized adjustment system |
| WO2014036374A1 (fr) * | 2012-08-31 | 2014-03-06 | Nike International Ltd. | Système de tension motorisé à capteurs |
| CN104822284A (zh) * | 2012-08-31 | 2015-08-05 | 耐克创新有限合伙公司 | 具有传感器的机动张紧系统 |
| EP4331428A3 (fr) * | 2012-08-31 | 2024-05-01 | Nike Innovate C.V. | Système de tensionnement motorisé avec capteurs |
| US11044968B2 (en) | 2012-08-31 | 2021-06-29 | Nike, Inc. | Footwear having removable motorized adjustment system |
| US9365387B2 (en) | 2012-08-31 | 2016-06-14 | Nike, Inc. | Motorized tensioning system with sensors |
| US11998086B2 (en) | 2012-08-31 | 2024-06-04 | Nike, Inc. | Motorized tensioning system with sensors |
| US11166525B2 (en) | 2012-08-31 | 2021-11-09 | Nike, Inc. | Footwear having removable motorized adjustment system |
| US10046942B2 (en) | 2012-08-31 | 2018-08-14 | Nike, Inc. | Motorized tensioning system with sensors |
| US11191322B2 (en) | 2012-08-31 | 2021-12-07 | Nike, Inc. | Motorized tensioning system with sensors |
| US9532893B2 (en) | 2012-08-31 | 2017-01-03 | Nike, Inc. | Motorized tensioning system |
| US10413020B2 (en) | 2012-08-31 | 2019-09-17 | Nike, Inc. | Motorized tensioning system |
| US10085517B2 (en) | 2012-08-31 | 2018-10-02 | Nike, Inc. | Motorized tensioning system |
| US11786013B2 (en) | 2012-08-31 | 2023-10-17 | Nike, Inc. | Motorized tensioning system with sensors |
| EP4327688A3 (fr) * | 2012-08-31 | 2024-05-01 | Nike Innovate C.V. | Système de tensionnement motorisé avec capteurs |
| CN106820446B (zh) * | 2012-08-31 | 2019-04-12 | 耐克创新有限合伙公司 | 具有传感器的机动张紧系统 |
| CN106820446A (zh) * | 2012-08-31 | 2017-06-13 | 耐克创新有限合伙公司 | 具有传感器的机动张紧系统 |
| US9516923B2 (en) | 2012-11-02 | 2016-12-13 | Boa Technology Inc. | Coupling members for closure devices and systems |
| US9737115B2 (en) | 2012-11-06 | 2017-08-22 | Boa Technology Inc. | Devices and methods for adjusting the fit of footwear |
| US10327513B2 (en) | 2012-11-06 | 2019-06-25 | Boa Technology Inc. | Devices and methods for adjusting the fit of footwear |
| USRE48215E1 (en) | 2013-01-28 | 2020-09-22 | Boa Technology Inc. | Lace fixation assembly and system |
| USRE49092E1 (en) | 2013-01-28 | 2022-06-07 | Boa Technology Inc. | Lace fixation assembly and system |
| US9439477B2 (en) | 2013-01-28 | 2016-09-13 | Boa Technology Inc. | Lace fixation assembly and system |
| USRE49358E1 (en) | 2013-01-28 | 2023-01-10 | Boa Technology, Inc. | Lace fixation assembly and system |
| US10702409B2 (en) | 2013-02-05 | 2020-07-07 | Boa Technology Inc. | Closure devices for medical devices and methods |
| US10959492B2 (en) | 2013-03-05 | 2021-03-30 | Boa Technology Inc. | Closure devices including incremental release mechanisms and methods therefor |
| US10251451B2 (en) | 2013-03-05 | 2019-04-09 | Boa Technology Inc. | Closure devices including incremental release mechanisms and methods therefor |
| US9610185B2 (en) | 2013-03-05 | 2017-04-04 | Boa Technology Inc. | Systems, methods, and devices for automatic closure of medical devices |
| US10342294B2 (en) | 2013-04-01 | 2019-07-09 | Boa Technology Inc. | Methods and devices for retrofitting footwear to include a reel based closure system |
| US9532626B2 (en) | 2013-04-01 | 2017-01-03 | Boa Technology, Inc. | Methods and devices for retrofitting footwear to include a reel based closure system |
| US12144401B2 (en) | 2013-06-05 | 2024-11-19 | Boa Technology, Inc. | Integrated closure device components and methods |
| US10076160B2 (en) | 2013-06-05 | 2018-09-18 | Boa Technology Inc. | Integrated closure device components and methods |
| US9770070B2 (en) | 2013-06-05 | 2017-09-26 | Boa Technology Inc. | Integrated closure device components and methods |
| US10772388B2 (en) | 2013-06-05 | 2020-09-15 | Boa Technology Inc. | Integrated closure device components and methods |
| US9629417B2 (en) | 2013-07-02 | 2017-04-25 | Boa Technology Inc. | Tension limiting mechanisms for closure devices and methods therefor |
| US10039348B2 (en) | 2013-07-02 | 2018-08-07 | Boa Technology Inc. | Tension limiting mechanisms for closure devices and methods therefor |
| US9706814B2 (en) | 2013-07-10 | 2017-07-18 | Boa Technology Inc. | Closure devices including incremental release mechanisms and methods therefor |
| US10477922B2 (en) | 2013-09-05 | 2019-11-19 | Boa Technology Inc. | Guides and components for closure systems and methods therefor |
| US11253028B2 (en) | 2013-09-05 | 2022-02-22 | Boa Technology Inc. | Guides and components for closure systems and methods therefor |
| US9700101B2 (en) | 2013-09-05 | 2017-07-11 | Boa Technology Inc. | Guides and components for closure systems and methods therefor |
| US9681705B2 (en) | 2013-09-13 | 2017-06-20 | Boa Technology Inc. | Failure compensating lace tension devices and methods |
| US10952503B2 (en) | 2013-09-13 | 2021-03-23 | Boa Technology Inc. | Failure compensating lace tension devices and methods |
| EP4212052A1 (fr) * | 2013-09-20 | 2023-07-19 | NIKE Innovate C.V. | Chaussure ayant un système de réglage motorisé |
| US9872790B2 (en) | 2013-11-18 | 2018-01-23 | Boa Technology Inc. | Methods and devices for providing automatic closure of prosthetics and orthotics |
| WO2015074070A1 (fr) * | 2013-11-18 | 2015-05-21 | Boa Technology Inc. | Procédés et dispositifs permettant une fermeture automatique de prothèses et d'orthèses |
| USD835976S1 (en) | 2014-01-16 | 2018-12-18 | Boa Technology Inc. | Coupling member |
| US11638465B2 (en) | 2014-04-15 | 2023-05-02 | Nike, Inc. | Footwear having motorized adjustment system and elastic upper |
| US11849811B2 (en) | 2014-04-15 | 2023-12-26 | Nike, Inc. | Footwear having motorized adjustment system and elastic upper |
| US12478140B2 (en) | 2014-04-15 | 2025-11-25 | Nike, Inc. | Footwear having motorized adjustment system and elastic upper |
| US9326566B2 (en) | 2014-04-15 | 2016-05-03 | Nike, Inc. | Footwear having coverable motorized adjustment system |
| US9629418B2 (en) | 2014-04-15 | 2017-04-25 | Nike, Inc. | Footwear having motorized adjustment system and elastic upper |
| US10376018B2 (en) | 2014-04-15 | 2019-08-13 | Nike, Inc. | Footwear having motorized adjustment system and elastic upper |
| US11388957B2 (en) | 2014-04-15 | 2022-07-19 | Nike, Inc. | Footwear having motorized adjustment system and removable midsole |
| US11219276B2 (en) | 2014-04-15 | 2022-01-11 | Nike, Inc. | Footwear having motorized adjustment system and elastic upper |
| US11992095B2 (en) | 2014-04-15 | 2024-05-28 | Nike, Inc. | Footwear having motorized adjustment system and removable midsole |
| US10092065B2 (en) | 2014-04-15 | 2018-10-09 | Nike, Inc. | Footwear having motorized adjustment system and removable midsole |
| US10492568B2 (en) | 2014-08-28 | 2019-12-03 | Boa Technology Inc. | Devices and methods for tensioning apparel and other items |
| US10575591B2 (en) | 2014-10-07 | 2020-03-03 | Boa Technology Inc. | Devices, methods, and systems for remote control of a motorized closure system |
| USD835898S1 (en) | 2015-01-16 | 2018-12-18 | Boa Technology Inc. | Footwear lace tightening reel stabilizer |
| US11185130B2 (en) | 2015-10-07 | 2021-11-30 | Puma SE | Article of footwear having an automatic lacing system |
| US11103030B2 (en) | 2015-10-07 | 2021-08-31 | Puma SE | Article of footwear having an automatic lacing system |
| US11771180B2 (en) | 2015-10-07 | 2023-10-03 | Puma SE | Article of footwear having an automatic lacing system |
| US11033079B2 (en) | 2015-10-07 | 2021-06-15 | Puma SE | Article of footwear having an automatic lacing system |
| US12317963B2 (en) | 2015-10-07 | 2025-06-03 | Puma SE | Article of footwear having an automatic lacing system |
| US10791798B2 (en) | 2015-10-15 | 2020-10-06 | Boa Technology Inc. | Lacing configurations for footwear |
| US11317678B2 (en) | 2015-12-02 | 2022-05-03 | Puma SE | Shoe with lacing mechanism |
| EP3182254A3 (fr) * | 2015-12-18 | 2017-08-30 | Immersion Corporation | Article vestimentaire comprenant un actionneur effectuant des opérations haptiques et non-haptiques |
| US10102722B2 (en) | 2015-12-18 | 2018-10-16 | Immersion Corporation | Wearable article having an actuator that performs non-haptic and haptic operations |
| US10297123B2 (en) | 2015-12-18 | 2019-05-21 | Immersion Corporation | Wearable article having an actuator that performs non-haptic and haptic operations |
| WO2017136836A1 (fr) * | 2016-02-05 | 2017-08-10 | Factor 10 LLC | Appareils et systèmes de fermeture de chaussure |
| US11337493B2 (en) | 2016-02-05 | 2022-05-24 | Factor 10 LLC | Apparatuses and systems for closure of footwear |
| EP3429387A4 (fr) * | 2016-03-15 | 2020-01-01 | NIKE Innovate C.V. | Article chaussant doté d'une fonction de laçage motorisé et de contrôle de geste |
| US11857029B2 (en) | 2016-03-15 | 2024-01-02 | Nike, Inc. | Foot presence signal processing systems and methods |
| US10856621B2 (en) | 2016-03-15 | 2020-12-08 | Nike, Inc. | Lacing apparatus for automated footwear platform |
| KR102866268B1 (ko) | 2016-03-15 | 2025-09-29 | 나이키 이노베이트 씨.브이. | 모터 작동형 끈조임 및 몸동작 제어를 가지는 신발류 |
| US10827804B2 (en) | 2016-03-15 | 2020-11-10 | Nike, Inc. | Lacing apparatus for automated footwear platform |
| EP4098142A1 (fr) * | 2016-03-15 | 2022-12-07 | Nike Innovate C.V. | Détection capacitive de la présence du pied pour article chaussant |
| US12268282B2 (en) | 2016-03-15 | 2025-04-08 | Nike, Inc. | Article of footwear with a tensioning system including a guide assembly |
| EP3429400A4 (fr) * | 2016-03-15 | 2019-11-20 | NIKE Innovate C.V. | Appareil de laçage pour plateforme de chaussure automatisée |
| US12250996B2 (en) | 2016-03-15 | 2025-03-18 | Nike, Inc. | Lacing apparatus for automated footwear platform |
| US11612219B2 (en) | 2016-03-15 | 2023-03-28 | Nike, Inc. | Lacing apparatus for automated footwear platform |
| US12222223B2 (en) | 2016-03-15 | 2025-02-11 | Nike, Inc. | Active footwear sensor calibration |
| US11324284B2 (en) | 2016-03-15 | 2022-05-10 | Nike, Inc. | Article of footwear with a tensioning system including a guide assembly |
| KR20230098727A (ko) * | 2016-03-15 | 2023-07-04 | 나이키 이노베이트 씨.브이. | 모터 작동형 끈조임 및 몸동작 제어를 가지는 신발류 |
| US10201212B2 (en) | 2016-03-15 | 2019-02-12 | Nike, Inc. | Article of footwear with a tensioning system including a guide assembly |
| EP4372493A3 (fr) * | 2016-03-15 | 2024-08-14 | Nike Innovate C.V. | Chaussure à laçage motorisé et commande de gestes |
| US11766095B2 (en) | 2016-03-15 | 2023-09-26 | Nike, Inc. | Foot presence signal processing using velocity |
| US12053057B2 (en) | 2016-03-15 | 2024-08-06 | Nike, Inc. | Capacitive foot presence sensing for footwear |
| KR20240095487A (ko) * | 2016-03-15 | 2024-06-25 | 나이키 이노베이트 씨.브이. | 모터 작동형 끈조임 및 몸동작 제어를 가지는 신발류 |
| KR102677794B1 (ko) | 2016-03-15 | 2024-06-21 | 나이키 이노베이트 씨.브이. | 모터 작동형 끈조임 및 몸동작 제어를 가지는 신발류 |
| US11925239B2 (en) | 2016-03-15 | 2024-03-12 | Nike, Inc. | Foot presence sensing systems for active footwear |
| EP4252574A3 (fr) * | 2016-03-15 | 2023-11-22 | Nike Innovate C.V. | Appareil de laçage pour plateforme de chaussure automatisée |
| US11825914B2 (en) | 2016-03-15 | 2023-11-28 | Nike, Inc. | Lacing apparatus for automated footwear platform |
| US11889900B2 (en) | 2016-03-15 | 2024-02-06 | Nike, Inc. | Capacitive foot presence sensing for footwear |
| US11439202B2 (en) | 2016-03-15 | 2022-09-13 | Nike, Inc. | Lacing apparatus for automated footwear platform |
| WO2017160642A3 (fr) * | 2016-03-15 | 2018-08-23 | Nike Innovate C.V. | Système de tension de chaussure comprenant un ensemble de guidage |
| WO2017157862A1 (fr) * | 2016-03-16 | 2017-09-21 | Otto Bock Healthcare Gmbh | Dispositif orthopédique |
| US11590012B2 (en) | 2016-03-16 | 2023-02-28 | Ottobock Se & Co. Kgaa | Orthopedic device |
| US10499709B2 (en) | 2016-08-02 | 2019-12-10 | Boa Technology Inc. | Tension member guides of a lacing system |
| US11089837B2 (en) | 2016-08-02 | 2021-08-17 | Boa Technology Inc. | Tension member guides for lacing systems |
| US11805854B2 (en) | 2016-11-22 | 2023-11-07 | Puma SE | Method for fastening a shoe, in particular, a sports shoe, and shoe, in particular sports shoe |
| US11439192B2 (en) | 2016-11-22 | 2022-09-13 | Puma SE | Method for putting on or taking off a piece of clothing or for closing, putting on, opening, or taking off a piece of luggage |
| US10842230B2 (en) | 2016-12-09 | 2020-11-24 | Boa Technology Inc. | Reel based closure system |
| US10543630B2 (en) | 2017-02-27 | 2020-01-28 | Boa Technology Inc. | Reel based closure system employing a friction based tension mechanism |
| US11220030B2 (en) | 2017-02-27 | 2022-01-11 | Boa Technology Inc. | Reel based closure system employing a friction based tension mechanism |
| US11357279B2 (en) | 2017-05-09 | 2022-06-14 | Boa Technology Inc. | Closure components for a helmet layer and methods for installing same |
| US10772384B2 (en) | 2017-07-18 | 2020-09-15 | Boa Technology Inc. | System and methods for minimizing dynamic lace movement |
| US12396520B2 (en) | 2017-07-18 | 2025-08-26 | Boa Technology Inc. | Configurations for footwear employing reel based closure systems |
| USD872981S1 (en) | 2018-09-25 | 2020-01-21 | Factor 10 LLC | Footwear with strap closure |
| USD899053S1 (en) | 2019-01-30 | 2020-10-20 | Puma SE | Shoe |
| USD906657S1 (en) | 2019-01-30 | 2021-01-05 | Puma SE | Shoe tensioning device |
| USD889805S1 (en) | 2019-01-30 | 2020-07-14 | Puma SE | Shoe |
| USD930960S1 (en) | 2019-01-30 | 2021-09-21 | Puma SE | Shoe |
| US12256803B2 (en) | 2019-02-01 | 2025-03-25 | Boa Technology Inc. | Reel based closure devices for tightening a ski boot |
| US11492228B2 (en) | 2019-05-01 | 2022-11-08 | Boa Technology Inc. | Reel based closure system |
| US11484089B2 (en) | 2019-10-21 | 2022-11-01 | Puma SE | Article of footwear having an automatic lacing system with integrated sound damping |
| US12501971B2 (en) | 2020-07-30 | 2025-12-23 | Nike, Inc. | Sensing device for footwear |
| US12171306B2 (en) | 2021-11-16 | 2024-12-24 | Puma SE | Article of footwear having an automatic lacing system |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11882905B2 (en) | Automatic lacing system | |
| US20250311815A1 (en) | Lacing system with guide elements | |
| CN112515292B (zh) | 包含具有分离线轴系统的机动张紧装置的鞋类物品 | |
| JP6981879B2 (ja) | コンパクトなスプール・システムを備えた電動式テンショニング・デバイス | |
| WO2017091769A1 (fr) | Système de laçage comprenant des éléments de guidage |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980115809.6 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09739660 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011507603 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009739660 Country of ref document: EP |